
Journal of Machine Learning Research 10 (2009) 1447-1468 Submitted 7/07; Revised 3/09; Published 7/09

Classification with Gaussians and Convex Loss

Dao-Hong Xiang DAOHONGXIANG@GMAIL .COM

Ding-Xuan Zhou MAZHOU@CITYU .EDU.HK

Department of Mathematics
City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong, China

Editor: John Shawe-Taylor

Abstract
This paper considers binary classification algorithms generated from Tikhonov regularization
schemes associated with general convex loss functions and varying Gaussian kernels. Our main
goal is to provide fast convergence rates for the excess misclassification error. Allowing varying
Gaussian kernels in the algorithms improves learning ratesmeasured by regularization error and
sample error. Special structures of Gaussian kernels enable us to construct, by a nice approxima-
tion scheme with a Fourier analysis technique, uniformly bounded regularizing functions achieving
polynomial decays of the regularization error under a Sobolev smoothness condition. The sample
error is estimated by using a projection operator and a tightbound for the covering numbers of re-
producing kernel Hilbert spaces generated by Gaussian kernels. The convexity of the general loss
function plays a very important role in our analysis.
Keywords: reproducing kernel Hilbert space, binary classification, general convex loss, varying
Gaussian kernels, covering number, approximation

1. Introduction

In this paper we study binary classification algorithms generated from Tikhonov regularization
schemes associated with general convex loss functions and varying Gaussian kernels.

Let X be a compact subset ofR
n (input space) andY = {1,−1} (representing the two classes).

Classification algorithms producebinary classifiersC : X →Y. The misclassification error is used
to measure the prediction power of a classifierC . If ρ is a probability distribution onZ := X×Y,
then themisclassification errorof C is defined by

R (C ) = Prob{C (x) 6= y} =
Z

X
P(y 6= C (x)|x)dρX.

HereρX is the marginal distribution ofρ on X andP(y|x) is the conditional distribution atx ∈ X.
The classifier minimizing the misclassification error is called the Bayes rulefc and is given by

fc(x) =

{
1, if P(y = 1|x) ≥ P(y = −1|x),
−1, otherwise.

The performance of a classifierC can be measured by theexcess misclassification errorR (C )−
R ( fc).

The classifiers considered here are induced by real-valued functionsf : X → R asC f = sgn( f )
which is defined by sgn( f )(x) = 1 if f (x) ≥ 0 and sgn( f )(x) = −1 otherwise. The real-valued
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functions are generated from Tikhonov regularization schemes associated with general convex loss
functions and varying Gaussian kernels.

Definition 1 We say thatφ : R → R+ is a classifying loss (function) if it is convex, differentiable at
0 with φ′(0) < 0, and the smallest zero ofφ is 1.

Examples of classifying loss functions include the least-square lossφls(t) = (1− t)2, the hinge
lossφh(t) = (1−t)+ = max{1−t,0} for support vector machine (SVM) algorithms, and ther-norm
SVM loss with 1≤ r < ∞ defined byφr(t) = (φh(t))r .

TheGaussian kernelwith varianceσ > 0 is the function onX×X given by

Kσ(x,x′) = exp
{
− |x−x′|2

2σ2

}
. (1)

It defines (Aronszajn, 1950) a reproducing kernel Hilbert space (RKHS)Hσ.
With the lossφ and Gaussian kernelKσ, theTikhonov regularization schemeis defined (Wahba,

1990; Evgeniou et al., 2000; Cristianini and Shawe-Taylor, 2000) with asamplez = {(xi ,yi)}m
i=1 ∈

Zm as the solutionfz = f φ
z,σ,λ to the following minimization problem

fz = arg min
f∈Hσ

{ 1
m

m

∑
i=1

φ(yi f (xi))+λ‖ f‖2
Hσ

}
. (2)

Hereλ is a positive constant called theregularization parameter. Throughout the paper we assume
that the samplez is drawn independently according to the distributionρ.

The purpose of this paper is to estimate the excess misclassification errorR (sgn( fz))−R ( fc)
asm→ ∞. Convergence rates will be derived under the choice of the parameters

λ = λ(m) = m−γ, σ = σ(m) = λζ = m−γζ (3)

for someγ,ζ > 0 and conditions on the distributionρ and the lossφ. This has been done for the
SVM in Steinwart and Scovel (2007) with the lossφh. Here we consider the error analysis with a
general loss functionφ (De Vito et al., 2004).

Let us demonstrate our main results by stating learning rates for the least-square lossφ = φls.
The rates will be proved in Section 4. They are given by means of a Tsybakov noise condition
(Tsybakov, 2004) and a function smoothness condition stated in terms of Sobolev spaces. Since
φls(y f(x)) = (1−y f(x))2 = (y− f (x))2 for y∈Y, a minimizer of

R

Z φls(y f(x))dρ is theregression
functiondefined by

fρ(x) =
Z

Y
ydρ(y|x) = P(y = 1|x)−P(y = −1|x), x∈ X. (4)

Definition 2 Let0≤ q≤ ∞. We say thatρ satisfies the Tsybakov noise condition with exponent q if
there exists a constant Cq > 0 such that

ρX({x∈ X : | fρ(x)| ≤Cqt}) ≤ tq, ∀t > 0. (5)
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Note that (5) always holds forq = 0 with Cq = 1. So setting the indexq = 0 in (5) is the same
as removing the Tsybakov noise condition. The caseq = ∞ means| fρ(x)| ≥ Cq for almost every
x∈ (X,ρX).

Recall the Sobolev spaceHs(Rn) with index s> 0 consisting of all functions inL2(Rn) with

the semi-norm| f |Hs(Rn) =
{
(2π)−n R

Rn |ξ|2s| f̂ (ξ)|2dξ
} 1

2
finite where f̂ is the Fourier transform of

f defined forf ∈ L1(Rn) as f̂ (ξ) =
R

Rn f (x)e−ix·ξ dx.

Theorem 1 Let φ = φls. Assume (5) for some q∈ [0,∞] and dρX
dx ∈ L2(X). If for some s> 0, fρ

equals the restriction onto X of some function in Hs(Rn)∩ L∞(Rn), then by takingσ = λζ with

0 < ζ ≤ 1
n+s andλ = m− 1

ζ(s+2n+2) , for any0 < δ < 1, with confidence1−δ, we have

R (sgn( fz))−R ( fc) ≤ C̃ρ,s,q,nm−θls log
2
δ

with θls =
(q+1)s

(q+2)(s+2n+2)
, (6)

whereC̃ρ,s,q,n is a constant independent of m orδ.

When Tsybakov noise condition (5) is not assumed, we can still use Theorem 1 by settingq= 0
and obtain learning rate (6) withθls = s

2s+4n+4.
Whenq tends to infinity, the power indexθls in (6) has the limit s

s+2n+2 which can be very close
to 1 for larges. So the learning rate can beO(mε−1) for arbitrarily smallε > 0 whenq ands are
large enough. To be more specific, for 0< ε < 1, whenq > 1

ε −2 ands≥ (2n+2)(q+2) 1−ε
ε(q+2)−1,

we haveθls ≥ 1− ε.

Remark 1 We show that the power indexθls for learning rate (6) can be1−ε for arbitrarily small
ε > 0. This result is new for scheme (2) associated withφ = φls and a single Gaussian kernel
with changing varianceσ = σ(m). The same learning rates are achieved in the literature in two
different settings: one is for the same least square regularization schemeassociated with a single
fixed Gaussian kernel, but under the much stronger condition that fρ lies in the range of powers
of an integral operator associated with a fixed Gaussian kernel, requiringfρ ∈ C∞ (Zhang, 2004;
De Vito et al., 2005; Smale and Zhou, 2007). The other setting is to allow flexible variances of
Gaussians in (2), see Ying and Zhou (2007) and Wu et al. (2007).

