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ABSTRACT Inkjet printing technology uses the low-cost direct deposition manufacturing technique for 

printing and is applicable in various fields including optics, ceramics, three-dimensional printing in 

biomedicine, and conductive circuitry. This study reviews the classifications and applications of inkjet 

printing technologies, with a focus on recent publications. The different design approaches, applications, 

and research progress of several inkjet printing techniques are reviewed. Among them, the piezoelectric 

inkjet printing technology is the main focus owing to its reliability and handling of a diverse range of inks. 

A piezo-driven inkjet printhead is activated by applying a voltage waveform to a piezoelectric membrane. 

The waveform ensures the formation of the designed droplet and a stable jet. A survey of various driving-

voltage waveforms is conducted, which can serve as a reference to the research community that uses piezo-

driven inkjet printheads. The challenges of printing quality, stability, and speed and their solutions as 

published in recent studies are reviewed. Technologies for producing high-viscosity inkjets are explored, 

and the applications of inkjet printing technology in textile, displays, and wearable devices are discussed. 

INDEX TERMS Inkjet Printing Technology, Printhead, Piezoelectric Inkjet Printing, Satellite droplet, 

Voltage Waveform 

I. INTRODUCTION 

Inkjet printing technology has applications in the fields of 

bioengineering [1], three-dimensional (3D) printing of 

microstructures [2], flexible and textile electronics [3], and 

micromechanical and microfluidic devices [4]. In 1858, 

William Thomson and Abbe Nollet invented an inkjet-like 

recording device with a continuous inkjet head [5], which 

paved the way for inkjet printheads. This technology was 

further matured by the introduction of the equations of fluid 

motion, drop-on-demand (DoD) inkjet heads with the 

squeeze, bend, push, and shear deformation modes using a 

piezoelectric actuator, and DoD thermal inkjet (TIJ) 

printheads [6]. 

Inkjet printing technology can be classified into two 

groups, continuous ink jet (CIJ) and DOD ink jet [6]. In a 

CIJ system, a stream of droplets is ejected continuously 

under an applied electric field and a charging electrode. The 

uncharged droplets are received by a catcher. In a DOD 

printing system, the droplet can be ejected by a voltage 

waveform. Referenced from [6] and further modified with 

information on the latest printing technologies. Fig. 1 

shows the classification of inkjet printing technology. 

Several methods including needle-based printing [7], 

piezoelectric [8] and thermal [9] inkjet printing, 

electrohydrodynamic (EHD) jet printing [10], laser-based 

printing [11], aerosol jet printing (AJP) [12], surface 

acoustic-waves (SAW) printing [13], acoustophoretic 

printing [14], and drop impact printing [15] were 

demonstrated. 

 All these methods have their merits and demerits that 

make it suitable for printing resolution, various materials and 

applications. For example piezoelectric, thermal, needle-

based and acoustophoretic printing are nozzle-based methods 

that are prone to clogging when attempting to extend their 

use for printing the inks which can cause nozzle blockage.  

However, piezoelectric inkjet printing is the most mature and 

reliable technology [16]. The mechanical structure of a 

piezoelectric inkjet printhead (PIP) has an ink chamber 

connected to the ink cartridge through a narrow path called 

the restrictor or throttle. On top of the ink chamber is a 
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membrane composed of a piezoelectric material sandwiched 

between two electrodes. A nozzle supplies ink droplets to the 

outer substrate by applying an electrical pulse to the piezo-

driven membrane on top of the ink chamber. This membrane 

pressurizes the chamber, increasing the fluid velocity at the 

nozzle. The high velocity of the fluid leads to droplet 

formation at the nozzle exit [16]. The piezoelectric 

membrane, ink chamber, and nozzle are manufactured on 

wafers using microelectromechanical systems (MEMS). 

These structures are combined using an MEMS-based 

bonding technique to fabricate a printhead device. The TIJ 

printhead consists of a resistor, a chamber and a nozzle. An 

electrical pulse applied to the resistor heats the fluid, forming 

a vapor bubble that pushes the fluid through the nozzle, thus 

producing a droplet or a series of droplets [16]. 

Several studies have reviewed inkjet printing 

technologies. Reference [17] reviewed various materials 

and the application of inkjet technology to print them. 

These technologies, ranging from PIP to EHD printing, 

have various applications in printing 2D or 3D materials at 

the micrometer and nanometer scales [18][19]. Reference 

[6] reviewed the history of PIP dynamics, covering the 

topics of actuation, ink chamber and nozzle acoustics, 

droplet formation, wetting, and air bubbles [6]. Li et al. [8] 

reviewed various piezo-driven inkjet printhead designs, 

along with their applications and challenges. Kwon et al. 

[20] reviewed commercially available printheads, ink 

supply systems, and inkjet printing technologies. Reference 

[21] explored microdroplet generation methods [21]. 

In this study, we focused on the classifications and 

applications of printing technologies. Focus is laid on the 

piezoelectric inkjet printing technology, especially the 

various voltage waveforms, the influence of voltage 

waveform on droplet formation, and methods to optimize 

these waveforms. Research articles that discussed the 

challenges related to the printing quality, stability, and 

speed of piezo-driven printheads and their solutions were 

articulated. Furthermore, high-viscosity jet ink printing 

technologies were discussed. Finally, various applications 

of different inkjet printing technologies in the fields of 

digital textile printing (DTP), display pixel printing, MEMS 

and wearable, stretchable, flexible devices were reviewed.  

 

 
FIGURE 1.  Classification of printing technologies [6]. 

II. TYPES OF INKJET PRINTING TECHNOLOGY 

A.  PIEZOELECTRIC INKJET PRINTING 

In a PIP, the shape of the piezoelectric transducer changes 

under an applied voltage. This generates a pressure pulse in 

the ink chamber, resulting in the ejection of ink droplet 

from the nozzle connected with the chamber. A PIP can be 

in the squeeze, push, shear, or bend mode (Fig. 2). Most 

studies have demonstrated the bend mode. 

 

 
FIGURE 2.  Classification of piezo-driven inkjet printheads. (a) squeeze 
mode, (b) push mode, (c) shear mode, (d) bend mode. The figure was 
referenced from reference [6]. 

 

1) ACTUATION MECHANISMS AND EFFECT OF 
VOLTAGE WAVEFORM 

The PIP can be actuated by using either the push–pull (Fig. 

3-a) or pull–push mode (Fig. 3-b). Generally, for these 

modes, a single trapezoidal pulse called the standard 

voltage waveform is used, which is composed of the rise, 

dwell, and fall times. At the rising edge of the pull–push 

mode, the piezoelectric membrane bends upward (z-axis), 

causing the ink chamber to expand and generate a negative 

pressure. Meanwhile, the ink is sucked from the nozzle and 

restrictor toward the center of the ink chamber. The 

membrane is still bent upward along the z-axis during the 
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dwell time. At the falling edge, the membrane bends toward 

the ink chamber, causing the chamber to contract and 

generate a positive pressure. Thus, the droplet is ejected 

from the nozzle exit. The push–pull mode works opposite 

of the pull–push mode, i.e., the membrane is pushed toward 

the ink chamber at the rising edge and bent upward in the z-

direction at the falling edge of the voltage waveform. 

References [22][23] have studies the push–pull actuation 

mechanism [22][23], in which the jet pressure and ink 

droplet velocity are not affected by the change in the dwell 

time of the voltage waveform [23]. However, this mode has 

a low velocity. In the case of the pull–push mode, although 

the jet pressure and droplet velocity fluctuate with the dwell 

time, the velocity is high. Because printing applications 

require high jet velocities, researchers have focused on the 

pull–push actuation mechanism. 

The ink chamber still undergoes pressure oscillations 

even after the first ink droplet has been ejected under an 

applied standard voltage waveform using the pull–push 

actuation mechanism [24]. These undesired pressure 

oscillations decay after several microseconds, cause 

variations in the properties of the subsequent ink drops, and 

form satellites, which degrades the inkjet printhead 

performance. A voltage waveform with two trapezoidal 

pulses to suppress the undesired pressure oscillations was 

formulated. Based on the polarity, the voltage waveform 

was divided into two categories by pulse type, unipolar 

[25][26] and bipolar [27][28]. In both the cases, the first 

pulse was used for jetting an ink drop, whereas the second 

one, with the same or opposite polarity, was used to damp 

the undesired pressure oscillations. 

