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Abstract. The widely known binary relevance method for multi-label
classification, which considers each label as an independent binary prob-
lem, has been sidelined in the literature due to the perceived inadequacy
of its label-independence assumption. Instead, most current methods in-
vest considerable complexity to model interdependencies between labels.
This paper shows that binary relevance-based methods have much to of-
fer, especially in terms of scalability to large datasets. We exemplify this
with a novel chaining method that can model label correlations while
maintaining acceptable computational complexity. Empirical evaluation
over a broad range of multi-label datasets with a variety of evaluation
metrics demonstrates the competitiveness of our chaining method against
related and state-of-the-art methods, both in terms of predictive perfor-
mance and time complexity.

1 Introduction

The traditional data mining task of single-label classification, also known as
multi-class classification, associates an instance x with a single label [ from a
previously known finite set of labels L. A single-label dataset D is composed
of n examples (z1,01), (z2,02), -+ ,(n,ln). The multi-label classification task
associates a subset of labels S C L with each instance. A multi-label dataset D
is therefore composed of n examples (x1,S51), (z2,52), -, (¥n,Sy). The multi-
label problem is receiving increased attention and is relevant to many domains
such as text classification [10, 2], and genomics [19, 16].

A common approach to multi-label classification is by way of problem trans-
formation, whereby a multi-label problem is transformed into one or more single-
label problems. In this fashion, a single-label classifier can be employed to make
single-label classifications, and these are then transformed back into multi-label
representations. Prior problem transformation approaches have employed algo-
rithms such as Support Vector Machines [2], Naive Bayes [5] and k Nearest
Neighbor methods [19].

The alternative to problem transformation is to modify an existing single-
label algorithm directly for the purpose of multi-label classification. Some well
known approaches involve decision trees [16] and AdaBoost [10]. Algorithm adap-
tion may be as simple as using a problem transformation method internally, or



collecting prediction confidences and using a threshold to predict the multi-labels
associated with prediction confidences that lie above the threshold. Both of these
approaches can be generalised to other single-label classifiers.

By abstracting away from a specific classifier, external problem transfor-
mation allows greater flexibility. Any single-label classifier can be used to suit
requirements. Depending on the problem context, some classifiers may demon-
strate better performance than others. Moreover, external problem transforma-
tion methods can also be implemented specifically to a particular algorithm or
easily integrated with meta or ensemble frameworks.

There are several families of problem transformation methods that can be
found in the multi-label literature. These methods arise from one or more fun-
damental problem transformation approaches that either form the core of more
complex frameworks or are used as modifications to other algorithms. Here we
review two fundamental methods.

The most well known problem transformation method is the binary rele-
vance method (BM) [13,2,19]. BM transforms any multi-label problem into one
binary problem for each label. Hence this method trains |L| binary classifiers
Cy,--+,Cj). Each classifier C} is responsible for predicting the 0/1 association
for each corresponding label /; € L.

BM is mentioned throughout the literature but consistently sidelined on the
grounds of its assumption of label independence. That is to say, during its trans-
formation process, BM ignores label correlations that exist in the training data.
The argument is that, due to this information loss, BM’s predicted label sets are
likely to contain either too many or too few labels, or labels that would never
co-occur in practice.

We argue that BM-based methods have a lot to offer. The chaining method
we present in this paper shows that the above issues can be overcome and are
outweighed by the advantages of this method and any methods based closely
upon it.

Another fundamental problem transformation method is the label combina-
tion method, or label power-set method, (CM), which has been the focus of several
recent works [15, 8]. The basis of this method is to combine entire label sets into
atomic (single) labels to form a single-label problem for which the set of possi-
ble single labels represents all distinct label subsets in the original multi-label
representation. Each (z,.S) is transformed into (z,) where [ is the atomic label
representing a distinct label subset. In this way, CM-based methods directly take
into account label correlations. A disadvantage of these methods, however, is
their worst-case time complexity.

The consensus view in the literature is that it is crucial to take into account
label correlations during the classification process [3,2,15,8,11, 18, 4]. However
as the size of multi-label datasets grows, most methods struggle with the ex-
ponential growth in the number of possible correlations. Consequently, these
methods are able to be more accurate on small datasets, but are not as ap-
plicable to larger datasets. This necessarily restricts their usefulness as many
multi-label contexts involve large numbers of examples and labels.



The paper is structured as follows. We outline the advantages of BM-based
methods and present our classifier chains method CC, which overcomes disad-
vantages of the basic binary method. We then introduce an ensemble framework
for classifier chains called ECC. Finally, we demonstrate the performance of our
methods under empirical evaluation on a wide range of datasets with various
evaluation measures.

