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Classification using Hyperdimensional
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Abstract—Hyperdimensional (HD) computing is built
upon its unique data type referred to as hypervectors.
The dimension of these hypervectors is typically in the
range of tens of thousands. Proposed to solve cognitive
tasks, HD computing aims at calculating similarity among
its data. Data transformation is realized by three opera-
tions, including addition, multiplication and permutation.
Its ultra-wide data representation introduces redundancy
against noise. Since information is evenly distributed over
every bit of the hypervectors, HD computing is inherently
robust. Additionally, due to the nature of those three op-
erations, HD computing leads to fast learning ability, high
energy efficiency and acceptable accuracy in learning and
classification tasks. This paper introduces the background
of HD computing, and reviews the data representation,
data transformation, and similarity measurement. The
orthogonality in high dimensions presents opportunities
for flexible computing. To balance the tradeoff between
accuracy and efficiency, strategies include but are not
limited to encoding, retraining, binarization and hard-
ware acceleration. Evaluations indicate that HD computing
shows great potential in addressing problems using data
in the form of letters, signals and images. HD computing
especially shows significant promise to replace machine
learning algorithms as a light-weight classifier in the field
of internet of things (IoTs).

Index Terms—Hyperdimensional (HD) computing, clas-
sification accuracy, energy efficiency.

I. INTRODUCTION

THE emergence of hyperdimensional (HD) computing is

based on the cognitive model developed by Kanerva [1].

HD computing grew out of cognitive science in answer

to the binding problem of connectionist (neural-net)

models. When variables and their values are superposed

over the same vector, representing which value is asso-

ciated with which variable requires a formal model. This

was initially solved using tensor product variable binding

by Smolensky [2] and later by Plate[3] using holographic

reduced representation (HRR). The advantage of HRR

over tensor product is that it keeps vector dimensionality

constant. Systems based on these representations go by
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many names: HRR, HD, binary spatter code (BSD) [4],

binary sparse distributed code (BSDC) [5], multiply-

add-permute (MAP) [6], vector symbolic architecture

(VSA) [7], and semantic pointer architecture. All rely on

high dimensionality, randomness, abundance of nearly

orthogonal vectors and computing in superposition.

Instead of computing traditional numerical values,

HD computing performs cognition tasks—such as face

detection, language classification, speech recognition,

image classification, etc—by representing different types

of data using hypervectors, whose dimensionality is in

the thousands, e.g., 10,000-d, where d refers to dimen-

sionality. The human brain contains about 100 billion

neurons and 1000 trillion synapses; therefore all possible

states of a human brain can be described by a high-

dimensional vector. In that sense, HD computing is a

form of brain-inspired computing. Randomly or pseudo-

randomly defined, these hypervectors are composed of

independent and identically distributed (i.i.d.) compo-

nents, which can be binary, integer, real or complex [8].

As a brain-inspired computing model, HD computing

is robust, scalable, energy efficient and requires less

time for training and inference [9]. These features are

a result of its ultra-wide data representation and under-

lying mathematical operations. One thing that should

be emphasized is the concept of orthogonality of the

hypervectors.

The remainder of this paper is organized as follows.

Section II presents the background on HD computing, in-

cluding the data representation, data transformation and

similarity measurement. Section III illustrates the general

methodology in HD computing and its applicability in

learning and inference tasks. Then two common encod-

ing methods to form hypervectors from the input data

are presented, and strategies to improve accuracy and/or

efficiency are pointed out. Some classical applications

as well as several sophisticated designs are reviewed in

Section IV. Possible future directions of HD computing

are also pointed out in this section. Finally, Section V

concludes the paper.



TABLE I: Comparisons between classical computing and HD computing for Classification.
Computing Paradigm Classical Computing HD Computing

Data Type Bit Hypervector

Data Transformation Addition, Multiplication, Logic Add-Multiply-Permute

Storage Memory Item Memory, Associative Memory

Training Weights Class Hypervectors

Testing Run Pre-trained Classifier Associate Query Hypervectors with Class Hypervectors

Model Complexity High Low

Accuracy Very High Acceptable

Feature Extraction Easy Difficult

Number of Features Many One

II. BACKGROUND ON HD COMPUTING

In this section, we review HD computing and present

a comparison between HD and classical computing. We

also describe the similarity metrics for hypervectors and

typical mathematical operations used in HD computing.

A. Classical Computing vs HD Computing

Data representation, data transformation and data re-

trieval play an important role in any computing system.

To be more specific, classical computing deals with bits.

Each bit is 0 or 1. This can be realized by the absence or

presence of electric charge. In terms of computation, data

transformation is inevitable. The arithmetic/logic unit

(ALU) computes new data using logical operation and

four arithmetic operations, including addition, subtrac-

tion, multiplication and division [10]. The main memory

allows the data to be written and read. Compared to clas-

sical computing, HD computing employs hypervectors

as its data type, whose dimensionality is typically in the

thousands. These ultra-wide words introduce redundancy

against noise, and are, therefore, inherently robust.

To transform data, HD computing performs three

operations: multiplication, addition and permutation. HD

computing transforms the input hypervectors, which are

pre-stored in the item memory to form associations or

connections. In a classification problem, the hypervectors

associated with classes are trained during training pro-

cess. During the testing process, the test hypervectors are

compared with the class hypervectors. The hypervectors

generated from training data are referred to as class

hypervectors and are stored in the associative memory,

while those generated from the test data are referred to as

query hypervectors. An associative search is performed

to make a prediction as to which class a given query hy-

pervector most likely belongs. A comparison between the

classical and HD computing paradigms is summarized

in Table I. Traditional classification methods achieve

high accuracy using complex models. Training these

models typically takes longer time and requires more

energy consumption. The models in HD classification

are simpler and can be trained in less time with high

energy efficiency. However, their accuracy is acceptable,

though not as high as traditional models. This is because

the accuracy is dependent on feature encoding which is

not as well understood as traditional classification.