Kwon and Kim [25] used the waveform with unipolar 

pulses. They extracted the pressure wave information from 

the ink chamber using piezoelectric self-sensing 

measurement by measuring the piezo-current. The second 

pulse was used to suppress the undesired pressure 

oscillations. They set the magnitude of the second 

waveform to half that of the first one, which cancelled out 

the undesired pressure oscillations. The start time of the 

second waveform is highly sensitive to oscillations in the 

unipolar voltage waveform. The undesired pressure 

oscillations were suppressed with the optimal start time of 

the second pulse of 18.8 µs; however, if the start time were 

more or less than this threshold, then the jetting 

performance would be poor, or even worse than the single 

voltage waveform in the case of a decreased second pulse 

start time. In addition to the suppression of undesired 

pressure oscillations, the suppression of satellite droplet 

formation has also been demonstrated by using a voltage 

waveform with unipolar pulses [26]. The disadvantage of 

using this type of waveform is that it takes longer to 

dampen the undesired pressure oscillations than with the 

voltage waveform with bipolar pulses [29]. Therefore, 

mostly voltage waveforms with bipolar pulses have been 

used in the literature [27]–[30]. 

To obtain a better jet, the optimal parameters of the jet 

pulse must be determined. The optimal parameter can be 

defined as the highest possible velocity and sufficient 

volume of an ink droplet for a specific voltage waveform 

parameter at given amplitude. Generally, a voltage 

waveform with a rise and fall time of less than 3 µs is 

sufficient for good droplet ejection [31], however the dwell 

time must be considered. As the dwell time increases, the 

velocity and volume of the ink droplet increases. Above the 

optimal dwell time, it decreases drastically [32][33]. This 

trend also applies to the M-shaped, W-shaped, or other 

complex waveforms when tuning their time parameters. 

Different approaches were presented for estimating the 

optimal dwell time of a voltage waveform for achieving a 

higher droplet velocity and required volume. Reference 

[31] used the wave propagation theory and recommended 

an optimal dwell time of l/c [31], whereas [34] 

recommended 2l/c, where l is the length of the tube and c is 

the speed of sound in inks. However, no accurate optimal 

dwell time exists in practice because l and c are likely to be 

unknown and the fluid viscosity effect cannot be considered 

without complicating the equation. Therefore, other 

methodologies, for e.g., numerical simulation [35], model 

based [23][29][36–38], automatic tuning [39], and 

experimental approaches [25][40] have also been 

recommended. Table II lists the studies that used these 

approaches along with their optimal waveforms parameters 

and optimization methods. Table I presents the different 

voltage waveforms and their effects on the printhead’s 

performance. 

The efficient deposition of different types of inks on a 

substrate is necessary in the inkjet industry for all 

applications. Therefore, it is necessary to have a mechanism 

to control droplet formation. The simplest method is to tune 

the voltage waveform. In the case of a fluid with low 

viscosity, the ejection of the first droplet from the nozzle 

outlet is followed by the formation of satellite droplets. 

High-velocity satellite droplets can combine to form a main 

droplet during flight to the desired spot on the substrate. 

However, low- velocity satellite droplets have poor 

directionality and may land on an arbitrary spot on the 

substrate, which reduces the print quality. Multipulse 

waveforms are needed to prevent satellite droplets and 

maintain the single primary droplet [41-46]. Shin et al. [41] 

applied a double waveform with two square pulses 

(unipolar M-shaped) to the actuator, which effectively 

ejected the single main droplet without forming satellites. 

The trajectory of the satellite droplets can be improved by 

tuning the separation time (t4) between two pulses [42][43]. 

Reference [43] suppressed satellite droplets by tuning the 

time interval (t2) of a unipolar W-shaped waveform [44]. 

Droplet with ligament is another challenge during 

printing, especially in applications that use a moving 

substrate. In this case, the ligaments will not merge with the 

main droplet. This will in turn misshape the printed dot on 
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the moving substrate [47]. Moreover, the length of the 

ligament increases as the applied voltage is increased. In 

the multidrop ejection method, a multipulse input voltage 

waveform is applied to the piezoelectric actuator. Applying 

different voltages to the pulses and tuning the pulse voltage 

can eliminate ligaments and satellites [47]. 

The quality of printing by inkjet technology has 

improved. Long-term productivity would require small 

droplets ejected at higher velocities. A dominant parameter, 

the droplet size can be reduced by reducing the nozzle 

orifice diameter and decreasing the pulse amplitude. 

However, a small orifice can be clogged and requires 

expensive manufacturing techniques. Moreover, decreasing 

the amplitude will decrease the droplet velocity. Therefore, 

alternative methods to reduce the droplet size must be 

researched. Reference [48] proposed three square-wave 

bipolar W-shaped voltage pulses with amplitudes of −46, 

56, and −46 V, respectively. The method successfully 

reduced the droplet volume. The droplet volume can also be 

reduced by the M-shaped and bipolar waveforms; however, 

the W-shaped waveform has a higher percentage volume 

reduction effect than the two [42]. Fig. 3(c) illustrates the 

classification of the actuation mechanisms of a piezo-driven 

inkjet printhead and waveform optimization methods.

FIGURE 3.  Schematic representation of (a) push–pull, (b) pull–push modes, and (c) classification of actuation mechanisms of a piezoelectric inkjet 
printhead with the waveform optimization approaches. 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3119219, IEEE Access

 Shin HurAuthor Name: Preparation of Papers for IEEE Access (February 
2017) 

2 VOLUME XX, 2017 

 

TABLE I 

VARIOUS VOLTAGE WAVEFORMS AND THEIR EFFECTS ON PRINTHEAD PERFORMANCE 

Voltage waveforms Comments 

Single pulse 

 

 For efficient droplet ejection, t1 and t3 must be less than 3 µs [31]. 

 Optimal value of t2 can be obtained through experiment, theory, 

simulation, or modeling. 

Unipolar M-shaped 

 

 In this waveform, the 1st pulse plays the same role as the unipolar 

single pulse waveform. 

 The 2nd pulse can be used to suppress residual oscillations [14] and 

satellite droplets [43]. 

 This waveform can be used to reduce the droplet volume [39]. 

 The time interval t4 must be optimal as it is sensitive to both residual 

oscillations and satellite droplets. 

Bipolar M-shaped 

 

Unipolar W-shaped 

  This waveform can be used to reduce the droplet volume [48]. 

 In a unipolar W-shaped waveform, the satellites can be suppressed 

by tuning time interval t2 [44]. 

Bipolar W-shaped 

 

Bipolar-1 N-shaped 

 

 The 2nd pulse of this waveform is used to suppress the residual 

vibrations. 

 This waveform can be used to eject highly viscous inks as it allows 

for a high voltage difference [43]. 

 The droplet velocity and volume decrease and subsequently increase 

as t4 increases [49]. 

Bipolar-2 N-shaped 

 

 The 2nd pulse of this waveform is used to suppress residual 

vibrations. 

 Time interval t4 is designed to allow the chamber pressure to reach 

its minimum. 
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TABLE II 

OPTIMIZED VOLTAGE WAVEFORMS AND THEIR OPTIMIZATION METHODS 

Waveform Authors and References 
Ink’s Viscosity 

(cP) 

Optimal Parameters 

(µs) 

Drop Volume 

(pL) 

Drop Velocity 

(m/s) 
Method 

Unipolar 

single pulse 

Bogy & Talke [31] 16.1 t2: 8.2 Not Available 3.5 
Wave propagation 

theory 

Wei et al. [35] 10 t2: 15–18 Not Available 6 Numerical simulations 

Unipolar 

M-shaped 
Won & Kim [25] 9 

t2: 3 

t4: 9.8 
Not Available Not Available 

Experimental approach 
Bipolar-1 

N-shaped 
K.S. Won [27] NA 

t2: 20 

t4: 40 
Not Available Not Available 

Bipolar-2 

N-shaped 

Khalate et al. [29][50] 
10 

 

t1: 2 

t2: 2.5 

t3: 1.3 

t4: 7.6 

t5: 1.3 

t6: 0.4 

t7: 4.4 

Not Available 
5–9.8 

 

Model based 

Wang et al. [30] 1.19 

t1, t3, t5, t7: 3 

t2, t6: 24 

t4: 17 

Not Available Not Available 

Bipolar 

M-shaped 
Snyder et al. [39] 0.45 

t1: 2 

t2: 3 

t3: 7 

t4: 0 

t5: 6 

t6: 1 

t7: 10 

1.1 1.83 Automatic tuning 

 

2) MISCELLANEOUS STUDIES AND RECENT 
RESEARCH IN PIEZOELECTRIC INKJET PRINTHEADS 

Although piezoelectric inkjet printheads are commercial, 

the printing quality and jet stability can be improved to 

solve by solving the nozzle clogging, the nonaxisymmetric 

effect, and the entrainment of air bubbles in the ink 

channel. 

