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Abstract

This paper addresses issues with monitoring systems that identify and track illegal drones. The development of
drone technologies promotes the widespread commercial application of drones. However, the ability of a drone to
carry explosives and other destructive materials may pose serious threats to public safety. In order to reduce these
threats, we propose an acoustic-based scheme for positioning and tracking of illegal drones. Our proposed scheme
has three main focal points. First, we scan the sky with switched beamforming to find sound sources and record
the sounds using a microphone array; second, we perform classification with a hidden Markov model (HMM) in
order to know whether the sound is a drone or something else. Finally, if the sound source is a drone, we use its
recorded sound as a reference signal for tracking based on adaptive beamforming. Simulations are conducted
under both ideal conditions (without background noise and interference sounds) and non-ideal conditions (with
background noise and interference sounds), and we evaluate the performance when tracking illegal drones.
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1 Introduction
In recent years, the development of drones has received
considerable attention due to their diverse applications.
This accomplishes a reduction in drone manufacturing
costs [1]. The advancements in drone technology have
an established record for providing beneficial eye-in-the-
sky services, but they have also increased serious appre-
hensions with respect to privacy and safety [2], such as
the threat of chemical, biological, or nuclear attacks [3].
In order to eliminate threats by illegal drones, many

authorities have been striving to achieve a solution in
drone monitoring and drone-attack countermeasures.
In [2], a system to combat unmanned aerial vehicles
(UAVs) was designed based on wireless technology; it
can realize detection, recognition, and jamming of
UAVs. In [4], the concept of the low-altitude air sur-
veillance control (LASC) system was presented. More-
over, technology based on the microphone array for
sound-source positioning has been widely used in dif-
ferent scenarios [5, 6]. In [7], beamforming with a

circular microphone array was employed to localize en-
vironmental sources of noise from different directions.
Zhang et al. [8] used a microphone array and acoustic
beamforming to capture superior speech sounds and to
localize the speakers in distributed meetings. Gebbie
et al. [9] utilized a microphone array for small-boat
localization.
In this paper, we design a monitoring system based on

capturing acoustic sound signals to identify illegal
drones. For detection, we use microphone arrays that do
not depend on the size of the drone, but rather on the
sound of the propeller, and can therefore serve as an ef-
fective means of detection and recognition, determining
whether it is drone or not, and which can then track the
drone. For detection and classification, the first step is
feature extraction [10] in order to identify the compo-
nents of the acoustic signal. Differences in system meth-
odologies in the literature results in difficult to compare
the proposed strategy with the other researches. In the
literature, there are several techniques based on acoustic
data for feature extraction, such as harmonic line associ-
ation [2, 11], the wavelet transform [12], and the mel-
frequency cepstral coefficient (MFCC) [13] method. The
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second step is classification, and for this, many mathem-
atical models can be used, such as the support vector
machine (SVM) [14], the Gaussian mixture model [15],
and the hidden Markov model (HMM) [16]. The pro-
cedure for direction of arrival (DOA) estimation with
drones is composed of beam-scan algorithms and sub-
space algorithms [17]. The beam-scan algorithms form a
conventional beam, scan the appropriate region, and plot
the magnitude squared output. Thus, minimum variance
distortionless response (MVDR) [18], and root MVDR
[19] are examples. Moreover, subspace algorithms com-
prise a set wherein the orthogonality between the signal
and noise subspaces is exploited [17]. Thus, multiple sig-
nal classification (MUSIC), root-MUSIC, capon, and es-
timation of signal parameters via rotational invariance
technique (ESPRIT) [20] are most efficient for estimating
the DOA of the signals using array antennas. However,
we use the recursive least squares (RLS) algorithm [21]
based on minimum mean square error (MMSE) [22] cri-
teria for estimating the DOA of drones. The RLS algo-
rithm is a kind of non-blind adaptive algorithm, and it
requires a reference signal [23] to find the target loca-
tion. Kaleem and Rehmani presented schemes for drone
localization and tracking [24]. Therefore, it is very diffi-
cult to compare the proposed acoustic-based scheme for
positioning and tracking of illegal drones strategy with
the other researches. Unlike the resource-allocation and
interference-mitigation schemes [25–48], this paper ad-
dresses the positioning of drones with an HMM for clas-
sification and with beamforming for tracking, using an
acoustic circular microphone array.

1.1 Main contributions
Our proposed framework is based on three major steps.

– First, we use microphones in a uniform circular
array (UCA) to form a beam pattern to scan the sky
and find sound sources.

– Second, we use the HMM for classification in order
to recognize the sound source, and determine
whether it is an illegal drone or something else.

