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SUMMARY

A method is proposed for classi"cation to ordinal categories by applying the search partition analysis
(SPAN) approach. It is suggested that SPAN be repeatedly applied to binary outcomes formed by collapsing
adjacent categories of the ordinal scale. By a simple device, whereby successive binary partitions are
constrained to be nested, a partition for classi"cation to the ordinal states is obtained. The approach is
applied to ordinal categories of glucose tolerance to discriminate between diabetes, impaired glucose
tolerance and normal states. The results are compared with analysis by ordinal logistic regression and by
classi"cation trees. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Classi"ers to nominal categorical states can be constructed using various methodologies; the two
main competitors are regression methods, for example, binary or polytomous logistic model-
ling,1,2 and tree-based partitioning methods. CART,3 S procedures4 and SPSS's AnswerTree are
examples of the latter. When categories are ordinal, regression models can be formulated5 and
tree-based methods can be adapted by using a splitting criterion that accounts for the ordinal
structure of the outcome. In CART &twoing' can be used and AnswerTree has a criterion based
on a scalable chi-square measure.6

An alternative approach that is suggested here for classi"cation to ordinal states is based on
a non-hierarchical partitioning procedure, known as search partition analysis (SPAN). SPAN has
been proposed to generate binary classi"ers7 and for identi"cation of subgroups.8 In this paper
I explore its application for the development of a classi"er to ordinal categories by combining
binary classi"ers.

The method is used to develop a screening rule for diabetes. The results of its application are
compared to a rule based on ordinal logistic regression and a rule obtained by tree-structured
analysis.
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2. EXAMPLE: DIABETES SCREENING

A fasting oral glucose test is usually used to diagnose diabetes and, depending on the results of the
test, individuals are classi"ed as on the ordinal scale normal, impaired glucose tolerance (IG¹) and
diabetes. These three categories are determined by internationally accepted cutpoints of plasma
glucose: 7)8 mmol/l and 11 mmol/l. Because the test requires 10}16 hour fasting, and a blood test
after a two hour glucose load, its routine use is impractical as a screening instrument.

Using data from a work force survey of about 5500 people in New Zealand, it was hoped that
a simpler test could be developed. All participants in the survey were asked to take a fasting
glucose tolerance test and in addition other risk factors for diabetes were measured. These
included a non-fasting fructosamine test,9 which had been suggested as an alternative test for
diabetes, as well as body mass index, blood lipids, hypertension and race, among others. The
objective of the analysis here is to use these measures to provide a simple rule for classi"cation to
each of the three ordinal states normal, impaired glucose tolerance and diabetes.

Without, for the moment, going into details, a SPAN derived rule that was developed for
discrimination between diabetes and the combined normal and impaired states was:

assign to diabetes if: positive fructosamine and albumin tests

or if: positive fructosamine and triglyceride tests and Polynesian ethnicity.

If F, ¹ and ; denote positive fructosamine, triglyceride and urinary albumin tests, respectively,
and E is Polynesian (Maori or Paci"c Island) ethnic group, then the rule can be written in
symbols as

(FW; )X(FWEW¹) (1)

where W stands for &and' and X stands for &or'.
A SPAN derived rule was also obtained to discriminate between normal and combined

impaired glucose tolerance and diabetes categories. In symbols the rule was assign to diabetes or
impaired if

(FW;)X (FW¹)X (FWH ) (2)

where H denotes hypertension. These two rules are su$cient for three-way classi"cation; anyone
who does not satisfy rule (2) would be assigned to normal and someone who satis"es (2) but not (1),
would be classi"ed to impaired. Comparing rules (1) and (2) it is clear that anyone satisfying rule
(1) necessarily also satis"es rule (2), that is, rule (1) is a subset of rule (2). Were this not the case, the
rules would be inconsistent, as discussed below.

In the following two sections the methods used to derive rules such as these are described and
I return to the example, with more details of the analysis, in Section 5.

