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Abstract

Open-set classification is a problem of handling ‘un-

known’ classes that are not contained in the training

dataset, whereas traditional classifiers assume that only

known classes appear in the test environment. Exist-

ing open-set classifiers rely on deep networks trained in

a supervised manner on known classes in the training

set; this causes specialization of learned representations

to known classes and makes it hard to distinguish un-

knowns from knowns. In contrast, we train networks

for joint classification and reconstruction of input data.

This enhances the learned representation so as to pre-

serve information useful for separating unknowns from

knowns, as well as to discriminate classes of knowns. Our

novel Classification-Reconstruction learning for Open-Set

Recognition (CROSR) utilizes latent representations for re-

construction and enables robust unknown detection without

harming the known-class classification accuracy. Exten-

sive experiments reveal that the proposed method outper-

forms existing deep open-set classifiers in multiple standard

datasets and is robust to diverse outliers.

1. Introduction

To be deployable to real applications, recognition sys-

tems need to be tolerant of unknown things and events that

were not anticipated during the training phase. However,

most of the existing learning methods are based on the

closed-world assumption, that is, the training datasets are

assumed to include all classes that appear in the environ-

ments where the system will be deployed. This assump-

tion can be easily violated in real-world problems, where

covering all possible classes is almost impossible [25].

Closed-set classifiers are error-prone to samples of un-

known classes, and this limits their usability [46, 43].

In contrast, open-set classifiers [36] can detect samples

that belong to none of the training classes. Typically, they

fit a probability distribution to the training samples in some

feature space, and detect outliers as unknowns. For the

features to represent the samples, almost all existing deep

open-set classifiers rely on those acquired via fully super-

vised learning [3, 10, 40], as shown in Fig. 1 (a). How-
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Figure 1. Overview of existing and our deep open-set classification

models. Existing models (a) utilize only their network’s final pre-

diction y for classification and unknown detection. In contrast, in

CROSR (b), a deep net is trained to provide a prediction y and a la-

tent representation for reconstruction z within known classes. An

open-set classifier (right), which consists of an unknown detector

and a closed-set classifier, exploits y for closed-set classification,

and y and z for unknown detection.

ever, they are for emphasizing the discriminative features of

known classes; they are not necessarily useful for represent-

ing unknowns or separating unknowns from knowns.

In this study, our goal is to learn efficient feature repre-

sentations that are able to classify known classes as well

as to detect unknowns as outliers. Regarding the repre-

sentations of outliers that we cannot assume beforehand,

it is natural to add unsupervised learning as a regularizer

so that the learned representations acquire information that

are important in general but may not be useful for classi-

fying given classes. Thus, we utilize unsupervised learn-

ing of reconstructions in addition to supervised learning

of classifications. Reconstruction of input samples from

low-dimensional latent representations inside the networks

is a general way of unsupervised learning [16]. The rep-

resentation learned via reconstruction are useful in several

tasks [50]. Although there are previous successful exam-

ples of classification-reconstruction learning, such as semi-
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supervised learning [31] and domain adaptation [11], this

study is the first to apply deep classification-reconstruction

learning to open-set classification.

Here, we present a novel open-set classification frame-

work, called Classification-Reconstruction learning for

Open-Set Recognition (CROSR). As shown in Fig. 1 (b),

the open-set classifier consists of two parts: a closed-set

classifier and an unknown detector, both of which exploit

a deep classification-reconstruction network.1 While the

known-class classifier exploits supervisedly learned predic-

tion y, the unknown detector uses a reconstructive latent

representation z together with y. This allows unknown de-

tectors to exploit a wider pool of features that may not be

discriminative for known classes. Additionally, in higher-

level layers of supervised deep nets, details of input tend to

be lost [50, 6] , which may not be preferable in unknown de-

tection. CROSR can exploit reconstructive representation z

to complement the lost information in the prediction y.

