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ABSTRACT

In this paper, we address the problem of learning when some
cases are fully labeled while other cases are only partially
labeled, in the form of partial labels. Partial labels are rep-
resented as a set of possible labels for each training example,
one of which is the correct label. We introduce a discrimina-
tive learning approach that incorporates partial label infor-
mation into the conventional margin-based learning frame-
work. The partial label learning problem is formulated as a
convex quadratic optimization minimizing the L2-norm reg-
ularized empirical risk using hinge loss. We also present an
efficient algorithm for classification in the presence of par-
tial labels. Experiments with different data sets show that
partial label information improves the performance of classi-
fication when there is traditional fully-labeled data, and also
yields reasonable performance in the absence of any fully la-
beled data.
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1. INTRODUCTION
Partially labeled training data such as pairwise constraints

have been shown to improve performance in both supervised
[20, 21, 10, 11, 12, 14, 15, 18, 6] and semi-supervised [17, 3,
13, 19, 7, 2, 4] learning. While labeled data is usually ex-
pensive, time consuming to collect, and sometimes requires
human domain experts to annotate, partially labeled data
is often relatively easier to obtain. Much attention in the
machine learning community has been focused on integrat-
ing partially labeled data that are complementary to the
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fully labeled training data into existing learning framework.
However, in previous research partially labeled information
is usually presented in the form of pairwise constraints which
indicate whether a pair of examples belongs to the same
class or not. In [20], the authors showed significant per-
formance improvement in video object classification using a
modified logistic regression algorithm which can learn the
decision boundary with labeled data as well as additional
pairwise constraints. Moreover, in [21] the authors pro-
posed a discriminative method which can effectively utilize
pairwise constraints to construct a sign-insensitive consis-
tent estimator with respect to the optimal linear boundary.

In this paper, we investigate the usefulness of a different
partially labeled information, Partial Labels1. Partial labels
are presented as a set of possible labels for each training ex-
ample, one of which is the correct label. Unlike fully labeled
data that would require users to have prior knowledge or
experience with a data set, partial labels relatively require
often less effort from users. For example, in the task of
predicting nationality based on facial images, it is relatively
easier for users to determine if a face belongs to a group
of countries such as Asian countries, African countries or
Western countries than to identify the exact nationality.

In addition to using partially labeled data to improve the
performance of classifiers, unlabeled data is the main fo-
cus of semi-supervised learning [22]. In this setting, a small
amount of labeled data is augmented with a large amount of
unlabeled data is used to learn better classifiers. Note that
unlabeled data may not always help. For example, Cozman
et al [8] showed that unlabeled data can degrade classifica-
tion performance even in situations where additional labeled
data would increase the performance. Partially labeled data
is a perfect tradeoff between fully labeled data and unlabeled
data. We will show that partially labeled data in form of
partial labels helps producing better classifiers without too
much labeling annotation from users.

In this work, we propose a discriminative learning ap-
proach which incorporates partial label information into the
conventional margin-based learning framework. First, we
review the margin-based learning framework for the multi-
class classification problem [9]. Then we extend the learning
framework to include partial label information. In our ex-
periment with a variety of data sets, partial labels not only

1Here we want to make a distinction between partially la-
beled data and partial labels. Partially labeled data indi-
cates only partial information about examples is given in-
stead of the actual correct labels. Both pairwise constraints
and partial labels are subcategories of partially labeled data.



improve the performance of classification when there is tra-
ditional fully-labeled data, but also yields reasonable perfor-
mance in the absence of any fully-labeled data. The paper
is structured as follow: in section 2, we describe in detail
the novel partial label classification algorithm; in section 3
we review related work on supervised and semi-supervised
learning with partially labeled data; the experimental results
and conclusion are given in section 4 and 5, respectively.

2. CLASSIFICATION WITH PARTIAL LA-

BEL INFORMATION
In this section, we start with the margin-based multiclass

classification problem. Then, we show how partial label in-
formation fits into the margin-based discriminative learning
framework.