3. USING SPAN FOR ORDINAL OUTCOMES

In SPAN a search is carried out among di!erent Boolean combinations of predictive factors to
"nd a binary partition, P"MAM , AN, of the sample space. Each combination is tested against the
data to establish how well the partition induces a split of the data into two groups, such that each
are relatively homogeneous with respect to an outcome variable y. If y is nominal, homogeneity
can be measured by, for example, an entropy measure or Gini index of diversity. These measures
can also be applied if y is ordinal, although the ordinal nature of y would be not be taken into
account.
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Figure 1. Binary partitions MAM
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Further, whether y is nominal or ordinal, if it has more than two states, the binary partition will
obviously not constitute a classi"er for y. However, categories of y can be collapsed to create
a binary outcome and a binary partition found to classify to y. If there are t#1 categories of
y there are 2t!1 possible ways to combine categories, but if y is ordinal it is natural to only
consider combining adjacent categories in the ordinal pathway so that the binary outcome
becomes an indicator of &above' and &below' a certain value of y. Then obviously there are only
t possible ways of combining t#1 categories.

Consider, for example, the case where y has three ordinal states 0, 1 and 2. Either states 0 and
1 can be combined, or states 1 and 2. Suppose states 1 and 2 are combined and a binary partition,
say P

1
"MAM

1
, A

1
N is found, where A

1
is predictive of &either 1 or 2' and AM

1
predicts category 0. On

the other hand, states 0 and 1 could be collapsed and a partition, P
2
"MAM

2
, A

2
N, found where A

2
is predictive of state 2.

To form a three-way partition MC
0
, C

1
, C

2
N as a classi"er to states 0, 1 and 2, it would be

natural to make C
0
"AM

1
and C

2
"A

2
, and, for the central state, C

1
"AM

2
WA

1
. However, C

0
and

C
2
will not necessarily be mutually exclusive and an individual could simultaneously be predicted

to be in category 2 and category 0 (Figure 1(a), shaded area). However, if A
2

is a subset of A
1

(Figure 1(b)), the classi"er C
2
"A

2
, C

0
"AM

1
and C

1
"AM

2
WA

1
is a valid partition. Notice that

C
1

is, in Figure 1(b), the &space' between A
2

and A
1
.

For illustration, suppose there are three ordinal outcome categories of atherosclerosis in
symptomatic heart disease patients, mild, moderate and severe. Also suppose predictive attributes
are: elderly, that is, age over 60 (E); male gender (M); raised serum cholesterol (S). If the presence
of any one of the attributes is a reasonable predictor of either moderate or severe, while presence of
all three is a predictor of severe, we would have

A
1
"EXMXS

and
A

2
"EWMWS.

Clearly in this case A
2

is a subset of A
1
, so that classi"cation to the moderate category is

accomplished with C
1
"A

1
WAM

2
, which, in words, is any one, or two, of the three attributes, but

not all three.
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Figure 2. Nested binary partitions enabling construction of classi"er MC
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, C
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On the other hand suppose we had

A
1
"EXM

that is, either male or elderly predicts either moderate or severe atherosclerosis, and

A
2
"(EWM)XS

so that severe is predicted if you are an elderly male or have raised serum cholesterol. In this case
A

2
is not contained in A

1
since someone who is neither male nor elderly, that is, a younger

woman, yet has raised serum cholesterol is in A
2

but not A
1
. Therefore C

0
"AM

1
, C

1
"A

1
WAM

1
,

C
2
"A

2
is not a partition. We would have to decide how to classify a younger female with raised

serum cholesterol.

4. MORE THAN THREE CATEGORIES

Consider now extending these ideas to t#1 ordinal categories, M0, 1,2, tN. We require a parti-
tion C

0
, C

1
,2,C

t
from which individuals in C

k
will be classi"ed to ordinal category k. The

ordinal categories can be split into two groups at a point k on the ordinal scale. Let R
k
"Mk,2, tN

be the set of ordinal states in the range k to t and RM
k
"M0, 1,2, k!1N is its complement. Suppose

a SPAN partition P
k
"MAM

k
, A

k
N can be obtained for discrimination between RM

k
and R

k
. This can

be done for each k"1, 2,2, t to give the sequence A
1
, A

2
,2,A

t
.