When the decision boundary{x∈X : fρ(x) = 0} has measure zero anddρX
dx ∈ L2(X), the smooth-

ness condition for an extension of fρ implies (5) for some q> 0. In general, noise condition (5) does
not require smoothness of fρ in domains away from the decision boundary.

Note that ast → −∞, the hinge lossφh for the SVM studied in Steinwart and Scovel (2007)
increases slowly:φh(t) = O(|t|), while the least-square lossφls in Theorem 1 increases moderately
with φls(t) = O(|t|2). Difficulty arises for the error analysis with a general lossφ whenφ(t) increases
fast such asφ = φr with very larger or theexponential-hinge losswe introduce in this paper as

φeh(t) = max{e1−t −1,0} =

{
e1−t −1, if t ≤ 1,
0, otherwise.

The reason is random variables of formξ = φ(y f(x)) with (x,y) = z∈ (Z,ρ) are involved and
large norms‖ f‖L∞(X) would lead to large bounds forξ. We shall use special properties of Gaussian
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kernels and construct functionsfσ,λ which are uniformly bounded and have powerful approximation
ability (see (9) and (10) below). With this construction, we can do the analysis well for the general
lossφ by dealing with uniformly bounded random variables in an error decomposition approach
(see (13) below). In particular, explicit learning rates will be given in Section 4 for ther-norm SVM
lossφr (Theorem 4) and the exponential-hinge lossφeh (Theorem 5). Comparing with Theorem 1,
we shall provide at the end of Section 4 an approximation theory viewpoint tothe effect of various
loss functions for learning algorithm (2): the exponential-hinge loss has some advantages overφls

andφr , ther-norm SVM lossφr may have worse performance whenr > 2.
We list key notations used in the paper in a table given in Appendix B.

2. Two Special Properties of Gaussians and Key Bounds

The novelty in our approach for generalφ and kernelsKσ arises from two special properties of the
Gaussian kernels with changing varianceσ > 0: nice approximation scheme and low capacity of
the RKHS, described in Sections 2.1 and 2.3.

2.1 Regularizing Functions Generated by Gaussians

A data-free limit of (2) is a functioñfσ,λ defined in terms of thegeneralization errorEφ as

f̃σ,λ := arg min
f∈Hσ

{Eφ( f )+λ‖ f‖2
Hσ
}, whereEφ( f ) =

Z

Z
φ(y f(x)) dρ. (7)

This is the regularizing function used in the literature (De Vito et al., 2005; Yao, 2008; Zhang, 2004).
It works well for the error analysis when the lossφ increases slowly or moderately (ast →−∞) such
asφ = φh or φls.

In this paper we consider a general lossφ. Whenφ(t) increases fast (ast → −∞), applying
the regularizing functioñfσ,λ in the error analysis (described in Section 2.2) may lead to a random
variableφ(yf̃σ,λ(x)) of large bound.

The first novelty of this paper is to construct a functionfσ,λ (which plays the role of a regular-
izing function in an error decomposition approach discussed in subsection2.2) by special approxi-
mation ability of Gaussian kernels. The constructed function has two advantages. On one hand, it is
uniformly bounded (with respect to bothλ andσ) so that the random variableφ(y fσ,λ(x)) involved
in the error analysis is bounded. On the other hand, it plays the same role asf̃σ,λ in achieving nice
bounds for the approximation error. The construction of the explicit approximation scheme forfσ,λ

is done under a Sobolev smoothness condition of a measurable functionf φ
ρ minimizingEφ, that is,

for a. e.x∈ X,

f φ
ρ (x) = argmin

t∈R

Z

Y
φ(yt) dρ(y|x) = argmin

t∈R

{φ(t)P(y = 1|x)+φ(−t)P(y = −1|x)} .

Theorem 2 Assume that for some s> 0,

f φ
ρ = f̃ φ

ρ |X for somef̃ φ
ρ ∈ Hs(Rn)∩L∞(Rn) and

dρX

dx
∈ L2(X). (8)

Then we can find functions{ fσ,λ ∈Hσ : 0 < σ ≤ 1,λ > 0} such that

‖ fσ,λ‖L∞(X) ≤ B̃, (9)

D(σ,λ) := Eφ( fσ,λ)−Eφ( f φ
ρ )+λ‖ fσ,λ‖2

Hσ
≤ B̃(σs+λσ−n) (10)
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for 0 < σ ≤ 1,λ > 0, whereB̃≥ 1 is a constant independent ofσ or λ.

Theorem 2 will be proved in Appendix A in a more general form as Theorem 6 where the
constant̃B is given explicitly.

Remark 2 A usual assumption in the literature (Zhang, 2004) for deriving learning rates is that
for some0 < β ≤ 1 and Cβ > 0,

D̃(λ) = min
f∈Hσ

{Eφ( f )−Eφ( f φ
ρ )+λ‖ f‖2

Hσ
} ≤Cβλβ ∀λ > 0. (11)

This is hardly satisfied for a single fixed Kσ due to the analyticity of the Gaussian kernel (Smale and
Zhou, 2003; Cucker and Zhou, 2007). When we choose a changing Gaussian kernel withσ = λζ for
someζ > 0, decay (11) of the approximation error is valid in many cases (as shownin Theorem 2).
Under assumption (11), one has the bound

‖ f̃σ,λ‖L∞(X) ≤ ‖ f̃σ,λ‖Hσ ≤
√
D̃(λ)/λ ≤

√
Cβλ

β−1
2 .

Hence a natural bound for the random variableφeh(yf̃σ,λ(x)) would beexp{
√

Cβλ
β−1

2 } which in-

creases exponentially fast asλ → 0 (polynomially fast with degreer(1−β)
2 for φ = φr when r is very

large). This shows difficulty in choosing̃fσ,λ and demonstrates novelty in choosing the function fσ,λ
from Theorem 2 for the error analysis with a general lossφ.

When σ = λζ for some 0< ζ < 1
n, (10) of Theorem 2 tells us that the functionfσ,λ yields

an approximation order similar to (11) while (9) ensures the uniform boundedness ofφ(y fσ,λ(x)),
better than the functioñfσ,λ for the error decomposition described below.

2.2 Error Decomposition and Projection Operator

The excess misclassification errorR (sgn( f ))−R ( fc) for the classifier sgn( f ) can be bounded by
means of theexcess generalization errorEφ( f ))−Eφ( f φ

ρ ) according to some comparison theorems
(Zhang, 2004; Chen et al., 2004; Bartlett et al., 2006). For example, it was proved in Zhang (2004)
that forφ = φh and any measurable functionf : X → R, we have

R (sgn( f ))−R ( fc) ≤ Eφh( f )−Eφh( fc).

For a classifying lossφ with φ′′(0) > 0, it was proved in Chen et al. (2004) and Bartlett et al. (2006)
that for somecφ > 0,

R (sgn( f ))−R ( fc) ≤ cφ

√
Eφ( f )−Eφ( f φ

ρ ). (12)

For the least square loss andρ satisfying the Tsybakov noise condition, a comparison theorem
improving (12) will be given in Section 4 and will be used to prove Theorem 1.

Classifiers in this paper are obtained by taking signs of real-valued functions. Since the smallest
zero of φ is 1, we can takef φ

ρ (x) ∈ [−1,1] for eachx ∈ X, which we shall assume throughout
the paper. We may improve the error estimates (Chen et al., 2004) by replacing values of f by
projections onto[−1,1].
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Definition 3 The projection operatorπ on the space of functions on X is defined by

π( f )(x) =





1 if f (x) > 1,
−1 if f (x) < −1,
f (x) if −1≤ f (x) ≤ 1.