B. Data Representation

Data points of HD computing correspond to

hypervectors—vectors of bits, integers, real or complex

numbers. These are roughly divided into two categories:

binary and non-binary. For non-binary hypervectors,

bipolar and integer hypervectors are more commonly

employed. Generally speaking, non-binary HD algo-

rithms achieve higher accuracy, while the binary counter-

part is more hardware-friendly and has higher efficiency

(see also [11]).

C. Similarity Measurement

As shown in Table II, two common similarity mea-

surements are adopted in the existing HD algorithms,

namely, cosine similarity and Hamming distance. Other

similarity measures include dot product (e.g., in MAP)

and overlap (e.g., in BSDC).

TABLE II: Similarity Measurements in HD Computing.
Measurement Similar Orthogonal

Hamming distance 0 0.5

Cosine similarity 1 0

For non-binary hypervectors, cosine similarity, de-

fined by Eq. (1), is used to measure their similarity,

focusing on the angle and ignoring the impact of the

magnitude of hypervectors, where | · | denotes the mag-

nitude. Unlike the inner product operation [12] of two

vectors that affects magnitude and orientation, the cosine

similarity only depends on the orientation. In most HD

algorithms with non-binary hypervectors, cosine simi-

larity is more often used than inner product. Moreover,

when cos(A,B) is close to 1, this implies an extremely

high level of similarity. For example, cos(A,B) = 1
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indicates two hypervectors A and B are identical. When

they are at right angle, then cos(A,B) = 0, and the two

orthogonal vectors are considered dissimilar.

cos(A,B) =
A ·B

|A||B|
(1)

For binary hypervectors with dimensionality d, whose

components are either 0 or 1, normalized Hamming

distance calculated in Eq. (2) is used to measure their

similarity [8]. When the Hamming distance of two hy-

pervectors is close to 0, then they are defined as similar.

For example, Ham(A,B) = 0 indicates every single bit

is same at each position, and A and B are identical.

When Ham(A,B) = 0.5, A and B are orthogonal

or dissimilar. Ham(A,B) = 1 when A and B are

diametrically opposed.

Ham(A,B) =
1

d

d∑

i=1

1A(i) 6=B(i) (2)

Fig. 1: Orthogonality in high dimensions [1, 13, 14]

One thing that should be emphasized is orthogonality

in high dimensions. To put it simply, the randomly

generated hypervectors are nearly orthogonal to each

other when the dimensionality is in the thousands. Take

binary hypervectors as an example. Assume X and Y
are chosen independently and uniformly from {0, 1}d

and the probability p of any bit being 1 is 0.5. Then

Ham(X,Y ) is binomially distributed. Fig. 1 shows the

probability density function (PDF) of Ham(X,Y ) for

15,000 pairs of randomly selected binary vectors with

different dimensions d. As d increases, more vectors be-

come orthogonal. Such orthogonality property is of great

interest because orthogonal hypervectors are dissimilar.

Moreover, operations performed on these orthogonal

hypervectors can form associations or relations.

D. Data Transformation

Three types of operations, add-multiply-permute, are

employed in HD computing. The inverse operation for

multiplication is also referred to as release [14]. The

release operation is also used to denote inverse addition.

Each operation processes and generates d-dimensional

hypervectors. In the following, we illustrate examples of

data transformations using binary hypervectors. Without

doubt, data transformation can also be employed to

non-binary hypervectors, which is in essence similar to

the manipulations over binary hypervectors. The only

difference is from the point of hardware; for binary hy-

pervectors, the pointwise multiplication can be realized

by an exclusive or (XOR) gate.

1) Addition: Pointwise addition, also referred to as

bundling, computes a hypervector Z using Eq. (3) from

the input hypervectors {X1, X2, · · · , Xn}. Compared

to random hypervectors, the generated Z is maximally

similar to the n inputs X1, X2, · · · , Xn, i.e., Hamming

distance between Z and any of the n inputs is at a

minimum.

Z = [X1 +X2 + · · ·+Xn], (3)

where [·] indicates the sum hypervector Z is thresholded

and binarized to {0, 1}d based on the majority rule. For

convenience, Eq. (4) shows an example for the pointwise

addition of three 10-bit binary vectors.

A = 0 0 0 0 1 1 0 0 1 1,

B = 1 0 1 1 0 0 0 1 0 1,

C = 0 0 1 0 1 0 1 1 0 1,
[A+B + C] = 0 0 1 0 1 0 0 1 0 1.

(4)

Generally speaking, the addition over odd number

of hypervectors has no ambiguity, whereas the addition

over an even number can favor either 0 or 1 using

the majority function defined in Eq. (5). However, this

approach may lead to a biased result for adding two

hypervectors. Therefore, the bias in adding even number

of hypervectors is usually reduced by adding an extra

random vector [15]. Fig. 2 illustrates addition of 10,000-

dimensional random hypervectors repeated for 3,000

times. Comparing Fig. 2(b) to Fig. 2(c), we see that

specifying in favor of 0 or 1 has little impact over

addition. It can be observed from Fig. 2 that the sum

is nearly equally similar to the input operands.

Majority(p1, · · · , pn) =

{

⌊ 1
2 +

(
∑

n

i=1
pi)−

1

2

n
⌋, favor 0,

⌊ 1
2 +

∑
n

i=1
pi

n
⌋, favor 1.

(5)

2) Multiplication: Pointwise multiplication, also

called binding, aims to form associations between two

related hypervectors. A and B are bound together to

form X = A⊕B, which is approximately orthogonal to

both A and B, where ⊕ represents the XOR operation.

Eq. (6) shows the pointwise multiplication of two 10-bit

binary vectors. In a more general case, as shown in Fig.
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(a) A+B+C=X . (b) A+B=X in favor of 0. (c) A+B=X in favor of 1.
Fig. 2: Hamming distance distribution of addition for 10,000-bit hypervectors over 3000 cases. (a) Addition over

odd number of hypervectors; (b) and (c) shows the addition over even number favoring 0 and 1, respectively.