The clogging of a nozzle strongly influences the inkjet 

printhead performance in various applications. For 

example, sieving, bridging, and aggregation of particles can 

block the flow of fluid in microfluidic devices [51]. The 

unconventional MEMS printhead process causes dirt 

particles composed of Si or glass to remain in the ink 

channel. The interaction of these remaining dirt particles 

with the oscillating meniscus, or cavitation in the bulk ink, 

cause the entrainment of air bubbles in the tube [52]. For 

example, the collision of silica with the internal surfaces of 

a printhead can clog the nozzle [53]. Nozzle blockage can 

be minimized by tuning the pH of silica sol [53]. Reference 

[53] visualized the growth, translation, and interaction of 

the entrained air bubbles using shortwave infrared imaging 

[54]. Nozzle blockage can also be solved by ink 

recirculation. A recirculation system can enhance the 

reliability of the jet and remove the entrapped air bubbles 

[20]. 

Another issue with piezoelectric inkjet printheads is the 

nonaxisymmetric effects, which degrade the stability and 

performance of inkjet printhead. A nonaxisymmetric 

droplet can prevent the capturing of satellite droplets as 

they diverge from the trajectory of the main droplet. High-

frequency jets can reduce the nonaxisymmetry effects as it 

forces the successive droplet to follow the first jetted 

asymmetrical droplet. The causes and their solutions must 

be researched to improve the printhead’s performance and 

stability. Nonaxisymmetry can be caused by the 

misalignment of the printhead channel with the nozzle 

plate, dust particles at the nozzle surface, wetted nozzle 

plate, bubble trapped inside the nozzle, and unstable 

asymmetrical surface modes at the meniscus interface by a 

Rayleigh–Taylor-like mechanism [55]. Fig. 4 illustrates 

various axisymmetric droplets [55]. Furthermore, jet 

stability can be improved by cooling the ink [56]. 

Satellite droplets degrade the print quality and 

reproducibility. These droplets are formed by the breakage 

of the long ligament behind the main droplet. As mentioned 

earlier, a method to suppress satellite droplets is to tune the 

voltage waveform. Another method is to add viscoelasticity 

to the ink. Sen et al. [57] suppressed satellite droplets in 

water-based ink by infusing polymers. The addition of 

polymers stabilizes the ligament against the Rayleigh–
Plateau instability. The ligament was pushed toward the 

main droplet, producing a single droplet without satellites 

[57]. Reference [56] suppressed satellite droplets by 

cooling the ink [56]. 
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Wettability of the nozzle’s inner wall and surface tension 

of the ink are the two main factors affecting the quality and 

speed of the droplet. The breakup time can be delayed and 

the droplet velocity can be reduced by increasing the 

contact angle of the ink with the nozzle inner wall. 

Meanwhile, the droplet can be broken up earlier and 

accelerated by increasing the surface tension [58]. The 

printing quality can be improved by selecting high-surface-

tension inks and modifying the nozzle inner wall to make it 

hydrophilic. 

 
FIGURE 4.  Different axisymmetric droplets [55]. (a) divergent droplet 
trajectory, (b) setallites jetting away from the main droplet, (c) tail 
droplet pushed toward the nozzle edge, (d) deflection of the droplet 
toward the nozzle wall, and (e) asymmetry effect of the first 
axisymmetrical droplet on the second droplet during high frequency 
jetting. 

B.  THERMAL INKJET PRINTING 

The TIJ can be in the form of a roof-shooter, side-

shooter, or suspended heater [59]. In the first configuration, 

the heater is placed behind the nozzle. In the second 

configuration, it is placed adjacent to the nozzle. In the 

third configuration, the heater is suspended within the ink 

chamber [59]. Most industries manufacture and utilize the 

roof-shooter TIJ [60]. Fig. 5 illustrates the three forms of 

TIJ. 

The major problem with the TIJ printhead is its short 

lifetime because of the electromigration of the heater, 

damage by bubble cavitation, and thermal stress-induced 

cracks [9][61]. The lifetime can be increased by increasing 

the thickness and shape of the heater [9][61][62]. Another 

problem is kogation [63], a phenomenon where ink 

particles are deposited on the heater surface during the 

operation of the TIJ, affecting the formation of bubble and 

droplet ejection. The addition of anions to ink can prevent 

this phenomenon [64]. 

 

FIGURE 5.  Three types of thermal inkjet printheads, (a) roof-shooter, 
(b) side-shooter, (c) suspended heater. The figure was referenced from 
[60]. 

C.  ELECTROHYDRODYNAMIC JET PRINTING 

In EHD jet printing, ink is ejected from the nozzle exit by a 

high applied electrical field between the nozzle and the 

substrate. Depending on the electric field, the EHD printing 

can be performed in the CIJ mode or DOD mode. The CIJ 

mode requires a constant DC supply between the nozzle 

and the substrate, whereas the DOD mode requires pulsed 

DC voltage. The DOD mode has been a focus area because 

its jet emissions can be controlled. Three different 

methodologies, AC [65], pulsed DC [66], and single 

potential AC [67], shown in Fig. 6, were demonstrated by 

studies related the DOD mode under an applied electric 

field. In the case of AC or pulsed DC, the electric potential 

is applied to the nozzle and the substrate is grounded, 

whereas the AC voltage is applied to the substrate and the 

nozzle is kept electrically floating in the case of single 

potential AC.  

Various materials have been successfully printed on 

different substrates using EHD [68-73]. However, issues 

such as liquid wetting, particle–substrate interaction, and 

low throughput persist [74][75]. These challenges can be 

solved by changing the electrode shape, hydrophobic 

coating of the nozzle, and tuning the applied voltage and 

fluid flow rate [74]. Wu et al. [76] demonstrated an EHD 

printing system driven by a triboelectric nanogenerator 

(TENG). They claimed that the TENG can protect the 

substrate against the conventional high-voltage supply 

system. An array of nozzles can be used to solve the 

problem of low throughput [77]–[79]; however, the 

electrostatic crosstalk between the neighboring nozzles 

degrades the printhead’s performance [80]–[82]. Several 

studies were conducted to suppress crosstalk. For example, 

researchers attempted to increase the space between 

nozzles. However, this can cause jet offset, especially in 

electrospinning [83]–[85]. Zhang et al. [86] confirmed that 

the linear arrangement of nozzles produced better 

uniformity in the jetted materials than the toothed nozzle 

arrangement. 

 
FIGURE 6.  Electrohydrodynamic (EHD) jet printing systems with (a) 
AC, (b) pulsed DC, and (c) single potential AC. The figure was 
referenced from [67]. 

D.  NEEDLE-BASED PRINTING 

The key components of the needle-based printing system 

are needle, seat, and nozzle (Fig. 7). Air pressure [87] or a 

piezoelectric-stack actuator [88] can be used to move the 

needle. The actuator exhibits rapid response and high 

efficiency [89]. However, the piezo-stack actuator does not 

produce adequate output displacement for fluid jetting; 
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therefore, a displacement amplification mechanism, i.e., a 

mechanical amplifier (e.g., a lever) was adopted for the 

needle and actuator [90]. The two types of actuators are 

single [91] and dual [92] piezo-stack actuators. The dual 

piezo-stack actuator is used for high-viscosity and high-

frequency jetting. The quick response of the actuator 

accelerates the needle movement [88][93]. Droplets are 

ejected from the nozzle exit by the motion of the needle 

toward the inside of the seat. The output parameters 

associated with the motion of the needle can be predicted 

through fluid flow simulations [94][95] or modeling [96]–
[100]. Phung and Kwon [87] used the accelerometer to 

sense the needle motion. They also investigated the effects 

of various parameters on the motion and jetting behavior.  

Various displacement amplification mechanisms were 

demonstrated to enhance the printing performance. For 

example, for the stress relaxation of a dual piezo-stack 

actuator, [101] presented the jetting dispenser based on a 

corner-filleted hinge attached to the actuator. The design 

was further improved in terms of the stress reduction in the 

actuator by introducing a cylindrical pivot and changing the 

shape of the amplifier block [102]. Zhou et al. [103] 

demonstrated a rhombic mechanical amplifier that 

exhibited a higher needle stroke than traditional mechanical 

amplifiers. Furthermore, the jetting performance can be 

enhanced by changing the needle shape. For example, the 

jetting velocity was increased by adding a side cap [104] 

and pin joint [105] to the needle. 

