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ABSTRACT

Motivation: Temporal gene expression profiles provide an important

characterization of gene function, as biological systems are predomin-

antly developmental and dynamic.We propose amethod of classifying

collections of temporal gene expression curves in which individual

expression profiles aremodeledas independent realizations of a stoch-

astic process. Themethoduses a recently developed functional logistic

regression tool based on functional principal components, aimed at

classifying gene expression curves into known gene groups. The num-

ber of eigenfunctions in the classifier can be chosen by leave-one-out

cross-validation with the aim of minimizing the classification error.

Results: We demonstrate that this methodology provides low-error-

rate classification for both yeast cell-cycle gene expression profiles

and Dictyostelium cell-type specific gene expression patterns. It also

workswell in simulations.Wecompare our functional principal compon-

ents approachwith aB-spline implementation of functional discriminant

analysis for the yeast cell-cycle data and simulations. This indicates

comparative advantages of our approach which uses fewer eigenfunc-

tions/base functions. The proposed methodology is promising for the

analysis of temporal gene expression data and beyond.

Availability: MATLAB programs are available upon request.

Contact: ileng@wfubmc.edu

Supplementary information: Supplementary materials are available

on the journal’s website.

1 INTRODUCTION

Since cDNA and oligonucleotide microarray techniques were

developed to monitor the expression of many genes in parallel

(Schena et al., 1995, 1996), this high-capacity system has been

applied routinely for identifying and analyzing genes involved in

various biological processes in different organisms (Spellman et al.,
1998; Cho et al., 1998, 2001; Eisen et al., 1998; Wen et al., 1998;
Golub et al., 1999; Iyer et al., 1999; White et al., 1999; Hill et al.,
2000; Laub et al., 2000; Iranfar et al., 2001; Breyne and Zabeau,

2001). Recently, microarray experiments have been widely used to

collect large-scale temporal data to monitor gene expression under-

lying development or other dynamic processes in many organisms.

For example, a precise regulation of gene activity probably controls

the molecular processes of DNA replication, chromosome segrega-

tion and mitosis during the cell cycle, which makes the study of

cell-cycle dependent genome-wide expression an attractive system

for genetic analysis. The first genome-wide expression analyses of

cell-cycle regulating genes were performed in budding yeast by

Spellman et al. (1998). More recently, several other genome-

wide expression studies of cell-cycle regulated genes have been

completed in bacteria (Laub et al., 2000), fission yeast (Rustici

et al., 2004; Peng et al., 2005), plants (Breyne and Zabeau,

2001) and humans (Cho et al., 2001).
Another widely studied organism is the amoeba, Dictyostelium

discoideum, which provides opportunities for studying fundamental

cellular processes, including aspects of development such as cell-

type determination. Recent work on Dictyostelium includes a

review by Mohanty and Firtel (1999) on mechanisms controlling

spatial patterning and cell-type proportioning, and a study of gene

expression patterns with microarrays by Shaulsky and Loomis

(2002). Cell-type specific gene expression patterns were studied

in Dictyostelium by Iranfar et al. (2001). Other types of gene

expression data were generated in large-scale temporal gene

expression studies in the mapping of development of the mouse

central nervous system (Wen et al., 1998), physiological response of
human fibroblasts to serum (Iyer et al., 1999), and development of

Caenorhabditis elegans (Hill et al., 2000) and Drosophila (White

et al., 1999; Arbeitman et al., 2002). Information gleaned from the

analysis of temporal gene expression profiles will provide an added

dimension to insights into the characterization of gene function.

For these large-scale data, classifying genes into different func-

tional groups is a first step in order to gain more sophisticated

knowledge of different biological pathways and/or functions.

