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Abstract

This paper studies two-class (or binary) classification of elements X in Rk that allows for

a reject option. Based on n independent copies of the pair of random variables (X, Y )

with X ∈ Rk and Y ∈ {0, 1}, we consider classifiers f(X) that render three possible

outputs: 0, 1 and R. The option R expresses doubt and is to be used for few observations

that are hard to classify in an automatic way.

Chow (1970) derived the optimal rule minimizing the risk P{f(X) 6= Y, f(X) 6= R} +

dP{f(X) = R}. This risk function subsumes that the cost of making a wrong decision

equals 1 and that of utilizing the reject option is d. We show that the classification

problem hinges on the behavior of the regression function η(x) = E(Y |X = x) near d and

1− d. (Here d ∈ [0, 1/2] as the other cases turn out to be trivial.)

Classification rules can be categorized into plug-in estimators and empirical risk mini-

mizers. Both types are considered here and we prove that the rates of convergence of

the risk of any estimate depends on P{|η(X) − d| ≤ δ} + P{|η(X) − (1 − d)| ≤ δ} and

on the quality of the estimate for η or an appropriate measure of the size of the class of

classifiers, in case of plug-in rules and empirical risk minimizers, respectively.

We extend the mathematical framework even further by differentiating between costs as-

sociated with the two possible errors: predicting f(X) = 0 whilst Y = 1 and predicting

f(X) = 1 whilst Y = 0. Such situations are common in, for instance, medical studies

where misclassifying a sick patient as healthy is worse than the opposite.
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1 Introduction

Pattern recognition is about classifying an observation that takes values in some feature space

X as coming from a fixed number of classes, say 0, 1, . . . ,M . The simplest framework is that

of binary classification (M = 1) with X = Rk. It is not assumed that an observation X = x

fully determines the label y; the same x may give rise to different labels. Based on a collection

of labelled observations (xi, yi), the statistician’s task is to form a classifier f : Rk → {0, 1}
which represents her guess of the label Y of a future observation X. This framework is known

as supervised learning in the literature. The classifier

f(x) =

{
0 if P{Y = 0|X = x} ≥ P{Y = 1|X = x}
1 otherwise

(1)

has the smallest probability of error, see, for example, Devroye, Györfi, and Lugosi (1996,

Theorem 2.1, page 10). In this paper the classifiers are allowed to report “I don’t know” ex-

pressing doubt, if the observation x is too hard to classify. This happens when the conditional

probability

η(x) = P{Y = 1|X = x} (2)

is close to 1/2. Indeed, if

P{Y = 0|X = x} = P{Y = 1|X = x} = 1/2, (3)

then we might just as well toss a coin to make a decision. The main purpose of supervised

pattern recognition or machine learning is to classify the majority of future observations in

an automatic way. However, allowing for the reject option (“I don’t know”) besides taking a

hard decision (0 or 1) is of great importance in practice, for instance, in case of medical di-

agnoses. Nevertheless, this option is often ignored in the statistical literature. Chow (1970),

Ripley (1995) and recently Freund, Mansour, and Schapire (2004) are notable exceptions.

Some references in the engineering literature are Fumera and Roli (2003), Fumera, Roli, and

Giacinto (2000), Golfarelli, Maio, and Maltoni (1997), and Hansen, Liisberg, and Salomon

(1997).
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Chow (1970), see Ripley (1995, Chapter 2) for a more general overview, put forth the

decision theoretic framework. Let f : Rk :→ {0, 1, R} be a classifier with a reject option,

where the interpretation of the output R is of being in doubt and taking no decision. The

misclassification probability is

P{f(X) 6= Y, f(X) 6= R}

and reject or doubt probability is

P{f(X) = R}.

Assuming that the cost of making a wrong decision is 1 and that of utilizing the reject option

is d > 0, the appropriate risk function to employ is

dP{f(X) = R}+ P{f(X) 6= Y, f(X) 6= R}. (4)

Chow (1970) shows that the optimal rule minimizing the risk (4) is

f∗(x) =


0 if 1− η(x) > η(x) and 1− η(x) > 1− d

1 if η(x) > 1− η(x) and η(x) > 1− d

R if max(η(x), 1− η(x)) ≤ 1− d

(5)

which we will refer to as the Bayes rule with reject option. According to this rule, we should

Figure 1: Bayes rule (with reject option).

never invoke the reject option if d ≥ 1/2 and we should always reject if d = 0. For this reason

we can restrict ourselves to the cases 0 ≤ d ≤ 1/2 and we denote the relevant risk function
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(4) by

Ld(f) = dP{f(X) = R}+ P{f(X) 6= Y, f(X) 6= R}. (6)

The Bayes rule (5) simplifies to

f∗(x) =


0 if η(x) < d

1 if η(x) > 1− d

R otherwise,

(7)

see Figure 1, and we denote its risk by

L∗d = Ld(f∗) = min
f :Rk→{0,1,R}

Ld(f). (8)

The case d = 1
2 reduces to the classical situation without the reject option and the Bayes

classifier (7) reduces to (1). In the remainder of the paper we demonstrate that the behavior

of η(x) near the value 1/2 and more generally in the interval (d, 1 − d) is of no real impor-

tance; the classification problem hinges on what happens outside this interval, especially at

the values d and 1− d.