Trivially sgn(π( f )) = sgn( f ). Then we can use (12) withf = π( fz) to bound the excess misclas-
sification errorR (sgn( fz))−R ( fc) by means of the excess generalization errorEφ(π( fz))−Eφ( f φ

ρ )
which in turn can be estimated by an error decomposition technique (Wu and Zhou, 2006). Define
theempirical errorassociated with the lossφ as

E
φ
z ( f ) =

1
m

m

∑
i=1

φ(yi f (xi)) for f : X → R.

Then we have the following error decomposition which will be proved in Section 3.

Lemma 1 Let φ be a classifying loss, fz be defined by (2) and fσ,λ ∈Hσ. Then

Eφ(π( fz))−Eφ( f φ
ρ ) ≤D(σ,λ)+Sz( fσ,λ)−Sz(π( fz)), (13)

where the quantitySz( f ) is defined for f∈C(X) by

Sz( f ) = [E
φ
z ( f )−E

φ
z ( f φ

ρ )]− [Eφ( f )−Eφ( f φ
ρ )].

When we use the regularizing functionfσ,λ given in Theorem 2, the bound (10) deals with
D(σ,λ), the first term of (13). The uniform bound (9) for‖ fσ,λ‖L∞(X) ensures that the second
term Sz( fσ,λ) of (13), which can be expressed as1

m ∑m
i=1 ξ(zi)−E(ξ) with the random variable

ξ(z) = φ(y fσ,λ(x))−φ(y fφ
ρ (x)), can be easily handled. The crucial remaining termSz(π( fz)) of (13)

involves the set of functions{ fz}z∈Zm and can be treated by various empirical process techniques
such as Rademacher average and entropy integral. Here we use the specialty of the Gaussians that
the RKHS has low capacity, hence the last term of (13) can be estimated efficiently and simply by
means of covering numbers.

2.3 Applying Tight Bounds for Covering Numbers

The second novelty of this paper is to make full use of the special low capacity property of the
Gaussian kernels that a tight bound for covering numbers of the unit ballof the RKHSHσ leads to
nice estimates for the last termSz(π( fz)) of (13) for the error analysis.

Definition 4 For a subset S of C(X) andη > 0, the covering numberN (S,η) is the minimal integer
l ∈ N such that there exist l disks with radiusη covering S.

The covering numbers of unit balls of classical function spaces have been well studied in the
literature (Edmunds and Triebel, 1996). As an example, takeX = [0,1]n ands> 0. The covering
numbers of the unit ballB1(Cs(X)) of the spaceCs(X) has the asymptotic behavior

c′s(
1
η

)n/s ≤ logN (B1(C
s(X)),η) ≤ c′′s(

1
η

)n/s, (14)
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where the positive constantsc′s, andc′′s are independent of 0< η < 1. In particular, since a Gaussian
kernelKσ isC∞, an embedding result from Zhou (2003) tells us that logN (B1,η) ≤C′′

s ( 1
η)n/s( 1

σ)2n

wheres> 0 can be arbitrarily large but the constantC′′
s depends ons. HereB1 = B1,σ = { f ∈ Hσ :

‖ f‖Hσ ≤ 1} is the unit ball ofHσ and is regarded as a compact subset ofC(X). A crucial improved

bound for the covering number ofB1 was given in Zhou (2002) with( 1
η)n/s replaced by(log 1

η)n+1

as follows.

Proposition 1 There exists a constant C0 > 0 depending only on X and n such that

logN (B1,η) ≤C0

(
(log

1
η

)n+1 +
1

σ2(n+1)

)
∀ 0 < η < 1,0 < σ ≤ 1. (15)

The constantC0 can be taken as(124n)n+2 whenX = [0,1]n. Bound (15) is almost sharp in the
sense that for someC′

0 > 0 given in Zhou (2003),

logN (B1,η) ≥C′
0

(
(log

1
η

)n/2 +
1

σn

)
.

The logarithmic term(log 1
η)n+1 appearing in the tight bound (15) is better than the polyno-

mial term ( 1
η)n/s in (14). This enables us to derive efficient error bounds for the algorithm (2)

involving Gaussian kernels, by a simple covering number argument without other empirical process
techniques or iteration techniques used in Steinwart and Scovel (2007) and Wu et al. (2007). To
demonstrate explicitly why tight bound (15) helps, we state the following resultwhich is needed for
estimating confidence and will be proved in Appendix B.

Lemma 2 Let 0 ≤ τ ≤ 1 and C1 > 0. Let 0 < δ < 1 and λ,σ take form (3) with someγ > 0 and
0 < ζ < 1

2γ(n+1) . Denoteε∗(m,λ,σ,δ/2) as the smallest positive numberε satisfying

1−N
(

B1,
λε√

φ(0)|φ′
+(−1)|

)
exp

{
− mε2−τ

2C1 + 2
3φ(−1)ε1−τ

}
≥ 1− δ

2
. (16)

Then we have

ε∗(m,λ,σ,δ/2) ≤C2m− 1−2γζ(n+1)
2−τ log

2
δ
, (17)

where C2 is the constant independent of m,λ,σ or δ.

2.4 Key Bounds

We are in a position to present our key bounds for the excess generalization errorEφ(π( fz))−
Eφ( f φ

ρ ) which will be used to get rates for the excess misclassification errorR (sgn( fz))−R ( fc).
To achieve tight bounds, we need the following definition.

Definition 5 A variancing powerτ = τφ,ρ of the pair(φ,ρ) is a numberτ in [0,1] such that for any
B̃≥ 1, there exists some constant C1 = C1(B̃) > 0 satisfying

E
{[

φ(y f(x))−φ(y fφ
ρ (x))

]2}
≤C1

[
Eφ( f )−Eφ( f φ

ρ )
]τ

∀ f : X → [−B̃, B̃]. (18)
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Remark 3 For φ = φls, we can takeτ = 1, see Evgeniou et al. (2000) and Cucker and Zhou (2007).
For φ = φh, we can takeτ = 0, and an improved powerτ = q

q+1 if the Tsybakov noise condition (5) is
satisfied (Steinwart and Scovel, 2007; Wu and Zhou, 2005). In general, τφ,ρ depends on the strong
convexity ofφ and noise conditions forρ.

Theorem 3 Let σ = λζ and λ = m−γ for some0 < ζ < 1
n and 0 < γ < 1

2ζ(n+1)
. If (8) is valid for

some s> 0, then for any0 < δ < 1, with confidence1−δ we have

Eφ(π( fz))−Eφ( f φ
ρ ) ≤ C̃m−θ log

2
δ

(19)

where

θ = min
{

sζγ,γ(1−nζ),
1−2γζ(n+1)

2− τ

}
, (20)

andC̃ is a constant independent of m andδ.

Theorem 3 will be proved in the next section and the constantC̃ will be given explicitly.

3. Error Analysis

In this section we derive the key error bounds stated in Theorem 3 by estimating the right-hand side
of (13) in Lemma 1 (which is proved here).

3.1 Proof of Lemma 1

Write the regularized excess generalization error as

Eφ(π( fz))−Eφ( f φ
ρ )+λ‖ fz‖2

Hσ
=
{
Eφ(π( fz))−E

φ
z (π( fz))

}

+
{[

E
φ
z (π( fz))+λ‖ fz‖2

Hσ

]
−
[
E

φ
z ( fσ,λ)+λ‖ fσ,λ‖2

Hσ

]}

+
{
E

φ
z ( fσ,λ)−Eφ( fσ,λ)

}
+
{
Eφ( fσ,λ)−Eφ( f φ

ρ )+λ‖ fσ,λ‖2
Hσ

}
.