2.1 Margin-based Multiclass Classification
In the supervised setting, a learning algorithm typically

takes a set of labeled training examples, L = {(x1, y1), . . . ,
(xn, yn)} as input, where xi ∈ X and the corresponding
label yi belongs to a finite set of classes denoted as Y. The
goal of classification is to form a hypothesis h : X 7→ Y
which maps an input x ∈ X to an output y ∈ Y. Many
machine learning algorithms is formulated to minimize the
regularized empirical risk

min
w

Rreg(w) := λΩ(w) + L(w) (1)

where L(w) :=
1

n

n
X

i=1

l(xi, yi, w) (2)

where Ω(·) is a convex and monotonically increasing function
which serves as a regularizer with a regularization constant
λ > 0; and l(xi, yi, w) is a nonnegative loss function of an
example xi measuring the amount of inconsistency between
the correct label yi and the predicted label arising from using
the weight parameter w.

Consider a mapping Φ : X × Y 7→ F which projects each
example-label pair (x, y) ∈ X ×Y to Φ(x, y) in a new space
F , is defined as

Φ(x, y) =

2
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. . .
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where I(·) is the indicator function. We can obtain the
multiclass-SVM proposed by [9] by considering the situation
where we use the L2-norm regularization,

Ω(w) =
1

2
‖w‖2,

and the loss function l(xi, yi, w) is set to the hinge loss,

max

„

0, 1 −
»

wT Φ(xi, yi) − max
yi 6=yi

wT Φ(xi, yi)

–«

.

Figure 1: Illustration of how the relative positions
of the scores associated with example-label pairs
wT Φ(xi, ·) change from before training to after train-
ing for a fully labeled example.

Specifically, the multiclass-SVM learns a weight vector w
and slack variables ξ via the following quadratic optimiza-
tion problem:

Optimization Problem I: Multiclass-SVM

min
w,ξ

:
λ

2
‖w‖2 +

1

n

n
X

i=1

ξi (3)

subject to:

∀(xi, yi) ∈ L : wT Φ(xi, yi)−max
yi 6=yi

wT Φ(xi, yi) ≥ 1−ξi, ξi > 0.

After we have learned w and ξ, the classification of a test
example x is done by

h(x) = argmax
y∈Y

wT Φ(x, y).

In this margin-based learning framework, we observed that
for a training examples (xi, yi) ∈ L the score associated with
the correct label yi, wT Φ(xi, yi), is greater than the score
associated with any other labels yi 6= yi, wT Φ(xi, yi), by at
least the amount, 1 − ξi. In Figure 1, we demonstrate how
the relative positions of the scores associated with example-
label pairs, wT Φ(xi, ·), change from before training to after
training for a fully labeled example, (xi, yi).

2.2 Margin-based Partial Label Classification
In this section, we address the problem of learning when

there are additional partially labeled data, in the form of
partial labels, augmented with fully labeled data. Partial
labels are presented as a set of possible labels for each train-
ing example, one of which is the correct label. Let PL =
{(x1, Y1), . . . , (xm, Ym)} be the set of partial label training
data, where xi ∈ X and the corresponding set of possible
labels Yi ⊂ Y, one of which is the correct label.

The partial label learning problem is also formulated to
minimize the regularized empirical risk as shown in Equa-
tion (1), where the loss function L(w) is the addition of the
empirical loss due to the fully labeled data and the partial



label data. Formally, the loss function can be expressed as,

L(w) :=
1

n + m

"

n
X

i=1

l(xi, yi, w) +
m
X

i=1

l(xi, Yi, w)

#

. (4)

In addition to utilizing the same L2-norm regularization and
the hinge loss for the fully labeled data, we use the following
hinge loss, l(xi, Yi, w), for the partial label data:

max

„

0, 1 −
»

max
yi∈Yi

wT Φ(xi, yi) − max
yi 6∈Yi

wT Φ(xi, yi)

–«

.