 
FIGURE 7.  Needle-based dispenser system with (a) dual piezo-stack 
actuator and (b) rhombic mechanical amplifier. The figure was 
referenced from [103]. 

E.  AEROSOL JET PRINTING 

AJP is a high-resolution direct-writing droplet-based 

technique that can print a variety of materials with 

viscosities ranging approximately from 1–2500 cP [106]. 

This method was successfully applied in the fabrication of 

interconnects [107], sensors [108]–[110], organic light 

emitting diodes [111], supercapacitors [111], transistors 

[112], and medical imaging devices [113]. AJP works on 

the principle of the atomization of ink by ultrasonification 

or pneumatic mechanism, which results in aerosol 

formation (suspension of liquid particles in a gas carrier). 

The aerosol is then transferred to the deposition head by an 

inert gas stream (e.g., N2), after which it is ejected from the 

nozzle exit. Sheath gas is added to the deposition head to 

further improve the performance. In an ultrasonic atomizer, 

the atomization of ink occurs from the generation of high-

frequency pressure waves by the piezoelectric ultrasonic 

transducer. In the case of a pneumatic atomizer, an atomizer 

nozzle is placed in an ink reservoir where a carrier gas with 

a high velocity is passed through the tip of the atomizer 

nozzle, atomizing the ink. Fig. 8 illustrates an aerosol jet 

with both the atomization methods. Both methods have 

their merits and demerits. Compared with the pneumatic 

atomizer, the ultrasonic atomizer produces uniform aerosol; 

however, it can only print very high-viscous inks [114]. 

To achieve optimal aerosol-jet printing with improved 

performance, the relevant parameters must be tuned 

including sheath gas flow rate (SHGFR) and carrier gas 

flow rate (CGFR), which are the two main parameters of 

AJP that influence the quality of the printed line. The 

printed line width decreases by increasing the focusing ratio 

(SHGFR/CGFR) [115]. The ideal operating window for 

deriving the optimal parameters has not yet been defined 

owing to the complex structure of AJP and a lack of 

research in this area. Trial-and-error strategies have been 

adopted to achieve enhanced printing quality [115][116]. 

However, this approach is time consuming and inefficient. 

Modeling approaches that are faster, more efficient than 

trial-and-error methods, e.g., computational fluid dynamics 

model [106] and knowledge transfer framework [117], were 

proposed to predict these parameters for printing 

performance enhancement. 

 
FIGURE 8.  Aerosol jet printing system with (a) ultrasonic atomizer and 
(b) pneumatic atomizer. The figure was referenced from [12]. 

F.  LASER-ASSISTED PRINTING 

Laser-assisted printing system is composed of a laser beam 

and a special type of substrate called the donor substrate, 

the top of which is coated with an absorbing layer and the 

bottom side with an adhesive layer of ink, as shown in Fig. 

9 [118]. The laser beam energy cavitates the ink layer, 

propelling the droplet to the collecting substrate [119]. 

Laser-assisted printing is a nozzle-less technique, and 

therefore, does not suffer from clogging. This technology is 
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used for direct writing [120] and DOD printing [121]. 

Various materials, e.g., conductive inks [122], adhesives 

[123], and biomaterials [124], were printed using this 

technology. 

 
FIGURE 9.  Laser-assisted printing system. The figure was referenced 
from [118]. 

G.  ACOUSTIC PRINTING 

The application of acoustic waves to propel an ink droplet 

is referred to as acoustic printing. The pioneering work of 

Elrod et al. [125][126] has led major research work in the 

field of acoustic printing. Scientists are developing various 

acoustic droplet-ejection methods [127][128]. Acoustic 

printing is further categorized into surface acoustic wave 

(SAW) and acoustophoretic printing. 

1) SURFACE ACOUSTIC WAVE PRINTING 

In SAW printing, the acoustic waves are generated at the 

surface of the liquid to propel the droplet. Generally, in a 

SAW-driven jet, interdigital transducers (IDTs) are 

patterned on a piezoelectric substrate. The substrate 

contracts and expands by applying radio frequency (RF) 

power to the IDTs, generating pressure waves of higher 

frequencies. The droplet is ejected by the acoustic radiation 

force generated from the SAW [129]. The IDTs can be 

connected on either side, which will drive the liquid along 

the Rayleigh angle (θR), or on opposite sides, which causes 

the droplet to be ejected on a point perpendicular to the 

printing surface, if the opposite sides have the same energy 

[130][131]. Furthermore, a pair of aligned IDTs can 

enhance the maximum jet speed and minimum jet time 

[132]. A schematic of the SAW-propelled jet with a pair of 

IDT electrodes is illustrated in Fig. 10. 

Because the SAW-driven printing technique is nozzle-

less, it does not have the clogging-related demerits of 

nozzle-based printing techniques. This is especially 

advantageous for printing with bio-inks. However, most 

SAW-driven printing devices do not allow flexible the 

tuning of the droplet size using the same device. To solve 

this problem, [133] demonstrated a pulsed SAW device to 

control the droplet size by changing the pulse width. The 

droplet size and velocity can also be controlled by changing 

the input RF power. Strong capillary waves at the droplet 

surface overcome the capillary stress and result in the 

atomization of the droplet as the RF power is further 

increased [134].  

 
FIGURE 10.  Schematic representation of surface acoustic wave 
printing system. The figure was referenced from [129]. 

 

2) ACOUSTOPHORETIC WAVE PRINTING 

Reference [14] devised an acoustic nozzle-based printing 

mechanism, especially to print with highly viscous liquids. 

The mechanism uses three devices, actuator, acoustic 

cavity, and nozzle. The actuator was connected at one end 

of the acoustic cavity and activated by a driving ultrasonic 

frequency of approximately 25 kHz. The ink was injected at 

a constant flow rate into the nozzle inlet . The nozzle outlet 

was adjusted inside a Fabry–Pérot (FP) resonator in the 

location with the maximum acoustic pressure, as depicted 

in Fig. 11-a. The acoustophoretic force is generated in the 

FP resonator to detach the droplet flowing through a nozzle. 

Jetting occurs when the acoustic (Fa) and gravitational 

forces (Fg) exceed the capillary force (Fc), as shown in Fig. 

11-b. For high acoustophoretic fields, the accuracy of the 

droplet trajectory decreases as the acoustic force increases. 

The droplet size can be decreased by increasing the acoustic 

force. The acoustic force can be calculated by integrating 

the radiation pressure prad over the surface S of the sample, 

as follows [14], 

dSnpF
S

rada   (1) 

where n  is the normal component inward to S. The 

radiation pressure radp  has a direct relation with the root-

mean-square acoustic pressure and acoustic particle 

velocity, which can be increased by applying a voltage to 

the actuator. In other words, the droplet volume can be 

decreased by increasing the voltage applied to the actuator. 

Various materials with a wide range of Z number (the 

inverse of the Ohnesorge number), including water, honey, 

bio-inks, and liquid metals have been printed successfully. 

Honey (viscosity: 25 000 cP) was printed on white 

chocolate. A low viscosity (2 cP) metal ink composed of 

eutectic gallium–indium (eGaIn) was also printed. These 

printed materials are depicted in Fig. 11-c and 11-d, 

respectively. 
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FIGURE 11.  Schematic representation of (a) acoustophoretic printing 
system, (b) acoustophoretic printing droplet detachment system, which 
demonstrates droplet detachment when the acoustophoretic and 
gravitational forces exceed the capillary force. (c) and (d) show the 
printed droplets of honey on white chocolate and a metal ink composed 
of eutectic gallium-indium (eGaIn), respectively. The figure was 
referenced from [14]. 

H.  DROP IMPACT PRINTING 

Reference [15] proposed a DOD printing technique in 

which they replaced the nozzle with a sieve and dispensed a 

single satellite-free micrometer-sized droplet. The size of 

the jetted droplet was proportional to the pore size. The 

droplet size can be decreased by decreasing the pore 

opening. This technique can print for Z values ranging from 

3–200. The size can be further improved in the case of 

printing highly viscous inks (Z < 3). Materials for 

biological and electronic applications were printed using 

this technique. The printing mechanism is illustrated in Fig. 