Many classification analyses have been performed for such tem-

poral gene expression profiles. Hierarchical clustering (Spellman

et al., 1998; Eisen et al., 1998; Wen et al., 1998, Iyer et al., 1999;
Gasch et al., 2000; Qin et al., 2003), k-means clustering (Tavazoie

et al., 1999; Wu et al., 2003), principal component analysis (PCA)

and singular value decomposition (SVD) (Alter et al., 2000, 2003;
Raychaudhuri et al., 2000; Li et al., 2002; Holter et al., 2000), self-
organizing maps or its variants (Tamayo et al., 1999; Nikkila et al.,
2002; Resson et al., 2003), correlation analysis (Kruglyak and Tang,
2001) and independent component analysis (ICA) (Liebermeister,

2002; Lee and Batzoglou, 2003), as well as simulated annealing

(Lukashin and Fuchs, 2001), and support vector machines (SVM)

(Brown et al., 2000) have been used.

These statistical and computational methods belong to the general

framework of multivariate analysis, i.e. data are treated as vectors of�To whom correspondence should be addressed.
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discrete samples and permutation of components will not affect the

analysis results, hence the timing of the biological processes is

irrelevant in these analyses. A more efficient way to look at such

data is to incorporate the information that is inherent in time order

and smoothness of processes over time. The tools for such an

approach are provided by the recently developed methodology of

functional data analysis (FDA; Ramsay and Silverman, 2005), espe-

cially discrimination and classification methods based on FDA (Hall

et al., 2001; James and Hastie, 2001; Müller, 2005), dynamic time

warping (Aach and Church, 2001; Liu and Müller, 2003) and peri-

odicity analysis (Zhao et al., 2004). Recent non-parametric applica-

tions for the analysis of temporal gene expression data include work

by Klevecz and Murray (2001), Luan and Li (2003) and Bar-Joseph

et al. (2003). In the latter two papers, B-spline approaches to cluster
genes based on mixed effects and mixture models were emphasized.

We view the observed gene expression profiles as independent

realizations of a smooth stochastic process. The covariance function

of the process is then also smooth and can be expanded into smooth

orthogonal eigenfunctions (functional principal components), lead-

ing to the Karhunen-Loève representation of the observed sample

paths as a sum of a smooth mean trend and an expansion of the

random part in terms of these eigenfunctions. A truncated version of

the random part of this representation serves as a statistical approx-

imation of the random process (Rice and Silverman, 1991). In this

paper, we consider functional discrimination through logistic

regression based on functional principal components. We demon-

strate the usefulness of this approach in a simulation study and for

the analysis of yeast cell-cycle temporal data, as well as for data on

the differential expression patterns of Dictyostelium cell-type spe-

cific genes. Although our methods do not require a regular time

design, these two datasets happen to have equally spaced time

points. For more details on FPCA methods for irregular and/or

sparse data, see Yao et al. (2005).
An alternative way to model random curves is provided by

B-splines, which have been previously used for clustering problems.

Rice and Wu (2001) proposed a non-parametric mixed effect

model based on B-splines (see also Shi et al., 1996; Luan and

Li, 2003), emphasized cluster analysis derived from these

approaches. We compared our approach based on functional prin-

cipal components with a B-spline implementation of functional

discriminant analysis for the yeast cell-cycle data and in a simula-

tion study. This indicates comparative advantages of our approach,

which unlike the B-spline based model does not rely on Gaussian

assumptions.

2 MODELS AND METHODS

2.1 Functional Principal Component Analysis

(FPCA)

We model the sample curves as independent realizations of a square integ-

rable stochastic process X(t) on [0, T], with mean E{X(t)} ¼ m(t) and

covariance function cov{X(s), X(t)} ¼ G(s, t) (Rice and Silverman, 1991;

Capra and Müller, 1997). By Mercer’s Theorem, G(s, t) has an orthogonal

expansion in L2([0, T]):

Gðs‚ tÞ ¼
X

m

lmrmðsÞrmðtÞ m ¼ 1‚2‚ . . . ‚± ð1Þ

where rm and lm are eigenfunctions and eigenvalues ordered by size,

l1 � l2 � . . ..

A random curve from the population then has the following Karhunen–
Loève representation:

XðtÞ ¼ mðtÞ+
X

m

«mrmðtÞ 0 � t � T‚ ð2Þ

where

«m¼
Z T

0

ðXðtÞ � mðtÞÞrmðtÞdt ð3Þ

are uncorrelated random variables with E(«m) ¼ 0, Eð«2mÞ¼lm and
P

lm <
1. The eigenfunctions rm are referred to as functional principal components

(FPCs) with FPC scores «m.

