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Introduction

In [11], even if they took the main interest in harmonic maps, Eells and
Sampson also envisaged some generalizations and defined biharmonic maps ϕ :
(M,g) → (N,h) between Riemannian manifolds as critical points of the bienergy
functional

E2(ϕ) =
1
2

∫
M
|τ(ϕ)|2 vg,

where τ(ϕ) = trace∇dϕ is the tension field of ϕ that vanishes for harmonic
maps. The Euler-Lagrange equation corresponding to E2 is given by the van-
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ishing of the bitension field

τ2(ϕ) = −Jϕ(τ(ϕ)) = −∆τ(ϕ)− trace RN (dϕ, τ(ϕ))dϕ,

where Jϕ is formally the Jacobi operator of ϕ. The operator Jϕ is linear, thus
any harmonic map is biharmonic. We call proper biharmonic the non-harmonic
biharmonic maps.

Although E2 has been on the mathematical scene since the early ’60 (when
some of its analytical aspects have been discussed) and regularity of its critical
points is nowadays a well-developed field, a systematic study of the geometry
of biharmonic maps has started only recently.

In this paper we shall focus our attention on biharmonic submanifolds, i.e.
on submanifolds such that the inclusion map is a biharmonic map.

The biharmonic submanifolds of a non-positive sectional curvature space
that have been considered so far turned out to be all trivial (that is minimal),
and the attempts that had been made have led to the following conjecture.

1 Conjecture (Generalized Chen’s Conjecture). Biharmonic submanifolds
of a non-positive sectional curvature manifold are minimal.

In contrast, the class of proper (non-minimal) biharmonic submanifolds of
the sphere is rather rich, but a full understanding of their geometry has not yet
been achieved.

The aim of this paper is twofold. In the first part we gather the known results
on the classification of biharmonic submanifolds in a space form, while in the
second part we construct a class of new examples of biharmonic submanifolds
in the sphere.

For an up to date bibliography on biharmonic maps we refer the reader to
[21].

1 Biharmonic submanifolds

Let ϕ : M → �n(c) be the canonical inclusion of a submanifold M in a
constant sectional curvature c manifold, �n(c). The expressions assumed by the
tension and bitension fields are, in this case,

τ(ϕ) = mH, τ2(ϕ) = −m(∆H −mcH),

where H, seen as a section of ϕ−1(T�n(c)), denotes the mean curvature vector
field of M in �n(c) and ∆ is the rough Laplacian on ϕ−1(T�n(c)).

By splitting the bitension field in its normal and tangential components we
find that the canonical inclusion ϕ : Mm → �n(c) of a submanifold M in an
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Biharmonic submanifolds in spheres 51

n-dimensional space form �n(c) is biharmonic if and only if⎧⎪⎨⎪⎩
∆⊥H + traceB(·, AH ·)−mcH = 0,

4 trace A∇⊥
(·)H

(·) + m grad(|H|2) = 0,
(1)

where A denotes the Weingarten operator, B the second fundamental form, H
the mean curvature vector field, ∇⊥ and ∆⊥ the connection and the Laplacian
in the normal bundle of M in �n(c).

If c ≤ 0, then compact proper biharmonic submanifolds do not exist in �n(c).
In fact, using a result of Jiang [15], biharmonic maps from a compact manifold
to a manifold with non-positive sectional curvature are harmonic. When M is
non-compact, it cannot be proper biharmonic in �n(c), c ≤ 0, provided that its
mean curvature is constant [16].

For hypersurfaces, that is n = m + 1, condition (1) takes the simpler form⎧⎨⎩
∆⊥H − (mc− |A|2)H = 0,

2A
(
grad(|H|)) + m|H| grad(|H|) = 0.

(2)

In dimension n = 3 system (2) forces the norm of the mean curvature vector
field of a surface M2 in �3(c) to be constant, which implies the following

2 Theorem ([4, 7]). There exist no proper biharmonic surfaces in �3(c), c ≤
0.

For higher dimensional cases it is not known whether there exist proper
biharmonic submanifolds of �n(c), n > 3, c ≤ 0, although partial results have
been obtained. For instance:

• Every biharmonic curve of �n is an open part of a straight line [10].