The paper is organized as follows. Section 2 discusses plug-in rules based on the Bayes

rule (7). These rules are called this way since they replace the regression function η(x) by an

estimate η̂(x) in formula (7). Besides introducing the reject option, we extend the existing

theory for plug-in rules [Devroye, Györfi and Lugosi (1996, Theorem 2.2)] since our bound

depends explicitly on both the difference |η̂(X) − η(X)| and the behavior of η(X) near the

values d and 1 − d. We show that very fast rates are possible under reasonable margin

conditions, extending a recent result by Audibert and Tsybakov (2005) to our more general

framework. We illustrate the theory with an application to speech recognition in Section 3.

Section 4 extends the existing theory of empirical risk minimizers by allowing for the

reject option. Here an estimate is found by minimizing the empirical counterpart of the risk

(6) over an entire class of classifiers F . We demonstrate that the rates of the risk (6) of the

resulting minimizers to the Bayes risk L∗d depends on the metric entropy of (a transformed

class of) F and on the behavior of η(X) near the values d and 1 − d. Again our results are

in line with the recent developments of the theory for d = 1/2 [see, for example, Boucheron,
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Bousquet, and Lugosi (2004b), Massart and Nédélec (2003), Tsybakov (2004), Tarigan and

Van de Geer (2004) and Tsybakov and Van de Geer (2003)] and extend the theory to the

general case 0 ≤ d ≤ 1/2.

Section 5 pushes the theory even further. We differentiate between misclassification costs

of the cases Y = 1 & f(X) = 0 and Y = 0 & f(X) = 1, a situation common in, for instance,

medical studies where misclassifying a sick patient as healthy is worse than the opposite. The

risk function (6) is changed to accommodate for this differentiation and the results obtained

in Section 2 for the plug-in estimates are extended in a straightforward way.

2 Plug-in rules

In this section we consider the plug-in rule

f̂(x) =


0 if η̂(x) < d

1 if η̂(x) > 1− d

R otherwise

(9)

based on any estimate η̂ of the regression function

η(x) = P{Y = 1|X = x} = E{Y |X = x}

and the form (7) of the optimal classifier. Our main result of this section, Theorem 2 below,

shows that the difference between the risk Ld(f̂) of the estimate f̂ and the optimal (Bayes)

risk L∗d, the

∆d(f̂) = Ld(f̂)− L∗d (10)

depends on the following two criteria:

(1) How well does η̂(X) estimate η(X)? and

(2) What is the behavior of η(X) near d and 1− d?

First we prove an auxiliary result which rewrites ∆d(f̂) into a convenient form.
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Lemma 1. For any 0 ≤ d ≤ 1/2, we have

∆d(f̂) = E |d− η(X)|
(
1{f∗(X)=0, bf(X) 6=f∗(X)} + 1{ bf(X)=0, bf(X) 6=f∗(X)}

)
+

E |1− d− η(X)|
(
1{f∗(X)=1, bf(X) 6=f∗(X)} + 1{ bf(X)=1, bf(X) 6=f∗(X)}

)
. (11)

Proof. We first write the difference

∆d(f̂) = d
(
P
{

f̂(X) = R
}
− P {f∗(X) = R}

)
+(

P
{

f̂(X) = 1, Y = 0
}
− P {f∗(X) = 1, Y = 0}

)
+(

P
{

f̂(X) = 0, Y = 1
}
− P {f∗(X) = 0, Y = 1}

)
.

Observe that

P
{

f̂(X) = 1, Y = 0
}

+ P
{

f̂(X) = 0, Y = 1
}

= E(1− η(X))1{ bf(X)=1} + Eη(X)1{ bf(X)=0}
= E(1− η(X))1{ bf(X)=1} − Eη(X)1{ bf(X)=1}
−Eη(X)1{ bf(X)=R} + Eη(X)

= E(1− 2η(X))1{ bf(X)=1} − Eη(X)1{ bf(X)=R} + Eη(X).

Combining the two preceding displays, we obtain

∆d(f̂) = E(1− 2η(X))
(
1{ bf(X)=1} − 1{f∗(X)=1}

)
+

E (d− η(X))
(
1{ bf(X)=R} − 1{f∗(X)=R}

)
(12)

= E(d− η(X) + 1− d− η(X))
(
1{ bf(X)=1} − 1{f∗(X)=1}

)
+

E (d− η(X))
(
1{ bf(X)=R} − 1{f∗(X)=R}

)
Recall the definition of f∗ given by (7), and split the indicator functions using disjoint events,
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and the above becomes

= E (|d− η(X)|+ |1− d− η(X)|)×

×
(
1{ bf(X)=1, f∗(X)=0} + 1{ bf(X)=0, f∗(X)=1}

)
+

E |d− η(X)|
(
1{ bf(X)=0, f∗(X)=R} + 1{ bf(X)=R, f∗(X)=0}

)
+

E |1− d− η(X)|
(
1{ bf(X)=1, f∗(X)=R} + 1{ bf(X)=R, f∗(X)=1}

)
= E |d− η(X)|

(
1{f∗(X)=0, bf(X) 6=f∗(X)} + 1{ bf(X)=0, bf(X) 6=f∗(X)}

)
+

E |1− d− η(X)|
(
1{f∗(X)=1, bf(X) 6=f∗(X)} + 1{ bf(X)=1, bf(X) 6=f∗(X)}

)
.

The proof is complete.