3, for two randomly generated 10,000-bit binary hyper-

vectors, their pointwise multiplication result is dissimilar

to both of them.

A = 0 0 0 0 1 1 0 0 1 1,

B = 1 0 1 1 0 0 0 1 0 1,
A⊕B = 1 0 1 1 1 1 0 1 1 0.

(6)

Fig. 3: Hamming distance distribution of multiplication

X = A⊕B for 10,000-bit hypervectors over 3000 cases.

3) Permutation: Permutation ρ is a unique unary

operation for HD computing, which shuffles the hyper-

vector, let us say A. The resulting permuted hypervector

ρ(A) is quasi-orthogonal to the initial A, i.e, the normal-

ized Hamming distance is close to 0.5. Mathematically,

permutation can be realized by multiplying a permutation

matrix. As a specific permutation, circular shift is widely

employed for its friendly hardware implementation. Eq.

(7) shows a circular shift of a 10-bit binary vector with

Ham(A, ρ(A)) = 0.4. Expected Hamming distance is

supposed to be 0.5 for ultra-wide hypervectors. Fig. 4

indicates the permutation result shows dissimilarity with

the original 10,000-bit hypervector.

A = 0 0 0 0 1 1 0 0 1 1,
ρ(A) = 1 0 0 0 0 1 1 0 0 1.

(7)

Fig. 4: Hamming distance distribution of permutation for

10,000-bit hypervectors over 3000 cases.

Examples. We illustrate applications of above oper-

ations. For more details, please refer to [16]. Assume

that A,B,C, P, S,X, Y, Z represent 10,000-d random

hypervectors:

• Encode a pair: To encode “x = a”, where x is

a variable with numerical value same as a, use

multiplication to bind their corresponding hypervec-

tors X and A. The encoding is represented by the

generated hypervector P = X ⊕A.

• Release the value from the pair:

X ⊕ P = X ⊕ (X ⊕A)
︸ ︷︷ ︸

X⊕X cancels out

= A
(8)

• Represent a set: Given the set s = {a, b, c}, we have

S = [A+B + C] (9)

• Encode a data record: Given a record with a set of

bound pairs d =‘(x = a)&(y = b)&(z = c)’, the

record is encoded as:

D = [X ⊕A+ Y ⊕B + Z ⊕ C] (10)
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• Extract the value from a record: To retrieve the

value of x:

A′ = X ⊕D

= X ⊕ [X ⊕A+ Y ⊕B + Z ⊕ C]
︸ ︷︷ ︸

distributed

= X ⊕X ⊕A+X ⊕ Y ⊕B +X ⊕ Z ⊕ C

= X ⊕X ⊕A
︸ ︷︷ ︸

=A

+
(
X ⊕ Y ⊕B +X ⊕ Z ⊕ C

)

︸ ︷︷ ︸

noise

≈ A
(11)

• Encode a sequence: Given (a, b), then

AB = ρ(A)⊕B (12)

• Extend the sequence: Extend (a, b) to (a, b, c) using:

ABC = ρ(AB)⊕ C

= ρ
(
ρ(A)

)
⊕ ρ(B)⊕ C

(13)

• Extract the first element of the sequence:

ρ−1ρ−1(ABC ⊕BC)

= ρ−1ρ−1(ρ
(
ρ(A)

)
⊕ ρ(B)⊕ C ⊕ ρ(B)⊕ C)

= ρ−1ρ−1(ρ
(
ρ(A)

)

= A
(14)

where ρ−1 is the inverse operation of permutation

ρ.

III. LEARNING AND CLASSIFICATION BY HD

COMPUTING

The first wave of using HD for classification started

in 1990s [17–20]. The current applications of HD for

classification can be interpreted as the second wave.

A. The HD Classification Methodology

A system diagram for the classification tasks using HD

computing is shown in Fig. 5. In general, 1). during the

learning phase, the encoder employs randomly generated

hypervectors (pre-stored in the item memory) to map

the training data into HD space. A total of k class

hypervectors are trained and stored in the associative

memory. 2). During the inference phase, the encoder

generates the query hypervector for each test data. Then

the similarity check is conducted in the associative

memory between the query hypervector and every pre-

trained class hypervector. Finally, the label with the

closest distance is returned.

Fig. 5: Classification overview with HD computing [21]

.

B. Encoding Methods for HD Computing

HD computing can address various types of input

data, including letters, signals and images. However, we

need to map those input data into hypervectors, and this

process corresponds to encoding. The encoding process

is somewhat similar to extraction of features. Among

the existing HD algorithms, the two encoding methods

commonly used include record-based encoding and N -

gram-based encoding. A toy example related speech

signals is used for illustration.

Using Mel-frequency cepstral coefficients (MFCCs)

[22], the voice information stored in continuous signals

can be mapped into the frequency domain. A feature

vector with N elements can be obtained. Each element

has its feature value, which is evenly discretized or

quantized from {Fmin, Fmax} to m different levels.

Fig. 6: Record-based encoding [23]. Note iM refers to

item memory, which stores the position hypervectors,

and CiM refers to continuous item memory [13], which

stores level hypervectors.

1) Record-based Encoding: This encoding method

employs two types of hypervectors, representing the

feature position and feature value, respectively. It may be
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noted that a variation of record-based encoding based on

permutations and a chain of binding operations was pro-

posed in [24]. In this encoding, position hypervectors

IDi are randomly generated to encode the feature posi-

tion information in a feature vector, where 1 ≤ i ≤ N .

The feature value information is quantized to m level

hypervectors {L1,L2, · · · ,Lm}. For an N -dimensional

feature, a total of N level hypervectors L̄i should be

generated, which are chosen from m level hypervectors

{L1,L2, · · · ,Lm} based on the feature value. Note

that, position hypervectors IDi are orthogonal to each

other, while level hypervectors {L1,L2, · · · ,Lm} are

supposed to have correlations between the neighbours.