12. 

 
FIGURE 12.  Schematic ofthe mechanism of a drop impact printing 
system. The figure was referenced from [15]. 

III. PRINTING TECHNOLOGIES FOR HIGH-VISCOSITY 
INKS 

Viscosity governs the droplet formation in the inkjet 

printing process. The substrate’s surface condition has a 

weak effect on the printed patterns of high-viscosity inks. A 

large force is required to eject droplets of these inks from 

the nozzle exit. In a piezo-driven inkjet printhead, high-

viscosity inks can be ejected by actuating the piezo-

membrane using a double bipolar voltage waveform instead 

of a single voltage waveform [43]. Jackson et al. [135] 

demonstrated a technique that used the XAAR 1003 

recirculating inkjet printhead with a shear-mode actuator to 

eject high-viscosity inks. Due to the high fluid-recirculation 

rate, the printhead could eject ink with a viscosity of up to 

98 cP. 

The piezo-driven inkjet printheads cannot jet the ink with 

high viscosity; therefore, other approaches must be used, 

e.g., EHD [136], which was used for direct writing 

techniques or droplet jetting [137]-[139]. In this technique, 

the ink inside the printhead must be charged for better 

electrostatic deflection, which requires it to be conductive. 

However, high-viscosity inks have a lower conductivity, 

which leads to poor electrostatic deflection [140]. Laser-

based printing can also be used to jet high-viscosity inks 

[11][122][123][141]. Zhang et al. [141] performed direct 

writing of alginate solutions of a viscosity 8279 cP. 

Therodorakos et al. [122] performed droplet-based jetting 

of Ag nanoparticles with an effective viscosity of 590 cP in 

a diethylene glycol monobutyl ether solvent. Needle-based 

dispensers are another device to produce high-viscosity ink 

jets. The motion of the needle toward the nozzle in the ink 

chamber causes the droplets to form a jet at the nozzle exit. 

The literature contains various studies related to needle-

based dispensers for the jetting of high-viscosity inks 

[142]–[145]. The jetting of high-viscosity ink can be 

improved by increasing the radius of the needle. Lu et al. 

[144] achieved the jetting of a 58 000-cP adhesive with a 

droplet volume of 0.6 µl, a needle radius of 1.5 mm, and a 

nozzle orifice diameter of 0.1 mm. Aerosol jet printing is a 

highly preferred method of direct writing. AJP can print 

inks with a viscosity of 1–2500 cP [146]. Recently, Forestri 

et al. [14] presented an acoustophoretic printing method for 

forming jets of droplets with very-high-viscosity inks at the 

nozzle exit. The acoustophoretic printer consisted of a 

Fabry–Pérot resonator and an acoustic source. Most 

acoustic waves were reflected because of the mismatch in 

the acoustic impedance at the fluid–air interface. Standing 

waves are generated in the resonator. A spherical droplet is 

ejected from the nozzle exit by the acoustophoretic force. 

Various inks with viscosities ranging from 0.5–25 000 cP 

were successfully printed using this approach. 

Table III summarizes the methods to high-viscosity ink 

jets by the technology (piezoelectric, EHD, needle-based, 

laser, aerosol jet, and acoustophoretic printing). The table 

also lists the high-viscosity jetted materials and their 
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printing mechanisms. Among the methods, the 

acoustophoretic printing mechanism was found to be the 

simplest, most accurate for forming very-high-viscosity ink 

droplet jets. The use of MEMS to manufacture 

acoustophoretic printers will enable printing with high-

frequency ink jets. 
 

TABLE III 

Summary of High-viscosity Inks Printing 

Printing technology Materials 
Viscosity 

(cP) 
References Approaches 

Piezo-Driven  Ultracur3D ST 30 LV 98 [135] Droplet Based 

EHD  
Copper Paste 4000 [139] 

Direct Writing 
Silver Paste 4000 [136] 

Laser-Assisted 

Alginate Solutions 8279 [141] Direct Writing 

Cyanoacrylate Adhesives 1700 [123] 

Droplet Based Silver Nanoparticles 590 [122] 

Hydrogel 431 [11] 

Needle Type  
Glue 58 000 [144] 

Droplet Based 
Glycerol 1412 [145] 

Aerosol Jet 
Not Available 2500 [146] 

Direct Writing 
Silver Nanoparticles 160 [12] 

Acoustophoretic  Honey 25 000 [14] Droplet Based 

IV. APPLICATIONS OF INKJET PRINTING 

The conventional semiconductor fabrication process 

consists of several steps (from oxidation to photoresist 

removal) for manufacturing a single device, whereas the 

inkjet printing technique offers maskless lithography and 

involves fewer steps [147]. The conventional process and 

inkjet printing method are illustrated in Fig. 13. Various 

industries have been researching the application and 

translation of inkjet printing in manufacturing owing to its 

low cost, fewer steps involved, and low material loss. 

Studies have explored its application in printed electronics 

[148], chemical sensors [149], supercapacitors [150], 

carbon nanotubes [151], pharmaceuticals [152][153], and 

conductive materials [154]. The focus of this section is the 

application of inkjet printing technology in DTP, display 

pixel printing, MEMS, and wearable, flexible, and 

stretchable devices. Table IV summarizes the recent 

literature on the applications of various printing techniques. 

 
FIGURE 13 Fabrication steps of conventional semiconductor device 
fabrication and inkjet printing method. The figure was adopted from 
[147]. 

A.  DIGITAL TEXTILE PRINTING 

Inkjet printing technology, also referred to as digital 

printing, is widely used in various applications, including 

textile and graphic arts, that relied on conventional printing 

devices including rollers and screen printers until recently. 

Textile printing has grown rapidly with inkjet printing 

technology. This technology produces less waste, and 

consumes 45% less electricity and 35% less water 

compared with conventional printing technologies [155]. 

As inkjet printing is a non-contact process, the jetted 

droplets spread on contacting the substrate surface. The 

spreading of droplets on the substrate will affect the quality 

of the printed product [156]. The impact of droplets on 

various substrate surfaces with phenomena such as 

spreading, splashing, receding, and bouncing has been 

demonstrated [157]–[162]. The interaction of droplets on 

textiles in DTP has drawn significant research interest. The 

spreading and coalescing of droplets can affect the image 

quality printed on fabrics [163]. Zhang et al. [164] 

demonstrated the impact of aqueous glycerol droplets on 

hydrophobic and hydrophilic nylon textiles. The results 

demonstrated that the droplet penetrated and formed liquid 

filaments beneath the textile surface. They also concluded 

that the spherical shape of the droplet on the textile does not 

change when it interacts with porous substrates with a pore 

size from 100–300 µm in short time periods. Reference 

[165] analyzed the penetration of droplets in polyester 

fabric pores with and without an underlying substrate. The 

spreading ratio of water–glycerol droplets on the substrate 

is different with and without the underlying substrate 

because of the volume loss of the liquid [165]. 

Environment, pretreatment, and posttreatment affect the 

color and its performance. The process must be conducted 

in a controlled environment to improve the efficiencies of 

the printer. For example, reactive dyes require a humid 
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environment to develop a stronger bond with the fabric 

[166]. Acid and reactive dyes require streaming as 

posttreatment for bonding with fibers [166]. Pretreatment is 

often required to improve the DTP’s performance. Various 

pretreatment agents and methods were demonstrated [167]–
[170]. Reference [167] used commercially available 

pretreatment agents (DP-300 & DP-302 from Lubrizol 

Corporation) and demonstrated improved color intensity 

and gamut for pigment-based ink by pretreating cotton and 

polyethylene terephthalate fabrics. They used chemical 

padding as a pretreatment method. Kim et al. [168] used 

acrylic polymers as a pretreatment agent to improve the 

color of nylon fabrics. Li et al. [169] improved the color 

quality of a cotton/polyamide fabric substrate by pretreating 

it with alpha olefin sulfonate and sodium alginate. An et al. 

[171] improved the color performance by a combined 

process that used the protease enzyme and sodium alginate 

for wool fabric inkjet printing using reactive dyes. 

Various studies have researched and developed materials 

for inkjet printing for printing on fabrics. Song et al. [172] 

synthesized RR218@PSBV by the absorption of RR218 

(red dye 218) onto PSBV (poly (styrene-butyl acrylate-

vinylbenzyl trimethylammonium chloride) nanospheres and 

inkjet-printed it on cotton fabric, as shown in Fig. 14-a. The 

dye@copolymer nanosphere improved the color 

performance, image quality, and material conservation 

[172]. In [173], two reactive red dyes, RR218 and reactive 

red 24:1 were inkjet-printed and the resulting droplets were 

compared. RR218 had more stable droplets and a smaller 

spread area (high resolution) than reactive red 24:1 [173]. 