The deviation of each sample function from the mean is thus represented

as a sum of orthogonal curves with uncorrelated random coefficients. We

shall suppose that the mean curve and the FPCs are smooth and that the

random part can be sufficiently well approximated by the first M FPCs, for

an M < 1; we discuss methods how to choose M data-adaptively in

Supplement (S3).

For a sample of n random curves observed on a closed interval [0, T], let Xi

¼ (Xi(ti1), Xi(ti2), . . . ,Xi(tini
))T be the vector of observations for the random

curve Xi(·) at time points tij, i ¼ 1, . . . , n, j ¼ 1, . . . , ni. An estimate m̂mðtÞ
of the mean function m(t) can be obtained by any linear scatterplot

smoother (see Supplement (S1); compare Fan and Gijbels, 1996).

Forming a dense grid sk of [0, T], e.g. sk ¼ (k � 1)/(S � 1) T, k ¼ 1, . . . , S,

for a suitable large S, the estimation of the covariance function G(s, t)

proceeds via the empirical covariances

Cnðsk‚slÞ¼
1

n

Xn

i¼1

fðXiðskÞ � m̂mðskÞÞðXiðslÞ � m̂mðslÞÞg ð4Þ

for all pairs of times (sk, sl), k, l ¼ 1, . . . , S, k 6¼ l. For the case of irregular

time grids, a pre-smoothing step may be included. The empirical covariances

are then smoothed, using a 2D scatterplot smoother on the dense grid of

points (sk, sl), k, l ¼ 1, . . . , S (S1). A spectral analysis is performed on the

resulting S · S-matrix ĜG ¼ðĜGðsk‚slÞÞ, yielding the first M eigenvectors/

eigenvalues for ĜG. The m-th eigenvector is ðr̂rmðs1Þ‚ . . . ‚ r̂rmðsSÞÞ0 with

the corresponding eigenvalue l̂lm for m ¼ 1, . . . , M. The FPC scores «im

for the i-th gene and the m-th FPC are obtained numerically by

«̂«im¼
XS

k¼1

ðXiðskÞ � m̂mðskÞÞr̂rmðskÞ: ð5Þ

Alternative shrinkage estimators are described in Yao et al. (2003).

Individual temporal gene expression profiles can then be predicted, using

their FPC scores, by

X̂XiðtÞ¼m̂mðtÞ+
XM
m¼1

«̂«imr̂rmðtÞ 0 � t � T: ð6Þ

The FPCAwas performed on the combined dataset. The FPC scores can then

be used to describe both between-group variability and between-group mean

differences that may be of relevance for classification. The FPCA methods

can be easily extended to cover the case of missing or highly irregular and

sparse data (Yao et al., 2005).

2.2 Functional Logistic Regression

Generalized linear models are extensions of classical linear models with the

following three components (McCullagh and Nelder, 1989): a random

component where for the responses, Y � exponential family, with means

E(Y) ¼ m; linear predictors, h ¼
P

xpbp, where xp is the p-th predictor

variable; and a monotone link function, g(m)¼ h. When Y is binomial, this is

a binomial regression model. A special case is logistic regression where the

link function g(·) is the logit function, i.e. logit (x) ¼ log{x/(1 � x)}, so that

g�1(x) ¼ ex/(1 + ex).

In the framework of the classification problem, the response Y denotes

membership in one of two groups, say G0 and G1, coded as a binary random
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variable, where Y ¼ 1 if the observation comes from G1 and Y ¼ 0 if it

comes from G0 (Efron et al., 1975; Press and Wilson, 1978). The predictor

function X(t), t 2 [0, T] from now on is assumed to be a centered random

curve, i.e. m(t) � 0. For an i.i.d. sample Xi(t), for i ¼ 1, . . . , n the linear

predictors are defined by hi ¼ a +
R
b(t) Xi(t)dt, leading to the functional

generalized linear model (James, 2002; Müller and Stadtmüller, 2005):