To provide effective y and z simultaneously, we fur-

ther design deep hierarchical reconstruction nets (DHR-

Nets). The key idea in DHRNets is the bottlenecked lat-

eral connections, which is useful to learn rich representa-

tions for classification and compact representations for de-

tection of unknowns jointly. DHRNets learn reconstruc-

tion of each intermediate layer in classification networks us-

ing latent representations, i.e., mapping to low-dimensional

spaces, and as a result it acquires hierarchical latent repre-

sentation. With the hierarchical bottlenecked representation

in DHRNets, the unknown detector in CROSR can exploit

multi-level anomaly factors easily thanks to the representa-

tions compactness. This bottlenecking is crucial, because

outliers are harder to detect in higher dimensional feature

spaces due to concentration on the sphere [52]. Existing

autoencoder variants, which are useful for outlier detection

by learning compact representations [51, 1], cannot afford

large-scale classification because the bottlenecks in their

mainstreams limit the expressive power for classification.

CROSR with a DHRNet becomes more robust to a wide va-

riety of unknown samples, some of which are very similar to

the known-class samples. Our experiments in five standard

datasets show that representations learned via reconstruc-

tion serve to complement those obtained via classification.

Our contribution is three-fold: First, we discuss the use-

fulness of deep reconstruction-based representation learn-

ing in open-set recognition for the first time; all of the other

deep open-set classifiers are based on discriminative repre-

sentation learning in known classes. Second, we develop

a novel open-set recognition framework, CROSR, which is

based on DHRNets and jointly performs known classifica-

tion and unknown detection using them. Third, we con-

ducted experiments on open-set classification in five stan-

1We refer to detection of unknowns as unknown detection, and known-

class classification as known classification.

dard image and text datasets, and the results show that our

method outperforms existing deep open-set classifiers for

most combinations of known data and outliers. The code

will be published upon acceptance of this paper.

2. Related work

Open-set classification Compared with closed-set classi-

fication, which has been investigated for decades [8, 5, 9],

open-set classification has been surprisingly overlooked.

The few studies on this topic mostly utilized either linear,

kernel, or nearest-neighbor models. For example, Weibull-

calibrated SVM [37] considers a distribution of decision

scores for unknown detection. Center-based similarity

space models [7] represent data by their similarity to class

centroids in order to tighten the distributions of positive

data. Extreme value machines [34] model class-inclusion

probabilities using an extreme-value-theory-based density

function. Open-set nearest neighbor methods [18] utilizes

the distance ratio to the nearest and second nearest classes.

Among them, sparse-representation-based open-set recog-

nition [48] shares the idea of reconstruction-based represen-

tation learning with ours. The difference is in that we con-

sider deep representation learning, while [48] uses a single-

layer linear representation. These models cannot be applied

to large-scale raw data without feature engineering.

The origin of deep open-set classifiers was in 2016 [3],

and few deep open-set classifiers have been reported since

then. G-Openmax [10], a direct extension of Openmax,

trains networks with synthesized unknown data by using

generative models. However, it cannot be applied to nat-

ural images other than hand-written characters due to the

difficulty of generative modeling. DOC (deep open classi-

fier) [40, 41], which is designed for document classification,

enables end-to-end training by eliminating outlier detectors

outside networks and using sigmoid activations in the net-

works for performing joint classification and outlier detec-

tion. Its drawback is that the sigmoids do not have the com-

pact abating property [37]; namely, they may be activated

by an infinitely distant input from all of the training data,

and thus its open space risk is not bounded.

Outlier detection Outlier (also called anomaly or novelty)

detection can be incorporated in the concept of open-set-

classification as an unknown detector. However, outlier de-

tectors are not open-set classifiers by themselves because

they have no discriminative power within known classes.

Some of the generic methods for anomaly detection are one-

class extension of discriminative models such as SVM [24]

or forests [21], generative models such as Gaussian mixture

models [33], and subspace methods [32]. However, most of

the recent anomaly-detection literature focuses on incorpo-

rating domain knowledge specific to the task at hand, such

as cues from videos [47, 15], and they cannot be used to

build a generic-purpose open-set classifiers.
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Deep nets have also been examined for outlier detection.

The deep approaches mainly use autoencoders trained in an

unsupervised manner [51], in combination with GMM [53],

clustering [1], or one-class learning [29]. Generative ad-

versarial nets [12] can be used for outlier detection [39] by

using their reconstruction errors and discriminators’ deci-

sions. This usage is different from ours that utilizes latent

representations. However, in outlier detection, deep nets

are not always the absolute winners unlike in supervised

learning, because nets need to be trained in an unsupervised

manner and are less effective because of that.