This lemma clearly confirms that the Bayes rule with reject option f∗ defined in (7) min-

imizes the risk Ld(f) as already shown in Chow (1970). Indeed, the right-hand side in (11)

is non-negative and equals zero if and only if f̂ = f∗.

Theorem 2. Let 0 ≤ d ≤ 1/2 and δ ≥ 0, and

Pd(δ) = P {|d− η(X)| ≤ δ}+ P {|1− d− η(X)| ≤ δ} . (13)

We have

∆d(f̂) ≤ inf
δ≥0

{2(1− d)P {|η(X)− η̂(X)| > δ}+ δPd(δ)} . (14)

Proof. We first recall from (12) in the proof of Lemma 1 that

∆d(f̂) = E |d− η(X)|
(
1{f∗(X)=0, bf(X) 6=f∗(X)} + 1{ bf(X)=0, bf(X) 6=f∗(X)}

)
+

E |1− d− η(X)|
(
1{f∗(X)=1, bf(X) 6=f∗(X)} + 1{ bf(X)=1, bf(X) 6=f∗(X)}

)
.
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Let F1, F2 denote the following events

F1 = {η(X) < d < η̂(X)} ∪ {η̂(X) < d < η(X)}

F2 = {η(X) < 1− d < η̂(X)} ∪ {η̂(X) < 1− d < η(X)}

The first term in the above expression can be bounded as follows:

E |d− η(X)|
(
1{f∗(X)=0, bf(X) 6=f∗(X)} + 1{ bf(X)=0, bf(X) 6=f∗(X)}

)
= E |d− η(X)|1F1

(
1{|η−bη|>δ} + 1{|η−bη|≤δ}

)
≤ E |d− η(X)|1{|η−bη|>δ} + E |d− η(X)|1{|d−η(X)|≤δ}

≤ (1− d)P {|η − η̂| > δ}+ δP {|d− η(X)| ≤ δ}

Similarly, one can bound

E |1− d− η(X)|
(
1{f∗(X)=1, bf(X) 6=f∗(X)} + 1{ bf(X)=1, bf(X) 6=f∗(X)}

)
= E |1− d− η(X)|1F2

(
1{|η−bη|>δ} + 1{|η−bη|≤δ}

)
≤ (1− d)P {|η − η̂| > δ}+ δP {|1− d− η(X)| ≤ δ}

We conclude the proof by combining the two preceding displays.

This theorem generalizes and improves Theorem 2.2 in Devroye, Györfi and Lugosi (1996).

Their result states that in absence of the reject option (d = 1
2),

∆ 1
2
(f̂) = E|1− 2η(X)|1{ bf(X) 6=f∗(X)} ≤ 2E|η̂(X)− η(X)|.

Note that the inequality on the right does not reveal the crucial behavior of η(X) near 1/2.

Theorem 2 above does emphasize the importance of η(X) near d and 1 − d through the

probability Pd(δ).

Remark. Theorem 2 indicates that fast rates (faster than n−1/2) can be achieved using

plug-in estimates. We briefly discuss two situations:

(a) There exists a δ0 > 0 such that Pd(δ0) = 0.
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(b) There exist C < ∞, α ≥ 0 such that Pd(δ) ≤ Cδα for all δ > 0.

The first condition means that for some δ0 and all x ∈ X ′ ⊆ Rk with P{X ∈ X ′} = 1,

|d− η(x)| ≥ δ0 and |1− d− η(x)| ≥ δ0,

that is, η(x) stays away from the values d and 1 − d. In this case very fast rates for ∆d(f̂)

are possible, depending on the smoothness of η only. This condition is used by Nédélec and

Massart (2003)in the context of binary classification without the reject option (d = 1/2).

The second condition, analogous to Tsybakov’s margin condition [cf. Tsybakov (2004)],

again in the context of binary classification without the reject option (d = 1/2), means that

η(X) puts little probability mass around d and 1 − d. We illustrate this by assuming that

the probability

rn(δ) = P {|η̂(X)− η(X)| ≥ δ}

is of the form C0 exp(−C1n
γδ2) for some C0, C1 and γ > 0. Typically, γ will depend on the

degree of smoothness of η and the dimension k of the feature space. Condition (b) ensures

that Pd(δ) ≤ Cδ1+α. Theorem 2 guarantees that ∆d(f̂) is bounded above by rn(δ) + Cδ1+α.

Choosing δ = log(n)/(C1n
γ/2), we obtain that for some C ′ > 0,

∆d(f̂) ≤ C ′n−(1+α)γ/2 · log1+α(n).

The two extreme cases are α = 0 and α = +∞. The case α = 0 does not impose any restric-

tions on η and it guarantees only the slowest possible rates. Since no structure is imposed

on η, it takes into account the worst possible scenario [i.e., the worst distribution of the pair

(X, Y )]. The case α = +∞ on the other hand imposes a lot of structure and it corresponds

to situation (a). This is the optimal situation where the fastest rates can be guaranteed. See

Audibert and Tsybakov (2005) for the corresponding situation without the reject option.

3 Illustrations

As an illustration to the plug-in rules with reject option, we consider two popular classification

methods: kernel rules and logistic regression and apply the above to a (functional) dataset
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that comprises 100 digitized voice recordings of the words boat (55 times) and goat (45 times).