The justification of using the hinge loss for the partial label
data is that for a partial label training example (xi, yi) ∈
PL the maximum score associated with the partial labels
yi ∈ Yi,

max
yi∈Yi

wT Φ(xi, yi),

is greater than the maximum score associated with any other
labels yi 6∈ Yi,

max
yi 6∈Yi

wT Φ(xi, yi),

by at least the amount, 1 − νi. In Figure 2, we demon-
strate how the relative positions of the scores associated with
example-label pairs, wT Φ(xi, ·), change from before training
to after training for a partial label example, (xi, Yi).

Figure 2: Illustration of how the relative positions
of the scores associated with example-label pairs
wT Φ(xi, ·) change from before training to after train-
ing for a partial label example.

In this learning setting, the average size of the partial
labels,

1

m

m
X

i=1

|Yi|,

of the partial label data indicates the amount of labeled in-
formation given to the learning algorithm. In the limit, if
|Yi| = 1 then we have the conventional supervised learning
framework where each training example is given the correct

label. Moreover, if |Yi| = |Y| then we obtain the semi-
supervised learning framework where there is additional un-
labeled data augmented with the fully labeled data. We will
show later in the experiment section, how the classification
performance changes in according to the variation of the size
of the partial labels.

Formally, the partial label SVM classification (PL-SVM)
learns a weight vector w and slack variables ξ and ν via the
following quadratic optimization problem:

Optimization Problem II: PartialLabel-SVM

min
w,ξ,ν

:
λ

2
‖w‖2 +

1

n + m

 

n
X

i=1

ξi +
m
X

i=1

νi

!

(5)

subject to:
∀(xi, yi) ∈ L :

wT Φ(xi, yi) − max
yi 6=yi

wT Φ(xi, yi) ≥ 1 − ξi, ξi > 0;

∀(xi, Yi) ∈ PL :

max
yi∈Yi

wT Φ(xi, yi)−max
yi 6∈Yi

wT Φ(xi, yi) ≥ 1−νi, νi > 0.

The classification of test examples are done in the same man-
ner as for the multiclass-SVM classification.

In order to solve the partial label SVM classification, we
apply the partial label Pegasos (PL-Pegasos), a extended
version of the Pegasos algorithm proposed by [16]. The PL-
Pegasos is a simple and effective iterative algorithm for solv-
ing the above QP and does not require transforming to the
dual formulation. The algorithm alternates between gradi-
ent descent steps and projection steps. In each iteration, the
algorithm first computes a set of labeled examples AL ⊂ L
and a set of partially labeled examples APL ⊂ PL that con-
tain violated examples. Then the weight vector w is updated
according to the violated sets AL and APL. In the projec-
tion step, the weight vector w is projected to the sphere of
radius 1/

√
λ. The details of the PL-Pegasos are given in

Algorithm 1.
In order to used the kernel trick, as pointed out in [16],

we set w1 = 0 then wt can be written as

wt =
X

x,y

ϕxyΦ(x, y).

Hence, we can incorporate the usage of kernel when com-
puting inner product operations, i.e.:

〈w, Φ(x′, y′)〉 =
X

x,y

ϕxyK(x, y, x′, y′)

‖w‖2 =
X

x,y

X

x′,y′

ϕxyϕx′y′K(x, y, x′, y′)

In our experiments, we use the polynomial kernel,

K(x, y, x′, y′) = 〈Φ(x, y),Φ(x′, y′)〉d

where the polynomial kernel degree d is chosen from the set
{1, 2, 3, 4, 5}.