Sinceφ is convex and its smallest zero is 1, we find a special property of the projection operator
thatφ(yπ( f )(x))≤ φ(y f(x)) for any functionf onX. HenceEφ

z (π( f ))≤E
φ
z ( f ). This in connection

with the definition offz tells us that the second term on the right-hand side above is at most zero. By
subtracting and addingEφ( f φ

ρ ) in the first and third terms we seeEφ(π( fz))−Eφ( f φ
ρ ) is bounded

as in (13). This proves Lemma 1.

Let us turn to estimateEφ(π( fz))−Eφ( f φ
ρ ) by (13). We first boundSz( fσ,λ), the term involving

fσ,λ. It can be written as1m ∑m
i=1 ξ(zi)−E(ξ) with ξ the random variable on(Z,ρ) given byξ(z) =

φ(y fσ,λ(x))−φ(y fφ
ρ (x)).

Lemma 3 Letτ = τφ,ρ and fσ,λ ∈Hσ satisfy (9). For any0< δ < 1, with confidence1− δ
2, the term

Sz( fσ,λ) of (13) can be bounded as

Sz( fσ,λ) ≤ 2(‖φ‖C[−B̃,B̃] +C1) log
2
δ

m− 1
2−τ +Eφ( fσ,λ)−Eφ( f φ

ρ ).
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Proof Consider the random variableξ(z) = φ(y fσ,λ(x))−φ(y fφ
ρ (x)) on(Z,ρ). It satisfies−φ(−1)≤

ξ ≤ ‖φ‖C[−B̃,B̃]. Hence|ξ−E(ξ)| ≤ 2‖φ‖C[−B̃,B̃]. We apply the one side Bernstein inequality and
know that

Probz∈Zm

{ 1
m

m

∑
i=1

ξ(zi)−E(ξ) > ε
}
≤ exp

{
− mε2

2(σ2(ξ)+ 2
3‖φ‖C[−B̃,B̃]ε)

}
∀ε > 0.

Hereσ2(ξ) is the variance ofξ. Solving the quadratic equation forε by setting the above probability
bound to beδ/2, we see that with confidence at least 1−δ/2,

1
m

m

∑
i=1

ξ(zi)−E(ξ) ≤
4‖φ‖C[−B̃,B̃] log 2

δ

3m
+

√
2mσ2(ξ) log 2

δ

m
.

Using (18) involving the variancing powerτ = τφ,ρ in Definition 5, we haveσ2(ξ) ≤ E(ξ2) ≤
C1(E(ξ))τ. This in connection with Young’s inequality implies

√
2mσ2(ξ) log 2

δ

m
≤

√
2log2

δC1(E(ξ))τ

m
≤ (1− τ

2
)
(2log2

δC1

m

) 1
2−τ

+
τ
2

E(ξ).

Therefore, with confidence at least 1−δ/2,

1
m

m

∑
i=1

ξ(zi)−E(ξ) ≤
4‖φ‖C[−B̃,B̃] log 2

δ

3m
+
(2log2

δC1

m

) 1
2−τ

+E(ξ).

SinceE(ξ) = Eφ( fσ,λ)−Eφ( f φ
ρ ), our conclusion follows.

The sample error term−Sz(π( fz)) in (13) can be expressed as
R

ξzdρ − 1
m ∑m

i=1 ξz(zi) with

ξz(z) = φ(y fz(x))− φ(y fφ
ρ (x)). However,ξz is not a single random variable sincez is a random

sample itself. This is the essential difficulty. Here we use the specialty of low capacity of the RKHS
Hσ and overcome the difficulty by a simple covering number argument over a ballof Hσ where fz
lies.

Lemma 4 For anyλ > 0 andz∈ Zm, there holds

‖ fz‖Hσ ≤
√

φ(0)/λ.

The proof follows easily by takingf = 0 in the definition offz as in De Vito et al. (2005), De
Vito et al. (2004) and Hardin et al. (2004).

Let ξ be a random variable onZ with meanµ≥ 0 and varianceσ2 ≤ cµτ for some 0≤ τ ≤ 2 and
c≥ 0. If |ξ−µ| ≤ B almost surely for someB≥ 0, then the one-side Bernstein inequality implies

Probz∈Zm

{µ− 1
m ∑m

i=1 ξ(zi)√
µτ + ετ > ε1− τ

2

}
≤ exp

{
− mε2−τ

2(c+ 1
3Bε1−τ)

}
∀ ε > 0.

Applying this probability inequality to random variables of typeξ(z) = φ(y(π f )(x))− φ(y fφ
ρ (x))

and using a standard argument (Wu et al., 2007; Yao, 2008; Ying, 2007) with covering numbers for
the ball{ f ∈Hσ : ‖ f‖Hσ ≤

√
φ(0)/λ} of the RKHSHσ, we find the following bound.
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Lemma 5 Let τ = τφ,ρ satisfy (18) withB̃ being1. For anyε > 0, we have

Probz∈Zm

{
sup

‖ f‖Hσ≤
√

φ(0)/λ

[Eφ(π( f ))−Eφ( f φ
ρ )]− [E

φ
z (π( f ))−E

φ
z ( f φ

ρ )]√
(Eφ(π( f ))−Eφ( f φ

ρ ))τ + ετ
≤ 4ε1− τ

2

}

≥ 1−N
(

B1,

√
λε√

φ(0)|φ′
+(−1)|

)
exp
{
− mε2−τ

2C1 + 2
3φ(−1)ε1−τ

}
.

Recall the definition ofε∗(m,λ,σ,δ/2) in Lemma 2. It satisfies (16) which means that the
probability in Lemma 5 is bounded by 1− δ

2 from below whenε = ε∗(m,λ,σ,δ/2).

Proposition 2 Let fσ,λ ∈Hσ satisfy (9). For any0 < δ < 1, with confidence at least1−δ, we have

Eφ(π( fz))−Eφ( f φ
ρ ) ≤ 4D(σ,λ)+40ε∗(m,λ,σ,δ/2)+4(‖φ‖C[−B̃,B̃] +C1) log

2
δ

m− 1
2−τ .

Proof Applying Lemma 3, we know that there is a subsetV1 of Zm with measure at least 1− δ
2 such

that forz∈V1,

Sz( fσ,λ) ≤ 2(‖φ‖C[−B̃,B̃] +C1) log
2
δ

m− 1
2−τ +D(σ,λ).

By Lemma 5 and Lemma 4, takingε = ε∗(m,λ,σ,δ/2), we see that there exists another subsetV2

of Zm with measure at least 1− δ
2 such that forz∈V2,

−Sz(π( fz)) = [Eφ(π( fz))−Eφ( f φ
ρ )]− [E

φ
z (π( fz))−E

φ
z ( f φ

ρ )]

≤ 4[ε∗(m,λ,σ,δ/2)]1−
τ
2

√[
Eφ(π( fz))−Eφ( f φ

ρ )
]τ

+[ε∗(m,λ,σ,δ/2)]τ

≤
(

1− τ
2

)
4

2
2−τ ε∗(m,λ,σ,δ/2)+

τ
2
[Eφ(π( fz))−Eφ( f φ

ρ )]+4ε∗(m,λ,σ,δ/2).

Here we have used the elementary inequality
√

a+b≤√
a+

√
b and Young’s inequality.

Adding the above two bounds and observing that 0≤ τ ≤ 1 implies 1
1−τ/2 ≤ 2 we know from

Lemma 1 that forz∈V1∩V2,

Eφ(π( fz))−Eφ( f φ
ρ ) ≤ 4D(σ,λ)+40ε∗(m,λ,σ,δ/2)+4(‖φ‖C[−B̃,B̃] +C1) log

2
δ

m− 1
2−τ .

Since the measure ofV1∩V2 is at least 1−δ, our conclusion holds true.

Now we are in a position to prove Theorem 3.