Some studies use networks trained in a supervised man-

ner to detect anomalies that are not from the distributions

of training data [14, 20]. However, their methods can-

not be simply extended to open-set classifiers because they

use input preprocessing, for example, adversarial perturba-

tion [13], and this operation may degrade known-class clas-

sification.

Semi-supervised learning In semi-supervised learning

settings including domain adaptation, reconstruction is use-

ful as a data-dependent regularizer [31, 23]. Among them,

ladder nets [31] are partly similar to ours in terms of us-

ing lateral connections, except that ladder nets do not have

the bottleneck structure. Our work aims at demonstrating

that the reconstructive regularizers are also useful in open-

set classification. However, the usage of the regularizers is

largely different; CROSR uses them to prevent the repre-

sentations from overly specializing to known classes, while

semi-supervised learners use them to incorporate unlabeled

data in their training objectives. Furthermore, in semi-

supervised learning settings reconstruction errors are com-

puted on unlabeled data as well as labeled training data. In

open-set settings, it is impossible to compute reconstruction

errors on any unknown data; we only use labeled (known)

training data.

3. Preliminaries

Before introducing CROSR, we briefly review Open-

max [3], the existing deep open-set classifier. We also in-

troduce the terminology and notation.

Openmax is an extension of Softmax. Given a set of

known classes K = {C1, C2, ..., CN} and an input data

point x, Softmax is defined as following:

y = f(x), (1)

p(Ci|x,x ∈ K) = Softmaxi(y) =
exp(xi)

∑N

j exp(xj)
,

where f denotes the network as a function and y denotes

the representation of its final hidden layer, whose dimen-

sionality is equal to the number of the known classes. To

be consistent with [3], we refer to it as the activation vec-

tor (AV). Softmax is designed for closed-set settings where

x ∈ K, and in open-set settings, we need to consider x �∈ K.

This is achieved by calibrating the AV by the inclusion

probabilities of each class:

Openmaxi(x) = Softmaxi(ŷ), (2)

ŷi =

{

yiwi (i ≤ N)
∑N

i=1 yi(1−wi) (i = N + 1),

where wi represents the belief that x belongs to the known

class Ci. Here, ŷ, the calibrated activation vector prevents

Openmax from giving high confidences to outliers that give

small w, i.e., the unknown samples that do not belong to

Ci. Formally, the class CN+1 represents the unknown class.

Usage of p(x ∈ Ci) can be understood as a proxy for p(x ∈
K), which is harder to model due to inter-class variances.

For modeling class-belongingness p(x ∈ K), we need

a distance function d(·, ·) and its distribution. The distance

measures the affinity of a data point to each class. Statis-

tical extreme-value theory suggests that the Weibull family

of distributions is suitable [34] for this purpose. Assuming

that d of the inliers follows a Weibull distribution, class-

belongingness can be expressed using the cumulative den-

sity function,

p(x ∈ Ci) = 1−Rα(i) · WeibullCDF(d(x, Ci); ρi)

= 1−Rα(i) exp

(

−

(

d(x, Ci)

ηi

)mi
)

. (3)

Here, ρi = (mi, ηi) are parameters of the distribution

that are derived from the training data of the class Ci.

Rα(i) = max
(

0, α−rank(i)
α

)

is a heuristic calibrator that

makes a larger discount in more confident classes, and is

defined by a hyperparameter α. rank(i) is the index in the

AV sorted in descending order.

As a class-belongingness measure, we used the �2 dis-

tance of AVs from the class means, similarly to nearest non-

outlier classification [2]:

d(x, Ci) = |y − µi|2 . (4)

This gives a strong simplification assuming that p(x ∈ Ci)
depends only on the y.

4. CROSR: Classification-reconstruction

learning for open-set recognition
Our design of CROSR is based on observations about

Openmax’s formulation: AVs are not necessarily the

best representations for modeling the class-belongingness

p(x ∈ Ci). Although AVs in supervised networks are op-

timized to give correct p(Ci|x), they are not encouraged

to encode information about x, and it is not sufficient to

test whether x itself is probable in Ci. We alleviate this

problem by exploiting reconstructive latent representations,

which encode more about x.
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4.1. Open-set classification with latent representa-
tions

To enable the use of latent representations for reconstruc-

tion in the unknown detector, we extend the Openmax clas-

sifier (Eqns. 1 – 4) as follows. We replace Eqn. 1 for apply-

ing the main-body network f to both known classification

and reconstruction:

(y, z) = f(x),

p(Ci|x,x ∈ K) = Softmaxi(y), (5)

x̃ = g(z).