• Every biharmonic submanifold of finite type in �n is minimal [10].

• There exist no proper biharmonic hypersurfaces of �n with at most two
principal curvatures [10].

• Let Mm be a pseudo-umbilical submanifold of �n(c), c ≤ 0. If m 	= 4,
then M is biharmonic if and only if minimal [4, 10].

• Let M3 be a hypersurface of �4. Then M is biharmonic if and only if
minimal [12].

• A submanifold of �n cannot be biharmonic in �n+1 [7].
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1.1 Biharmonic submanifolds of �n

All the non-existence results described in the previous section do not hold
for submanifolds in the sphere. Before we describe some general methods to
construct biharmonic submanifolds in the sphere let us recall the main examples:

• the generalized Clifford torus, �p( 1√
2
)× �q( 1√

2
), p + q = n− 1, p 	= q, was

the first example of proper biharmonic submanifold in �n [14];

• the hypersphere �n−1( 1√
2
) ⊂ �n [3].

For the 3-dimensional unit sphere it is possible to give the full classification
of proper biharmonic submanifolds, as shown by the following

3 Theorem ([3]). a) An arc length parameterized curve γ : I → �3 is
proper biharmonic if and only if it is either the circle of radius 1√

2
, or a

geodesic of the Clifford torus �1( 1√
2
) × �1( 1√

2
) ⊂ �3 with slope different

from ±1.

b) A surface M is proper biharmonic in �3 if and only if it is an open part
of �2( 1√

2
) ⊂ �3.

Theorem 3 says that a circle of radius 1√
2
, which is totally geodesic (minimal)

in �2( 1√
2
) ⊂ �3, is biharmonic in �3. This composition property turned out to

be true in any dimension in virtue of the following
4 Proposition ([4]). A minimal submanifold M of �n−1(a) ⊂ �n is proper

biharmonic in �n if and only if a = 1√
2
.

This result proved to be quite useful for the construction of proper bihar-
monic submanifolds in spheres. For instance, using a well known result of Law-
son, it implies the existence of closed orientable embedded proper biharmonic
surfaces of arbitrary genus in �4 (see [4]).

A closer look at the biharmonic submanifolds M of �n, constructed us-
ing Proposition 4, reveals that they all possess the following features: they are
pseudo-umbilical (AH = |H|2 Id) with parallel mean curvature vector field of
norm 1.

Nevertheless, it is possible to construct non pseudo-umbilical examples using
the following product composition property.

5 Proposition ([4]). If Mm1
1 and Mm2

2 (m1 	= m2) are two minimal sub-
manifolds of �n1( 1√

2
) and �n2( 1√

2
) respectively (n1 +n2 = n− 1), then M1×M2

is a proper biharmonic submanifold in �n, which is not pseudo-umbilical, with
parallel mean curvature vector field and |H| ∈ (0, 1) .

The value of |H| between 0 and 1 in Proposition 5 is not a coincidence, in
fact it was proved in [17] that any proper biharmonic constant mean curvature
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submanifold M in �n satisfies |H| ∈ (0, 1]. Moreover, if |H| = 1, then M is a
minimal submanifold of the hypersphere �n−1( 1√

2
) ⊂ �n.

The aforementioned result is related with submanifolds of finite type. Let
us first recall that an isometric immersion ϕ : M → �n is called of finite type if
ϕ can be expressed as a finite sum of �n-valued eigenfunctions of the Beltrami-
Laplace operator ∆ of M . When M is compact it is called of k-type if the
spectral decomposition of ϕ contains exactly k non-zero terms, excepting the
center of mass (see [8]).