To realize this, in [25] the first level hypervector L1

represents the feature value Fmin. Then each time,

d/m randomly selected bits are flipped to generate the

next level hypervector, where d is the dimensionality

of the hypervectors. The continuous bit-flipping was

first introduced in [23] and later followed by other

use cases [26–28]. This bit-flipping approach ensures

the correlations between neighbor levels, while the last

level hypervector Lm is nearly orthogonal to L1. The

encoding occurs by binding each position hypervector

with its level hypervector. As described in Eq. (15), the

final encoding hypervector H can be obtained by adding

these results together. The entire encoding process is

illustrated in Fig. 6.

H = L̄1 ⊕ ID1 + L̄2 ⊕ ID2 + · · ·+ L̄N ⊕ IDN ,

L̄i ∈ {L1,L2, · · · ,Lm}, where 1 ≤ i ≤ N.
(15)

Fig. 7: N -gram-based encoding [29]. CiM stores level

hypervectors which are mutually orthognal.

2) N -gram-based Encoding: The method of mapping

N -gram statistics into hypervectors was proposed in

[30]. First random level hypervectors are generated. Then

the feature values are obtained by permuting these level

hypervectors in this encoding method. For example, the

level hypervector L̄i corresponding to the i-th feature

position is rotationally permuted by (i − 1) positions,

where 1 ≤ i ≤ N . We can get the final encoded

hypervector H by Eq. (16). Such an encoding process is

illustrated in Fig. 7.

H = L̄1 ⊕ ρL̄2 ⊕ · · · ⊕ ρN−1
L̄N ,

L̄i ∈ {L1,L2, · · · ,Lm}, where 1 ≤ i ≤ N.
(16)

Remark. As stated in [29], for speech recognition,

the N -gram-based encoding method achieves lower ac-

curacy than record-based counterpart. This encoding

method is also used to address data types of letters, such

as language recognition [21] and DNA sequencing [31].

C. Benchmarking Metrics in HD Computing

In HD computing, there is always a tradeoff between

accuracy and efficiency, e.g., see [32]. As shown in

Fig. 8, a large amount of work has been carried out to

improve the classification accuracy, energy efficiency, or

both at the same time.

1) Accuracy: In terms of accuracy, the encoding

method plays a significant role since each encoding

may not be efficient for different types of data. Good

encoding for HD to achieve high accuracy is hard

[33]. In this sense, an appropriate choice of encoding

method can improve the accuracy. Efficient encoding

approaches have been presented in [34]. The approach

in [29] integrates different encoding methods together to

achieve higher accuracy at the expense of hardware area.

Compared to single-pass training, retraining iteratively

improves the training accuracy [28]. Thus the classifi-

cation accuracy is improved by using a more accurately

trained model. Moreover, using binary hypervectors may

degrade the accuracy. Hence with enough resources, non-

binary models can be used to achieve high accuracy.

2) Efficiency: For efficiency, improvements mainly

focus on algorithm and hardware characteristics. From

the algorithm perspective, dimension reduction is the

most natural way to realize efficiency. Simulations show

that slightly reducing the dimensionality of hypervectors,

the classification accuracy still remains in an acceptable

range but saves hardware resources [25]. Binarization,

which refers to employing binary hypervectors instead of

non-binary model, accelerates computation and reduces

hardware resources [35]. The precision is degraded by

quantizing the non-binary HD model. QuantHD has

been proposed in [25] to achieve higher efficiency with

minimal impact on accuracy. Sparsity was introduced

in HD computing in the framework of BSDC [36].

Tradeoff between dense and sparse binary vectors has
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HD Computing

Accuracy

Encoding Retraining Non-binary

Efficiency

Algorithm

Binarization Quantization Sparsity

Hardware

In-memory Nano Tech

CNFET RRAM 3D intergration

FPGA

Fig. 8: Two benchmarking metrics in HD computing and some possible ways to improve these metrics.

been presented in [32]. By introducing the concept of

sparsity to hypervector representation, [37] proposes

a novel platform, SparseHD, which reduces inference

computations and leads to high efficiency. From the hard-

ware perspective, HD computing involves a large number

of bit-wise operations, as well as the same computation

flow for different HD applications, making FPGA a nice

platform for hardware acceleration [38]. Moreover, as

proposed in [39], combining HD computing with the

concept of in-memory computing, which is featured

as RAM storage and parallel distribution, may create

opportunities for HD acceleration. Additionally, several

emerging nanotechnologies, including carbon nanotube

field-effect transistors (CNFETs) [40], resistive RAM

(RRAM) [9], and monolithic 3D integration [41], have

demonstrated implementations of HD computing at high

speed [40]. Dimensionality reduction has been evaluated

in an actual prototyped system using vertical RRAM

(VRRAM) in-memory kernels in [42].

IV. APPLICATIONS IN HD CLASSIFICATION

In what follows, some classical HD computing appli-

cations in classification tasks as well as several novel

design approaches that can balance tradeoff of accuracy

and efficiency are described. They are categorized based

on their input data types, namely letters, signals and

images.

A. Letters

1) European Language Recognition Using HD Com-

puting: HD computing for European language recogni-

tion was first explored by [30]. Literature [40] presents

an HD computing nanosystem, which implements

HD operations based on emerging nanotechnologies—

CNFETs, RRAM and 3D integration—offering large

arrays of memory and resulting in reduction of energy

consumption. From its three-letter sequence called tri-

grams, such a nanosystem can identify the language of

a given sentence [40]. Define a profile by a histogram

of trigram frequencies in the unclassified text. The basic

idea is to compare the trigram profile of a test sentence

with the trigram profiles of 21 languages, and then find

the target language which has the most similar trigram

profile [30].