– Finally, if it is an illegal drone, then we record its
sound with the array’s microphone elements (MEs)
and use the recorded sound as a reference signal for
tracking, based on RLS beamforming.

– Simulations are conducted under both ideal
conditions (without background noise and
interference sounds) and non-ideal conditions
(with background noise and interference sounds),
and we evaluate the performance when tracking
illegal drones.

The rest of the paper is organized as follow. Section 2
provides the details of the system architecture that

includes topological structure of a circular microphone
array and array signal model. In Section 3, we describe
the details of proposed acoustic signal-based procedure
for drone positioning. The experiments and simulations
are conducted in Section 4. Finally, we conclude the
paper in Section 5.

2 System methodology for acoustic signal-based
positioning of illegal drones
In this paper, we detect illegal drones based on sound
recognition with an HMM for classification and with
beamforming for tracking using a circular microphone
array. We consider 32 MEs (m = 1, 2, 3, ..., 32) for sensing
sounds. Figure 1 shows the system architecture for
illegal-drone identification using acoustic signals, in
which MEs are distributed uniformly on the circle, using

an angle of ϕm ¼ 2ðm−1Þπ
12 between the MEs, and the ra-

dius of the circular array is about 0.18 m. xm(n) is the
signal sample received by the mth element of the array,
where n is the time index. The sampling rate of the ME
is 44 KHz in the data acquisition process. The direction
of arrival of an object in the air is calculated by azimuth
and elevation angles. Thus, azimuth is on the x-y plane
with respect to the x-axis and is denoted as ϕ, and eleva-
tion with respect to the z-axis is represented as θ.
At first, switched beamforming (SBF) is used for scan-

ning the objects in the sky. Scanning is executed from 0°
to 90° elevation and 0° to 360° azimuth. Indeed, the SBF
is supposed to scan for illegal drones, but other objects
can also be in the sky, such as birds and airplanes. Gen-
erally, airplanes fly at a very high altitude, so birds can
be the main interference source while scanning for tar-
gets in the air. Our scenario considers not only an illegal
drone (the target sound signal) but a bird (an interfer-
ence sound signal), as shown in Fig. 1. Moreover, a uni-
form circular array (UCA) can provide 360° in azimuthal
coverage and can estimate both azimuth and elevation
simultaneously.

2.1 Circular microphone array method details
In this paper, we utilize a circular microphone array with
a ring pattern for scanning the 3-D area, because it has
uniform resolution throughout the entire azimuthal di-
mension, and it also provides the best performance
when the exact position of the source is unknown [49].
There are usually six to 36 MEs used in a UCA for
acoustic beamforming. In this paper, we consider 32
MEs because that number gives good-enough scanning
accuracy and has the least complexity in our scenario.
Figure 2 shows the orientation of the circular micro-
phone array in which the 32 MEs are uniformly placed.
The x-, y-, and z-axes represent the coordinates of the
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beamforming array in which the x-axis and y-axis denote
the horizontal plane, and the z-axis indicates the height.

2.2 Detail of array signal model
Consider a signal source with angle (θ, ϕ) that impinges
upon the MEs in an UCA, and let F(θ, ϕ) denote the
array factor. Each ME is weighted with a complex
weight, W(m) for m = 0, 1, 2, 3, ..., M − 1.
Since the M MEs are equally spaced around the UCA,

with radius R, the azimuth angle ϕk of the mth ME is
given as:

ϕm ¼ 2mπ
M

ð1Þ

The phase between the MEs is given as follows:

βm ¼ −aR cos ϕ−ϕmð Þ sinθ ð2Þ

where a ¼ 2π
λ and λ = wavelength.

It follows that the array factor for a UCA with M
equally spaced MEs is given as:

Fig. 1 System architecture for acoustic signal-based positioning of illegal drones. a Data collection by ground-based monitoring entities
(microphones). b Ground control station for illegal drone detection

Fig. 2 Orientation of the uniform circular array with 32 microphone elements
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F θ;ϕð Þ ¼
XM−1

m¼0

Ame
j αm−aR cos ϕ−ϕmð Þ sinθ½ � ð3Þ

where Am is the amplitude of the impinged signal at the
mth ME, and hence, Amejαm represents the complex
weight for the mth ME. In order to direct the main
beam at angle (θ0, ϕ0) in space, the phase of the weight
for the mth ME can be selected as:

αm ¼ aR cos ϕ−ϕmð Þ sinθ ð4Þ

3 Proposed acoustic signal-based methodology
for drone positioning
To track illegal drones based on sound recognition, in
our proposed framework, we first scan the objects
(sound sources) in the sky via SBF. Then, we use the
HMM for classification to identify the sound source
and determine whether it is an illegal drone or some-
thing else. Finally, if it is an illegal drone, its sound is
recorded by the MEs, and this recorded sound is used
as a reference signal for tracking, based on adaptive
RLS beamforming.
Scanning with SBF is based on maximum output

power criteria, and the scanning range for elevation is
from 0o to 90o, and for azimuth, from 0o to 360o. When
SBF completes the scan, the system detects the presence
of the sound sources. It might be a plane or a bird, etc.,
or an illegal drone, and thus, in order to identify the
sound source, the well-known HMM technique is
employed. If the HMM classifier identifies the sound as
an illegal drone, then adaptive beamforming requires ref-
erence signals, because RLS is non-blind beamforming.
Hence, reference signal acquisition is based on the scan-
ning and classification processes. Moreover, even if there
are other interfering sound signals, we can still track the
target by using the reference signal and updating the
DOA estimation according to the target movements.
Figure 3 shows the overall procedure of the proposed

acoustic signal-based scheme for illegal-drone position-
ing. The following subsections explain the scanning,
classification, and tracking procedures in detail.

3.1 Method of scanning the objects in the sky
3.1.1 Details of switched beamforming based on maximum
power criteria
The scanning or acquisition is done based on SBF.
Sound source localization is achieved based on max-
imum output power. In the SBF scheme, the weight
vector is given to the MEs in order to change the
direction of the beam and scan the corresponding
grid. Thus, output power is calculated in each grid
to find the maximum value. This process is repeated
until all the areas are scanned, and then, we com-
pare the output power of each scanning result. The
grid that gives the maximum output power indicates
the location of the sound source in 3-D space, i.e.,
the peak of the beam coincides with the direction of
the object. The output signal of the beamformer is
given as:

y n; θ;ϕð Þ ¼
XM
m¼1

w�
m θ;ϕð Þxm nð Þ

¼ WH θ;ϕð ÞX nð Þ
where W θ;ϕð Þ ¼ w1 θ;ϕð Þ;w2 θ;ϕð Þ;w3 θ;ϕð Þ⋯wM θ;ϕð Þ½ �

X nð Þ ¼ x1 nð Þ; x2 nð Þ; x3 nð Þ;⋯; xM nð Þ½ �
ð5Þ

where W(θ, ϕ) is a weight vector, and X (n) is the output
of the mth element at the nth snapshot.
The output power of each scanned area is calculated

as:

P θ;ϕð Þ ¼ E yðn; θ;ϕÞj j2� �
¼ WH θ;ϕð ÞE X nð ÞXH nð Þ� �

W θ;ϕð Þ
¼ WH θ;ϕð ÞR nð ÞW θ;ϕð Þ

ð6Þ

where WH represents the complex conjugate of the
weight vector and E(.) denotes the expectation. R (n), the

Fig. 3 Overall procedure of acoustic signal-based positioning of illegal drones
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covariance matrix of the signal in the nth snapshot, is
given as follows:

R nð Þ ¼ X nð Þ � XH nð Þ ð7Þ

Hence, we can calculate the output power of the
beamformer according to (6) by changing θ and ϕ in
order to find the maximum power, which initially identi-
fies the target position.

3.1.2 Details of scanning accuracy by switched
beamforming
In this subsection, we discuss the scanning accuracy of
SBF. The simulations are performed under both ideal
conditions (without background noise and interference)
and non-ideal conditions (with background noise and
interference). Figure 4 shows the beam-scanning route,
which starts from 0° elevation and 0° azimuth. At first,
beam scanning follows the route by increasing the eleva-
tion angle and azimuth angle with resolutions of 5° and
15°, respectively. The arrows indicate the movement of
the beams scanning for sound sources in 3-D space, cal-
culating the output power in each grid on the route. Fi-
nally, we compare the output power of each grid and
select the grid that has the maximum output to deter-
mine whether there is a sound source or not.
We consider a single sound source (target) and calcu-

late the output power following the beam-scanning
route. Figure 5 shows the output signal in each beam-
scanning grid according to the elevation and azimuth
from SBF. From Fig. 5c, we can clearly see that the flying
object is observed in that grid with elevation and azi-
muth of 45° and 180°, respectively, because the power of