3.2 Proof of Theorem 3

From condition (8) and the parameter formσ = λζ with 0 < ζ < 1
n, we know by Theorem 2 that

D(σ,λ) ≤ B̃λmin{sζ,1−nζ}.
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Putting bound (17) forε∗(m,λ,σ,δ/2) from Lemma 2 into Proposition 2, we see from the
parameter formλ = m−γ that with confidence at least 1−δ,

Eφ(π( fz))−Eφ( f φ
ρ ) ≤ 4B̃λmin{sζ,1−nζ} +40C2m− 1−2γζ(n+1)

2−τ log
2
δ

+4(‖φ‖C[−B̃,B̃] +C1) log
2
δ

m− 1
2−τ ≤ C̃m−θ log

2
δ
.

Hereθ is given by (20) and̃C is the constant independent ofmandδ given by

C̃ = 4B̃+40C2 +4(‖φ‖C[−B̃,B̃] +C1).

This proves (19) and hence Theorem 3.

4. Deriving Learning Rates

In this section we apply Theorem 3 to derive learning rates with various lossfunctions. For the least
square loss, to prove Theorem 1 we need the following comparison theorem improving (12).

Proposition 3 If φ = φls and ρ satisfies noise condition (5) for some q∈ [0,∞], then for every
measurable function f: X → R, we have

R (sgn( f ))−R ( fc) ≤ 2C
− q

q+2
q

{
Eφls( f )−Eφls( fρ)

} q+1
q+2 .

Proof DenoteXf = {x∈X : sgn( f )(x) 6= fc(x)}. It is known thatR (sgn( f ))−R ( fc)=
R

Xf
| fρ(x)|dρX.

See, for example, Equation (9.14) of Cucker and Zhou (2007).

When q < ∞, take t =
(
‖ f − fρ‖L2

ρX
/Cq

) 2
q+2

> 0. We separate the setXf into two parts,

one with | fρ(x)| ≤ Cqt and the other with| fρ(x)| > Cqt where| fρ(x)| ≤ | fρ(x)|2/(Cqt) ≤ | f (x)−
fρ(x)|2/(Cqt). We find from (5) that

Z

Xf

| fρ(x)|dρX ≤
Z

{x∈Xf : | fρ(x)|≤Cqt}
CqtdρX +

Z

{x∈Xf : | fρ(x)|>Cqt}
| f (x)− fρ(x)|2/(Cqt)dρX

≤ CqtρX({x∈ X : | fρ(x)| ≤Cqt})+‖ f − fρ‖2
L2

ρX
/(Cqt)

≤ Cqt
q+1 +‖ f − fρ‖2

L2
ρX

/(Cqt) = 2Cq

(
‖ f − fρ‖L2

ρX
/Cq

) 2q+2
q+2

.

This gives the desired bound for the caseq < ∞ since‖ f − fρ‖2
L2

ρX
= Eφls( f )−Eφls( fρ).

Whenq= ∞, noise condition (5) means| fρ(x)| ≥Cq and hence| fρ(x)| ≤ | fρ(x)|2/Cq for almost
everyx∈ (X,ρX). So

R

Xf
| fρ(x)|dρX ≤ R

Xf
| f (x)− fρ(x)|2/CqdρX = ‖ f − fρ‖2

L2
ρX

/Cq which is what

we want.

Now we can derive learning rates with the least square loss.
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4.1 Proof of Theorem 1

The assumptions ondρX
dx and fρ verify condition (8). Then by Theorem 2 withφ = φls, we find

functions fσ,λ satisfying (9) and (10) for 0< σ ≤ 1,λ > 0.

The choiceσ = λζ with 0 < ζ ≤ 1
n+s < 1

n andλ = m−γ with γ = 1
ζ(s+2n+2)

tell us that 0< γ <
1

2ζ(n+1)
. Therefore all conditions of Theorem 3 are valid. Moreover, a specialty of the least square

loss isτ = 1 in (18). So by Theorem 3, for any 0< δ < 1, with confidence 1−δ, (19) holds with

θ = min
{ s

s+2n+2
,

1−nζ
ζ(s+2n+2)

,1− 2(n+1)

s+2n+2

}
=

s
s+2n+2

.

This bound for the excess generalization errorEφ(π( fz))−Eφ( f φ
ρ ) together with Proposition 3

yields the desired bound (6) for the excess misclassification errorR (sgn( fz))−R ( fc) with the

constant̃Cρ,s,q,n = 2C
− q

q+2
q C̃

q+1
q+2 . The proof of Theorem 1 is complete.

Let us derive learning rates with ther-norm SVM lossφ = φr (1 < r < ∞) for which we have
(Chen et al., 2004)

f φ
ρ (x) = f φr

ρ (x) =
(1+ fρ(x))1/(r−1)− (1− fρ(x))1/(r−1)

(1+ fρ(x))1/(r−1) +(1− fρ(x))1/(r−1)
, x∈ X. (21)

Theorem 4 Let φ = φr with 1 < r < ∞. Assume (8) for some s> 0. Takeσ = λζ with 0 < ζ ≤ 1
n+s

andλ = m−γ with γ = 1
ζ(s+2n+2)

for 1 < r ≤ 2 andγ = 1
ζ(2s(1−1/r)+2n+2)

for 2 < r < ∞. Then for any

0 < δ < 1, with confidence1−δ, we have

R (sgn( fz))−R ( fc) ≤ C̃ρ,rm
−θr log

2
δ

with θr =

{
s

2(s+2n+2) , if 1 < r ≤ 2,
s

4(s(1−1/r)+n+1) , if 2 < r < ∞.
(22)

Proof The convexity ofφr gives the variancing power (Bartlett et al., 2006) as

τ = τφr ,ρ =

{
1, if 1 < r ≤ 2,
2
r , if 2 < r < ∞.

Take σ = λζ with 0 < ζ ≤ 1
n+s < 1

n and chooseλ = m−γ with γ = 1
ζ((2−τ)s+2n+2)

. We see that

0< γ < 1
2ζ(n+1)

. Hence all conditions of Theorem 3 are valid and we conclude that for any 0< δ < 1,
with confidence 1−δ, (19) holds withθ = s

(2−τ)s+2n+2. This bound for the excess generalization er-

ror together with comparison relation (12) caused byφ′′
r (0) = r(r −1) > 0 yields the desired bound

(22) for the excess misclassification error with the constantC̃ρ,r = cφr

√
C̃. The proof of Theorem 4

is complete.

Whenφ = φeh, a simple computation shows that the functionf φ
ρ is given by

f φeh
ρ (x) =





1
2 log 1+ fρ(x)

1− fρ(x) , if − (e2−1)/(e2 +1) ≤ fρ(x) ≤ (e2−1)/(e2 +1),

1, if fρ(x) > (e2−1)/(e2 +1),
−1, if fρ(x) < −(e2−1)/(e2 +1).

(23)
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Theorem 5 Let φ = φeh. Assume (8) for some s> 0. Takeσ = λζ with 0 < ζ ≤ 1
n+s and λ =

m− 1
ζ(2s+2n+2) . Then for any0 < δ < 1, with confidence1−δ, we have

R (sgn( fz))−R ( fc) ≤ C̃ρ,ehm
−θeh log

2
δ

with θeh =
s

4s+4n+4
. (24)

Proof Takeτ = 0 andσ = λζ with 0 < ζ ≤ 1
n+s < 1

n. Chooseλ = m−γ with γ = 1
ζ(2s+2n+2)

in The-
orem 3. We see that for any 0< δ < 1, with confidence 1− δ, (19) holds withθ = s

2s+2n+2. This
bound together with comparison relation (12) again (asφ′′

eh(0) = e> 0) yields the desired bound

(24) withC̃ρ,eh = cφeh

√
C̃. This proves Theorem 5.