• Baseline. Scan through the text and count the tri-

gram to compute a profile. A total of 273 = 19, 683
trigrams are possible for the 26 letters and the space.

Thus the trigram counts can be encoded into a

19,683-dimensional vector and such vectors can be

compared to find the language with the most similar

profile. However, this straightforward and simple

approach generalizes poorly. Specifically, compared

to trigrams, higher-order N -grams will have higher

complexity. For example, the number of possible

pentagrams is 275 = 14, 348, 907.

• HD classification algorithm. 1). Choose a set of

27 letter hypervectors randomly, serving as the

seed hypervector. Note that all training and test

data employ the same seeds. In this design, the

dimensionality is selected to be 10,000. 2). Gen-

erate trigram hypervectors with permutation and

multiplication. For example, let (a, b, c) represent

a trigram. Then rotate the hypervector A twice,

hypervector B once, and use hypervector C with

no change, and then multiply them component by

component as described in Eq. (13). 3). The target

profile hypervector is then the sum of all the trigram

hypervectors in the text. 4). Compare the profile of

a test sentence to the language profiles, and return

the most similar one as the classification result.

Compared to the baseline algorithm, the HD algorithm

generalizes better to any N -gram size when 10,000-

dimensional hypervectors are used.
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Fig. 9: The architecture for language recognition with HD computing [21, 40].

The HD classification hardware architecture for lan-

guage recognition using trigrams proposed in [21] is

shown in Fig. 9. Two main modules are implemented.

They include the encoding module and the search mod-

ule. 1). The encoding module takes a stream of letters as

the input. Each letter is mapped to the HD space and its

corresponding randomly generated hypervector is stored

in the item memory. Here it addresses the trigrams where

each group of three hypervectors produces a trigram

hypervector. Accumulate those trigram hypervectors and

perform the majority operation using the threshold to

generate a text hypervector. 2). During the training phase,

a total of 21 text hypervectors are trained as the learned

class hypervectors and are stored in the associative

memory in the search module. During the testing phase,

the encoding module generates the text hypervector as

a query hypervector. This query hypervector is then

broadcast to the search module and compared to the

stored class hypervectors to predict the language label,

which has the closest similarity. As listed in Table IV,

the HD classifier achieves 96.70% accuracy.

Using the same architecture shown in Fig. 9, and com-

bining with the emerging nanotechnologies—CNFETs,

RRAM and their monolithic 3D integration—the HD

computing hardware implementation achieves classifica-

tion accuracy up to 98% for over > 20, 000 sentences

[40].

B. Signals

1) HD Classification for Speech Recognition: The

development of the Internet of Things (IoT) has mo-

tivated the market need for speech recognition. Though

deep neural networks (DNNs) have been widely used for

speech recognition, it requires expensive hardware and

high energy consumption. This has inspired research for

speech recognition based on HD computing which can

achieve fast computation and energy efficiency.

In [28], VoiceHD, a new speech recognition technique,

is proposed for classifying 26 letters from the spoken

dataset. At the beginning, the voice signal is transformed

to the frequency domain, which contains N frequency ID

channels and M levels. Then VoiceHD maps these ID

and level information into random hypervectors stored

in the item memory. Combining these hypervectors, in

the training phase, VoiceHD encoding module generates

the learned patterns corresponding to 26 hypervectors

that are stored in the associative memory. In the testing

phase, VoiceHD uses the same encoding module to

generate the query hypervector, which is broadcast to the

associative memory. Comparing the query hypervector

with the stored 26 class hypervectors, the hypervector

with maximum similarity is retrieved to predict the letter.

Here, dimensionality d of the hypervectors is 10, 000.

Researchers tested their VoiceHD design over Isolet

dataset [44], where a total of 150 subjects spoke the

name of each letter of the alphabet twice. The key

findings are as follows: 1). Varying the value of M , the

number of levels of the amplitude between −1 and 1,

with N , the number of frequency bins, fixed at 617, the

recognition accuracy increases with increase in M . Note

the encoding efficiency degrades with large M > 10.

The maximum accuracy reaches 88.4% using M = 10.

2). To improve the classification accuracy, researchers

retrain the associative memory by modifying the trained
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Fig. 10: VoiceHD+NN flow for training and testing [28].

Fig. 11: The architecture for Laelaps with HD computing to detect and alarm seizure [43].

class hypervectors. The accuracy can be improved to

93.8%. 3). Combining VoiceHD with a small neural

network, the corresponding VoiceHD + NN flow is

shown in Fig. 10. Such a small NN has three layers.

There are 26 neurons in the first layer, 50 neurons in the

hidden layer and another 26 neurons in the last layer.

The classification accuracy can be improved to be 95.3%.

4). Compared to the pure NN with 93.6% classification

accuracy, VoiceHD and VoiceHD+NN show 4.6× and

2.9× faster training speed, 5.3× and 4.0× faster testing

speed, and 11.9× and 8.6× higher energy efficiency,

respectively.

2) Seizure Detection Using HD Computing: The Lae-

lap algorithm, which utilizes local binary pattern (LBP)

codes to conduct the feature extraction from iEEG sig-

nals, has been proposed in [43] for seizure prediction.

Here HD computing is applied to capture the statistics of

the time-varying LBP codes for all the electrodes. Fig.

11 illustrates the complete processing chain. 1). Since

the down-sampling frequency is 512 Hz, thus every one

second (1s) data contains 512 samples. Among these

samples, the sampled iEEG signals are encoded to 6-bit

LBP codes. This completes the feature extraction part.

2). It utilizes record-based encoding, where two types of

hypervectors are randomly generated. Specifically, each

LBP code is transformed to a d-dimensional hypervector

Ci, while the hypervectors Ei are used to represent the

corresponding electrode name. For every new sample,

the hypervectors Ei and Ci are bound together to form

a composite hypervector S = [C1 ⊕E1 + · · ·Cn ⊕En],
where n is the number of electrodes for a specific patient.