We refer the reader to Biau, Bunea, and Wegkamp (2005) for a complete description of the

data. We represent the data as D = {(Xi, Yi) ∈ Rk×{0, 1}, i = 1 . . . n}, where n = 100, Xi is

a curve (digitized recording) and Yi is the word membership of Xi; Yi = 0(1) corresponds to

boat (goat). We compute for each Xi its Fourier coefficients (Xi1, Xi2, . . . ) and select the first

k of them (effective dimension) to represent the curve. Classification is further performed

on the coefficients (Xi1, Xi2, . . . , Xik) ∈ Rk. Let D−i be obtained by removing the i-th case

(Xi, Yi) and let η̂−i be a generic estimator of η using D−i. For each i = 1 . . . n, we construct

the plug-in classifiers

f̂−i(x) =

{
0 if η̂−i(x) ≤ 0.5

1 if η̂−i(x) > 0.5

and estimate the error rate by

1
n

n∑
i=1

1{Yi 6= bf−i(Xi)}. (15)

In what follows we briefly recall the two standard rules mentioned above, estimate the various

(smoothing) parameters required, then introduce the reject option, and study the performance

of the rejection mechanism based on the error-reject trade-off.

Logistic regression. In the classical setup of the logistic regression rule, the conditional

probability is estimated as

η̂bβ(x) =
(
1 + e−

bβT x
)−1

for x ∈ Rk

We select the effective dimension k to minimize the error rate (15). The choice k̂ = 19 yields

the best error rate of 0.20.
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Kernel rules. For a given kernel K : Rk → R and a bandwidth h > 0, an estimate of the

a posteriori probability η is

η̂K,h(x) =

n∑
i=1

1{Yi=1}K

(
x−Xi

h

)
n∑

i=1

K

(
x−Xi

h

) (16)

The estimated effective dimension and bandwidth, minimizing the error rate (15), are k̂ = 43

ĥ = 0.003, yielding an error rate of 0.13.

In both settings, we introduce the reject option, and the corresponding classifiers

f̂(x) =


0 if η̂(x) < d

1 if η̂(x) > 1− d

R if d ≤ η̂(x) ≤ 1− d

η̂ being replaced by the logistic regression - and kernel estimators. Estimates of the error

rate E = P{Y 6= f̂(X), f̂(X) 6= R}, reject rate R = P{f̂(X) = R} and the risk function

(4) as functions of the rejection threshold d are computed using the leave-one-out procedure

described above.

For the first situation, logistic regression rule, the left panel of Figure 2 presents the error

rate (dashed) and reject rate (solid) as functions of the rejection threshold d. The right panel

of Figure 2 contains the misclassification rate (dashed) and the risk (4) (solid) as functions

of d. As Chow (1970) points out, the performance of this procedure can be judged by the

error-reject trade-off. The left panel in figure 3 shows that employing a reject option in this

situation does not seem too effective: The error rate E = E(R), as a function of the reject rate

R, decreases at a nearly constant rate of roughly 0.2. Perhaps a more interesting plot, that of

the estimated error-reject ratio, is presented in the right panel of Figure 3. The error-reject

ratio is the proportion of rejected items that would have been misclassified, that is,

E −R ratio =
E(0)− E(R)

R
for R > 0.
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We refer to Hansen, Liisberg, and Salomon (1997) for a related discussion in the context of

handwritten digit recognition. As one can see, invoking the reject option is worst initially

(E − R ratio of 0 at small reject rates, d close to 1
2), and it improves afterwards, with a

maximum of 30% rejected curves that would normally be incorrectly classified.

Figure 2: Logistic regression rule. Left: Error rate P{Y 6= f(X), f(X) 6= R} (dashed curve)
and rejection rate P{f(X) = R} (solid curve) versus rejection cost d. Right: Risk function
P{Y 6= f(X), f(X) 6= R} + dP{f(X) = R} (solid curve) and misclassification rate P{Y 6=
f(X)} (dashed curve) versus rejection cost d.

Figure 3: Logistic regression rule. Left: trade-off curve. Right: error-reject ratio curve.

The situation changes dramatically by using a kernel rule. The error rate is reduced

almost by a factor of 2, with a dramatic reduction in the reject rate at small values of d (see
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Figure 4). The right panel of Figure 5 shows a perfect rejection mechanism (an estimated

E − R ratio equal to 1) at small rejection rates (d close to 1
2) with a decline afterwards.

The trade-off curve (left panel of Figure 5), shows a significant improvement as well, at

relatively small rejection rates (10%−20%, the already low error rate can be further reduced

significantly.

Figure 4: Kernel rule. Left: Error rate P{Y 6= f(X), f(X) 6= R} (dashed curve) and rejection
rate P{f(X) = R} (solid curve) against rejection cost d. Right: Risk function (solid curve)
P{Y 6= f(X), f(X) 6= R}+ dP{f(X) = R} and misclassification rate (dashed curve) P{Y 6=
f(X)} against rejection cost d.

Figure 5: Kernel rule. Left: trade-off curve. Right: Error-reject ratio.
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4 Empirical risk minimization

This section discusses minimization of the empirical counterpart

L̂d(f) =
d

n

n∑
i=1

1{f(Xi) = R}+
1
n

n∑
i=1

1{f(Xi) 6= Yi, f(Xi) 6= R} (17)

of the risk Ld(f) defined in (6) over a set F of classifiers f : Rk → {0, 1, R} with rejection

option R. Let f̂ ∈ F be the minimizer of L̂d(f). The aim is to establish an oracle inequality

for the regret ∆d(f̂) = Ld(f̂)− L∗d of the form

∆d(f̂) ≤ C inf
f∈F

∆d(f) + Rn

for some constant C ≥ 1. The remainder Rn depends on the sample size n, the margin

condition on η(x) and the size of the class F . We refer to e.g. Anthony and Bartlett (1999),

Bartlett and Mendelson (2003), Bartlett, Bousquet, and Mendelson (2004), Boucheron, Bous-

quet, and Lugosi (2004a and 2004b), Devroye, Györfi, and Lugosi (1996), Massart (2003),

and Van de Geer (2000) for a general theory of empirical risk minimizers.