Remark 4 When s≤ 1
r−1, the extension condition of fρ stated in Theorem 1 implies assumption (8)

of fφr
ρ required in Theorem 4. In fact, the extension of the function fφr

ρ ontoR
n can be defined by

taking values of the extended function of fρ in (21). After composing with the function t→ t1/(r−1)

on R, smoothness of functions in the Sobolev space Hs is kept for s≤ 1
r−1. When s≤ 1, the same

condition for fρ implies assumption (8) of fφeh
ρ needed for Theorem 5, as seen from expression (23).

It is possible to refine learning rates (22) and (24) by improving comparison relation (12) when
Tsybakov noise condition (5) is satisfied. We omit the discussion here.

Error analysis withφ = φr was done in Chen et al. (2004) under assumption (11). Our learning
rates in Theorem 4 are new since our assumption on Sobolev smoothnessis weaker. The learning
rates forφ = φeh in Theorem 5 are also new.

We are in a position to get from Theorems 1, 4 and 5 some theoretical clues onthe effect
of various loss functions for learning algorithm (2). We know from Smale and Zhou (2003) that
when φ = φls the approximation error and hence learning rates can essentially be characterized
by regularities of the functionfρ. So here we give some comparisons under the same regularity

assumption (8) for the functionf φ
ρ with somes> 0. Under this assumption (removing the Tsybakov

noise condition by takingq = 0 in Theorem 1), the learning rates derived in Theorems 1, 4 and 5
for φ = φls,φr ,φeh take the same formR (sgn( fz))−R ( fc) = O(m−θ log 2

δ) with the power indexθ
very close, all lying in the range[ s

4s+4n+4, s
2s+4n+4]. However, the indexs in regularity assumption

(8) for the functionf φ
ρ might vary dramatically, leading to varying power indexθ for the learning

rates.
Note that the functionf φ

ρ with φ = φr ,φeh depends explicitly on the regression functionfρ cor-

responding the least-square loss. The dependence of the functionf φeh
ρ on fρ has an advantage of

ignoring any irregularity appearing in the domain where| fρ(x)| > (e2−1)/(e2 + 1). This can be

seen from the following example wherefρ has a singularity at 0 whilef φeh
ρ ≡ 1 isC∞.

Example 1 Let X= [−1,1], 0 < α < 1
14 andρ be the distribution given by dρX = 1

2dx and fρ(x) =
1− 1

5|x|α which means P(y = 1|x) = 1− 1
10|x|α. It is well known that the function|x|α lies in the

Sobolev space Hs(X) if and only if s< α + 1
2. So regularity assumption (8) is satisfied forφls

if and only if s< α + 1
2. Then from Theorem 1, we see the learning rateR (sgn( fz))−R ( fc) =

O(m−θls log 2
δ) with θls = s

s+2+2 arbitrarily close to 1+2α
9+2α < 1

8. However, for the exponential-hinge

lossφeh, we have fφeh
ρ ≡ 1 which follows from expression (23) and the definition fρ(x) = 1− 1

5|x|α ≥
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1− 1
5 > (e2−1)/(e2 +1) on X. Therefore, regularity assumption (8) is satisfied for an arbitrarily

large s and Theorem 5 yields the learning rateR (sgn( fz))−R ( fc) = O(m−θeh log 2
δ) with θeh arbi-

trarily close to 1
4. Thus for learning algorithm (2), the exponential-hinge loss has some advantages

overφls (andφr as shown in the next example).

The dependence of the functionf φr
ρ on fρ involves a power functionu→ u1/(r−1) which might

cause irregularity. This is demonstrated by the following example where the singularity of the
function fρ at 0 is worsened for the functionf φr

ρ whenr is large.

Example 2 Let X andρ be as in Example 1. Whenφ = φr with r > 2, the function fφr
ρ in (21) equals

f φr
ρ (x) =

(2− 1
5|x|α)1/(r−1)− (1

5|x|α)1/(r−1)

(2− 1
5|x|α)1/(r−1) +(1

5|x|α)1/(r−1)
.

Regularity assumption (8) is satisfied forφr if and only if s< α
r−1 + 1

2. Then Theorem 4 yields the

learning rateR (sgn( fz))−R ( fc) = O(m−θr log 2
δ) with θr = s

4(s(1−1/r)+1+1) arbitrarily close to
r(2α+r−1)

4(5r+2α−1)(r−1) . This power index is always less than that ofφls or φeh. It shows that the lossφr has
worse performance thanφls andφeh, at least for some distributions.

5. Further Discussion

Let us discuss further generalizations and connections briefly here. More details will be provided in
our future study.

The first extension is to a manifold setting. IfX is a connected compactC∞ submanifold of
R

n without boundary and its dimension isd ≤ n, then the covering number estimate (15) holds
with n replaced by the manifold dimensiond. Proposition 2 and Lemma 2 are still valid withn
replaced byd. Learning rates in Theorems 1, 4 and 5 can be improved withn replaced byd if
approximation error estimates similar to Theorem 2 can be established in the manifold setting. One
can use ideas for convolution type approximation schemes onR

n (Pan, et al., 2008) to define higher
order operators on manifolds and then get estimates for the regularization error.

The second connection is to multi-kernel regularization schemes (Wu et al., 2007; Argyriou et
al., 2006; Chapelle et al., 2002) defined as

f φ
z,λ = arg min

0<σ<∞
min
f∈Hσ

{ 1
m

m

∑
i=1

φ(yi f (xi))+λ‖ f‖2
Hσ

}
.

In this scheme the variance parameterσ is chosen automatically while the learning rate derived in
Ying and Zhou (2007) is at mostO(m−1/6). It would be interesting to investigate how to choose the
parameterσ in (2).

The last questions is about more general loss functions. In our analysiswe assume that the
convex lossφ has a zero which excludes the logistic lossφ(t) = log(1+e−t). One might generalize
our analysis to get some error bounds for the scheme with loss functions without zero by using a
general projection operatorπM with levelM > 0 given by

πM( f )(x) =





M if f (x) > M,
−M if f (x) < −M,
f (x) if −M ≤ f (x) ≤ M.
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Appendix A. Approximation Scheme by Gaussians

This appendix provides a proof of Theorem 2 which is a corollary of the following more general
theorem. The approximation error is estimated by means of a convolution type scheme constructed
by Gaussians with a Fourier analysis technique (Schaback and Werner,2006; Steinwart and Scovel,
2007; Steinwart et al. , 2006).

Theorem 6 Assume that for some s> 0, f φ
ρ is the restriction of somẽf φ

ρ ∈ Hs(Rn) onto X, and the

density function g= dρX
dx exists and lies in L2(X).

(1) If f̃ φ
ρ ∈ L∞(Rn), then we can find a set of functions{ fσ,λ ∈Hσ}0≤σ≤1,λ>0 such that

‖ fσ,λ‖L∞(X) ≤ B̃, (25)

D(σ,λ) ≤ B̃(σs+λσ−n), ∀ 0 < σ ≤ 1,λ > 0, (26)

whereB̃ is a constant independent ofσ or λ.
(2) If for some r≥ 1 and Cφ > 0,

|φ′
+(t)| ≤Cφ|t|r−1 ∀|t| ≥ 1. (27)

then we can find{ fσ,λ ∈Hσ} such that

‖ fσ,λ‖L∞(X) ≤ B̃′σ− n
2 , (28)

D(σ,λ) ≤ B̃′(σs− n(r−1)
2 +λσ−n), ∀ 0 < σ ≤ 1,λ > 0, (29)

whereB̃′ is a constant independent ofσ or λ.

Proof Take some trigonometric polynomial ˜a(ξ) = ∑ j∈J a je−i j ·ξ onR
n with a finite subsetJ of Z

n

such that for someCs > 0 depending only ons andn, we have

|e−
|ξ|2

2 ã(ξ)−1| ≤Cs|ξ|s ∀ ξ ∈ R
n.