If M is a submanifold of �n then M can be seen as a submanifold of �n+1.
We say that M is of finite type in �n if it is of finite type as a submanifold of
�n+1. Denote by ϕ : M → �n the inclusion of M in �n and by i : �n → �n+1

the canonical inclusion. Let φ : M → �n+1, φ = i ◦ ϕ, be the inclusion of M in
�n+1. Denoting by H the mean curvature vector field of M in �n and by H0 the
mean curvature vector field of M in �n+1 we have immediately H0 = H − φ.
From [4, Proposition 4.1], we get that τ2(ϕ) = 0 if and only if

∆H0 − 2mH0 + m(|H|2 − 1)φ = 0. (3)

¿From (3), using the Minimal Polynomial Criterion for submanifolds of finite
type (see, for example, [7]), we can prove the following

6 Theorem ([1]). Let Mm be a compact constant mean curvature submani-
fold in �n, |H|2 = k. Then M is proper biharmonic if and only if either |H|2 = 1
and M is a 1-type submanifold with eigenvalue λ = 2m, or |H|2 = k ∈ (0, 1)
and M is a 2-type submanifold with eigenvalues λ1,2 = m(1±√k).

Note that all proper biharmonic submanifolds of �n with |H| = 1 are 1-type
submanifolds in �n+1, independently on whether they are compact or not.

2 Biharmonic hypersurfaces

The full classification of biharmonic hypersurfaces in a space form is not
known and so far only few cases have been studied. The simplest assumption
that M is an umbilical hypersurface, i.e. all principal curvatures are equal,
does not produce new examples. In fact, if M is a proper biharmonic umbilical
hypersurface in �m+1, then it is an open part of �m( 1√

2
). Moreover, there exist no

proper biharmonic umbilical hypersurfaces in �m+1 or in the hyperbolic space
�m+1 .

Similarly to the case of the Euclidean space (see [10]), the study of proper
biharmonic hypersurfaces with at most two or three distinct principal curvatures
constitutes the next natural step for the classification of proper biharmonic
hypersurfaces in space forms.
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We underline the fact that there exist examples of hypersurfaces with at most
two or three distinct principal curvatures and non-constant mean curvature in
any space form.

The classification of biharmonic hypersurfaces with at most two or three
distinct principal curvatures relies on the proof that they have constant mean
curvature. For hypersurfaces with at most two distinct principal curvatures this
property was proved, in [10], for �n and in [1] for �n(c), c = ±1. The case of
three distinct principal curvatures was proved for hypersurfaces in �4(c), for
any c, in [2].

7 Theorem ([1, 2]). a) A biharmonic hypersurface with at most two dis-
tinct principal curvatures in �m+1(c) has constant mean curvature.

b) A biharmonic hypersurface in �4(c) has constant mean curvature.

As an immediate consequence of Theorem 7 and system (2) we have the
following non-existence result

8 Theorem ([1, 2]). a) There exist no proper biharmonic hypersurfaces
with at most two distinct principal curvatures in �m+1 and in �m+1.

b) There exist no proper biharmonic hypersurfaces in �4 and in �4.

The case of the sphere is essentially different. Theorem 7 proves to be the
main ingredient for the following complete classification of proper biharmonic
hypersurfaces with at most two distinct principal curvatures.

9 Theorem ([1]). Let Mm be a proper biharmonic hypersurface with at
most two distinct principal curvatures in �m+1. Then M is an open part of
�m( 1√

2
) or of �m1( 1√

2
)× �m2( 1√

2
), m1 + m2 = m, m1 	= m2.

Proof. By Theorem 7, the mean curvature of M in �m+1 is constant and,
from (2), we obtain |A|2 = m. These imply that M has constant principal
curvatures. For |H|2 = 1 we conclude that M is an open part of �m( 1√

2
). For

|H|2 ∈ (0, 1) we deduce that M has two distinct constant principal curvatures.
Proposition 2.5 in [18] implies that M is an open part of the product of two
spheres �m1(a) × �m2(b), such that a2 + b2 = 1, m1 + m2 = m. Since M is
biharmonic in �n, from a result similar to Proposition 4, it follows that a = b =
1√
2

and m1 	= m2. QED

We recall that a Riemannian manifold is called conformally flat if, for every
point, it admits an open neighborhood conformally diffeomorphic to an open
set of an Euclidean space. Also, a hypersurface Mm ⊂ Nm+1 which admits a
principal curvature of multiplicity at least m − 1 is called quasi-umbilical. For
biharmonic hypersurfaces we have the following classification
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10 Theorem ([1]). Let Mm, m ≥ 3, be a proper biharmonic hypersurface
in �m+1. The following statements are equivalent

a) M is quasi-umbilical,

b) M is conformally flat,

c) M is an open part of �m( 1√
2
) or of �1( 1√

2
)× �m−1( 1√

2
).