Here we have introduced g, a decoder network only used in

training to make the latent representation z meaningful via

reconstruction. x̃ is the reconstruction of x using z. These

equations correspond to the left part of Fig. 1 (b).

The network’s prediction y and latent representation z

are jointly used in the class-belongingness modeling. In-

stead of Eqn. 4, CROSR considers the joint distributions of

y and z to be a hypersphere per class:

d(x, Ci) = |[y, z]− µi|2 . (6)

Here, [y, z] denotes concatenation of the vectors of y and

z, and µi denotes their mean within class Ci.

4.2. Deep Hierarchical Reconstruction Nets

After designing the open-set classification framework,

we must specify the function form, i.e., the network archi-

tecture for f . The network used in CROSR needs to ef-

fectively provide a prediction y and latent representation z.

Our design of deep hierarchical reconstruction nets (DHR-

Nets) simultaneously maintains the accuracy of y in known

classification and provides a compact z.

For a conceptual explanation, DHRNet extracts the la-

tent representations from each stage of middle-level layers

in the classification network. Specifically, it extracts a se-

ries of latent representations z1, z2, z3, ..., zL from multi-

stage features x1,x2,x3, ...,xL. We refer to these latent

representations as bottlenecks. The advantage of this archi-

tecture is that it can detect outlying factors that are hidden

in the input data but vanish in the middle of the inference

chains. Since we cannot presume a stage where the outlying

factors are most obvious, we construct the input vector for

the unknown detector z by simply concatenating zl from

the layers. Here, z1, z2, z3, ..., zL can be interpreted as

decomposed factors to generate x. To draw an analogy, un-

known detection using decomposed latent representations is

similar to overhauling [26] mechanical products, where one

disassembles x into parts z1, z2, z3, ..., zL, investigates the

parts for anomalies, and reassembles them into x̃.

Figure 2 compares the existing architectures and DHR-

Net. Most of the closed-set classifiers and Openmax rely on

supervised classification-only models (a) that do not have

useful factors for outlier detection other than y, because xl

usually has high dimensionality for known-class classifica-

tion. Employing autoencoders (b) is a straightforward way

to introduce latent representations for reconstruction, but

there is a problem in using them for open-set classification.

Deep autoencoders gradually reduce the dimensionality of

the intermediate layers x1,x2,x3, ..., for effective informa-

tion compression. This is not good for large-scale closed-set

classification, which needs a fairly large number of neurons

in all layers to learn a rich feature hierarchy. LadderNet (c)

can be regarded as a variant of an autoencoder, because it

performs reconstruction. However, the difference lies in the

lateral connections, through which part of xl flows to the

reconstruction stream without further compression. Their

role is in a detail-abstract decomposition [45]; that is, Lad-

derNet encodes abstract information in the main stream and

details in the lateral paths. While this is preferable for open-

set classification because the outlying factors of unknowns

may be in the details as well as in the abstracts, LadderNet

itself does not provide compact latent variables.DHRNet

(d) further enhances the decomposed information’s effec-

tiveness for unknown detection by compressing the lateral

streams in compact representations z1, z2, ..., zL.

In detail, the l-th layer of DHRNet is expressed as

xl+1 = f l(xl),

zl = hl(xl), (7)

x̃l = gl(x̃l+1 + h̃l(zl)).

Here, f l denotes a block of a feature transformation in

the network, i.e., a series of convolutional layers be-

tween downsampling layers in a plain CNN or a densely-

connected block in DenseNet [17]. hl denotes an operation

of non-linear dimensionality reduction, which consists of a

ReLU and a convolution layer, while h̃l means a reprojec-

tion to the original dimensionality of xl. The pair of hl and

h̃l is similar to an autoencoder. gl is a combinator of the

top-down information x̃l+1 and lateral information h̃l(zl).
While the function forms for gl are investigated by [30], we

choose to use an element-wise sum and subsequent convo-

lutional and ReLU layers as the simplest form among the

possible variants. When inputting zl to the unknown de-

tectors, the spatial axes are reduced by global max pooling

to form a one-dimensional vector. This performs slightly

better than vectorization by using average pooling or flat-

tening. Figure 3 illustrates these operations, and the stack

of operations gives the overall network shown in Fig. 2 (d).