Gao et al. [174] inkjet-printed dye-based inks on polyester 

fabric and investigated the effect of viscosity, surface 

tension, and fluidity on the sharpness of the printing 

pattern. Fig. 13-b displays a sample polyester fabric printed 

with dye-based inks. Various other studies were conducted 

to improve the performance of DTP by printing dye or 

pigment-based inks on different fabrics [175]–[179]. 

 
FIGURE 14.  (a) Dye@copolymer (RR218@PSBV) printed on cotton 
fabrics [172]. (b) inkjet-printed dye ink on polyster fabric [174]. 

B.  DISPLAY PIXEL PRINTING 

Display technology has a ubiquitous effect in daily life. 

There are various types of displays [180]. For example, 

organic light emitting diode (OLED) has become a 

mainstream display technology as it consumes less power, 

is flexible, has a high contrast ratio, and is ultra-thin [181]. 

OLED is made of an emissive layer (EML) sandwiched 

between two conductors. A hole transport layer (HTL), hole 

injection layer (HIL), electron transport (ETL), and electron 

injection layer (EIL) can be added to enhance its efficiency 

[182]. Fig. 15-a displays the cross-sectional view of all the 

layers along with the electrodes. A cross-sectional 

schematic of red, green, and blue (RGB) pixel inkjet 

printing is illustrated in Fig. 15-b. The applications of 

OLED include computer, laptop, automobile, TV, and 

mobile phone displays. Several methods including spin 

coating, transfer printing, lithography, evaporation, and 

inkjet printing are used to deposit multilayer thin films of 

OLED. 

Inkjet printing offers a significant advantage in the field 

of display electronics because it offers maskless 

lithography, consumes less material, uses a simple 

fabrication technique, and has larger substrate scalability. 

Therefore, it has been adopted for the fabrication of OLED 

displays. We focus on the latest studies on OLED 

fabrication using inkjet printing. In [183], a 3-in blue 

OLED array was inkjet-printed, resulting in improved 

uniformity of the surface [183]. Yoon et al. [184] used an 

ink with various solvents to print the emissive layer of the 

OLED. Thus, they achieved a uniform film. Zhaobing et al. 

[185] inkjet-printed an EML, HTL, and HIL for an OLED 

and achieved uniformity. However, the device efficiency 

requires further improvement. An image of the inkjet-

printed green EML layer is displayed in Fig. 15-c. 

Reference [186] inkjet-printed a poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) HIL, with polyethylene glycol (PEG) for 

improved efficiency and bending resistance of the OLED 

device. 

Another study printed a PEDOT:PSS (dissolved with 

isopropanol and ethylene glycol) HIL using a multi-nozzle 

inkjet printing system [187]. They achieved uniform droplet 

ejection by changing the solvent and tuning the printing 

parameters. Amruth et al. [188] printed an EIL made of a 

cesium carbonate film (with an alcohol-based solvent) for a 

polymer OLED. The current efficiency and luminance were 

enhanced compared to an OLED without the film. 

Researchers printed micro-lenses for pixelated OLEDs to 

enhance the out-coupling efficiency [189][190]. Reference 

[192] printed 31-in [191] and 55-in [192] active matrix 

OLED (AMOLED) displays, improving the performance of 

the display technology. 

Quantum dot light-emitting diode (QLED) is another 

display that can be printed by inkjet technology. These 

LEDs have long lifetime, low power consumption, high 

contrast, wide color gamut, wide viewing angles, and high 

refresh rate [193][194]. Kim et al. [195] inkjet-printed an 

octane-based QD ink for a green OLED. They tested 

various mixtures of solvent with the octane-based QD ink 

and found that the octane–cyclohexane mixture was the 

most stable. Chen et al. [196] printed highly efficient red 

QLEDs using a QD ink based on a mixture of n-tridecane 
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and decalin solvents. Quantum dots can also be used as 

color-conversion layers in display technologies. Lin et al. 

[197] effectively suppressed the blue residual light by 

inkjet-printing QD inks. Hu et al. [198] fabricated a 6.6-in 

QLED display with a QD layer printed to eliminate the blue 

residual emissions. They demonstrated a reduction in the 

transmittance of the residual blue light by increasing the 

thickness of the QD pixel layer. Yang et al. proposed the 

application of a Bragg reflector with an inkjet-printed QD 

pixel layer to further increase the color conversion 

efficiency. The reflector was composed of a multilayer of 

silicon oxide / titanium oxide. 

Perovskite quantum dots (PQDs) have become a 

significant area in display technology research owing to 

their distinct optical properties, including a tunable 

wavelength and narrow emission wavelength [199]. Shi et 

al. [200] inkjet-printed PQD inks with water as a solvent. 

Yoo et al. [201] printed with a perovskite ink on an ethyl 

cellulose film and concluded that a (3-aminopropyl) 

trimethoxysilane (APTES)-coated red perovskite ink had 

improved drying stability. Other studies reported 

improvement in color [202] and brightness [203] by inkjet-

printing with PQD inks with various solvents. 

 
FIGURE 15.  Display technology with (a) cross-sectional view of the 
layers of OLED display, (b) schematic cross-sectional view of inkjet red, 
green, blue (RGB) pixel printing, and (c) inkjet-printed green emissive 
layer (EML) [185]. 

C.  MEMS DEVICES PRINTING 

Inkjet printing is also considered a versatile technique in the 

manufacturing of MEMS devices because it is 

environmentally friendly, produces less waste, is maskless, 

and offers rapid and multimaterials deposition [204]. 

1) PHOTOLITHOGRAPHY 

In photolithography, a photoresist material can be applied 

using various coating techniques. These coating techniques 

still has flaws, among which photoresist material wastage is 

one [205]. Inkjet printing can be used to deposit the 

photoresist materials to overcome this problem [206]. 

Bietsch et al. [207] deposited alkanethiolate monolayers 

and DNA oligonucleotides on Au films using inkjet 

printing. Fukushima et al. [208] inkjet-printed acrylic resin 

on Al. Qu et al. [209] used the EHD technique to print 

photoresist lines; the line width was controlled by the 

voltage supplied to the substrate and nozzle. Bernasconi et 

al. [210] inkjet-printed SU-8-2005, an epoxy-based 

photoresist material. This material cannot be printed in it 

pristine form by commercially available piezoelectric inkjet 

printheads owing to its higher viscosity. To decrease the 

viscosity, the material was diluted with cyclopentanone 

(CP), tetrahydrofuran (THF), and N-methyl-1-pyrrolidone 

(NMP). The jetting of SU-8-CP and SU-8-NMP was found 

to be stable, whereas that of SU-8-THF was not because of 

the partial blockage of the nozzle [210]. The authors 

claimed that the partial blockage was due to the lower 

boiling point of THF, i.e., it evaporates, leaving partially 

solidified SU-8 at the nozzle’s meniscus. This can cause a 

misdirected jet. 

Micro-lenses and micro-lens arrays play a vital role in 

various applications, including optical communications, 

optical storage devices, wavefront sensing, and biomedical 

instruments. Inkjet printing is widely used in micro-lens 

and micro-lens array fabrication. Compared with 

photolithography, inkjet printing can deposit various 

materials at precise locations on any substrate for the 

fabrication of micro-lenses [212]–[218]. 

2) ETCHING 

Inkjet printing can be used to remove the small areas with 

predeposited films. The advantage of inkjet etching is 

minimal material wastage. The dielectrics of SiO and Si3N4 

were inkjet-etched by ejecting an NH4F solution onto a 

polyacrylic acid film, which produces HF [219]. Another 

interesting application of inkjet printing is polymer etching. 

Microstructures with varying shapes (concave to convex) 

can be prepared on top of polymer surfaces [220][221]. 

Microstructures with microgrooves, microwells, and 

hexagonal holes were also fabricated using inkjet etching. 

The dimensions of these microstructures can be controlled 

by tuning the jetted droplet volume, modifying the 

polymer–solvent interaction, substrate temperature, and 

processing parameters [222]. 

In addition, inkjet printing has been used to fabricate 

thin-film transistors (TFTs) [223]. For example, Kim et al. 