Now if the A
k
are nested in the sense illustrated in Figure 2, that is, if A

t
is a subset of A

t~1
,

which is itself a subset of A
t~2

, and so on, then the sets C
k
"A

k
WAM

k`1
for 0(k(t, with

C
0
"AM

1
and C

t
"A

t
, provide a valid classi"er. Looking at Figure 2, the C

k
sets are essentially

the spaces between concentric &shells'.

4.1. Generating nested partitions

Unfortunately, if SPAN, or any other method, is used to independently establish the partitions
P
1
, P

2
,2,P

t
, there is no guarantee that the partitions will be nested as required. However,

partitions that are nested can be generated by a series of searches that are not independent.
Instead, each search is constrained by the results of the previous search.

Speci"cally, we could begin by "nding P
t
"MAM

t
, A

t
N in an unconstrained SPAN search for

discrimination between RM
t
and R

t
. Next P

t~1
"MAM

t~1
, A

t~1
N is found by another SPAN search,
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to discriminate between RM
t~1

and R
t~1

, with A
t~1

constrained so that A
t
is a subset of it. The

constraint can be achieved by conducting the search so that, for each partition generated, A
t
is

&forced' into the Boolean expression as follows: if P"MAM , AN is one of the generated partitions of
the search, it is augmented by constructing the &forced partition' P*"MAM *, A*N where
A*"AXA

t
. The best P* on the search is used for P

t~1
. Similarly, given P

t~2
is found by forcing

A
t~1

into another search to discriminate between RM
t~2

and R
t~2

, and the process is repeated.
This procedure is &top down', in the sense that it starts with P

t
followed by P

t~1
and so on. It is

not the only way to generate a nested sequence. It is possible, for example, to work &bottom up'
beginning with an unconstrained partition P

1
"MAM

1
, A

1
N to discriminate between RM

1
and R

1
.

The next search to form P
2

is carried out to discriminate RM
2

from R
2

with A
1

forced into
a generated partition, by creating A*"AWA

1
and the best such partition becomes P

2
. Yet

another possibility, if there are more than three ordinal categories, is to begin in the middle and
work out. For example, start with unconstrained P

l
for some l in 1(l(t. Then, working

&upwards' for k'l force A*"AWA
k~1

, and, working &downwards', for k(l force
A*"AXA

k`1
.

4.2. Positive attributes

One of the features of SPAN is that binary partitions are formed by Boolean combinations of
predictive factors that are positive with respect to the binary outcome. For example, &raised serum
cholesterol' is a positive attribute for a binary indicator of presence of atherosclerosis; its
complement &not raised serum cholesterol' is a corresponding negative attribute. On the other
hand low HDL cholesterol would be considered a positive attribute for that disease. An attribute
can be considered positive if it is more common for y"1 than it is for y"0. Usually specifying
an attribute in advance to be positive is not restrictive.

A SPAN search involves de"ning a set of m positive attributes, say ¹
m
, with respect to the

outcome variable and the search is conducted from among the class of &regular' Boolean
combinations of the attributes in ¹

m
. Here regular means that any partition P"MAM , AN that is

derived from ¹
m

is such that A is a Boolean combination, using only the X and W operators, of the
positive attributes.7,8

To establish an ordinal classi"er by the forcing process just described, it is necessary to de"ne
a ¹

m
for each search, that is, a set of attributes that are positive with respect to the collapsed

categories. Matters are simpli"ed if the same attribute set is assumed for each search. This
simpli"cation can be justi"ed if, as often occurs, the frequency of an attribute X increases with
steps up the ordinal scale, that is

P(X D0))P (X D1))2)P(X Dt). (3)

In this case, with regard to the collapsed dichotomy, it can be shown that

P (X DRM
k
))P (X DR

k
)

for each k"1,2, t. Therefore the attribute X would be considered positive for each k and, if all
attributes each have the property (3), it is justi"able to assign a global or identical set of positive
attributes for each search.

Assuming a global attribute set recognizes the ordinal nature of the outcome and adds
additional structure on the partitions when, as is often the case, (3) holds. It guards against
generating illogical and contradictory Boolean expressions. However, sometimes (3) may not

CLASSIFICATION TO ORDINAL CATEGORIES 2727

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2723}2735 (1999)



hold, for example, if an attribute is more common in intermediate states than at either extreme. In
this case, consideration would have to be given to a separate attribute set for each search.