We introduce a bit more notation. Since we are interested in ∆d(f) rather than Ld(f),

we introduce the loss function

gf,d(x, y) = d
(
1{f(x)=R} − 1{f∗(x)=R}

)
+ (18)(

1{f(x) 6=y,f(x) 6=R} − 1{f∗(x) 6=y,f∗(x) 6=R}
)

so that

Egf,d(X, Y ) = ∆d(f). (19)

We define

∆̂d(f) =
1
n

n∑
i=1

gf,d(Xi, Yi). (20)

We demonstrated in Section 2 that the degree of difficulty of the classification problem de-

pends heavily on the behavior of η(X) near d and 1− d for the plug-in estimate. The same

conclusion holds for empirical risk minimizers. It turns out [see, for example, Boucheron,



15

Bousquet, and Lugosi (2004a and b), Bartlett and Mendelson (2003), and Massart and

Nédélec (2003), all for the case d = 1/2 only] that the way Eg2
f,d(X) relates to Egf,d(X, Y )

is an important ingredient for the rate of the remainder term Rn. Bartlett and Mendelson

(2003) call a class F that satisfies

Eg2
f,d(X, Y ) ≤ B {gf,d(X, Y )}β for all f ∈ F , (21)

a Bernstein(β, B)-class. We first obtain this link under the two scenarios [situation (a) and

(b)] considered previously in Section 2.

Lemma 3. Let f : Rk → {0, 1, R} be a classifier with a reject option, and let 0 ≤ d ≤ 1
2 .

Assume that for some δ0 > 0,

P { |d− η(X)| ≥ δ0, |1− d− η(X)| ≥ δ0 } = 1.

Then Egf,d(X, Y ) ≥ sEg2
f,d(X, Y ), where s = δ0/(1 + d)2 .

Proof. Since f and d are fixed, we write g in place of gf,d. Observe that

s−1Eg(X, Y ) = s−1∆d(f)

= s−1E|d− η(X)|
(
1{f(X)=0,f(X) 6=f∗(X)} + 1{f∗(X)=0,f(X) 6=f∗(X)}

)
+

s−1E|1− d− η(X)|
(
1{f(X)=1,f(X) 6=f∗(X)} + 1{f∗(X)=1,f(X) 6=f∗(X)}

)
≥ E (1 + d)2

(
1{f(X)=0,f(X) 6=f∗(X) + 1f∗(X)=0,f(X) 6=f∗(X)}

)
+

(1 + d)2 E
(
1{f(X)=1,f(X) 6=f∗(X)} + 1{f∗(X)=1,f(X) 6=f∗(X)}

)
= (1 + d)2 E

(
1{f(X) 6=f∗(X)} + 1{f(X)=1,f∗(X)=0 + 1f(X)=0,f∗(X)=1}

)
≥ (1 + d)2 P{f(X) 6= f∗(X)}

≥ Eg2(X, Y ),
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where the last inequality follows from the bound

|g(x, y)| ≤ d
(
1{f(x)=R, f(x) 6=f∗(x)} + 1{f∗(x)=R, f(x) 6=f∗(x)}

)
+(

1{f(x)=1, f∗(x)=0} + 1{f(x)=0, f∗(x)=1} + 1{f(x)=R, f(x) 6=f∗(x)} + 1{f∗(x)=R, f(x) 6=f∗(x)}
)

= (1 + d)
(
1{f(x)=R, f(x) 6=f∗(x)} + 1{f∗(x)=R, f(x) 6=f∗(x)}

)
+

(1 + d)
(
1{f(x)=1, f∗(x)=0} + 1{f(x)=0, f∗(x)=1}

)
≤ (1 + d)1{f(x) 6=f∗(x)}.

This proves the lemma.

Lemma 4. Let f : Rk → {0, 1, R} be a classifier with a reject option, and let 0 ≤ d ≤ 1
2 .

Assume that there exist A > 0 and α ≥ 0 such that for all t ≥ 0,

P {|1− d− η(X)| ≤ t} ≤ Atα and P {|d− η(X)| ≤ t} ≤ Atα. (22)

Then, for some finite constant C depending on A,α and d,

Eg2
f,d(X, Y ) ≤ C {Egf,d(X, Y )}α/(α+1) . (23)

The case α = 0 imposes no restriction on η and leads to slow rates. On the other extreme,

α = +∞ corresponds to the situation in Lemma 3 and leads to very fast rates. Tsybakov

(2004) made the pertinent observation that faster rates than n−1/2 can be obtained for em-

pirical risk minimizers f̂ even in the nontrivial case of L∗ 6= 0 - under assumption (22) in

case d = 1/2.