[224] fabricated a TFT by inkjet-etching Ag. Etchant (a 

mixture of ferric nitride and deionized water) was impinged 

on the surface of Ag by etching Ag films with a thickness 

of 20–80 nm, which generated a source–drain electrode. Li 

et al. [225] fabricated a TFT array wholly by inkjet printing 

pure Cytop solvent on a Cytop layer. 

3) DEPOSITION 

Direct material deposition is the most common application 

of inkjet printing in the fabrication of MEMS devices. A 

variety of different materials, including conductive, 

insulator, sacrificial, piezoelectric, and two-dimensional 

(2D) materials, can be deposited [226]. Piezoelectric 

materials play a vital role in the manufacturing of MEMS 

sensors, actuators, energy storage devices, transformers, 

and transducers. Various studies were published on the 

direct deposition of piezoelectric materials by inkjet 
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printing. Kuscer et al. [227] deposited lead zirconate 

titanate (PZT) thick films onto a platinized alumina 

substrate by inkjet printing. Ink was formed by dispersing 

PZT particles in a water–glycerol mixture. However, they 

observed a few defects in the deposited film [227]. 

Subsequently, they synthesized defect-free structures by 

adding polybenzoxazole (PbO) to the aqueous ink [228]. 

Godard et al. [229][230] deposited a thin-film PZT onto a 

platinized silicon substrate. Pabst et al. [231] demonstrated 

all-inkjet-printed of micropump actuator. Zheng et al. 

[232][233] fabricated 3D microstructures of ice by 

impinging water droplets onto an existing ice structure, 

after which the droplets immediately froze. 

The application of signal path to the MEMS devices is 

performed by electrical conductors. The various inkjet-

printed conductive inks, their electrical characterization and 

applications, and historical background were reviewed by 

[154]. Godard et al. [234] printed Ag as the top electrode 

on a thin-film PZT layer. In [231], both the top and bottom 

electrodes of Ag in a piezoelectric micropump actuator 

were deposited by inkjet printing. 

Reference [235] fabricated entire MEMS electrostatic 

drive motor was fabricated by inkjet printing (Fig. 16). 

They used Au and Ag nanoparticle inks to fabricate the 

motor structure. The insulator (polyketone resin) was 

inkjet-printed to electrically isolate the Au and Ag electrode 

wires. Delekta et al. [236] presented a fully inkjet-printed 

graphene-based microsupercapacitor, in which the 

electrodes were made of graphene, and the electrolyte 

nanographene oxide. Kaneto et al. [237] demonstrated an 

MEMS capacitive sensor for humidity. The sensor was 

fabricated by combining transfer and inkjet printing. 

Graphene oxide (GO) nanoparticles were deposited by 

printing them on Au electrodes, which was prefabricated on 

a PET substrate by screen printing. This bilayered GO/Au 

thin film exhibited higher Young’s modulus than the Au 

thin film. 

4) MEMS PACKAGING 

Optical and electrical interconnects and adhesives for 

sealing and bonding in MEMS packaging can be printed by 

inkjet printing [238]. In the 3D packaging of MEMS 

devices, through-silicon via (TSV) is mostly used as an 

interconnect structure for signal transmission. Studies were 

published regarding the conductive plating and filling of 

vias by inkjet printing. Khorramdel and Mantysalo 

[239][240] demonstrated the inkjet-printing of an Ag-

nanoparticle ink for the partial filling of a TSV. Quack et 

al. [241] developed ink-jetted Au-filled TSV arrays. Yang 

et al. [242] deposited Ag and filled a via at a lower 

processing temperature and electrical resistivity, and further 

enhanced its electrical performance [243]. 

Khorramdel et al. [244] stated that the partial 

metallization of a TSV by inkjet printing was not 

sufficiently mature for volume production. Therefore, they 

used an alternate approach that involved filling a hollow 

metallized TSV with a dielectric polymer and depositing an 

Ag ink as an under-bump metallization (UBM) pad, as 

shown in Fig. 17. Both the dielectric polymer and metallic 

ink were inkjet-printed. Solder balls of SnAgCu-based inks 

were also impinged on top of the UBM pads. Two 

commercialized printheads, i.e., piezoelectric and EHD, 

were used for printing metals and polymers [244]. 

Roshanghias et al. [245] inkjet-printed redistribution layers 

(RDLs) and a metal route used to connect the MEMS 

microphone pads to application-specific integrated circuits 

(ASICs) and fan-out the signals via solder balls. In another 

study, they inkjet-printed the RDLs of Ag-ink nanoparticles 

for the fan-out packaging of capacitive micromachined 

ultrasound transducers [246]. Other studies have 

demonstrated the synthesis of adhesives by inkjet printing 

[247][248]. 

 

 
FIGURE 16.  (a) All-inkjet-printed MEMS electrostatic drive motor. (b) 
inkjet-printed layer of resin to electrically isolate Au and Ag electrodes 
[235]. 

 
FIGURE 17.  Cross-sectional images of inkjet-printed (a) dielectric 
polymer, and (b) UBM layer of silver ink [244].  

D.  WEARABLE, FLEXIBLE, AND STRETCHABLE 

DEVICES 

Wearable, flexible, and stretchable (WFS) devices have 

achieved remarkable progress in smart devices and 

healthcare modality [249][250]. These devices can be 

directly mounted on the human skin or attached to fabrics. 

Novel device fabrication approaches are required to 

achieve, and retain, high performance. Inkjet printing has 

various applications in fabricating WFS devices and circuits 

due to its low cost, material wastage, fewer steps, maskless 

working, and precise deposition of small droplets on the 

substrate surface [251][252]. Inks consisting of dielectric, 

conductors, and semiconductors can be printed on fabrics 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3119219, IEEE Access

 Shin HurAuthor Name: Preparation of Papers for IEEE Access (February 
2017) 

2 VOLUME XX, 2017 

and skin by inkjet printing. For example, Ag nanowires and 

nanoparticles were printed for flexible and stretchable 

electronics [253]–[257]. Mikkonen et al. [258] 

demonstrated an all-inkjet-printed electrical circuit device 

(Fig. 18). Both the conductive (Ag nanoparticles) and 

dielectric (polydimethylsiloxane (PDMS)) materials were 

jetted by inkjet printing. PDMS was used as a dielectric 

between the conductive tracks [258]. Wang et al. [259] 

developed an all-inkjet-printed flexible proximity sensor 

(Fig. 19-a). Both ZnO and web-shaped top electrodes (Ag 

nanoparticles) were jetted on a flexible Al sheet used as a 

bottom electrode. Another all-inkjet-printed wearable 

device for electronic textiles (e-textiles) applications was 

proposed in [260]. They printed a graphene–Ag composite 

ink on a piece of cotton fabric. 

The human body temperature provides information about 

health status. Wearable temperature sensors are used to 

measure this temperature. Inkjet printing can be used to 

devise wearable temperature sensors. Kuzubasoglu et al. 

[261] jetted an aqueous carbon nanotube (CNT) conductive 

ink to fabricate a wearable temperature sensor. Vuorinen et 

al. [262] demonstrated a temperature sensor by printing 

graphene/Poly (3,4-ethylenedioxythiophene):poly 

(styrenesulfonate) (PEDOT:PSS) ink on a skin-conformable 

polyurethane substrate. Fig. 19-b displays the photograph of 

the sensor printed on a subject’s finger. Reference [264] 

used CNT/PEDOT:PSS composite ink to fabricate a 

temperature sensor [263]. Wang et al. [264] presented an 

all-inkjet-printed PEDOT-PSS-based temperature sensor 

with PEDOT:PSS as the sensing layer, fluorinated polymer 

(CYTOP) as the passivation layer, and Ag nanoparticles as 

the electrode. High stability in humidity was achieved for 

the sensor by introducing CYTOP as the passivation layer 

(Fig. 19-c). 

In addition, inkjet printing was used to fabricate 

respiratory rate stretchable and wearable sensor [265][266], 

piezoelectric devices [267][268], piezoresistive devices 

[269][270], and bio-impedance sensors for electrical 

impedance tomography imaging [271]. Electronic circuits 

for WFS devices were also printed by inkjet printing [272]–
[275]. 

 
FIGURE 18.  All-inkjet-printed multilayer electrical device (a) cross-
sectional view, (b) topmost inkjet-printed silver layer of the intersection, 
(c) bottommost inkjet-printed silver layer of the intersection, and (d) all-
inkjet-printed device. The figure was referenced from [258]. 