Training We minimize the sum of classification errors and

reconstruction errors in training data from known classes.

To measure the classification error, we use softmax cross

entropy of y and the ground-truth labels. To measure the

reconstruction error of x and x̃, we use the �2 distance in

the images and the cross entropy of one-hot word represen-

tations in the texts. Note that we cannot use the data of the
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(a) Supervised net (b) Autoencoder (c) LadderNet (d) Ours: Deep hierarchical 
reconstruction net

Figure 2. Conceptual illustrations of (a–c) existing models and (d) our model.
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Figure 3. Implementation of the deep hierarchical reconstruction

net with convolutional layers.

unknown classes in training and the reconstruction loss is

computed only with known samples. The whole network is

differentiable and trainable using gradient-based methods.

After the network is trained and its weights fixed, we com-

pute Weibull distributions for unknown detection.

Implementation There are some more minor differences

between our implementation and the ladder nets in [31].

First, we use dropout in intermediate layers instead of noise

addition, because it results in slightly better closed-set ac-

curacy. Second, we do not penalize reconstruction errors of

intermediate layers. This enables us to avoid the separate

computation of ’noisy’ and ’clean’ layers that was origi-

nally needed for intermediate-layer reconstruction. We sim-

ply refer to our network without bottlenecks; in other words

where hl and h′

l are identity transformations, as Ladder-

Net. For the experiments, we implement LadderNet and

DHRNet with various backbone architectures.

5. Experiments

We experimented with CROSR and other methods on

five standard datasets: MNIST, CIFAR-10, SVHN, Tiny-

ImageNet, and DBpedia. These datasets are for closed-set

classification, and we extended them in two ways: 1) class

separation and 2) outlier addition. In class-separation set-

ting, we selected some classes randomly in order to use

them as knowns. We used the remainder as unknowns.

In this setting, which has been used in the open-set liter-

ature [40, 27], unknown samples come from the same do-

main as that of knowns. Outlier addition is a protocol intro-

duced for out-of-distribution detection [14]; the networks

Table 1. Closed-set test accuracy of used networks. Despite adding

reconstruction terms to the training objectives for LadderNet and

DHRNet, there was no significant degradation in accuracy in

known classification.

MNIST C-10 SVHN

Plain CNN Supervised only 0.991 0.934 0.943

LadderNet 0.993 0.928 –

DHRNet (ours) 0.992 0.930 0.945

DenseNet Supervised only – 0.944 –

DHRNet (ours) – 0.940 –

are trained on the full training data, but in the test phase,

outliers from another dataset are added to the test set as un-

knowns. The merit of doing so is that we can test the robust-

ness of the classifiers against a larger diversity of data than

in the original datasets. The class labels of the unknowns

were not used in any case and they all were treated as a

single unknown class.

MNIST MNIST is the most popular hand-written digit

benchmark. It has 60,000 images for training and 10,000 for

testing from ten classes. Although near-100% accuracy has

been achieved in closed-set classification [4], the open-set

extension of MNIST remains a challenge due to the variety

of possible outliers.

As outliers, we used datasets of small gray-scale images,

namely Omniglot, Noise, and MNIST-Noise. Omniglot is a

dataset of hand-written characters from the alphabets of var-

ious languages. We only used the test set because the out-

liers are only needed in the test phase. ‘Noise’ is a set of im-

ages we synthesized by sampling each pixel value indepen-

dently from a uniform distribution on [0, 1]. MNIST-Noise

is also a synthesized set, made by superimposing MNIST’s

test images on Noise, and thus its images are more similar

to the inliers. Figure 4 shows their samples. Each dataset

has 10,000 test images, the same as MNIST, and this makes

the known-to-unknown ratio 1:1.