the output signal is larger than the pre-defined thresh-
old. Indeed, we also check the output power in other
grids, but the output power of the signal is low, as
shown in Fig. 5a, b, d. Moreover, Fig. 6 illustrates the
different beam patterns for the flying-object directions
based on varying the number of array elements. Indeed,
the beam-scanning performance over the whole area
(i.e., azimuth from 0° to 360o and elevation from 0° to
90o) depends on the radius of the UCA and the number
of MEs. In this paper, we use a radius of 0.18 m and find
the number of MEs that provides good-enough beam-
scanning performance. From Fig. 6a, we can clearly see
that 12 MEs are not enough, because the yellow region
of the maximum peak (which indicates the location of
the sound source) is almost equal to the peak power of
the other grids. On the other hand, Fig 6b still does not
provide good-enough scanning performance with 24
MEs, because the peak power of the yellow region is not
high enough, compared to the peak power of the other
grids in whole area.
However, Fig. 6c has the best scanning performance

with 32 MEs, because the peak power of the yellow re-
gion is high enough, compared to the background. Thus,
we select 32 MEs at a 0.18 m radius to scan for sound
sources in the sky.
In addition, in order to verify the selection of 32

MEs with a 0.18 m radius, we check the peak to aver-
age power ratio (PAPR) versus the number of MEs at
different radii of a circular array, such as 0.18 m, 0.2
m, 0.22 m, and 0.25 m, as seen in Fig. 7. PAPR is de-
fined in (8), and thus, the maximum value of PAPR
above the threshold indicates the direction of the flying
object:

Fig. 4 Scanning resolution and the routes of sound source scanning by SBF
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Fig. 5 Output signal at each beam-scanning grid (elevation, azimuth): a (10°, 20°), b (75°, 90°), c (45°, 180°), and d (65°, 310°)

Fig. 6 Peaks of beam patterns towards drone directions. Number of MEs: a 12, b 24, and c 32
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Peak to Average Power Ratio

¼ Power Peakð ÞX
All Grids

Power each Gridð Þ=Nr:of Grids ð8Þ

It is obvious that PAPR increases by increasing the
number of MEs and by decreasing the radius of the
UCA. However, between eight and 20 MEs provide
similar PAPR performance at different radii (0.18 m,
0.2 m, 0.22 m, and 0.25 m) of the circular array, as
shown in Fig. 7. Using from 20 to 32 MEs at different
radii (0.18 m, 0.2 m, 0.22 m, and 0.25 m) for the cir-
cular array has a significant impact on PAPR per-
formance, and an array with a 0.18 m radius shows
the best PAPR performance. Moreover, we can clearly
observe that when we increase the number of MEs to
more than 32, PAPR again becomes identical. Hence,
we select 32 as the right number of MEs for the
UCA in our scenario.
Now, we consider the environment when scanning for

two targets in order to check the accuracy of beam-
scanning results. Figure 8 shows a color map of the out-
put power, in which the yellow region indicates the loca-
tion of the targets. Similarly, we consider a scenario with
one target and one interference source, and test the
scanning; the results are in Fig. 9, in which the yellow
part identifies the locations of the target and the inter-
ference. The accuracy of the scanning results is quite
satisfactory, even in environments with multiple targets

and interference sources, and the error is less than 3°,
which is acceptable.

3.2 Method of identification of sound sources using HMM
classifier
For feature extraction, a 36 MFCC scheme is applied
[50]. The recognition of the drone sound is accom-
plished despite background noise, and we evaluate the
performance of the classifier. The feasibility and effect-
iveness of the proposed algorithm is seen in the experi-
ment results.

3.2.1 Details of feature extraction of drone sounds
MFCC is a commonly used sound-signal feature extrac-
tion method that can extract features in the cepstral
domain, and it is a mathematical trick to extract the en-
velope of the spectrum in the logarithm domain. The de-
tails of the MFCC procedure are described in Fig. 10.
At first, a short-time Fourier transform (STFT) is

employed to transform the time domain signal into the
frequency domain, including framing, windowing, and
fast Fourier transform (FFT). Figure 11 shows a spectro-
gram of drone and bird sounds. The output signal after
STFT is represented as follows:

Xi
fft fð Þ ¼ FFT xi nð Þ � wi nð Þð Þ; 1≤ i≤ I; 1≤n≤N ð9Þ

where xi(n) and wi(n) are the acoustic data and window
functions, respectively, used in the ith frame with total

Fig. 7 Peak to average power ratio versus different numbers of elements
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frame numbers I. N and Xi
fft(f) are frame length and

windowed signal in the frequency domain, respectively.
The Hamming N-point window function is written as:

w nð Þ ¼ α−β cos
2πn
N−1

� �
; α ¼ 0:54; β

¼ 0:46; 0≤n≤N−1 ð10Þ

A mel-scale filter bank is utilized, and is written as
follows:

mel fð Þ ¼ 1127 ln 1þ f
700

� �
ð11Þ

Realizing the mth filter of the filter bank is denoted as:

Hm kð Þ ¼ f

0; k < f m−1ð Þ
k− f m−1ð Þ

f mð Þ− f m−1ð Þ ; f m−1ð Þ≤k ≤ f mð Þ
f m−1ð Þ−k

f mþ 1ð Þ− f mð Þ ; f mð Þ≤k≤ f mþ 1ð Þ
0; k > f mþ 1ð Þ

1≤m≤M

ð12Þ

where f(⋅) and M are mel-scale frequency and total num-
ber of filters, respectively.
Take the logarithm of the mel spectrum using (13):

s mð Þ ¼ ln
XN−1

k¼0
Xi

fft kð Þ�� ��2Hm kð Þ
� �

; 1≤m≤M

ð13Þ

where N is the FFT length of Ri
fft(k).