Proof of Lemma 4. Define the events E1, E2, E3 and E4 by

E1 = {f∗(X) = 1, f(X) 6= f∗(X)}, E2 = {f(X) = 1, f(X) 6= f∗(X)},

E3 = {f∗(X) = 0, f(X) 6= f∗(X)}, E4 = {f(X) = 0, f(X) 6= f∗(X)}.
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Lemma 1 implies that

∆d(f) = E |1− d− η(X)| (1E1 + 1E2) + E |d− η(X)| (1E3 + 1E4). (24)

The first term on the right can be bounded as follows:

E |1− d− η(X)|1E1 ≥ tP (E1 ∩ {|1− d− η(X)| > t} )

= tP {|1− d− η(X)| > t} − tP (Ec
1 ∩ {|1− d− η(X)| > t})

≥ t {(1−Atα)− P(Ec
1) }

= t {P(E1)−Atα} .

The other three terms in (24) can be handled in a similar way and we obtain

∆d(f) ≥ t ({P(E1 ∪ E2 ∪ E3 ∪ E4)− 4Atα}

≥ t (P{f(X) 6= f∗(X)} − 4Atα) .

Choosing

t =
(

P{f(X) 6= f∗(X)}
8A

)1/α

we find that

∆d(f) ≥ P
1+α

α {f(X) 6= f∗(X)}
2(8A)1/α

,

or

P{f(X) 6= f∗(X)} ≤
(
2(8A)1/α∆d(f)

) α
1+α

,

and we obtain that

Eg2(X, Y ) ≤ (1 + d)2 P{f(X) 6= f∗(X)}

≤ (1 + d)2
(
2(8A)1/α∆d(f)

) α
1+α

= C {Eg(X, Y )}
α

1+α ,
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for

C = 2
α

1+α (1 + d)2 (8A)1/(1+α).

This concludes the proof.

These two preliminary results allow us to formulate the first theorem. It assumes mini-

mization over a finite set of classifiers. This is for instance the case when we select tuning

parameters such as a bandwidth or dimension over a finite grid as in Biau, Bunea, and

Wegkamp (2005).

Theorem 5. Let F = {f1, . . . , fM} be a finite collection of classifiers f : Rk → {0, 1, R}
with reject option R. For 0 ≤ d ≤ 1/2 and α ≥ 0 fixed, let η satisfy condition (22) in Lemma

4. Then the minimizer f̂ = f̂(d,F) of the empirical risk L̂(f) defined in (17) satisfies the

following oracle inequality: There exists a constant C < ∞ such that for all n ≥ 1 and ρ > 0,

E∆d(f̂) ≤ (1 + ρ) min
f∈F

∆d(f) + C

(
log M

ρn

) 1+α
2+α

(25)

Proof. Set β = α/(1 + α). Since f̂ minimizes ∆̂d(f), we find that for any f ∈ F and ρ > 0,

∆d(f̂) = (1 + ρ)∆̂d(f̂) +
{

∆d(f̂)− (1 + ρ)∆̂d(f̂)
}

≤ (1 + ρ)∆̂d(f) +
{

∆d(f̂)− (1 + ρ)∆̂d(f̂)
}

and consequently

E∆d(f̂) ≤ (1 + ρ) min
f∈F

∆d(f) + E
{

∆d(f̂)− (1 + ρ)∆̂d(f̂)
}

.

Since we have

∆d(f̂)− (1 + ρ)∆̂d(f̂) ≤ max
1≤j≤M

∆d(fj)− (1 + ρ)∆̂d(fj)

= max
1≤j≤M

Egfj ,d(X, Y )− (1 + ρ)
1
n

n∑
i=1

gfj ,d(X, Y ),
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we find by Bernstein’s inequality that there exists a c0 < ∞ such that for all δ > 0,

P
{

∆d(f̂)− (1 + ρ)∆̂d(f̂) ≥ δ
}

≤
M∑

j=1

exp

(
−c0

nρ−1 {δ + ∆d(fj)}2

δ + ∆d(fj) + ∆d(fj)β

)

≤
M∑

j=1

exp

(
−c0

nρ−1 {δ + ∆d(fj)}2

{δ + ∆d(fj)} ∨ {δ + ∆d(fj)}β

)

≤ M exp
(
−c0nρ−1δ2−β

)
.

The proof of the theorem follows from a simple integration argument.

The second result extends Theorem 5 in that it allows for infinite classes F .

Theorem 6. Let α ≥ 0, 0 ≤ d ≤ 1/2 be fixed, and set β = α/(1 + α). Let F be a collection

of classifiers f : Rd → {0, 1, R} with reject option R. Let G be the class of loss functions gf,d

induced by f ∈ F and

G(R) =
{
g ∈ G : Eg2(X, Y ) ≤ R

}
.