If a global positive attribute set is used, then it is clear that the &end' classi"ers C
0

and C
t
are,

respectively, Boolean combinations of negative and positive attributes. The partition is then
&regular' in the sense that a combination of negative attributes predicts the lower end of the
ordinal scale while a combination of positive attributes predicts the upper end. Intermediate
points are predicted by combinations of positive and negative attributes. This seems to be
a reasonable structure for an ordinal classi"er.

5. ANALYSIS OF DIABETES SCREENING DATA

The background to this study was outlined in Section 2. Here I present three approaches to
developing prediction rules, beginning with the proposed SPAN method.

5.1. SPAN method

The attributes that were used to develop the classi"cation rules were: raised non-fasting fruc-
tosamine test; high body mass index; raised serum cholesterol raised serum triglyceride; raised
urinary albumin; presence of hypertension, and ethnicity Maori, Paci"c Islander or Asian } all
factors known to be associated with impaired glucose tolerance or diabetes. As these factors are
each more frequent with worsening glucose tolerance, it was justi"able to use a global attribute
set for an ordinal SPAN analysis.

Adopting a top down procedure, the lower two ordinal categories, normal and impaired, were
"rst collpsed into one and an unconstrained SPAN analysis was done using a reduction in
diversity index

G"i(n)!p
A
i (n

A
)!p

A
M i (n

A
M ) (4)

where i (x)"x (1!x) and n, n
A

and n
AM

are sample proportions of the binary outcome means in
the whole sample, in A and in AM , respectively, and p

A
"1!p

AM is the proportion of the sample in
A. An iterative complexity penalized procedure8 was used for the analysis. In this procedure
a plot of G against a measure of complexity, c, of a partition is generated and the upper envelope
of the plot is the &complexity hull'. An optimal complexity penalized partition, that is, one that
o!sets increasing G against complexity, must be one of the points on the hull.8

In this case the points on the hull were at (c, G) co-ordinates: (1, 0)00200), (4, 0)00270) and
(6, 0)00277). There is substantial improvement in G between the c"1 and c"4 partitions, but
little is gained by the complexity c"6 partition. The complexity c"4 partition is

A
2
"(FW;)X(FWEW¹ )

that is the rule in expression (1).
Next the upper two categories, impaired and diabetes, were collapsed into one and a SPAN

analysis done with A
2
forced into the search using A*"AXA

2
, as described above. Points on the

complexity hull were at (c,G) co-ordinates: (1, 0)0050), (4, 0)0072) and (6, 0)0075). Again the
optimal partition is at complexity c"4.

A
1
"(FW; )X(FW¹ )X(FWH)

which is the rule in equation (2). It is easy to con"rm that A
2

is a subset of A
1
.
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Table I. Re-classi"cation table of SPAN derived three-way parti-
tion for ordinal categories 0, 1, 2 (normal, impaired, diabetes) of
glucose tolerance using SPAN method with a diversity index.

Equal false positive and false negative costs.

Actual C
0

C
1

C
2

0 5114 115 49 5278
1 124 18 16 158
2 36 17 27 80
Total 5274 150 92 5516

With C
0
"AM

1
, C

1
"A

1
WAM

2
and C

2
"A

2
, the re-substitution classi"cation of actual and

predicted counts is shown in Table I. &Pre-test' probabilities are P (0)"95)6 per cent, P (1)"2)9
per cent and P (2)"1)5 per cent. The estimated &post-test' probabilities, or predictive values, are
P (0 DC

0
)"5114/5274"97)0 per cent, P(1 DC

1
)"18/150"12 per cent and P(2 DC

2
)"27/92"

29)4 per cent. The overall misclassi"cation rate, Q"6)5 per cent, is the sum of the o!-diagonal
counts divided by the total 5540. As the states are ordinal, it is appropriate to also calculate
a weighted misclassi"cation rate, say Q@, in which twice the weight is assigned to misclassi"cations
from 0 to 2, and from 2 to 0. For Table I Q@"8)0 per cent.

A bottom up approach was also adopted in which the top two categories are collapsed
and an analysis done to "rst "nd A

1
and then A

2
. In this instance, the resulting A

1
and A

2
were identical to those by the top down procedure. Generally, however, this may not always be
the case.