Fig. 9 Color map of output power [direction of drone (45°, 200°); direction of bird (60°, 50°)]

Fig. 8 Color map of output power [direction of drone 1 (45°, 200°); direction of drone 2 (20°, 60°)]
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Then, a discrete cosine transform (DCT) is applied to
get the nth cepstral coefficients, as follows:

cn ¼
XM−1

m¼0
s mð Þ cos πn m−0:5ð Þ

M

� �
; n

¼ 1; 2; :::;N ð14Þ
where N represents the cepstral coefficients. Generally,
Eq. (15) is used to calculate the delta coefficients in
MFCCs:

dn ¼ f

cnþ1−cn; n≤LPL
δ¼1n cnþδ−cn−δð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
PL

δ¼1δ
2

q ; others

cn−cn−1; n > N−L

ð15Þ

In our research, we propose additional delta coeffi-
cients, as follows:

dn ¼ f
cnþ1−cn; n≤LPL

δ¼1 cn−δ þ cnþδð Þ−2LCn

2L
; others

cn−cn−1; n > N−L

dn ¼ f
cnþ1−cn; n≤LPL

δ¼1 cn−δ þ cnþδð Þ−2LCn

2L
; others

cn−cn−1; n > N−L

ð16Þ

where δ is the step for calculating the difference of
coefficients.

So, 36 MFCCs, including standard MFCCs and delta
MFCCs for feature extraction, are applied in this
paper [50].

3.2.2 Details of drone sound recognition using HMM
The HMM is a statistical model for an ordered sequence
of variables, where states and inputs are hidden and ob-
servable, respectively. The sequence of observation vec-
tors is denoted as:

O ¼ otf g; 1≤ t≤T ð17Þ
where T is the state sequence. Usually, the HMM model
is presented as:

HMM ¼ N ;M;A;B;Πð Þ ð18Þ
where N, M, A, B, and Π, respectively, are the hidden
states, distinct observations per state, a state transition
matrix, the emission probability distribution per state,
and the probability of initial state distribution, which is
written as:

λ ¼ A;B;Πð Þ ð19Þ

3.2.3 Details of training and test stages for classifier
optimization
The parameters of the model are determined by the
training data, and the input data for the model are the

Fig. 11 Spectrogram of drone and bird sounds

Fig. 10 Feature extraction procedure using MFCC technique
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extracted features of the training data. The trained
models represent the most likely sound identity, and are
used to evaluate new incoming acoustic data. In this
paper, the training dataset is described as some clusters,
each of which represents a certain type of sound (Dtrain).
Table 1 shows the training data of each cluster. The pro-
cedure for the HMM-based drone sound recognition ap-
proach is shown in Fig. 12.
We use a drone, a plane, a car, a bird, and rain in the

training dataset. Clusters 1 to 5 are for the sounds of
drones, planes, cars, birds, and rain, respectively, as de-
scribed in Table 1. For better performance, we used
three kinds of sounds for drones, planes, birds, and rain
clusters, but for the car cluster, five kinds of sounds are
collected in order to keep the total sound-data length
for each cluster equal, due to the shorter time durations
for car sounds. Figure 13 shows the training procedure
in the HMM where the training issue is solved with the
Baum–Welch algorithm.
In the training stage, the classifier (with a mixture of

five HMMs, λs) is trained, while the subsequent testing
stage, where the Viterbi algorithm is applied, is to find
the state sequence that maximizes the probability of the
given sequence when the model is known.
The goal in a recognition process is to retrieve the in-

put sound, which is represented by a sequence of feature
vectors, Otest. The process is to find the HMM with the
highest probability, given the sequence, i.e.,

g� ¼ arg max
all s∈S

P λsjOtestð Þ ð20Þ
And the model that gives the maximum probability is

the one the test data belong to (i.e., the test data are
classified in the cluster that is represented by the se-
lected model).

Figure 14 is a block diagram of the testing proced-
ure, given the trained HMMs and the test dataset.