Then the histogram of LBP codes H is computed for

a moving window of 1s with 0.5s overlap. Therefore

the composite hypervector H = [S1 + S2 + · · ·+ S512]
is updated every 0.5s. 3). For learning, two prototype

hypervectors P1 and P2 should be trained. For interictal

prototype vector P1, all H computed over 30s should

be accumulated and normalized to be stored in the as-

sociative memory. Depending on the seizure’s duration,

the ictal prototype vector P2 is generated using all H
over an ictal state, which may last 10s to 30s. 4). For

classification, comparing Pk with a query H , the label is

updated every 0.5s with the shortest Hamming distance

Ham(H,Pk), where k = 1, 2. 5). The algorithm also

generates the seizure alarm. In postprocessing, if the last

10 labels all indicate P2 (tc = 10) and the distance score

∆ > tr, then the seizure alarm is generated.

The evaluation shows the Laelaps algorithm outper-

forms other machine learning methods, such as SVM, in

terms of energy efficiency. It is worth noting that many
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simpler seizure detection and prediction algorithms have

been proposed in the literature [45–49]. A fair compar-

ison of classifier accuracy between HD and traditional

classification needs to be explored in future.

3) Quantization in HD Computing: In dealing with

signals, HD computing usually makes use of floating

point models to improve the classification accuracy at

the cost of high computation cost. In [25], QuantHD

is proposed as a quantization of HD model, which

projects the trained non-binary hypervectors to a binary

or ternary model, with elements in {0, 1} or {−1, 0,+1},

to represent class hypervectors. To compensate the ac-

curacy degradation caused by quantization, a retraining

approach is used where an iteration number of 30 is

pre-defined. The similarity check is no longer cosine

metric (non-binary model), but Hamming distance (bi-

nary model) or dot product (ternary model). Compared

to the existing binarized HD computing, such QuantHD

improves on average 17.2% accuracy with a similar

computation cost.

4) HD Computing Using Model Compression: As

a mathematical framework, HD computing can be an

alternative for machine learning problems. This was

envisioned in [50]. Due to the high dimensionality,

the inference of HD computing is quite expensive,

especially when it is applied to the embedded devices

with limited resources. For example, the memory is

limited. Therefore, reducing the high dimensionality of

hypervectors without sacrificing the accuracy has been

investigated in [51]. Thus, CompHD is a general method

that compresses the model size with the minimal loss of

accuracy. The addressed hypervectors are in {−1, 1}d.

Instead of Hamming distance, the similarity metric in

CompHD is cosine similarity.

1st Segment Sth Segment
Cjd CjD Cj1Cjd-D

-1 +1 +1 -1
P1 PS

Compressed
Model C' C'jD C'j1

1st Segment Sth Segment
hd hD h1hd-D

-1 +1 +1 -1
P1 PS

Compressed
Query Q' h'D h'1

Cjd CjD Cj1Cjd-D hd hD h1hd-D

(a) Offline (After training) (b) Online (During inference)

Fig. 12: CompHD for (a) an HD model and (b) a query

data [51].

To reduce the HD model size, it is natural to use low

dimensional hypervectors. However, experimental results

of three practical applications using different dimension-

alities in HD classification show that the efficiency is

improved by reducing model size at the cost of accuracy.

To maintain high accuracy when reducing the dimen-

sionality, the proposed CompHD employs the architec-

ture shown in Fig. 12. With no reduction in model size,

Ci represents the class hypervector, Q represents the

query hypervector, where 1 ≤ i ≤ k. In CompHD, class

hypervectors and query hypervectors are compressed,

which means the original hypervectors are divided into

s segments. To store most of the information in orig-

inal hypervectors with the full size, using Hadamard

method [52], CompHD generates P1, P2, · · · , Ps, which

are in {−1, 1}D and are orthogonal to each other, where

D = d/s. Specifically, the compressed class hypervec-

tor C ′ and query hypervector Q′ are calculated using

multiplication and addition in HD as described by Eq.

(17). By doing so, only little information is lost when

we compress the model size, and high accuracy can be

maintained.

C ′ =
s∑

i=1

PiC
i, Q′ =

s∑

i=1

PiQ
i

(17)

Their evaluation shows that, compared to the original

HD classification that purely reduces the dimensionality

with the compression factor s = 20, the classifica-

tion accuracy for the three applications is still in an

acceptable range. In particular, maintaining the same

accuracy as the original, CompHD can on average reduce

model size by 69.7% while still achieving 74% energy

improvement and 4.1× execution time speedup in the

context of activity recognition, gesture recognition and

valve monitoring applications [51]. Therefore, CompHD

is suitable for low-power IoT devices to achieve higher

efficiency with a comparable accuracy.

5) Adaptive Efficient Training for HD Computing:

Single-pass training leads to low accuracy. To improve

this, iterative training might be one efficient solution.

However, a lack of controllability of training iterations

in HD classification may result in slow training or

divergence. To solve this training issue, [54] proposes

a retraining approach, AdaptHD.

The basic idea is illustrated as follows: 1). Conduct the

initial training by using binary hypervectors to generate

the non-binary class hypervectors. 2). Retrain the class

hypervectors by looking at the similarity of each trained

class hypervectors (C) with the training hypervector (H).