It is evident from Table I that applying these rules may lead to rather many false negatives.
This may be unacceptable for such a screening programme. One way to generate rules
that decreases the number of false negatives is to introduce misclassi"cation costs. In the
above analysis the cost of a false negative is implicitly the same as the cost of a false
positive. A cost analysis can be achieved by &altering' the prior probabilities in a similar
way to that described in Breiman et al.3 Details are given in the Appendix. I chose to make the
cost of a false negative ten times that of a false positive (a"10) and then repeated the analysis as
above.

Working top down to "nd A
2
, the points on the hull were at (c, G) co-ordinates (1, 0)1018),

(4, 0)1110) and (5, 0)1126). Evidently little is gained by the more complex partitions; the
c"1 partition was simply raised fructosamine

A
2
"F. (5)

Next the upper two categories were collapsed into one and a SPAN analysis done with A
2

forced
into the search using A*"AXA

2
, as described above. The SPAN search resulted in points

on the complexity hull at (c, G) co-ordinates (1, 0)0379), (3, 0)0445), (4, 0.0450) and
(6, 0)0462). Little seems to be gained by a partition with complexity greater than c"3. The c"3
partition is

A
1
"(F)X(HWB). (6)
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Figure 3. Tree diagram for classi"cation in the diabetes screenig example. Outcome categories are 0, 1, 2 which
corresponding node assignments C

0
, C

1
, C

2
and frequencies as indicated (for example, 0:707 indicates 707 individuals

with category 0). Node squares are proportional to node sample size. Figures before each node split are p-values
associated with a chi-square test. The tree partition (see text) is based on this tree but with branches &FRUC"high' and

&HT"yes' pruned.

Obviously A
2

is a subset of A
1

and the classi"cation rule, C
1
"A

1
WAM

2
, to the intermediate state

is simply

C
1
"MFX (HWB)NWFM "(FM WHWB)

that is, low fructosamine, hypertension and raised body mass. With C
0
"AM

1
and C

2
"F the

re-substitution classi"cation of actual and predicted counts is shown in Table II. The estimated
&post-test' probabilities are P (0 DC

0
)"4289/4359"98)4 per cent, P(1DC

1
)"34/418"8)1 per

cent and P(2DC
2
)"71/749"9)5 per cent. The Q and Q@ misclassi"cation indices are now 20)5%

and 31)8% respectively.

5.2. Tree analysis

For a tree-based analysis the three ordinal outcome states were treated as if they were nominal
and the Gini index of diversity was used to determine split e!ectiveness. The tree was initially
grown to four tiers and subsequently pruned. Pruning a node was done &manually' by lopping
a branch if a chi-square test of a split did not achieve statistical signi"cance ( P(0)01), or if one of
its child nodes was small ((30). The resulting tree is shown in Figure 3. The rectangles drawn at
each node in Figure 3 are, in area, proportional to the number of observations at each node.

If a Bayes (maximum empirical probability) rule was used to assign each node to one of the
three categories then, on the basis of the node frequencies, each node would be assigned to class 0,
that is, normal. This is clearly not useful. An alternative way to assign nodes is by assigning the
category with the largest likelihood ratio, n ( j Ds)/n ( j ), that is, the extent to which the category
probability n ( j Ds), at node s, is altered from its prior n( j ). By this rule node 1 is assigned to
category 0, nodes 2, 3 and 4 to category 1, and nodes 5, 6 and 7 are assigned to category 2, as
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Table II. Re-classi"cation table of SPAN derived three-way parti-
tion for ordinal categories 0, 1, 2 (normal, impaired, diabetes) of
glucose tolerance using SPAN derived partition taking misclassi"-
cation costs into account. Note: di!erences in row totals in

Tables I to IV arise because of missing data

Actual C
0

C
1

C
2

0 4289 376 621 5286
1 64 34 57 155
2 6 8 71 85
Total 4359 418 749 5526

Table III. Re-classi"cation table of three-way partition for ordinal
categories 0, 1, 2 (normal, impaired, diabetes) of glucose tolerance.
Note: di!erences in row totals in Tables I and IV arise because of

missing data

Actual C
0

C
1

C
2

0 3499 1169 670 5338
1 38 64 57 159
2 3 6 71 80
Total 3540 1239 798 5577

shown in Figure 3. These rules imply that branches from nodes &HT"yes' and &FRUC"high'
can be pruned. The rules for assignment to the three categories are

C
0
"FM WHM

C
1
"(FM WH )X (FM WHM WE)

C
2
"F.