Algorithm 1 : Partial Label SVM Classification (PL-SVM)

Input: L - the labeled data, PL - the partial label data
λ and T - parameters of the QP

Initialize: Choose w1 such that ‖w1‖ ≤ 1/
√

λ

for t = 1 to T do

Set AL =



(xi, yi) ∈ L | wT
t Φ(xi, yi) − max

yi 6=yi

wT
t Φ(xi, yi) < 1

ff

Set APL =



(xi, Yi) ∈ PL | max
yi∈Yi

wT
t Φ(xi, yi) − max

yi 6∈Yi

wT
t Φ(xi, yi) < 1

ff

Set ηt =
1

λt

Set wt+ 1

2

= (1 − ηtλ)wt +
ηt

n + m

8

<

:

X

(xi,yi)∈AL

[Φ(xi, yi) − Φ(xi, yi)] +
X

(xi,Yi)∈APL

h

Φ(xi, y
PL
i ) − Φ(xi, y

PL
i )
i

9

=

;

where yi = argmax
yi 6=yi

wT
t Φ(xi, yi) for (xi, yi) ∈ AL;

yPL
i = argmax

yi∈Yi

wT
t Φ(xi, yi),

yPL
i = argmax

yi 6∈Yi

wT
t Φ(xi, yi) for (xi, Yi) ∈ APL

Set wt+1 = min

(

1,
1/

√
λ

‖wt+ 1

2

‖

)

wt+ 1

2

end for

Output: wT+1

The efficiency and guaranteed performance of PL-SVM in
solving the quadratic optimization problem is shown by the
following theorem:

Theorem 1. Let

R = 2max
x,y

‖Φ(x, y)‖

then the number of iterations for Algorithm 1 to achieve a
solution of accuracy δ > 0 is Õ(R2/(λδ)).

The proof of Theorem 1 is omitted since it is similar to the
one given in [16].

3. RELATED WORK
In supervised learning, partially labeled data in the form

of pairwise constraints have been shown to improve the per-
formance of classifiers. In [21, 20], the authors proposed
a discriminative learning framework which can simultane-
ously learn the fully labeled data and pairwise constraints.
In addition, the pairwise constraint information is also used
to learn metric learning algorithms [10, 11, 12, 14, 15, 18,
6]. Metric learning algorithms first learn a Mahalanobis dis-
tance metric and then apply distance-based classifier such
as K-nearest neighbor to the transformed data.

In semi-supervised learning, partially labeled data in the
form of pairwise constraints is used as users’ feedback to
guide the clustering process [17, 3, 13, 19, 7, 2, 4]. In
particular, CKmeans [17] is a semi-supervised variant of
Kmeans. The objective function of CKmeans is reformu-
lated to incorporate the cost incurred by violating any pair-
wise constraints specified by the user. In addition, [4] uti-
lized both metric learning and pairwise constraints in the
clustering process. In MPCKmeans (metric learning and

constraints Kmeans), a separate weight matrix for each clus-
ter is learned to minimize the distance between must-link
instances and maximize the distance between cannot-link
instances. Hence, the objective function of MPCKmeans
minimizes cluster dispersion under the learned metrics while
reducing constraint violations. However, most existing algo-
rithms may get stuck at local-optimal solutions for the clus-
tering problem with pairwise constraints as users’ feedback.

4. EXPERIMENTS
We evaluate our proposed algorithm (PL-SVM) on six

data set from the UCI repository [1] and the LIBSVM data
[5]. A summary of the data sets is given in Table 1.

Table 1: A summary of the data sets.

Data sets Classes Train Test Features

leter 26 15000 5000 16

mnist 10 60000 10000 780

pendigits 10 8992 2000 16

satimage 6 4435 2000 36

segment 7 1960 350 19

usps 10 7291 2007 256

In our experiments, we compare the classification perfor-
mance of the PL-SVM algorithm which utilizes the partial
label information against the regular SVM which ignores the
partial labels. As a upper bound for the performance of the
PL-SVM algorithm, we train a regular SVM using the fully
labeled data and the partial label data where the true labels
are revealed to the algorithm. (We refer to this training



Figure 3: Average Classification Performance of SVM (+-black-solid), SVM All (×-black-dashed), and PL-
SVM (✷-blue-dotted: Partial Labels=2, ▽-green-dotted: Partial Labels=3, ⊙-red-dotted: Partial Labels=4,
✸-magenta-dotted: Partial Labels=5) versus the size of partial label data across six data sets.

procedure as SVM All.) For all the algorithms, we set the
parameter values as follows:

• The regularization constant λ and the polynomial ker-
nel degree d are chosen from the set {10i}3

i=−3 and
{1, 2, 3, 4, 5}, respectively. Both the parameters λ and
d are selected using two fold cross validation on the
fully labeled training set.