Yi¼g�1ðhiÞ+ ei‚ i¼ 1‚ . . . ‚n‚ ð7Þ

where g(·) is a link function as before, a is a constant and b(·) is the

parameter function. The errors ei are assumed to be independent, E(ei) ¼
0, var(ei) < C < 1. The M-truncated model (see S2) becomes

Yi ¼ g�1 a+
XM
m¼1

bm«im

 !
+ ei‚ i¼ 1‚2‚ . . . ‚n: ð8Þ

For fixed M, bT ¼ (a, b1, b2, . . . , bM), the unknown parameter vector, can be

estimated by solving the estimating or score equation

UðbÞ¼
Xn

i¼1

ðYi � miÞg0ðhiÞ«i=s
2ðmiÞ: ð9Þ

Denote the solution by b̂bT¼ðâa‚ b̂b1‚ b̂b2‚ . . . ‚ b̂bMÞ:
For functional binomial regression, as in classical binomial regression for

discriminant analysis, set pi ¼ P(Yi ¼ 1) and prior probabilities p1 and p0 for

the groups G1 and G0, respectively. We estimate pi by

p̂p i ¼ P̂PðYi ¼ 1jXiðtÞÞ¼ g�1ðâa +
PM

m¼1 b̂bm«̂« imÞ. Then we classify the i-th

observation into G1 if p̂p i � p1, otherwise into G0.

3 RESULTS

3.1 Application to temporal gene expression data for

yeast cell cycle

3.1.1 Functional discriminant analysis Temporal gene expression

data (a factor synchronized) for the yeast cell cycle were obtained

by Spellman et al. (1998). There are 6178 genes in total, and each

gene expression time-course consists of 18 data points, measured

every 7 min between 0 and 119 min. Of 90 genes, which were

identified by traditional methods and have data available, 44 are

known to be related to G1 phase regulation and 46 to non-G1 phase

regulation (i.e. S, S/G2, G2/M and M/G1 phases) of the yeast cell

cycle; these serve as the training set. The expression profiles for

these 90 genes are depicted in Figure 1, differentiated into phase-

specific groups of gene expression profiles in Figure 2. The estim-

ated covariance surface for these 90 genes in Figure 3 illustrates the

pattern of time-dependence of gene expression and provides the

basis for constructing the eigenfunctions by spectral decomposition.

The diagonal elements ĈCðsk‚skÞ were not used when constructing

this surface estimate, as these elements may reflect additional meas-

urement errors.

The number M of FPCs is chosen by minimizing the leave-

one-gene-out cross-validation classification error rate. For each

gene in the training set, the FPC scores are estimated from the

data of the other 89 genes. Then a functional logistic regression

model is fitted for these 89 genes, and groupmembership for the left-

out gene is predicted; this procedure is iterated over all 90 genes,

providing the cross-validated predictions.

The solid line in Figure 4 displays the cross-validation classifica-

tion error rate as a function of M, the number of FPCs. This plot

indicates that when the first five FPCs are used, the overall cross-

validation classification error rate is at a minimum 10.00%, with the

misclassification rate for G1 genes estimated at 11.36% and for

non-G1 genes at 8.70%.

The first five FPCs for the gene expression curves in the train-

ing set are depicted in Figure 5. Plotting the FPC scores for the

second FPC versus the first FPC reveals interesting patterns for

genes of different phases (Figure 6, left panel). We find that

although both G1 and S genes tend to have positive second FPC

scores, all the S genes have positive first FPC scores, whereas

most G1 genes are on the negative side. However, most S/G2,

G2/M and M/G1 genes have negative second scores; S/G2 and

G2/M genes also tend to have positive first FPC scores. The dis-

crimination between S and G1 genes and also between G1/S and

non-G1/S genes based on the first two FPC scores is seen to be

relatively clear-cut. Similar plots can be produced for each pair of

the first five FPC scores. The pairwise scatterplots also highlight the

order of the phases. This feature appears to be most evident in the

scatterplot of the third versus second FPC scores (Figure 6, right

panel). The clockwise order of the genes is G1!S!S/G2!
G2/M!M/G1!G1.