4 Experiments and performance evaluation of the
proposed acoustic signal-based methodology for
drone positioning
We investigated drone-sound recognition with the 36-
MFCC scheme in which 100 data samples were used for
each cluster. The sound detection probably is defined as:

PD ¼ Pr
Incoming sound has been classified to λs

Sound of cluster s existence

� �

ð21Þ
The effect of training dataset suitability is examined by

varying the number of sounds per cluster. Moreover, the
power of the sound signal is normalized in order to
avoid the effect of different sound energy. Normalized
power is described as follows:

P ¼ 1
N

XN
n¼1

X nð Þ2 ð22Þ

where X(n) is the signal and N is the number of samples.
Figure 15 shows the amplitude spectrum before

normalization. Thus, a normalization factor (NF) is given as:

N Finterference ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pinterference

Pdrone

r
ð23Þ

where Pinterference is the power of interference sounds
(plane, car, bird, rain) and Pdrone is the power of the
drone sound.

Fig. 12. Procedure for HMM-based drone-sound recognition

Table 1 Five clusters of sounds in the training dataset

Dtrain Remarks

Cluster 1 Drone 1, Drone 2, Drone 3 Drone 1: SYMA X5SW
Drone 2: BYROBOT Drone Fighter
Drone 3: WLtoys Skywalker
Plane 1: Helicopter
Plane 2: Boeing737
Plane 3: Boeing747

Cluster 2 Plane 1, Plane 2, Plane 3

Cluster 3 Car 1, Car 2, Car 3, Car 4, Car 5

Cluster 4 Bird 1, Bird 2, Bird 3

Cluster 5 Rain 1, Rain 2, Rain 3
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Figure 16 shows the amplitude spectrum after
normalization. Hence, all the sounds have the same
power as drone sounds after normalization.
Table 2 describes the results of the detection probability

with 36 MFCCs. In ideal conditions (without background
noise and interference), the detection probability of a
drone can reach 100%, but in an actual environment,
noise and interference are inevitable. Hence, we built

background sounds by combining various interference
sounds. Considering the power of each sound in a prac-
tical environment, the energy ratio is given as follows:

Sbg ¼ 1� N Fp � Sp þ 1� N Fc � Sc þ 0:1
� N Fb � Sb þ 0:3� N Fr � Sr ð24Þ

where Sp is the sound of a plane, Sc is the sound of a car,
Sb is the sound of a bird, and Sr is the sound of rain. It

Fig. 14. Block diagram of the testing procedure using HMMs

Fig. 13 Flowchart of the training procedure in the HMM
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means that background noise consists of each interfer-
ence sound at a power ratio of 1 for a plane, 1 for a car,
0.1 for a bird, and 0.3 for rain. In reality, the power from
a bird and from rain is usually less than that of a plane
or a car.
Testing datasets S1, S2, and S3 with various interfer-

ence sounds are described as follows:

S1 ¼ Sd þ 0:1� Sbg
S2 ¼ Sd þ 0:5� Sbg
S3 ¼ Sd þ 1� Sbg

ð25Þ

which represent an SNR of − 3.3 dB, 2.8 dB, and 16.8 dB,
respectively.
Figure 17 shows detection probability versus inter-

ference power ratio. When interference power ratios
are 0.1 and 0.5, then the detection probabilities for
a drone sound are 100% and 90%, respectively.
Moreover, when the power combining ratio is 1, the
detection probability for a drone sound becomes
67% only. Hence, if there are fewer interference
sounds, then the detection probability, of course,
gets better.

Fig. 16 Amplitude spectrum after normalization: a drone, b plane, c car, d bird, and e rain

Fig. 15 Amplitude spectrum before normalization: a drone, b plane, c car, d bird, and e rain
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4.1 Details of tracking of illegal drones with adaptive
beamforming
4.1.1 Criteria for optimal weights
Since the location of the drone changes over time,
the weight vector must be updated periodically. The
data used to estimate the weight vector are influ-
enced by noise, so it is suitable to utilize the current
weight vector in order to find the next weight vec-
tor. The fundamental rule of adaptive beamforming
technology is based on specific criteria to adjust the
array weights in real time, which gives the best
output signal. Generally, adaptive beamforming algo-
rithms can be divided into two types: non-blind al-
gorithms in which a reference signal is required, and
blind algorithms in which a reference signal is not
necessary. In this paper, we use non-blind algorithm-
based adaptive beamforming in order to track illegal
drones.
In the literature, there are several criteria for optimal

weights, such as MMSE, maximum signal-to-
interference ratio (MSIR), and minimum variance, and
there are also many adaptive algorithms to update the
weight in real time, such as the least mean squares algo-
rithm (LMSE), direct sample covariance matrix inver-
sion, and RLS. It is well-known that RLS offers a better
convergence rate. In this paper, we use an RLS adaptive
algorithm based on MMSE criteria for tracking illegal
drones [22, 23].
The weights are chosen to minimize the mean squared

error (MSE) between the beamformer output and the
reference signal:

ε2 tð Þ ¼ d� tð Þ−WHx tð Þ
 �2 ð26Þ

Taking the expected values for both sides of the equa-
tion, and carrying out some basic algebraic manipula-
tion, we have the following:

E ε2 tð Þ� 
 ¼ E d2 tð Þ� 

−2WHr þWHRW ð27Þ

where r = E{d∗(t)x(t)} and R = E{x(t)xH(t)} are usually re-
ferred to as the covariance matrix. The MSE is given by
setting the gradient vector of the previous equation (with
respect to W) equal to zero:

∇W E ε2 tð Þ� 
� � ¼ −2r þ 2RW
¼ 0

ð28Þ

It follows that the solution is Wopt = R−1r, which is re-
ferred to as a Wiener-Hopf equation, or the optimum
Wiener solution [51].

4.1.2 RLS algorithm application to update the weight
In the RLS algorithm, the correlation matrix and the
correlation vector are calculated recursively [23]. The
correlation matrix and the correlation vector are given
as:

~R nð Þ ¼
XN
i¼1

γn−ix ið ÞxH ið Þ ð29Þ

Fig. 17 Experimental results for sound recognition by varying the SNR

Table 2 Experimental results for sound recognition without noise

Test dataset Drone Plane Car Bird Rain

Detection probability 100% Cluster 1 84% Cluster 2 100% Cluster 3 100% Cluster 4 100% Cluster 5
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~r nð Þ ¼
XN
i¼1

γn−id� ið Þx ið Þ ð30Þ

Factoring out the terms corresponding to i = n, we
have the following recursion for updating both ~RðnÞand
~rðnÞ:

~R nð Þ ¼ γ~R n−1ð Þ þ x nð ÞxH nð Þ ð31Þ

~r nð Þ ¼ γ~r n−1ð Þ þ d� nð Þx nð Þ ð32Þ

Using Woodbury’s identity, we obtain the following re-
cursive equation for deriving the inverse of the covari-
ance matrix:

R−1 nð Þ ¼ γ−1 R−1 n−1ð Þ−q nð Þx nð ÞR−1 n−1ð Þ
 � ð33Þ

where gain vector q(n) is as follows:

q nð Þ ¼ r−1R−1 n−1ð Þx nð Þ
1þ γ−1xH nð ÞR−1 n−1ð Þx nð Þ ð34Þ

To develop the recursive equation for updating the
least squares estimate, W ∧ðnÞ , we use the equation
Wopt = R−1r to express W(n):

W
∧

nð Þ ¼ R−1 nð Þr nð Þ
¼ γ−1 R−1 n−1ð Þ−q nð Þx nð ÞR−1 n−1ð Þ
 �� γr n−1ð Þ þ d� nð Þx nð Þ½ �

ð35Þ
Update the weight vector as follows:

W
∧

nð Þ ¼ W
∧

n−1ð Þ þ q nð Þ
� d� nð Þ−WH

∧

n−1ð Þx nð Þ
� �

ð36Þ

Figure 18 shows the structure of adaptive beamform-
ing in which xm(n) represents the output signal of each
ME, and wm is the weight of the mth element.
Reference-signal acquisition is based on the scanning
and classification processes mentioned in the previous
section. Hence, the reference signals are used in adaptive
beamforming for tracking illegal drones.

4.1.3 Tracking results for the direction of arrival of an
illegal drone
The key idea is to use reference signals in adaptive
beamforming while estimating the DOA of illegal
drones. The simulations are performed under both ideal
conditions (without background noise and interference
sounds) and non-ideal conditions (with background

Table 3 Parameters for tracking

Desired signal Snapshots No. of array elements Radius of array

Drone sounds 1000 32 0.18 m

Fig. 18 Adaptive beamforming
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noise and interference sounds) in order to evaluate the
MSE while tracking the illegal drone. The main simula-
tion parameters are given in Table 3.
Error represents the difference between the actual path

and an estimated path. Thus, elevation error, azimuth
error, and mean squared error are calculated as follows:

Elevation error ¼ 1
19

X19
i¼1

aei−eeið Þ ð37Þ

Azimuth error ¼ 1
19

X19
i¼1

aai−eaið Þ ð38Þ

Mean squared error ¼ 1
19

X19
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aai−eaið Þ2 þ aei−eeið Þ2

q� �

ð39Þ
where aei is actual elevation, eei is estimated elevation,
aaiis actual azimuth, and eai is estimated azimuth.
Tracking is executed 19 times on different positions, as
shown in Fig. 19.