This can be done by choosing the coefficients(a j) j∈J of ã satisfying the linear system

ã(0) = 1 and Dα(e−
|ξ|2

2 ã(ξ))(0) = 0, α ∈ Z
n,0 < |α| < s.

SoJ and(a j) j∈J depend only onsandn.
Define

f̃σ(x) =
( 1√

2πσ

)n Z

Rn
Kσ(x,y) ∑

j∈J

a j f̃ φ
ρ (y−σ j) dy, x∈ R

n.
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We first estimate‖ f̃σ − f̃ φ
ρ‖L2(Rn).

Define a functioñkσ onR
n by k̃σ(x) =

(
1√
2πσ

)n
e−

|x|2
2σ2 , we know that ˆ̃kσ(ξ) = e−

|σξ|2
2 and f̃σ(x) =

k̃σ ∗ (∑ j∈J a j f̃ φ
ρ (·−σ j)). This in connection with the fact that the Fourier transform off̃ φ

ρ (·−σ j)

equalse−iσ j·ξ ˆ̃
f φ
ρ (ξ) implies

ˆ̃f σ(ξ) = ˆ̃kσ(ξ) ∑
j∈J

a je
−iσ j·ξ ˆ̃

f φ
ρ (ξ) = e−

|σξ|2
2 ã(σξ)

ˆ̃
f φ
ρ (ξ).

It follows that

‖ f̃σ − f̃ φ
ρ‖2

L2(Rn) = (2π)−n‖ ˆ̃f σ −
ˆ̃
f φ
ρ‖2

L2(Rn)
= (2π)−n R

Rn |e−
|σξ|2

2 ã(σξ)−1|2| ˆ̃
f φ
ρ (ξ)|2 dξ

≤ (2π)−nC2
s

R

Rn |σξ|2s| ˆ̃
f φ
ρ (ξ)|2 dξ ≤C2

sσ2s(2π)−n R

Rn |ξ|2s| ˆ̃
f φ
ρ (ξ)|2 dξ.

That is,
‖ f̃σ − f̃ φ

ρ‖L2(Rn) ≤Cs‖ f̃ φ
ρ‖Hs(Rn)σs. (30)

Then we bound‖ f̃σ‖Hσ(Rn). HereHσ(Rn) is the RKHS generated by the Mercer kernelKσ(x,y)
on R

n. By the inner product inHσ(Rn), we know that〈Kσ(·,y),Kσ(·,z)〉Hσ(Rn) = Kσ(y,z). So we
have

‖ f̃σ‖2
Hσ(Rn) =

( 1√
2πσ

)2n Z

Rn

Z

Rn
Kσ(y,z) ∑

j∈J

a j f̃ φ
ρ (y−σ j) dy∑

l∈J

al f̃ φ
ρ (z−σl) dz.

By the elementary inequality|uv| ≤ u2+v2

2 and
R

Rn Kσ(y,z) dz= (
√

2πσ)n, we see that

‖ f̃σ‖2
Hσ(Rn) ≤

( 1√
2πσ

)2n

∑
j∈J

∑
l∈J

|a j ||al |
Z

Rn

Z

Rn
Kσ(y,z)

| f̃ φ
ρ (y−σ j)|2 + | f̃ φ

ρ (z−σl)|2
2

dydz

=
( 1√

2πσ

)2n

∑
j,l∈J

|a j ||al |(
√

2πσ)n‖ f̃ φ
ρ‖2

L2(Rn).

That is,
‖ f̃σ‖Hσ(Rn) ≤C′

s‖ f̃ φ
ρ‖L2(Rn)(

√
2πσ)−

n
2

whereC′
s := ∑ j∈J |a j | is a constant depending only onsandn.

Take fσ,λ = f̃σ|X, the restriction off̃σ ontoX. By basic facts about RKHS (Aronszajn, 1950),
we know thatfσ,λ = f̃σ|X ∈Hσ and

‖ fσ,λ‖Hσ ≤ ‖ f̃σ‖Hσ(Rn) ≤C′
s‖ f̃ φ

ρ‖L2(Rn)(
√

2πσ)−
n
2 . (31)

Now we can derive the desired bounds.
(1) When f̃ φ

ρ ∈ L∞(Rn), for anyx∈ R
n, we have

| f̃σ(x)| ≤ ∑
j∈J

|a j |
( 1√

2πσ

)n Z

Rn
e−

|x−y|2
2σ2 dy‖ f̃ φ

ρ‖L∞(Rn) = C′
s‖ f̃ φ

ρ‖L∞(Rn).
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It follows that (25) holds true and

Eφ( fσ,λ)−Eφ( f φ
ρ ) ≤

Z

X

Z

Y
sup
{
|φ′

+(ξ)| : |ξ| ≤ max{C′
s‖ f̃ φ

ρ‖L∞(Rn),‖ f φ
ρ‖L∞(X)}

}

| fσ,λ(x)− f φ
ρ (x)|dρ(y|x)g(x)dx.

By the Schwarz inequality we see that

Eφ( fσ,λ)−Eφ( f φ
ρ ) ≤ sup{|φ′

+(ξ)| : |ξ| ≤ (C′
s+1)‖ f̃ φ

ρ‖L∞(Rn)}‖ fσ,λ − f φ
ρ‖L2(X)‖g‖L2(X).

This bound in connection with (30) and (31) implies (26) with the constantB̃ given by

B̃ = max
{

C′
s‖ f̃ φ

ρ‖L∞(Rn),(C
′
s)

2‖ f̃ φ
ρ‖2

L2(Rn)(2π)−
n
2 ,

sup{|φ′
+(ξ)| : |ξ| ≤ (C′

s+1)‖ f̃ φ
ρ‖L∞(Rn)}Cs‖ f̃ φ

ρ‖Hs(Rn)‖g‖L2(X),
}

.

(2) Without the conditionf̃ φ
ρ ∈ L∞(Rn), we bound‖ fσ,λ‖L∞(X) directly from the expression of

f̃σ. Forx∈ R
n, we have

| f̃σ(x)| ≤ ∑
j∈J

|a j |
( 1√

2πσ

)n{Z

Rn
(Kσ(x,y))2 dy

} 1
2
{Z

Rn
| f̃ φ

ρ (y−σ j)|2 dy
} 1

2

= ∑
j∈J

|a j |(2
√

πσ)−
n
2‖ f̃ φ

ρ‖L2(Rn).

It follows that‖ fσ,λ‖L∞(X) ≤C′
s(2

√
π)−

n
2‖ f̃ φ

ρ‖L2(Rn)σ− n
2 .

To derive the bound for the excess generalization error, we notice from (27) that

Eφ( fσ,λ)−Eφ( f φ
ρ ) =

Z

X

Z

Y
(φ(y fσ,λ(x))−φ(y fφ

ρ (x))) dρ(y|x)dρX(x)

≤
Z

X

Z

Y
sup
{
|φ′

+(ξ)| : |ξ| ≤ max{C′
s(2

√
πσ)−

n
2‖ f̃ φ

ρ‖L2(Rn),‖ f φ
ρ‖L∞(X)}

}

| fσ,λ(x)− f φ
ρ (x)|dρ(y|x)g(x)dx.

If we denoteC′′
s = max{Cφ,Cφ‖ f φ

ρ‖r−1
L∞(X),Cφ[C′

s(2
√

π)−
n
2‖ f̃ φ

ρ‖L2(Rn)]
r−1}, then

Eφ( fσ,λ)−Eφ( f φ
ρ ) ≤C′′

s σ− n(r−1)
2 ‖ fσ,λ − f φ

ρ‖L2(X)‖g‖L2(X) ≤C′′
s‖g‖L2(X)Cs‖ f̃ φ

ρ‖Hs(Rn)σs− n(r−1)
2 .