2.1 Isoparametric hypersurfaces

We recall that a hypersurface Mm in �m+1 is said to be isoparametric of type
� if it has constant principal curvatures k1 > . . . > k� with respective constant
multiplicities m1, . . . ,m�, m = m1 +m2 + . . .+m�. It is known that the number
� is either 1, 2, 3, 4 or 6. For � ≤ 3 we have the following classification of compact
isoparametric hypersurfaces (initiated, for � = 3, by Cartan).

If � = 1, then M is totally umbilical.
If � = 2, then M = �m1(r1)× �m2(r2), r2

1 + r2
2 = 1 (see [18]).

If � = 3, then m1 = m2 = m3 = 2q, q = 0, 1, 2, 3 (see [5]).
Moreover, there exists an angle θ, 0 < θ < π

� , such that

kα = cot
(
θ +

(α− 1)π
�

)
, α = 1, . . . , �. (4)

Using this classification we can prove the following non-existence result for
biharmonic hypersurfaces with three distinct principal curvatures.

11 Theorem ([2]). There exist no compact proper biharmonic hypersurfaces
of constant mean curvature with three distinct principal curvatures in the unit
Euclidean sphere.

Proof. First note that a proper biharmonic hypersurface M with constant
mean curvature |H|2 = k in �m+1 has constant scalar curvature s = m2(1 +
k)− 2m (see [1]). Since M is compact with 3 distinct principal curvatures and
constant scalar curvature, from a result of Chang [6], M is isoparametric with
� = 3 in �m+1. Now, taking into account (4), there exists θ ∈ (0, π/3) such that

k1 = cot θ, k2 = cot
(
θ+

π

3
)

=
k1 −

√
3

1 +
√

3k1

, k3 = cot
(
θ+

2π
3
)

=
k1 +

√
3

1−√3k1

.

Thus, from Cartan’s classification, the square of the norm of the shape operator
is

|A|2 = 2q(k2
1 + k2

2 + k2
3) = 2q

9k6
1 + 45k2

1 + 6
(1− 3k2

1)2
(5)
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and m = 3 · 2q, q = 0, 1, 2, 3. On the other hand, since M is biharmonic of
constant mean curvature, from (2),

|A|2 = m = 3 · 2q.

The last equation, together with (5), implies that k1 is a solution of 3k6
1−9k4

1 +
21k2

1 + 1 = 0 which is an equation with no real roots. QED

Combining Theorem 11, Theorem 7 and Theorem 9 we have the following
classification of compact biharmonic hypersurfaces in �4.

12 Theorem. The only proper biharmonic compact hypersurfaces in �4 are
the hypersphere �3( 1√

2
) and the torus �1( 1√

2
)× �2( 1√

2
).

The full classification of proper biharmonic isoparametric hypersurfaces of
�m+1 is due to Ichiyama, Inoguchi and Urakawa

13 Theorem ([13]). A compact isoparametric hypersurface M of �m+1 is
proper biharmonic if and only if it is one of the following: the hypersphere
�m( 1√

2
) or the Clifford torus �m1( 1√

2
)× �m2( 1√

2
), m1 + m2 = m, m1 	= m2.

3 Biharmonic submanifolds of codimension greater

than one

In this section we shall start a program to classify biharmonic submani-
folds of the sphere with higher codimension. If we assume that M is a pseudo-
umbilical submanifold of �n, then we soon find strong conditions. The first is

14 Theorem ([1]). A biharmonic pseudo-umbilical submanifold of �n, m 	=
4, has constant mean curvature.

Now if Mm is a pseudo-umbilical submanifold in �m+2 with constant mean
curvature, then a result of Chen [9, p.180] ensures that M is either a minimal
submanifold of �m+2 or a minimal hypersurface of a hypersphere of �m+2. Thus,
from Proposition 4, we get the following rigidity result

15 Theorem ([1]). A pseudo-umbilical submanifold Mm of �m+2, m 	= 4,
is proper biharmonic if and only if it is minimal in �m+1( 1√

2
).