A closer look at the misclassified genes showed that there

were five genes in the G1 group that were misclassified into the

non-G1 group. The left panel of Figure 7 displays four of these

five genes, overlaid with the trajectories of G1 genes and S genes.

It appears that the trajectories of these genes are in fact close

to those of the S genes. The right panel in Figure 7 displays the

fifth misclassified gene in the G1 group, overlaid with trajectories of

G1 genes and M/G1 genes. This gene’s trajectory is seen to be close

to the M/G1 trajectories. It appears likely that these five genes are

actually non-G1 genes, but somehow were erroneously identified

as G1 genes using traditional methods. There are four misclassified

genes in the non-G1 group (data not shown). Upon close inspection,

we find that the trajectories of two of these four genes are closer

to those of the G1 group than to those of the non-G1 group.

The trajectory of one gene cannot be clearly associated with

either group and the fourth gene lies on the boundary between

the two groups.

3.1.2 Comparison with B-spline based method Rice and Wu

(2001) and Shi et al. (1996) proposed a mixed effects model for

unequally samplednoisy curves.LetXi¼ (Xi(ti1),Xi(ti2), . . . ,Xi(tini
))T

be the vector of observations for the ith curve for i ¼ 1, 2, . . . , n,
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Fig. 1. Temporal gene expression profiles of yeast cell cycle. Dashed lines:

G1 phase; Gray solid lines: non-G1 phases; Black solid line: overall mean

curve.
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where Xij ¼ Xi(tij) is the observed function value at time tij,
j ¼ 1, . . . , ni. Note that the setup is the same as described above.

The approximating model of Rice and Wu is

Xij ¼
Xp

k¼1

bk
�BBkðtijÞ+

Xq

l¼1

gilBlðtijÞ+ «ij‚

where the mean function is EðYiðtÞÞ¼mðtÞ¼
Pp

k¼1 bk
�BBkðtÞ and

�BBkð·Þ, Bl(·) are possibly different B-spline bases on [0, T]. The

gil are random effects, with E(gil) ¼ 0 and cov(gil) ¼ G. The
corresponding estimate of an individual trajectory is the smooth

curve

X̂XiðtÞ¼
Xp

k¼1

b̂bk
�BBkðtÞ +

Xq

l¼1

ĝg ilBlðtÞ‚

where the estimates are obtained by least squares. Classification can

be based on the random coefficients gi, and the dashed line in
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Fig. 2. Yeast cell-cycle gene expression profiles sorted by phases. The first five panels provide the expression profiles for G1, S, S/G2, G2/M, and M/G1 phases,

with mean functions indicated by the black solid lines. The lower right panel contains the mean curves of all phases overlaid: G1: thick solid line; S: dotted line;

S/G2: dashed line; G2/M: dash–dot line; and M/G1: thin solid line.
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Fig. 3. Estimated covariance surface for the 90 known yeast cell-cycle genes.

Functional data analysis for gene expression

71

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/22/1/68/218628 by guest on 21 August 2022



Figure 4 shows the overall misclassification error rates. Using

B-splines, the misclassification error rate attains its lowest value

11.1% for 11 bases, whereas the minimum error rate using FPCA is

10% and is achieved with only 5 FPCs, as described above. Thus

FPCA is seen to be advantageous in this example by employing

fewer components than the B-spline approach, while simultan-

eously yielding a slightly lower misclassification error rate.

3.2 Application to expression patterns of cell-type

specific genes in Dictyostelium

Iranfar et al. (2001) studied expression patterns of cell-type

specific gene fragments in Dictyostelium discoideum. Such

studies are of particular interest for Dictyostelium, since only pre-

stalk and prespore cells are differentiated during development.

DNA microarrays carrying 690 targets were used to determine

expression profiles during development. Fitting a biologically

based kinetic equation to extract the times of transcription onset

and cessation, the authors recognized 35 cell-type specific genes,

including 17 newly identified ones, which were confirmed by North-

ern blots. We used these 35 genes, with 14 prestalk genes and

21 prespore genes, as our training set to explore other potential

cell-type specific genes. Figure 8 shows the relative intensity of

the signals for prestalk and prespore genes. A considerable number

of prestalk genes peaked between 8 and 10 h of development and

then decreased significantly, whereas most prespore genes were not

expressed until 10 h of development and continued to be expressed

thereafter.