We used a seven-layer plain CNN for MNIST. It consists

of five convolutional layers with 3× 3 kernels and 100 out-

put channels, followed by ReLU non-linearities. Max pool-

ing layers with a stride of 2 are inserted after every two con-

volutional layers. At the end of the convolutional layers, we

put two fully connected layers with 500 and 10 units, and

the last one was directly exposed to the Softmax classifier.

In DHRNet, lateral connections are put after every pooling
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MNIST

Omniglot

MNIST-noise

Noise

Figure 4. Sample images from

MNIST and outlier sets.

Table 2. Open-set classification results in MNIST with various outliers added to the test set

as unknowns. We report macro-averaged F1-scores in eleven classes (0–9 and unknown).

A larger score is better.

Backbone network Training method UNK detector Omniglot MNIST-noise Noise

Plain CNN Supervised only Softmax 0.592 0.641 0.826

Openmax 0.680 0.720 0.890

LadderNet Softmax 0.588 0.772 0.828

Openmax 0.764 0.821 0.826

DHRNet (ours) Softmax 0.595 0.801 0.829

Openmax 0.780 0.816 0.826

CROSR (ours) 0.793 0.827 0.826

Table 3. Open-set classification results in CIFAR-10. A larger score is better.
Backbone network Training method UNK detector ImageNet-crop ImageNet-resize LSUN-crop LSUN-resize

Plain CNN Counterfactual [27] 0.636 0.635 0.650 0.648

Plain CNN Supervised only Softmax 0.639 0.653 0.642 0.647

Openmax 0.660 0.684 0.657 0.668

LadderNet Softmax 0.640 0.646 0.644 0.647

Openmax 0.653 0.670 0.652 0.659

CROSR 0.621 0.631 0.629 0.630

DHRNet (ours) Softmax 0.645 0.649 0.650 0.649

Openmax 0.655 0.675 0.656 0.664

CROSR (ours) 0.721 0.735 0.720 0.749

DenseNet Supervised only Softmax 0.693 0.685 0.697 0.722

Openmax 0.696 0.688 0.700 0.726

DHRNet (ours) Softmax 0.691 0.726 0.688 0.700

Openmax 0.729 0.760 0.712 0.728

CROSR (ours) 0.733 0.763 0.714 0.731

Figure 5. Relationship between the rejection threshold and F1-

score. These plots are from test results for CIFAR-10 and

ImageNet-crop using VGGNets.

Table 4. Open-set text classification results for DBpedia. F1-

scores are shown for various train/test class ratios.

Method 4/14 4/12 4/8 4/4

DOC 0.507 0.568 0.733 0.985

Softmax 0.460 0.503 0.662 0.988

Openmax 0.532 0.574 0.729 0.986

CROSR (ours) 0.582 0.627 0.765 0.987

layer. The dimensionalities of the latent representations zl

were all fixed to 32.

CIFAR-10 CIFAR-10 has 50,000 natural images for train-

ing and 10,000 for testing. It consists of ten classes, con-

taining 5,000 training images for each class. In CIFAR-10,

each class has large intra-class diversities by color, style, or

pose difference, and state-of-the-art deep nets make a fair

number of classification errors within known classes.

We examined two types of network, a plain CNN and

DenseNet [17], a state-of-the-art network for closed-set im-

age classification. The plain CNN is a VGGNet [42]-style

network re-designed for CIFAR, and it has 13 layers. The

layers are grouped into three convolutional and one fully

connected block. The output channels of each convolutional

block number 64, 128, and 256, and they consist of two,

two, and four convolutional layers with the same configura-

tion. All convolutional kernels are 3 × 3. We set the depth

of DenseNet to 92 and the growth rate to 24. The dimen-

sionalities of the latent representations zl were all fixed to

32, the same as in MNIST.

We used the outliers collected by [20] from other

datasets, i.e., ImageNet and LSUN, and we resized or

cropped them so that they would have the same sizes 2

Among the outlier sets used in [14], we did not use syn-

thesized sets of Gaussian and Uniform because they can be

easily detected by baseline outlier-removal techniques. The

datasets each have 10,000 test images, which is the same as

in MNIST and this makes the known-to-unknown ratio 1:1.