For

Ψ(δ) ≥
∫ δ

0

√
H2(x,G(δ)) dx ∨ δ, (26)

we assume that δ−2Ψ(δ2β) is a non-increasing function in δ. Set ∆̄ = inff ∆d(f), and let δn

be

√
n(∆̄ + δn)2 ≥ c0Ψ((∆̄ + δn)β). (27)

Let η satisfy condition (22) in Lemma 4. Then the minimizer f̂ = f̂(d,F) of the empirical risk

L̂(f) defined in (17) satisfies the following oracle inequality: There exist positive constants

c, C < ∞ such that for all n ≥ 1 and δ > δn,

P
{

∆d(f̂) ≥ 2 min
f∈F

∆d(f) + δ

}
≤ C exp

(
−cnδ2−β

)
. (28)

Proof. Assume without loss of generality that the minimum of ∆d(f) is attained for some
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f̄ ∈ F , and write ∆̄ = ∆d(f̄). Since ∆̂d(f̂) ≤ ∆̂d(f̄), we find that

P
{

∆d(f̂) ≥ 2∆̄ + δ
}

= P

{
sup

f∈F : ∆d(f)≥2∆̄+δ

∆̂d(f̄)− ∆̂d(f) ≥ 0

}

≤
∞∑

j=1

P

{
sup
f∈Fj

∆̂d(f̄)− ∆̂d(f) ≥ 0

}

=
∞∑

j=1

P

{
sup
f∈Fj

(∆̂d −∆d)(f̄)− (∆̂d −∆d)(f)− (∆d(f)− ∆̄) ≥ 0

}

where

Fj =
{
f ∈ F : 2jδ ≤ ∆d(f)− 2∆̄ ≤ 2j+1δ

}
.

Consequently, we need to bound probabilities

Pj = P

{
sup
f∈Fj

(∆̂d −∆d)(f̄)− (∆̂d −∆d)(f) ≥ ∆̄ + 2jδ

}
.

Observe further that for each f ∈ Fj ,

E(gf̄ − gf )2(X, Y ) . (∆̄ + 2jδ)β,

by the condition on η. Invoke Lemma 8.5 of Van de Geer (2000, page 130) and assumption

(27) and the conclusion follows. See the reasoning at Mohammadi (2004, pp 57 – 59) for

details.

In the typical case where the classes of sets

{x ∈ Rd : f(x) = 1}, {x ∈ Rd : f(x) = 0} and {x ∈ Rd : f(x) = R},

indexed by f ∈ F , are VC classes with finite VC-dimension V , the preceding result yields

the oracle inequality

E∆d(f̂) ≤ 2 inf
f∈F

∆d(f) + C

(
V

n

) 1+α
2+α

, for some C < ∞.

This extends the result by Massart and Nédélec (2003), who obtain a similar result for the

case d = 1/2 (no reject option) only and who assume in addition that the Bayes classifier f∗
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belongs to the set F . Future work is needed to see whether it is possible to employ convex

risk functions that allow for faster computation.

To conclude this section we present yet another illustration, as a small application of

Theorem 5. We use the kernel rule (16) and the dataset boat-goat described in Section 3.

We split the data D into a training set D1 and D2, each of size 50 and consider, separately,

two choices for d: d = .25 and d = .50. For each pair (k, h), we use the training data D1 to

estimate η and the testing data D2 to estimate the risk

L̂h,k,b =
d

50

∑
(Xi,Yi)∈D2

1{ bfk,h(X)=R} +
1
50

∑
(Xi,Yi)∈D2

1{Y 6= bfk,h(X),fk,h(X) 6=R}.

We estimate the smoothing parameters (h, k) by the minimizers (k̂b, ĥb) of the empirical risk

above over the grid {1, 2, . . . , 100}×(0, 1]. This data-splitting procedure introduces additional

variability due to the randomness of the split. To reduce that, we suggest to repeat the above

procedure B = 41 times by taking various random splits of D into D1 and D2, and to choose

k̂ = median(k̂b) and ĥ = median(ĥb). Finally, we consider another B′ = 200 partitions, and

estimate the final risk using a simple sample average

L̂ =
1

B1

B1∑
b=1

L̂bh,bk,b
.

We present two situations (d = 0.5 - no reject option, and d = 0.25). At the fist stage of this

procedure, B = 41 splits are used to select the tuning parameters. We obtained ĥ = 0.003

and k̂ = 51 in case d = 0.25, and ĥ = 0.003 and k = 41 in case d = 0.5. Figure 6, left

and middle panels, depicts the corresponding histograms. The second stage uses B′ = 200

partitions of the data D to estimate the risk. The right panels in figure 6 show histograms

for the estimated risks. The average risks for the two situations considered were 0.1665 cor-

responding to d = 0.5 (no reject option) and 0.1520 for d = 0.25. The results are consistent

with those presented in Section 3.
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Figure 6: Histograms of the tuning parameters ĥ (left), k̂ (middle) and risk L̂ (right) with
d = 0.5 (top) and d = 0.25 (bottom).

5 Differentiation between misclassification errors

In what follows, for a given case (X, Y ) ∈ Rk ×{0, 1} and a classifier f , we say that we make

a type 1 error if Y = 0 and f(X) = 1 and a type 2 error if Y = 1 and f(X) = 0. Often,

in practice, type 1 errors are more costly than type 2 errors or vice-versa. It is the case in

the medical field for example where misclassifying a sick patient as healthy is, in general, far

worse than the reverse. In order to accommodate for that, we consider a more general risk

function

Ld,θ(f) = dP(f(X) = R) + P(Y = 1, f(X) = 0) + θP(Y = 0, f(X) = 1) (29)

where θ represents the ratio of the costs of the two types of error. The optimal rule minimizing

the risk (29) is:

f∗d,θ(x) =


0 if 1− η(x) > η(x) and 1− η(x) > 1− d

1 if η(x) > 1− η(x) and η(x) > 1− d
θ

R if d ≤ η(x) ≤ 1− d
θ

Following the same reasoning as before we consider d ≤ 1
2 and without loss of generality
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Figure 7: Bayes rule, weighted errors.