We used these genes as training set for functional discriminant

analysis. Cross-validation error rates indicated that using the first

three FPCs yields the lowest overall misclassification rate of

22.86%, with 28.57% for prestalk genes and 19.05% for prespore

genes. Misclassified prestalk genes are highlighted in the left panel

of Figure 9. Besides emcA and emcB, which were screened out by

Iranfar et al. (2001) owing to their ‘prespore-like’ profiles, we found
that ostB and mitA might not be correctly classified either. These

two genes show no cell-type specific features yet were grouped into

prestalk genes. For another gene rasD, mentioned by Iranfar (Iranfar

et al., 2001), the estimated probability for classification into pre-

spore genes with 0.4376 only slightly exceeds the threshold of 0.4,

which is the prior probability according to the training set. The right

panel of Figure 9 highlights the four misclassified prespore-specific

genes. Gene cbpB shows an early peak at 8 h, and follows the

pattern of prestalk genes. Genes sodA and thfA did not show obvious

cell-specific features in their expression patterns. Gene cprF did

not start to express until 20 h, which may have contributed to its

misclassification.

We then used the model fitted to the training set to classify

the rest of the genes, and chose ranges of estimated probabilities

for a gene to be classified into the prestalk group of [0.95, 1],

[0.85, 0.95) and [0.75, 0.85), in order to identify subgroups

of prestalk genes. Analogous probability ranges of [0, 0.05],

(0.05, 0.15] and (0.15, 0.25] were used to identify subgroups of

prespore genes. The results are shown in Figure 10. With these three

classification probability ranges, 40 prestalk-specific and 36

prespore-specific genes were identified, displaying reasonably

homogeneous patterns within each identified subgroup. Especially

the genes in the left upper panel show very typical cell-specific

patterns.

3.3 A simulation study

3.3.1 Functional discriminant analysis A data-based simulation

study was performed based on the first five estimated FPCs from the

yeast cell-cycle data, where we assume that these correspond to

the real underlying FPCs. Then five random coefficients «m,

m ¼ 1, . . . ,5, were generated for each subject from normal distri-

butions with means 0.6, 0.5, 0.4, 0.3, and 0.2 for group 1 and �0.6,

�0.5, �0.4, �0.3, and �0.2 for group 2, with variances

s2
m ¼ 2:6950, 0.8850, 0.1957, 0.1266 and 0.1079 for both groups.

These variances correspond to the estimated eigenvalues from the

yeast cell-cycle data. The priors for the two groups were chosen

equal, i.e. p1 ¼p2 ¼ 1
2
, so that the generated samples have overall

mean 0. For all subjects, 18 equally spaced data points were taken,

just as is the case for the yeast cell-cycle data. We generated 100

training and test datasets. Each dataset was composed of 200 sam-

ples, where the first 100 samples formed the training set and the

remaining 100 samples the test set.

For each of the 100 simulated datasets, classification error rates

were calculated for the test data based on FPCA and B-spline

methods, respectively. The simulation classification error rates

based on FPCA and B-splines are compared in Table 1 (Monte
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Fig. 4. Choosing M, the number of eigenfuntion for yeast cell-cycle data.
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These five FPCs account for 98.9% of the total variation, with the first FPC
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3.1% and the fifth for 2.7%.
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Carlo standard errors are in parentheses). The average classification

error rate over the 100 datasets indicates that all five FPCs should be

used for optimal classification with either method. Except for the

case with one eigenfunction/base function, the overall classification

error rates based on FPCA are always slightly lower than those

observed for B-splines.

4 DISCUSSION AND CONCLUSIONS

Owing to the dynamic nature of biological systems, temporal gene-

expression data play a critical role in exploring the regulation of

gene expression, in particular, in highlighting genes that are time

critical for the regulation of certain biological processes such as the

cell cycle for different organisms (Spellman et al., 1998; Laub et al.,
2000; Breyne and Zabeau, 2001; Cho et al., 2001), the central

nervous system development (Wen et al., 1998), Drosophila
development (White et al., 1999; Arbeitman et al., 2002) and

Dictyostelium cell differentiation (Iranfar et al., 2001). With rapidly

accumulating amounts of temporal microarray gene expression

data, developing adequate models to analyze such data is urgent.