• The sizes of the fully labeled training data and of the
partial label training data, |L| and |PL|, are selected
from the set {100, 200, 400, 800}. Both the fully la-
beled training data and the partial label training data
are randomly sampled from the training set.

• The size of the partial labels, |Yi|, is chosen from the
set {2, 3, 4, 5}. For each example, the labels in the
partial labels (except the true label) are randomly se-
lected.

In Figures 6 and 7, we plot the classification performance
of SVM, SVM All and PL-SVM (one for each value of the
partial label size) versus the size of the partial label data
at different sizes of the fully labeled training data for six
data sets. To summarize the information, Figure 3 shows
the same information but averaging across the six data sets.
For all six data sets, we observe that the performance of the
PL-SVM is between the performance of SVM and SVM All.
This behavior is what we should expect since partial label
information helps to significantly improve the performance

of PL-SVM over SVM which does not use this information;
and fully labeled data should still provide more discrimina-
tive information to the SVM All than partial labels could to
the PL-SVM. We also notice the expected learning curve for
PL-SVM as the size of the partial label data is varied. For
a fixed fully labeled training size, as we increase the amount
of the partial label data the performance of PL-SVM is also
increasing. Moreover, we also observed the inverse relation
between the amount of performance improvement of PL-
SVM over SVM and the size of the partial labels. For fixed
sizes of the fully labeled data and the partial label data, as
we increase the size of the partial labels the performance of
PL-SVM is decreasing. This behavior is expected since the
larger the size of the partial labels the less the discriminative
power of each partial label example.

5. CONCLUSION
In this paper, we address the problem of learning when

some cases are fully labeled while other cases are only par-
tially labeled, in the form of partial labels. Partial labels are
represented as a set of possible labels for each training ex-
ample, one of which is the correct label. We formulate the
partial label learning problem as a convex quadratic opti-
mization minimizing the L2-norm regularized empirical risk
using hinge loss and present an efficient algorithm for clas-
sification in the presence of partial labels.



Figure 4: Percentage of Performance Improvement of PL-SVM (✷-blue-solid: Partial Labels=2, ▽-green-
dashed: Partial Labels=3, ⊙-red-dashdot: Partial Labels=4, ✸-magenta-dotted: Partial Labels=5) over SVM
versus the size of fully labeled data where the size of the partial label data is fixed at 800.

Figure 5: Classification Performance of SVM All (×-black-dashed), and PL-SVM (✷-blue-dotted: Partial
Labels=2, ▽-green-dotted: Partial Labels=3, ⊙-red-dotted: Partial Labels=4, ✸-magenta-dotted: Partial
Labels=5) versus the size of partial label data in the absence of fully labeled data.



Figure 6: Classification Performance of SVM (+-black-solid), SVM All (×-black-dashed), and PL-SVM
(✷-blue-dotted: Partial Labels=2, ▽-green-dotted: Partial Labels=3, ⊙-red-dotted: Partial Labels=4, ✸-
magenta-dotted: Partial Labels=5) versus the size of partial label data for three data sets: letter, mnist, and
pendigits.



Figure 7: Classification Performance of SVM (+-black-solid), SVM All (×-black-dashed), and PL-SVM
(✷-blue-dotted: Partial Labels=2, ▽-green-dotted: Partial Labels=3, ⊙-red-dotted: Partial Labels=4, ✸-
magenta-dotted: Partial Labels=5) versus the size of partial label data for three data sets: satimage, segment,
and usps.
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