Another way to assign the nodes is by changing prior probabilities. For example, by specifying
equal prior probabilities to the three categories, the same assignment rule as that just given is
obtained. However, as the data are representative of the population in which a screening rule is
likely to be applied, adjusting the priors in this way seems unjust"able.

Note that C
1

in the above simpli"es to C
1
"(FM WH )X (FM WE) showing the redundancy of HM in

the rule, a situation which can often arise with tree rules and which can be misleading.6 Note also
that the partition is regular with respect to the designated positive attributes, in the sense
discussed in Section 4.2, because of the simplicity of the pruned tree.

Table III gives the re-substitution classi"cation table using the above rule. The classi"cation
rates are P(0DC

0
)"3499/3540"98)8 per cent, P(1DC

1
)"64/1239"5)2 per cent and

P (2DC
2
)"71/798"8)9 per cent. The misclassi"cation rates are Q"34)8 per cent and Q@"46)9

per cent.
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Table IV. Ordinal logistic regression re-classi"cation table of
three-way partition for ordinal categories 0, 1, 2 (normal, impaired,
diabetes) of glucose tolerance. Note: di!erences in row totals in

Tables I}IV arise because of missing data

Actual C
0

C
1

C
2

0 4776 448 53 5277
1 94 51 13 158
2 15 49 16 80
Total 4885 548 82 5515

Table V. Comparison of re-classi"cation rates. Each measure expressed as a percentage

Method* P (0DC
1
) P (1DC

1
) P (2DC

2
) Q Q@ Predictors usedt

SPAN* 97)0 12)0 29)4 6)5 8)0 F, H, E, ¹, ;
SPANs 98)4 8)1 9)5 20)5 31)8 F, H, B
Tree 98)8 5)2 8)9 34)8 46)9 F, H, E
Logistic 97)7 9)3 19)5 12)2 13)4 F, H, E, ¹, ;, B

*Using SPAN rules (1) and (2)
sUsing SPAN rules (5) and (6)
tF, ¹ and ; are positive fructosamine, triglyceride and urinary albumin tests, respectively. H is hypertensive, B body
mass index '25, E is Maori or Paci"c Island ethnic group

5.3. Ordinal logistic regression analysis

An analysis was also done by logistic regression using a model in which the ordinal structure is
explicitly accounted for by the form5

logitP (>)j )"a
j
#bX.

for j"0, 1. The predictors were all binary indicators and stepwise model reduction was done. Six
predictors were highly statistically signi"cant in the model (see Table V) and the direction of their
e!ects the same as their designation as positive attributes in the SPAN analysis.

To be consistent with the tree analysis above, I based classi"cation on a likelihood ratio rule,
that is, n( j Di)/n ( j) where n ( j Di) is the predicted probability of category j for individual i, and the
classi"cations in Table IV were obtained. The predictive values of the rule are P (0 DC

0
)"

4776/4885"97)7 per cent, P(1DC
1
)"51/548"9)3 per cent and P (2DC

2
)"16/82"19)5 per cent.

The overall misclassi"cation rate is Q"12)2 per cent and Q@"13)4 per cent.
Table V present a summary of the estimated predictive values, as are reported above, by the

three methods. Overall, the "rst SPAN rule looks the best, but it will give more false negatives
than the others. The second SPAN rule, which is very simple, gives fewer false negatives at the
expense of more false positives and a greater overall misclassi"cation rate. The tree-based rule
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gives the largest overall misclassi"cation rate. Logistic regression, on the other hand, fares
comparatively well.

6. DISCUSSION

A method has been proposed for ordinal classi"cation by applying the search partition analysis
(SPAN) approach.7,8 SPAN is based on a class of logical Boolean expressions, which is
determined by speci"cation of a set of positive attributes. The class can be thought of as
analogous to the role that a model plays in regression methods in the sense that it formalizes
a sensible framework within which to search for the &best "t'. This framework is expanded in the
proposal made here to apply SPAN to the problem of ordinal classi"cation.