In this paper, we propose a functional discriminant analysis method,
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using a functional version of logistic regression and functional

principal components for the temporal gene expression data.

Temporal gene expression data provide valuable functional

information about temporal patterns of gene expression and also

interactions between genes. For example, a typical yeast mitotic cell

cycle is commonly broken down into the four standard phases: G1,

S, G2, and M. When the daughter cell breaks away from the mother

cell, it is typically smaller than the mother cell. During the G1 phase,

Fig. 9. Misclassified cell-type specific genes forDictyostelium.Left panel: Prestalk genes are shown in light gray. The four misclassified prestalk-specific genes

are labelled and highlighted in thick lines; gene rasD is also indicated (see text). Right panel: Prespore genes are shown in light gray. The four misclassified

prespore-specific genes are lablelled and highlighted in thick lines.
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Fig. 10. Subgroups ofDictyostelium cell-type specific genes according to different posterior probabilities. Black solid lines: prestalk-specific genes correspond-

ing to the indicated range of posterior probabilities; gray solid lines: prespore-specific genes corresponding to posterior probabilities of [0.0,05] (upper left panel),

(0.05, 0.15] (upper right panel) and (0.15, 0.25] (lower panel).

Table 1. Classification error rates based on FPCA and B-Splines (B-S)

No. of FPCs or base functions Group 1 Group 2 Overall

FPCA B-S FPCA B-S FPCA B-S

1 32.7 (0.07) 30.5 (0.07) 33.0 (0.08) 29.8 (0.07) 32.8 (0.05) 30.1 (0.04)

2 27.8 (0.07) 36.8 (0.09) 26.1 (0.07) 37.5 (0.08) 27.0 (0.04) 37.2 (0.05)

3 11.4 (0.05) 14.6 (0.05) 11.9 (0.05) 15.0 (0.05) 11.7 (0.03) 14.8 (0.03)

4 10.8 (0.05) 11.2 (0.05) 10.3 (0.05) 11.2 (0.05) 10.6 (0.03) 11.2 (0.03)

5 10.3 (0.04) 10.8 (0.05) 10.3 (0.05) 10.7 (0.05) 10.3 (0.03) 10.8 (0.03)
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the daughter cell will grow until it is of a large enough size to enter

the cell cycle. The G1 phase of the cell cycle is important for

determining the fate of the cell. Statistically identifying genes

that regulate the G1 phase will be helpful for studies of genetic

cell-cycle regulation. Since most biological processes are in fact

continuous, temporal gene expression data can be viewed as dis-

cretized samples from smooth random gene expression trajectories

over time, naturally leading to a functional data analysis approach.

The proposed method provides low-error rate (10%) classification

for the yeast cell-cycle gene expression data and also in simulations.

Differentiating cell-cycle regulated genes from non-cell-cycle regu-

lated genes is another important goal for cell-cycle studies. Exten-

sions of the functional methods proposed here will be of interest in

approaching this problem.

In comparisons with the B-spline approach, both yeast cell-cycle

data analysis and simulations demonstrate overall lower-error rates

with fewer eigenfunctions/base functions when using the FPCA

method. The proposed FPCA methods allow the identification of

genes that were probably misclassified by traditional biological

classification methods. The phase order displayed by scatterplots

of pairwise FPC scores suggests that FPCA has potential for time

ordination analysis of temporal gene expression.

The NIH has designated Dictyostelium discoideum as a model

organism for the functional analysis of sequenced genes. Applying

our methods, we screened out previously misclassified cell-type

specific genes. Furthermore, we identified 76 genes falling into

subgroups that show cell-type specific features of gene expression.

Extending the proposed algorithm to functional cluster analysis is

feasible and useful in the common situation where group member-

ship is unknown, as is often the case in biological applications.
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