SVHN and TinyImageNet SVHN is a dataset of 10-class

digit photographs, and TinyImageNet is a 200-class subset

of ImageNet. In these datasets, we compare CROSR with

recent GAN-based methods [10, 27] that utilize unknown

2URL: https://github.com/facebookresearch/odin.
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Supervised + Openmax

“5”

DHRNet + Openmax
DHRNet + CROSR (ours)

“Dear”

“Ship”

Higher confidence

Supervised + Openmax

DHRNet + CROSR (ours)

Supervised + Openmax

DHRNet + CROSR (ours)

Figure 6. Visualized samples. Sampled data points are sorted by each methods’ confidence score, and the top samples are listed. The red

boxes show unknown samples, and the cyan ones show misclassification in known classes. Fewer unknowns to the left indicate higher

robustness.

training data synthesized by GANs. A concern in the com-

parisons was the instability of the training and resulting

variance in the quality of the training data generated by

the GAN-based mechanisms, which may make compar-

isons hard [22]. Thus, we exactly followed the evaluation

protocols used in [27] (class separation within each single

dataset, averaging over five trials, area-under-the-curve cri-

teria), and directly compared our results against the reported

numbers. Our backbone network was the same as the one

used in [27] that consists of nine convolutional layers and

one fully connected layers, except that ours had decoding

parts as shown in Eqn. 7.

DBpedia The DBpedia ontology classification dataset con-

tains 14 classes of Wikipedia articles, 40,000 instances for

training and 5,000 for testing. We selected this dataset be-

cause it has the largest number of classes among the often-

used datasets in the literature of the convnet-based large-

scale text classification [49] and for ease in making vari-

ous class splits. We conducted the open-set evaluation with

class separation using 4 random classes as knowns and 4, 8,

and 10 as unknowns.

In DBpedia, we implemented DHRNet on the basis of

a shallow-and-wide convnet [19], which had three con-

volutional layers with kernels whose sizes were 3, 4,

and 5, and whose output dimension was 100. Text-

classification convnets are extendable to DHRNet by set-

ting W = (maximum text length) and H = 1 in Fig. 3. The

dimensionality of its bottleneck was 25. We also imple-

mented DOC [40] using the same architecture as ours for a

fair comparison.

Training DHRNet We confirmed that DHRNet can be

trained by using the joint classification-reconstruction loss.

We used the SGD solver with learning-rate scheduling

tuned in each dataset. We set the weights of the reconstruc-

tion loss and the classification loss to the same value 1.0.

In principle, the weight of reconstruction error should be

as large as possible while keeping the close-set validation

accuracy, which would give the most regularized and well-

fitted model. However, we obtained satisfactory results with

the default value and did not tune them further. The closed-

set test errors of the networks for each dataset are listed in

Table 1. All of the networks were trained without any large

degradation in closed-set accuracy from the original ones.

This and the subsequent experiments were conducted using

Chainer [44].

Weibull distribution fitting We used libmr library [38]

to compute the parameters in Weibull distribution. It has

the hyperparameters α from Eqn. 3 and tail size, the

number of extrema used to define the tails of the distribu-

tions. We used the values suggested in [3], namely α = 10
and tail size = 20. For MNIST and CIFAR-10, we

did not use the rank calibration with α in Eqn. 3, since it

does not improve the performance due to the small num-

ber of classes. For DenseNet in CIFAR-10, we noticed that

Openmax performed worse with the default parameters, so

we changed tail size to 50. Since heavily tuning these

hyperparameters for specific types of outlier runs counter

to the motivation of open-set recognition for handling un-

knowns, we did not tune them for each of the test sets.

Results We show the results for MNIST in Table 2, for
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Table 5. Comparisons of CROSR with recent GAN-based meth-

ods [10].

Method / dataset MNIST SVHN TinyImageNet

Openmax 0.981 ± 0.005 0.894 ± 0.013 0.576

G-Openmax 0.984 ± 0.005 0.896 ± 0.017 0.580

Counterfactual 0.988 ± 0.004 0.910 ± 0.010 0.586

CROSR (ours) 0.991 ± 0.004 0.899 ± 0.018 0.589

CIFAR-10 in Table 3, and for DBpedia in Table 4. The

reported values are F1-scores [35] of known classes and

unknown as a class with a threshold 0.5. CROSR outper-

formed all of the other methods consistently except in two

settings. Specifically, in MNIST, CROSR outperformed

Supervised + Openmax by more than 10% in F1-score

when using Omniglot or MNIST-noise as outliers, whereas

it slightly underperformed with Noise, the easiest outliers.