we can assume that θ > 1. Let L∗d,θ denote the Bayes error,

L∗d,θ = L∗d,θ(f
∗
d,θ) = min

f :Rd→{0,1,R}
Ld,θ(f).

and for any classifier f , the regret is:

∆d,θ(f) = Ld,θ(f)− L∗d,θ

Lemma 7. For any 0 ≤ d ≤ 1/2, and θ > 1, we have

∆d,θ(f̂) = E |d− η(X)|
(
1{f∗(X)=0, bf(X) 6=f∗(X)} + 1{ bf(X)=0, bf(X) 6=f∗(X)}

)
+

Eθ

∣∣∣∣1− d

θ
− η(X)

∣∣∣∣ (1{f∗(X)=1, bf(X) 6=f∗(X)} + 1{ bf(X)=1, bf(X) 6=f∗(X)}

)
. (30)

Proof. Following the proof of Lemma 1, we find that

∆d,θ(f̂) = d
(
P
{

f̂(X) = R
}
− P {f∗(X) = R}

)
+

θ
(
P
{

f̂(X) = 1, Y = 0
}
− P {f∗(X) = 1, Y = 0}

)
+(

P
{

f̂(X) = 0, Y = 1
}
− P {f∗(X) = 0, Y = 1}

)
.

Recall that

P
{

f̂(X) = 1, Y = 0
}

= E(1− η(X))1{ bf(X)=1}

P
{

f̂(X) = 0, Y = 1
}

= E(η(X))(1− 1{ bf(X)=1} − 1{ bf(X)=R})
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Thus,

∆d,θ(f̂) = E(θ − θη(X)− η(X))
(
1{ bf(X)=1} − 1{f∗(X)=1}

)
+

E (d− η(X))
(
1{ bf(X)=R} − 1{f∗(X)=R}

)
(31)

= E
[
d− η(X) + θ

(
1− d

θ
− η(X)

)](
1{ bf(X)=1} − 1{f∗(X)=1}

)
+

E (d− η(X))
(
1{ bf(X)=R} − 1{f∗(X)=R}

)
Just like before we split each indicator using disjoint events, and combining the above display

with (30), this yields:

= E
(
|d− η(X)|+ θ

∣∣∣∣1− d

θ
− η(X)

∣∣∣∣)×
×
(
1{ bf(X)=1, f∗(X)=0} + 1{ bf(X)=0, f∗(X)=1}

)
+

E |d− η(X)|
(
1{ bf(X)=0, f∗(X)=R} + 1{ bf(X)=R, f∗(X)=0}

)
+

Eθ

∣∣∣∣1− d

θ
− η(X)

∣∣∣∣ (1{ bf(X)=1, f∗(X)=R} + 1{ bf(X)=R, f∗(X)=1}

)

= E |d− η(X)|
(
1{f∗(X)=0, bf(X) 6=f∗(X)} + 1{ bf(X)=0, bf(X) 6=f∗(X)}

)
+

Eθ

∣∣∣∣1− d

θ
− η(X)

∣∣∣∣ (1{f∗(X)=1, bf(X) 6=f∗(X)} + 1{ bf(X)=1, bf(X) 6=f∗(X)}

)
which concludes the proof.

The equivalent of Theorem 2 is the following result.

Theorem 8. Let 0 ≤ d ≤ 1/2, δ ≥ 0, θ > 1 and

Pd(δ) = P {|d− η(X)| ≤ δ}+ P
{∣∣∣∣1− d

θ
− η(X)

∣∣∣∣ ≤ δ

}
. (32)

We have

∆d(f̂) ≤ inf
δ≥0

{
(2− d− d

θ
)P {|η(X)− η̂(X)| > δ}+ δPd(δ)

}
. (33)

The proof is very similar to the proof of Theorem 2 and is for this reason omitted.
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For illustration purposes we use the heart data set from the STATlog project. The data set

along with a complete description is available online at http://www.liacc.up.pt/ML/statlog/

datasets/heart/heart.doc.html. There are n = 270 cases and k = 13 attributes. The

problem is to distinguish between absence (0) and presence (1) of heart disease. The cost

of misclassifying a sick person as healthy is five times more than the reverse according to

the STATlog documentation, thus we set θ = 5. An analysis similar to the one described

in Section 3 is performed, using a logistic regression rule. Figure 8, left panel, presents the

error rates and rejection rate against the rejection threshold d. It should be noted that even

at d = 1
2 due to a high type 1 error cost the algorithm will reject 30% of the cases. A closer

analysis of the trade-off curves, summarized in Figure 9, reveals an important improvement,

though. The initial slopes of the two curves are rather steep, implying that for a slight in-

crease in the reject rate, a significant improvement in the two error rates can be achieved.

The rate of decay increases to 0 as the rejection rate gets higher.

Figure 8: Logistic regression rule. Left panel: Error rates P{Y = 1, f(X) = 0}, P{Y =
0, f(X) = 1} and rejection rate P{f(X) = R} against rejection cost d. Right panel: Risk
function P{Y = 1, f(X) = 0}+ θP{Y = 0, f(X) = 1}+ dP{f(X) = R} and misclassification
rate P{Y 6= f(X)} against rejection cost d.
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Figure 9: Logistic regression rule. Trade-off curves: P{Y = 1, f(X) = 0} against the rejection
rate P{f(X) = R} (left) and P{Y = 0, f(X) = 1} against the rejection rate P{f(X) = R}
(right).
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