Therefore,

D(σ,λ) ≤C′′
s‖g‖L2(X)Cs‖ f̃ φ

ρ‖Hs(Rn)σs− n(r−1)
2 +λ(C′

s)
2‖ f̃ φ

ρ‖2
L2(Rn)(

√
2πσ)−n.

This verifies (28) and (29) by taking

B̃′ = max
{

C′
s(2

√
π)−

n
2‖ f̃ φ

ρ‖L2(Rn),C
′′
s‖g‖L2(X)Cs‖ f̃ φ

ρ‖Hs(Rn),(C
′
s)

2‖ f̃ φ
ρ‖2

L2(Rn)(2π)−n/2
}

.

The proof of Theorem 6 is complete.
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In our main results, only part (1) of Theorem 6, that is, Theorem 2 is used. A main assumption,
condition (8), gives the restrictioñf φ

ρ ∈ Hs(Rn)∩L∞(Rn). When we do not know whetherf φ
ρ can

be extended to a uniformly bounded function onR
n, we can use part (2) of Theorem 6. This might

be the case whenφ = φh, as mentioned in the following.
A geometric noise condition was introduced in Steinwart and Scovel (2007). This condition

with exponentα > 0 means

Z

X
| fρ(x)|exp

{
−τ2

x

t

}
dρX(x) = O

(
t

αn
2

)
(32)

where

τx =





inf fρ(u)≥0 |x−u|, if fρ(x) < 0,

inf fρ(u)≤0 |x−u|, if fρ(x) > 0,

0, otherwise.

It does not assume smoothness of functions. An interesting result in Steinwart and Scovel (2007) as-
serts that whenφ = φh, geometric noise condition (32) with exponent 0< α < ∞ leads toD(σ,λ)≤
B̃′′′(σαn + λσ−n). With this estimate, under Tsybakov noise condition (5), learning rates are ob-
tained in Steinwart and Scovel (2007). For example, whenα > q+2

2q , for an arbitrarily smallε > 0,
with confidence 1−δ,

R (sgn( fz))−R ( fc) ≤ C̃ε

(
log

4
δ

)2( 1
m

) 2α(q+1)
2α(q+2)+3q+4−ε

. (33)

Since no Sobolev smoothness is assumed forf φh
ρ = fc (Wahba, 1990), we need to use the regular-

izing function f̃σ,λ defined by (7) and derive by some detailed computations that with confidence
1−δ,

R (sgn( fz))−R ( fc) ≤ C̃ρ,h log
4
δ

( 1
m

) (q+1)αn
(q+2)αn+2(q+1)(n+1)

.

This rate is slightly worse than (33), though the estimate for the confidence is slightly better. It
raises the question of improving Theorem 6 under various noise conditions.

Appendix B. Role of Tight Bounds for Covering Numbers

In this appendix we prove Lemma 2 which shows a special role of the tight bound (15) for covering
numbers concerning Gaussian kernels. In fact, we have the following more general result.

Proposition 4 Let ∆ ≥ 1 be arbitrary. Thenε∗(m,λ,σ,δ/2) defined by (16) satisfies

ε∗(m,λ,σ,δ/2) ≤ C̃2

(
log 2

δ +σ−2(n+1)/(2−τ) +(logm)(n+1)/(2−τ)

m
1

2−τ
+

σ−2(n+1)

m
+

√
φ(0)√
λm∆

)
,

whereC̃2 is the constant depending on C0,C1,τ,φ′
+(−1),φ(−1),∆ and is given by

C̃2 = max
{
|φ′

+(−1)|,(4C1)
1

2−τ ,2(4C0C1)
1

2−τ ∆n+1,2φ(−1)(1+C0 +C0∆n+1)
}

.
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Proof Observe from (15) that as a function on(0,+∞), the logarithm of the middle term of (16) is
bounded by

h(ε) := C0

((
log

√
φ(0)|φ′

+(−1)|√
λε

)n+1
+

1

σ2(n+1)

)
−g(ε),

whereg is the strictly increasing function on(0,∞) defined by

g(ε) =
mε2−τ

2C1 + 2
3φ(−1)ε1−τ

.

Set

B =

√
φ(0)|φ′

+(−1)|√
λm∆

+

(
4C1(log 2

δ + C0
σ2(n+1) )+4C0C1(∆ logm)n+1

m

) 1
2−τ

+
4φ(−1)

3m

(
log

2
δ

+
C0

σ2(n+1)
+C0(∆ logm)n+1

)
.

If 2
3φ(−1)B1−τ ≤ 2C1, then

g(B) ≥ mB2−τ

4C1
≥ log

2
δ

+
C0

σ2(n+1)
+C0(∆ logm)n+1.

If 2
3φ(−1)B1−τ > 2C1, then

g(B) ≥ mB2−τ

4
3φ(−1)B1−τ

=
mB

4
3φ(−1)

≥ log
2
δ

+
C0

σ2(n+1)
+C0(∆ logm)n+1.

Thus in either case we have

g(B) ≥ log
2
δ

+
C0

σ2(n+1)
+C0(∆ logm)n+1.

On the other hand, sinceB ≥
√

φ(0)|φ′+(−1)|√
λm∆ , we also see that log

√
φ(0)|φ′+(−1)|

B
√

λ
≤ ∆ logm. It fol-

lows that

h(B) ≤C0(∆ logm)n+1− log
2
δ
−C0(∆ logm)n+1 = log

δ
2
.

But the functionh is strictly decreasing. Soε∗(m,λ,σ,δ/2) ≤ B. The the desired bound for
ε∗(m,λ,σ,δ/2) follows with the constant̃C2. The proof of Proposition 4 is complete.

Now we can prove Lemma 2 by the special form ofλ,σ.

B.1 Proof of Lemma 2

Take∆ = γ
2 +1 in Proposition 4. Then we know from the special form (3) ofλ andσ that

ε∗(m,λ,σ,δ/2) ≤ C̃2

{
log 2

δ

m
1

2−τ
+
( 1

m

) 1−2γζ(n+1)
2−τ

+
((logm)n+1

m

) 1
2−τ

+

√
φ(0)

m

}
.
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notation meaning pages

R (C ) misclassification error for a classifierC 1447
fc Bayes rule which minimizesR 1447
R (C )−R ( fc) excess misclassification error 1447
φ loss function for classification 1448
σ variance parameter for the Gaussian kernel 1448, 1449, 1458
λ regularization parameter 1448, 1449, 1458
fz learning scheme (2) 1448
R (sgn( fz))−R ( fc) excess misclassification error for classifier sgn( fz) 1448, 1449, 1458
fρ regression function 1448, 1449, 1457
Eφ( f ) generalization error for a functionf 1450

f φ
ρ minimizer ofEφ 1450

Eφ( f )−Eφ( f φ
ρ ) excess generalization error for a functionf 1451, 1452, 1454, 1457

fσ,λ regularizing function constructed in Theorem 2 1450, 1452, 1454, 1461
D(σ,λ) regularization error or approximation error 1450, 1452, 1456, 1461
τ = τφ,ρ variancing power defined in Definition 5 1453, 1454, 1456, 1458

Table 1: NOTATIONS

Observe the elementary inequality (Yao, 2008; Ye and Zhou, 2007)

exp{−cx} ≤ (
a
ec

)ax−a ∀x,c,a > 0.

Takingx = logm, a = n+1 andc = 2γζ(n+1), we have

(logm)n+1 ≤ (
1

2eγζ
)n+1m2γζ(n+1).

Hence (17) holds true with the constantC2 = C̃2(4+2
√

φ(0)). The proof of Lemma 2 is complete.
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