If we replace the condition that M is pseudo-umbilical with that of being a
hypersurface of a hypersphere in �m+2 we have

16 Theorem ([1]). Let Mm be a hypersurface of �m+1(a) ⊂ �m+2, a ∈
(0, 1). Assume that M is not minimal in �m+1(a). Then it is biharmonic in
�m+2 if and only if a > 1√

2
and M is open in �m( 1√

2
) ⊂ �m+1(a).

Using Theorem 16 we can prove

____________________________________________________________________________________



Biharmonic submanifolds in spheres 57

17 Theorem ([1]). A proper biharmonic surface M2 in �n with parallel
mean curvature vector field is minimal in �n−1( 1√

2
).

Proof. Chen and Yau proved (see [9, p.106]) that the only non-minimal
surfaces with parallel mean curvature vector field in �n are either minimal sur-
faces of hyperspheres �n−1(a) of �n or surfaces with constant mean curvature
in 3-spheres of �n. If M is a minimal surface of a hypersphere �n−1(a), then it
is biharmonic in �n if and only if a = 1√

2
. If M is a surface in a 3-sphere �3(a),

a ∈ (0, 1], of �n then we can consider the composition

M −→ �3(a) −→ �4 −→ �n.

Note that M is biharmonic in �n if and only if it is biharmonic in �4. From
Theorem 16, for a ∈ (0, 1), we conclude that either a = 1√

2
and M is minimal in

�3( 1√
2
), or a > 1√

2
and M is an open part of �2( 1√

2
). For a = 1, from Theorem

3, also follows that M is an open part of �2( 1√
2
). In all cases M is minimal in

�n−1( 1√
2
). QED

We point out that there exist examples of proper biharmonic constant mean
curvature surfaces in �n that are not minimal in �n−1( 1√

2
). For example, Sasa-

hara, in [19], constructed a proper biharmonic immersion with constant mean
curvature ϕ : M2 → �5 whose position vector field x0 = x0(u, v) in �6 is given
by:

x0(u, v) = 1√
2

(
eiu, ie−iu sin(

√
2v), ie−iu cos(

√
2v)

)
.

An easy computation shows that ϕ does not have parallel mean curvature vector
field.

We end this section proposing two conjectures.
Conjecture. The only proper biharmonic hypersurfaces in �m+1 are the

open parts of hyperspheres �m( 1√
2
) or of generalized Clifford tori �m1( 1√

2
) ×

�m2( 1√
2
), m1 + m2 = m, m1 	= m2.

Conjecture. Any biharmonic submanifold in �n has constant mean curva-
ture.

4 New examples of proper biharmonic submanifolds
in spheres

This section is devoted to the study of new examples of proper biharmonic
submanifolds of codimension greater than 1 in spheres. We shall give the classi-
fication of proper biharmonic products of spheres in the unit Euclidean sphere.

Consider the product of r spheres

T = �n1(a1)× �n2(a2)× . . .× �nr(ar) ⊂ �m+r−1 ⊂ �m+r,
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where m =
r∑

k=1

nk and
r∑

k=1

a2
k = 1.

In the following theorem we give the relations, involving the radii and the
dimensions of the spheres, that guarantee the biharmonicity of T in �m+r−1.

18 Theorem. The product T is:

a) minimal in �m+r−1 if and only if

a2
k

nk
=

1
m

,

for all k = 1, . . . , r.

b) proper biharmonic in �m+r−1 if and only if there exists p = 1, . . . , r − 1
such that

a2
1

n1
= · · · = a2

p

np
=

1
2(n1 + . . . + np)

	= 1
m

and
a2
p+1

np+1
= · · · = a2

r

nr
=

1
2(np+1 + . . . + nr)

	= 1
m

.