Table 4 describes the tracking results based on an
ideal environment (without noise and interference
sounds). Actual elevation and actual azimuth refer to the
actual direction of the drone, whereas estimated eleva-
tion and estimated azimuth describe the estimated re-
sults based on the simulation.
From Fig. 19, we can clearly see that tracking the

drone position starts from a 0° elevation angle and a 0°
azimuth angle and reaches 90° elevation and 360° azi-
muth. The estimation paths almost overlap the actual
path of the drone. This ensures us that the RLS algo-
rithm is more suitable for tracking of illegal drones
owing to the high accuracy of the estimated path under
an ideal environment. However, there are still some er-
rors in tracking results; these might be due to several
factors, such as the spectral content of the signal and
computation error.
In order to check the robustness of the tracking pro-

cedure in practical noisy environments, we consider
additive white Gaussian noise (AWGN) in our scenario.
Figure 20 shows the performance of MSE versus SNR.

Fig. 19 Tracking performance in an ideal environment

Table 4 Tracking results with an ideal environment

Actual elevation 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Elevation error MSE

Estimated elevation 0 6 11 16 21 26 31 36 41 46 50 55 60 65 70 75 80 85 90 0.0083 (rad) 0.0113 (rad)

Actual azimuth 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 Azimuth error

Estimated azimuth 0 21 41 61 81 101 121 141 161 180 200 220 240 260 280 300 320 340 360 0.0073 (rad)
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Moreover, the RLS algorithm generates mostly accurate
DOA estimates at various SNR values. From Fig. 20, we
can observe that by increasing the SNR, MSE lessens,
and thus, tracking performance gets better. At a 2 dB
SNR, if the MSE is 0.01 rad, tracking performance is al-
most similar to tracking performance under the ideal
case. In addition, MSE of 0.05 rad is also acceptable, be-
cause the performance of the tracking system is still
good enough, even in a noisy environment.
Similarly, we consider one target and one interfer-

ence source in the environment in order to consider

the effect of interference. Figure 21 analyzes the im-
pact of an interfering sound signal on tracking system
performance while tracking the target signal. The
interfering sound signal degrades tracking system per-
formance when it is near the target sound signal.
Table 5 describes the MSE by varying the position of
the interference. This results in errors in elevation
angle and azimuth angle for the target’s position. In-
deed, the error in elevation is greater than the error
in azimuth of the target signal’s direction. Even
though the drone is located in the interference region,

Fig. 20 MSE vs. SNR in a practical noisy environment

Fig. 21 Tracking accuracy with interfering sound signals. a Direction of interfering sound signal (18°, 63°). b Direction of interfering sound
signal (78°, 125°)
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the tracking system can still localize the target
continuously.

5 Conclusions
In this paper, we design a monitoring system to detect
and track illegal drones. The monitoring system com-
bines sound-signal processing and array-signal process-
ing technologies to scan for sound sources in the sky,
and then identifies them to distinguish between drones
or something else. In our simulation, we monitor illegal
drones by considering both ideal conditions (without
background noise and interference sounds) and non-
ideal conditions (with background noise and interference
sounds). Scanning is performed from 0° to 90° elevation
and from 0° to 360° azimuth via SBF. The scanning iden-
tifies the direction of the sound sources by pointing the
beam and recording the sounds of the objects. These re-
corded sounds are utilized in the classifier in order to
identify the objects. The classifier is based on speech-
detection technology in which an HMM model is used.
The simulation results show that detection of the sound
signal is accurate to around 95% in ideal environments.
In addition, detection is more than 80% accurate even at
a low SNR of 2 dB under non-ideal conditions. More-
over, the classifier not only identifies drones but also
recognizes whether the sound source is a plane, car,
bird, or rain. In practical environments, the drone is a
moving object. Thus, it is necessary to use the adaptive
beamforming technique to track the drone, relying on
the reference signals that are acquired from the classifi-
cations. We also conducted a tracking simulation by
considering a practical environment, such as AWGN
and interference from birds. When the SNR increases,
MSE becomes smaller, which enhances the tracking per-
formance. From Fig. 20, at a 2 dB SNR, if the MSE is
0.01 rad, tracking performance is almost similar to track-
ing performance under ideal conditions. In addition, an
MSE of 0.05 rad is also acceptable, because the perform-
ance of the tracking system is still good enough, even in
a noisy environment. Even though the drone is located
in an interference region, the tracking system can still
localize the target continuously.
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