CROSR also performed better than or as well as the stronger

baselines LadderNet + Openmax and DHRNet + Openmax.

In CIFAR-10, the results for varying thresholds are also

shown in Fig. 5, in which it is clear that CROSR outper-

formed the other methods regardless of the threshold.

Interestingly, LadderNet with Openmax outperformed

the supervised-only networks. For instance, LadderNet-

Openmax achieved an 8.4% gain in F1-score in the MNIST-

vs-Omniglot setting and a 10.1% gain in the MNIST-vs-

MNIST-Noise setting. This means regularization using the

reconstruction loss is beneficial for unknown detection; in

other words, using supervised losses in known classes is not

the best for training open-set deep networks. However, no

gains were had by adding only the reconstruction-error term

to training objectives in the natural image datasets. This

means we need to use the reconstructive factors in the net-

works in a more explicit form by adopting DHRNet.

For DBpedia, CROSR outperformed the other methods,

except when the number of train/test classes was 4/4, which

is equivalent to the closed-set settings. While DOC and

Openmax performed almost on a par with each other, the

improvement of CROSR over Openmax was also signifi-

cant in this dataset.

Comparison with GAN-based methods Table 5 summa-

rizes the results of ours and the GAN-based methods. Ours

outperformed all of the other methods in MNIST and Tiny-

ImageNet, and all except Counterfactual in SVHN. While

the relative improvements are within the ranges of the error

bars, these results still means that our method, which does

not use any synthesized training data, can perform on par

or slightly better than the state-of-the-art GAN-based meth-

ods.

In combination with anomaly detectors To investi-

gate how latent representations can be exploited more

effectively, we replaced the �2 distance in Eqn. 6 by

one-class learners. We used the most popular one-

class SVM (OCSVM) and Isolation Forest (IsoForest).

Table 6. Open-set classification results for MNIST with different

unknown detectors. Larger values are better.

UNK detector Omniglot Noise MNIST-noise

Supervised +

–ℓ2 0.680 0.890 0.720

–OCSVM 0.647 0.899 0.919

Our DHRNet +

–ℓ2 0.793 0.826 0.827

–OCSVM 0.702 0.979 0.976

–IsoForest 0.649 0.908 0.839

Table 7. Run times of the models (milli seconds/image). The times

were measured in CIFAR-10 with a batch size = 1.

Method / Architecture Plain CNN DenseNet

Softmax 9.3 63.2

Openmax 11.7 69.4

CROSR (ours) 16.5 72.4

For simplicity, we used the default hyperparameters in

scikit-learn [28]. The results are shown in Table 6. It

reveals that OCSVM had a more than 15% gain in F1-score

in synthesized outliers, while it caused a 9% degradation in

Omniglot. Although we did not find an anomaly detector

that consistently gave performance improvements on all the

datasets, the results are still encouraging. The results sug-

gest that DHRNet encodes more useful information that is

not fully exploited by the per-class centroid based outlier

modeling.

Visualization Figure 6 shows the test data from the known

and unknown classes, sorted by the models’ final confi-

dences computed by Eqn. 3. In this figure, unknown data at

higher order mean that the model is deceived by that data.

It is clear that our methods gave lower confidences to the

unknown samples, and they were deceived only by samples

that had high similarity to the inlier.

Run time Despite of the extensions we made to the net-

work, CROSR’s computational cost in the test was not much

larger than Openmax’s. Figure 7 shows the run times, which

were computed on a single GTX Titan X graphic processor.

The overhead of computing the latent representations was

as small as 3–5 ms/image, negligible in relation to the orig-

inal cost when the backbone network is large.

6. Conclusion

We described CROSR, a deep open-set classifier aug-

mented by latent representation learning for reconstruction.

To enhance the usability of latent representations for un-

known detection, we also developed a novel deep hierar-

chical reconstruction net architecture. Comprehensive ex-

periments conducted on multiple standard datasets demon-

strated that CROSR outperforms previous state-of-the-art

open-set classifiers in most cases.
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