For this purpose a series of SPAN analyses for collapsed categories of the ordinal outcome
has been proposed. The analyses together provide a partition of the predictor space for
ordinal classi"cation. Recognition of the ordinal nature of the outcome is made explicit
in this procedure by two features. First, by the very reasonable way that ordinal categories
are collapsed into above/below a point on the scale. Secondly, by an assumption, which is
also reasonable for an ordinal outcome, of a global set of positive attributes for each search.
The SPAN partition is then regular, in the sense discussed in Section 4.2. Regularity seems
to be a sensible requirement for an ordinal classi"er. Tree derived classi"ers are unlikely to be
regular since combinations of positive and negative attributes are forced together as a tree is
grown. However, in the diabetes example, the partition is regular, but only because the pruned
tree is very simple.

Although the suggested method is ostensibly for ordinal categories, it may be possible to also
apply it to categories on a nominal scale. For example, nominal categories can always be labelled
to correspond to increasing prevalence of some attribute X, to satisfy (3). If, with this labelling,
property (3) holds for every other attribute then it would be justi"able to apply the method. It is,
anyway, sometimes sensible to &ordinalize' a nominal scale.10

Ordinal structure of the outcome can be accounted for in tree growing by using an ordinal
splitting criterion, as in SPSS's AnswerTree (which invokes a scalable chi-square criterion6),
or by &twoing' in CART. Although the tree analysis described above was done using software
(see below) which uses neither of these devices, I also ran an analysis with SPSS AnswerTree,
designating the outcome as ordinal and the default &C&RT' options. The resulting partition,
after pruning and combining nodes as above, was identical to the tree analysis reported
above.

The classi"cation rates that are presented are all based on the re-substitution method and may
be optimistic. Nevertheless, sample size is large and classi"cation rates may not be unduly
a!ected. Further, depending on the criteria and methods that are used, there is usually a number
of contender partitions that are nearly &optimal' in both SPAN and tree methods. Equally, of
course, there is no &correct' linear model. The rules presented here are the result of di!erent
judgements made in the course of the analysis and it is acknowledged that other equally valid
partitions may exist. Deciding which partition to report is often di$cult. Tree analysis, methods
to pick from a &forest' of trees11 may be adaptable.

The search methods of analysis that are presented here (including the tree analysis) were done
using Windows 95 SPAN statistical software, developed by the author and available from URL
http:/www.auckland.ac.nz/mch/span.htm. SAS procedure LOGISTIC was used for the ordinal
logistic regression analysis.
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APPENDIX: ALTERED PRIORS TO ACCOUNT FOR COSTS

Suppose c
A0

is the cost of misclassi"cation of a false positive and c
A
M 1

that of a false negative. Let
a"c

A
M 1

/c
A0

be the relative cost. The expected costs are

c
A0

nP(AD0)#c
AM 1

(1!n)P (AM D1).

Putting n@"nc
A0

and 1!n@"(1!n)c
1AM

as &altered priors' gives the expected costs as

n@P (AD0)#(1!n@)P(AM D1)

which suggests using altered priors that are user speci"ed in the SPAN analysis. The e!ect that
this has on the G criterion in equation (4) is to adjust the weight given to the diversities of A and
A1 as follows.

Without loss of generality we can make

c
A0

"

1

n#a (1!n)

and

c
AM 1

"

a
n#a (1!n)

ensuring the altered prior n@ is a proper prior probability.
Replacing these in the reduction in diversity index, G, in equation (4), leads to

G@Ji(n)!Rp
A
i(n

A
)!RM p

A
M i(n

A
M ) (7)

where the constant of proportionality is c
A0

c
A
M 1

and R"n
A
/n@

A
and RM "(1!n

A
)/(1!n@

A
).

Here n@
A

is the expected sample proportion in A under the altered priors, speci"cally
n@
A
"P (AD0)n@#P(AD1)(1!n@). Hence, comparing (4) and (7) shows that the altered criterion

weights the diversities of A and AM by factors R and RM , respectively.
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