 
FIGURE 19.  Inkjet-printed (a) proximity sensor [259], (b) temperature 
sensor array [262], and (c) temperature sensor attached to the human 
skin [264].

TABLE IV 

SUMMARY OF RECENTLY PUBLISHED STUDIES ON APPLICATIONS OF INKJET PRINTING TECHNIQUES 

Printing mechanism Reference Year Materials Applications 

Piezoelectric inkjet [172] 2020 

Reactive red 218 dyes 

+ 

Poly (styrene-butyl acrylate-yinylbenzyl 

trimethylammonium chloride) 

Textile printing 

Piezoelectric inkjet [174] 2021 Dye based ink Textile printing 

Piezoelectric inkjet [186] 2020 

Poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) 

+ 

Polyethylene glycol 

OLED display technology 

Piezoelectric inkjet [187] 2021 

PEDOT:PSS 

+ 

Isopropanol 

+ 

OLED display technology 
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Ethylene glycol 

Piezoelectric inkjet [235] 2002 
Gold (Au) and silver (Ag) nanoparticles, polyketone 

resin (insulator) 
MEMS electrostatic drive motor 

Piezoelectric inkjet [224] 2019 Mixture of ferric nitride and deionized water Thin-film transistors 

Piezoelectric inkjet [231] 2014 
Poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF–

TrFE)), Ag electrodes 

Piezoelectric actuator as a pump in 

microfluidic lab-on-chip systems 

Piezoelectric inkjet, 

EHD jet 
[244] 2017 Ag, dielectric polymer, SnAgCu-based inks 

Through-silicon via as an interconnect in 

MEMS packaging 

Piezoelectric inkjet [236] 2019 Graphene, nanographene oxide Microsupercapacitor 

Piezoelectric inkjet [259] 2010 Zinc oxide, Ag-nanoparticles Flexible proximity sensor 

Piezoelectric inkjet [258] 2020 Ag-nanoparticles, Polydimethylsiloxane (PDMS) 
Silicone rubber-based multilayered 

electronics 

Piezoelectric inkjet [260] 2019 Graphene-Ag composite ink Wearable electronic textile 

Piezoelectric inkjet [263] 2021 Carbon nanotube/PEDOT:PSS 
Wearable human body temperature 

sensor 

Piezoelectric inkjet [276] 2020 Graphene Tactile sensor 

Piezoelectric inkjet [264] 2020 PEDOT-PSS, Fluorinated polymer, Ag-nanoparticles 
Wearable human body temperature 

sensor 

Piezoelectric inkjet [277] 2021 Ag-nanoparticles 
Flexible dielectric-barrier-discharge 

plasma actuator 

Piezoelectric inkjet [278] 2021 
Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-

TrFE)) 
Ultrasonic applications 

Piezoelectric inkjet [279] 2021 Nanoporous carbon Microsupercapacitor devices 

Piezoelectric inkjet [280] 2021 
Poly(3-hexylthiophene) (P3HT), 

poly(vinylpyrrolidinone) (PVP), PEDOT:PSS 
Pressure sensor 

Piezoelectric inkjet [281] 2021 8 mol% Y2O3-stabilized ZrO2 (8YSZ) ceramic ink 
Thin film layer of electrolyte in solid 

oxide fuel cell 

Piezoelectric inkjet [282] 2021 Benzocyclobutene-base polymer ink Electronic applications 

Piezoelectric inkjet [283] 2021 
Aluminum–oxide dielectric precursor ink 

(Al(NO3)39H2O, Merck, 99.997%) 
Resistive switching devices 

Piezoelectric inkjet [269] 2021 Ag nanoparticles 
Flexible sensor for deflection 

monitoring 

Piezoelectric inkjet [284] 2021 Ag nanoparticles Flexible heaters 

Piezo-stack based 

droplet generator 
[215] 2015 Ultraviolet polymer Micro-lens arrays 

Thermal inkjet [285] 2021 Silica aerogel 
Thermal insulating layers in 

microelectronic chips and batteries 

Thermal inkjet [286] 2021 Ag nanowires Printed electronics 

Thermal inkjet [287] 2021 

Solutions of geobacillus stearothermophilus (G. 

stearothermophilus) & bacillus atrophaeus (B. 

atrophaeus) spores 

Time temperature indicator for drug and 

food industry 

Thermal inkjet [288] 2021 MXene Wearable textile electronics 

Aerosol jet [109] 2021 Graphene Ammonia gas sensor 

Aerosol jet [110] 2021 Ag, polyaniline Ammonia gas sensor 

Aerosol jet [113] 2021 Hybrid halide perovskite CH3NH3Pbi3  
X-ray photodetector in medical imaging 

applications 

Aerosol jet [289] 2021 Ag, kapton, NaCl Microfluidic flexible force sensors 

Aerosol jet [111] 2021 Ag-nanowire, PEDOT:PSS OLED display technology 

EHD jet [290] 2021 Molybdenum disulfide (MoS2) Thin film transistors 

EHD jet [291] 2021 Graphene, polymer Photodetectors 

EHD jet [292] 2021 Ag-nanoink Biomedical imaging 

EHD jet [293] 2021 Silicone ink 
Dielectric elastomer actuator in tunable 

lenses 

EHD jet [268] 2021 
Polyvinylidene fluoride (PVDF), single-walled carbon 

nanotubes (SWCNTs) 

Flexible piezoelectric pressure sensor 

for human motion detection 

EHD jet [209] 2019 BP212 photoresist Photoresist structures fabrication 

EHD jet [275] 2021 Ag-nanoparticles Wearable electronics circuits 

EHD jet [294] 2021 
Pluronic F127 (PF-127), gelatin methacryloyl (GelMA) 

hydrogel 

Microvascular tissue for biomedical 

applications 

VI. CONCLUSION  

Inkjet printing technology is used in various industries from 

textiles and display technology to biomedicine owing to its 

simple process, shorter process time, and low material 

consumption with digital control and non-contact printing 

method. It is necessary to develop and mature different 
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printing methods for printing variety of inks to manufacture 

multifunctional devices. We discussed the types of inkjet 

printing technologies and their applications, namely PIP, 

TIJ, EHD, needle-based printing, AJP, laser-assisted 

printing, acoustic printing, and drop impact printing. Due to 

the nozzle-less nature of laser-assisted, acoustic and drop 

impact printing technologies, they do not have the 

clogging-related demerits. The advantage of needle-based, 

AJP and EHD printing methods is that it can print high 

viscosity inks. Despite the piezoelectric inkjet printing 

technology, all other techniques are still on developing 

stage and many features of these technologies need to be 

matured to make it suitable for commercial applications. 

Among the discussed printing technologies, the 

piezoelectric thin-film-driven inkjet printing technique is 

matured and employs a diverse range of inks. Lower 

printing cost, easy optimization of the printing conditions 

and faster printing speed of the piezoelectrinc printing 

method makes it advantageous compared to other printing 

technologies. By easy optimization, we mean the droplet 

size and speed can be optimized easily by only tuning the 

driving voltage waveform. Recently, this technology has 

been used in flexible electronic devices, DTP, and display 

technology because it allows for the controlling of droplet 

jetting, volume, and velocity through voltage waveforms. 

The conventional inkjet printhead cannot form ink jets 

greater than 10 cP. Although studies have attempted to heat 

the ink and reduce its viscosity by producing jets from the 

printhead, this approach is not compatible with very high-

viscosity inks. Therefore, this review analyzed the inkjet 

printing techniques for dispensing high-viscosity inks. 

EHD, aerosol jet, and acoustophoretic printing are used to 

print high-viscosity inks in direct writing and DOD. The 

applications of inkjet printing in digital textile, display 

pixel, MEMS device, and wearable, flexible, and 

stretchable device printing were discussed, and the 

application principle and method were analyzed. The 

recent, most promising application fields are DTP, which is 

environmentally friendly and can be directly printed on 

fabric, OLED and quantum dot display technologies, and 

flexible electronics. This review emphasizes the effective 

inkjet printing technologies for researchers studying the 

field or working in relevant applications. 

 In the case of piezoelectric inkjet printheads, 

designs with ink-recircualtion are needed to improve their 

performance. Developing new printing technologies, 

especially for printing high viscosity inks, are the need in 

future perspective. MEMS technology can further leads the 

printing devices to reduced footprint. The acoustophoretic 

printing device can further be improved in terms of high 

frequency jetting if it is manufactured using MEMS 

technology.   
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