Update the model using Eq. (18) if the current training

hypervector leads to a mislcassification error. Otherwise

there is no change. For example, there is a mismatch

if Hi is supposed to belong to Ccorrect but is classified

as Cwrong, where Ccorrect and Cwrong denote different

class hypervectors and Hi represents the ith training
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Fig. 13: Overview of SemiHD framework supporting self-training in HD space [53].

hypervector. 3). After convergence, which means the

last three iterations of retraining show less than 0.1%
accuracy change, then binarize the final trained model

for inference.
{

Cwrong = Cwrong − αHi,

Ccorrect = Ccorrect + αHi.
(18)

Insights are gained by their results: 1). Small α needs

more iterations to get the near best accuracy. The smooth

curve indicates small α is better for fine-tuning. 2). Large

α gets to the near best accuracy much faster, but its

high fluctuation may lead to divergence. Based on these

two findings, AdaptHD uses large α first to get the near

best accuracy faster, then changes to smaller α for fine-

tuning until convergence. This is similar to adjusting the

step size in the normalized least mean square (LMS)

algorithm [55]. AdaptHD offers three types of adaptive

methods:

• Iteration-dependent AdaptHD. The change of value

α depends on iterations. In the beginning, α starts

with a large αmax. The learning rate α changes

based on the average error rate in the previous β
iterations. If error rate decreases, indicating conver-

gence, then use smaller α; otherwise, increase α.

• Data-dependent AdaptHD. The value α differs in a

certain iteration for all data points, and it changes

depending on the similarity of the data point with

the class hypervectors. Large distance uses large α
to reduce the difference.

• Hybrid AdaptHD. Combining the two models,

hybrid AdaptHD can achieve high accuracy as

iteration-dependent AdaptHD and fast speedup as

data-dependent AdaptHD.

The evaluation shows that, compared to the existing

HD algorithm, their hybrid AdaptHD can achieve 6.9×
speedup and 6.3× energy-efficiency improvement.

6) A Binary Framework for HD Computing: Gener-

ally speaking, HD classification using binary hypervec-

tors shows lower accuracy but higher energy efficiency

than non-binary ones. This is because the non-binary

framework makes use of the costly cosine similarity

rather than the hardware-friendly Hamming distance

metric. In [35], BinHD uses three main blocks, encoding,

associative search and counter modules, dealing with

binary hypervectors. Their evaluation shows that, over

four practical applications, the proposed BinHD can

reach 12.4× and 6.3× energy efficiency and speedup in

training process, while 13.8× and 9.9× during inference,

compared to the state-of-art HD computing algorithm

with a comparable classification accuracy.

7) HD Computing for Semi-Supervised Learning:

In [53], SemiHD has been proposed as a self-training

or self-learning approach for semi-supervised learning,

where the training data is composed of a small portion

of labeled data and a large portion of unlabeled data.

The SemiHD framework is depicted in Fig. 13 and

the flow is illustrated as follows. 1). Encode all the

data points, labeled and unlabeled, into HD space with

d = 10, 000 dimensions. 2). Start training from the la-

beled data to generate k hypervectors, each representing

one class. 3). Predict the label for unlabeled data points.

Labeling is performed by checking the similarity of

unlabeled data with all the class hypervectors, and return

the label which shows the highest similarity. 4). Select

and add S% of unlabeled data with highest confidence to

labeled data, where S is defined as the expansion rate. In

[53], typically S = 5. 5). Redo the training task based on

the expanded labeled data. Such iterative process stops

when the accuracy does not change more than 0.1%.

6). Once the model has already been trained, perform

the inference task by comparing the similarity of each

test data with the trained model, to return the label with

maximum similarity.
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Fig. 14: Block diagram of the HD Character Recognition System [56].

Their evaluation shows that the SemiHD can on

average improve the classification of supervised HD

by 10.2%. Additionally, compared to the best CPU

implementation, the FPGA counterpart of SemiHD offers

7.11× faster speed and 12.6× energy efficiency.

8) HD Computing for Unsupervised Learning: HD

computing has also been used in several unsupervised

applications. See [57–61].

C. Images

1) HD Classification for Character Recognition: HD

classification has been used for character recognition in

[62] and later in [56]. As shown in Fig. 14, the input

image is composed of 7× 5 = 35 pixels. Each pixel has

two possible values, that is 0 or 1, representing black

or white. 1). Encode each pixel to a binary hypervector

(indexHV). Totally 35 orthogonal indexHVs are stored

in the item memory. 2). Based on HoloGN encoding—

an encoding method proposed in [62] to address image

data using HD computing—the indexHV is shifted de-

pending on the pixel value. Accumulate all 35 indexHVs

and perform a majority rule by a thresholding block

to generate a holoHV for one input image. 3). The

supervised controller will only be activated when this

HD system conducts supervised learning. Otherwise, the

system conducts the one-shot learning. The supervised

controller accumulates the holoHVs for the same class

and employs the thresholding block and generates the

letterHV to be stored in the associative memory. The

total number of letterHVs is 26. 4). During the test phase,

the query hypervector is generated following the same

module with test data. Then the similarity of each query

hypervector is computed for all trained letterHVs to find

the most similar class.

Results in [56] show that HD computing performs well

for character recognition. Further optimization for HD

computing may be conducted by reducing the dimen-

sionality and increasing the input image size. The results

also show that HD computing offers great robustness

against noise. The system of 4,000-bit hypervectors

achieves comparable average accuracy to its 12,000-bit

counterpart at 0% distortion, and achieves an average

accuracy of 89.94% with 14.29% distortion.

D. Summary

As mentioned above, HD computing shows great

potential in dealing with data in the form of signals [28,

43, 65, 66, 75], letters [30, 64], and images [9, 56, 62],

as long as these can be transformed into the HD space.

Such pre-processing may include feature extraction and

encoding. Evaluation shows that HD computing achieves

good results for seizure detection [43, 66]. In addition,

HD computing can also be combined with quantiza-

tion technique to binarize HD model with minimal

accuracy loss [76]. Table III offers more details about

improvement strategies adopted in HD computing for

accuracy and efficiency. As can been seen from Table

IV, HD computing offers an acceptable accuracy, but

with quite high efficiency. In some applications like

DNA sequencing [31], HD computing outperforms other

machine learning methods.