Proof. Denote by (x1
1, . . . , x

n1+1
1 , . . . , x1

r , . . . , x
nr+1
r ) = p ∈ T the position

vector field in �m+r. Set ηk = 1
ak

xk. A simple computation shows that ηk is the
unit normal vector field of �nk(ak) in �nk+1 ⊂ �m+r. Consider p = (x1, . . . , xr)
and denote by {Ek,i}nk

i=1 a local orthonormal frame field on �nk(ak) which is
geodesic at xk. Then {Ek,i} k=1,r

i=1,nk

constitutes a local orthonormal frame field on

T, geodesic at p.
Denote by B the second fundamental form of T in �m+r−1, by ∇0, ∇ and

∇T the Levi-Civita connections on �m+r, �m+r−1 and T, respectively. Then

B(Ek,i, Ek,i) = ∇Ek,i
Ek,i −∇T

Ek,i
Ek,i

= ∇0
Ek,i

Ek,i + 〈Ek,i, Ek,i〉p
= 〈∇0

Ek,i
Ek,i, ηk〉ηk + p (6)

= −〈Ek,i,∇0
Ek,i

ηk〉ηk + p = − 1
ak

ηk + p

= a1η1 + . . . +
(− 1

ak
+ ak

)
ηk + . . . + arηr.
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Thus the mean curvature vector field of T in �m+r−1 is given by

mH =
r∑

k=1

nk∑
i=1

B(Ek,i, Ek,i) =
r∑

k=1

(
− nk

ak
ηk + nkp

)
= −

r∑
k=1

nk
ak

ηk + mp

=
r∑

k=1

(
− nk

ak
+ mak

)
ηk. (7)

Since, from (7),

H =
1
m

r∑
k=1

(
− nk

ak
+ mak

)
ηk

we see that T has constant mean curvature in �m+r−1. We shall prove that T

has parallel mean curvature in �m+r−1. Indeed

∇Ek,i
H = ∇0

Ek,i
H

=
1
m

(
− nk

a2
k

+ m
)
Ek,i, (8)

thus
∇⊥
Ek,i

H = 0, k = 1, . . . , r, i = 1, . . . , nk

and

AH(Ek,i) =
1
m

(nk
a2
k

−m
)
Ek,i. (9)

Since H is parallel, the conditions on T to be biharmonic in �m+r−1 is
equivalent to

mH = trace B(·, AH ·). (10)

¿From (9) we get

traceB(·, AH ·) =
r∑

k=1

nk∑
i=1

B(Ek,i, AH(Ek,i))

=
r∑

k=1

1
m

(nk
a2
k

−m
) nk∑
i=1

B(Ek,i, Ek,i)

=
1
m

r∑
k=1

(nk
a2
k

−m
)
nk

(
a1η1 + · · ·

+
(− 1

ak
+ ak

)
ηk + · · ·+ arηr

)
, (11)
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and (10) becomes

a2
k

nk

( r∑
j=1

n2
j

a2
j

− 2m2
)

+ 2m− nk
a2
k

= 0, k = 1, . . . , r. (12)

Denote now by αk = a2k
nk

and by d =
r∑
j=1

nj
αj

. Then (12) becomes

(2m2 − d)α2
k − 2mαk + 1 = 0, k = 1, . . . , r. (13)

We have two cases:

a) αk = α, for all k, thus d = m/α and we have 2m2α2 − 3mα + 1 = 0. The

condition
r∑

k=1

a2
k = 1 implies that α = 1/m is the only solution of (13)

and, since in this case a2
k = nk/m, T is minimal in �m+r−1;

b) there exists p = 1, . . . , r − 1 such that α1 = . . . = αp = A and αp+1 =
. . . = αr = B, A 	= B. Then, from (13), it follows that A = 1

2(n1+...+np)

and B = 1
2(np+1+...+nr) .

QED

19 Remark. (i) All the examples constructed as above arise from the
product composition property given in Proposition 5. Indeed, �n1(a1) ×
�n2(a2)× . . .×�np(ap) and �np+1(ap+1)×�np+2(ap+2)× . . .×�nr(ar), with
the radii given by Theorem 18, are minimal in �m1( 1√

2
) and �m2( 1√

2
),

respectively, where m1 = n1 + . . .+np+ p− 1 and m2 = np+1 + . . .+nr +
r − p− 1.

(ii) Theorem 18 generalizes a result of W. Zhang (see [20]) which characterizes
the biharmonicity of products of circles in spheres.

(iii) For r = 2, in Theorem 18, we obtain the example of Jiang of the bihar-
monic generalized Clifford torus.
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