There still exist some interesting papers not discussed

in detail in this review paper. Interested readers can refer

to the following references, which include but are not

limited to: 1). Considering the security issue when IoT

devices release the offload computation to the cloud,

[77] illustrates how the proposed SecureHD accelerates

efficiency with high security. 2). To balance the tradeoff

between efficiency and accuracy, QubitHD [76] is pro-

posed as a stochastic binarization algorthim to achieve

comparable accuracy to the non-binarized counterparts.

SparseHD [37] takes advantage of the sparsity of the

trained HD model for acceleration.
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TABLE III: Summary of the strategies used in HD computing for accuracy and efficiency improvement.

Applications Encode* Model Type**

Platform∆ Accuracy♥ Acceleration♣ Motivation Application
base/level train test

QuantHD [25] 1 B/B B/T B/T F, C, G Re, shuffle Q, DR, F speedup+accuracy speech, activity, face, phone position
VoiceHD [28] 1 B/B B B C NN, Re DR, B Replace deep learning speech
CompHD [51] 3 P N N F N DR, Comp DR without accuracy loss activity, gesture, valve monitoring
AdaptHD [54] 1 B/B N B C Re, N B, Adapt accuracy+short time Re speech, face, activity, Cardiotocograms
BinHD [35] 1 B/B B B C Re B speedup speech, face, activity, Cardiotocograms

SemiHD [53] 1 B/B B B F, C Re, N DR, B Replace deep learning 17 popular datasets [63]
Language [21] 2 B B B F B energy saving + robustness language recognition
Character [56] 3 B B B Binary DR data classification in IoT character recognition

Laelap [43] 1 B B B C, G energy efficiency seizure detection

* three encoding methods. 1: record-based encoding, 2: N -gram-based encoding, 3: a novel method.
** symbol “/” is used in record-based encoding. B: binary, P: bipolar, T: Ternary, N: non-binary.
∆ implementation platforms. F: FPGA, C: CPU, G: GPU.
♥ strategies for accuracy improvement. Re: retraining, N: non-binary model, NN: neural network.
♣ strategies for efficiency improvement. DR: dimension reduction, Q: quantization, B: binarization, F: FPGA, Comp: compression, Adapt: adaptive.

TABLE IV: Partial List of applications based on HD computing♣ in [40].

Applications Inputs (#)* Classes (#)** HD (%) Baseline (%)

Language recognition [21, 30] 1 21 96.70% 97.90%

Text categorization [64] 1 8 94.20% 86.40%

Speech recognition [28] 1 26 95.30% 93.60%

EMG gesture recognition [23] 4 5 97.80% 89.70%

Flexible EMG gesture recognition [27] 64 5 96.60% 88.90%

EEG brain-machine interface [65] 64 2 74.50% 69.50%

ECoG seizure detection [66] 100 2 95.40% 94.30%

DNA sequencing [31] 1 99.74% 94.53%

Character recognition [56] 1 10 89.94%

* represents the number of input data.
** represents the number of class hypervectors to be trained and stored in the associative memory.
♣ Other works, like [67–74], are not listed in this table.

HD computing is still in its infancy. Future directions

may include but is not limited to:

• More cognitive tasks: Inspired by [32], apart from

the engineering aspect of HD computing, which

is to solve classification tasks, more “cognition”

aspects of HD computing should be explored. Such

tasks include but are not limited to analogical

reasoning, semantic generalization and relational

representation.

• Feature exaction and encoding method: Since HD

computing cannot directly address data like signals

and images, feature exaction is vital to represen-

tation of information. For example, [75] partially

deals with this by addressing the problem of map-

ping data to a high-dimensional space.

• Similarity measurement: Though cosine similarity

and Hamming distance are currently widely used,

new metrics should be developed that are hardware-

friendly and can lead to high accuracy.

• Multiple class hypervectors: Traditional classifiers

use multi-dimensional features to train a classifier.

Often ranking can be used to select a small number

of features out of many features [78]. It is pos-

sible that multiple class hypervectors, similar to

multiple features in traditional classification, can

be generated to represent a class in HD classifi-

cation. Subsequently, multiple query hypervectors

will need to be compared with their corresponding

class hypervectors for each class. This is a topic for

further research.

• Accuracy improvement: Strategies like retraining

should be explored to further improve the accuracy

of HD computing.

• Hardware acceleration: Rebuilding the specific im-

plementation for HD computing to store and ma-

nipulate a large amount of hypervectors may result

in high speed and energy efficiency. Moreover,

inspired by [32], which discusses tradeoffs related

to the density of hypervectors, a choice between

dense and sparse approaches should be accordingly

made based on the application scenarios. For exam-

ple, adopting sparse representation requires lower

memory footprints.

• General HD computing processor: Inspired by [13],

addressing different types of data with only one

general processor containing a large word-length
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ALU is of great interest.

• Hybrid systems: Hybrid systems are partially based

on HD computing and partially on conventional

machine learning. Only a few examples exist so

far [79–82]. Further research on this topic can be

explored in future.

V. CONCLUSION

This paper has summarized the fundamental arith-

metic operations for the emerging computing model of

HD computing that might achieve high robustness, fast

learning ability, hardware-friendly implementation, and

energy efficiency. Mathematically, HD computing can

be viewed as an alternative in dealing with machine

learning problems. Though in its infancy, HD computing

shows its potential to be used as a light-weight classi-

fier for applications with limited resources. This model

can achieve outstanding classification performance for

certain problems like DNA sequencing. Balancing the

tradeoff between accuracy and efficiency is an important

area of research. Improvements include but are not

limited to encoding, retraining, non-binary model and

hardware acceleration. HD computing sometimes leads

to outstanding classification accuracy, while sometimes

achieves acceptable accuracy but high efficiency. Thus,

users need to evaluate whether HD computing is suit-

able for their application. Additionally, HD computing

can be used in applications such as seizure detection,

speech recognition, character recognition and language

detection. More “cognition” aspects of HD computing,

including analogical reasoning, relationship representa-

tion and analysis, will need to be further developed in

the future.
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