The main contributions of this paper are:

— We present Classifier Chains (CC) and Ensembles of Classifier Chains (ECC)

— We introduce an evaluation metric and new datasets for multi-label classifi-
cation

— We present an extensive experimental evaluation to demonstrate the effec-
tiveness of using Classifier Chains.

2 In Defence of the Binary Method

Although BM’s disadvantages are widely acknowledged, its advantages are rarely
mentioned. BM is theoretically simple and intuitive. Its assumption of label inde-
pendence makes it suited to contexts where new examples may not necessarily
be relevant to any known labels or where label relationships may change over
the test data; even the label set L may be altered dynamically — making BM ideal
for active learning and data stream scenarios.

However the most important and widely relevant advantage of BM is its low
computational complexity compared to other methods. Given a constant number
of examples, BM scales linearly with the size of the known label set L. This set is
defined in the dataset and generally limited in scope: generally |L| < |X|, where
X is the feature space. If L is very large, or not defined prior to classification,
the problem is better approached as a tag-assignment or hierarchical problem,
which are beyond the scope of this paper.

CM-based methods, on the other hand, have an upper bound complexity of
min(|D|,2/%), due to the exponentially expanding number of possible combi-
nations with increasing |L| (D is the training set). All methods which model
all label correlations will suffer this complexity. Note that just modelling all
pair-wise label correlations is O(|L|?).

Although BM involves |L| single label problems, each problem only involves
two classes. Depending on the dataset, CM may have to deal with thousands
or tens of thousands of classes. Other methods of transformation resulting in a
single problem will have to produce decisions involving at least |L| classes, which
may imply greater than linear complexity.

Because BM’s |L| binary problems are separate, under demanding circum-
stances it is conceivable (and desirable) to run each label problem separately,
in either parallel or serial, thus only requiring |D| instances in memory at any
point (over |L| processors, or |L| iterations).

In the next section we present our new binary method, CC, which overcomes
the label independence assumption of BM while maintaining acceptable compu-
tational complexity.




3 The Classifier Chain Model (CC)

The Classifier Chain model (CC) involves |L| binary classifiers as in BM. Classifiers
are linked along a chain where each classifier deals with the binary relevance
problem associated with label I; € L. The feature space of each link in the chain
is extended with the 0/1 label associations of all previous links. The training
procedure is outlined in Figure 1. Recall the notation for a training example
(z,S), where S C L is represented by binary feature vector (I1,l2,--- ,ljz|) €
{0,1}41] and 2 is an instance feature vector.

TRAINING(D = {(x1,51), -+, (Zn, Sn)})
1 forjel---|L]

2 do > single-label transformation and training
3 D' —{}

4 for (z,5) € D

5 do D' «— D' U ((z,l1, -+ ,lj-1),1;)

6 > train C; to predict binary relevance of [;
7 C;: D' —1; €{0,1}

Fig.1: CC’s training phase for dataset D and label set L.

Hence a chain Cy, - - - , €| of binary classifiers is formed. Each classifier C; in
the chain is responsible for learning and predicting the binary association of label
l; given the feature space, augmented by all prior binary relevance predictions

in the chain l;,--- ,l;_;. The classification process begins at C; and propagates
along the chain: C; determines Pr(l;|z) and every following classifier Cy - - - C|p
predicts Pr(lj|z;, 11, ...,1j—1). This classification process is outlined in Figure 2.
CLASSIFY ()

1 Y—{}

2 for j — 1to |L]

3 dOY<—YU(lj<—CjZ($7l1,--',l]‘71))

4 return (z,Y) > the classified example

Fig. 2: CC’s prediction phase for a test instance x.

This chaining method passes label information between classifiers, allowing
CC to take into account label correlations and thus overcoming the label inde-
pendence problem of BM. However, CC still retains advantages of BM including



low memory and runtime complexity. Although an average of |L|/2 features is
added to each instance, because |L| is invariably limited in practice, this has
negligible consequences on complexity, as demonstrated in Section 6.

However in terms of computational complexity CC can be very close to BV,
depending on the total number of labels and the complexity of the underlying
learner. BM’s complexity is O(|L| x f(|X]|,|D|)), where f(|X]|,|D|) is the com-
plexity of the underlying learner. Using the same notation, CC’s complexity is
O(|L| x f(|X|+ |L|,|D))), i.e. a penalty is incurred for having |L| additional
attributes. As demonstrated in the experiments in Section 6, in practice this
penalty tends be small in many cases. For instance, assuming a linear base
learner, CC’s complexity simplifies to O(|L| x |X| x |D|+|L| x |L| x |D|), where
the first term dominates as long as |L| < |X|, which we expect. In this case the
effective complexity of CC is then O(|L| x |X| x |D|), which is identical to BM’s
complexity. CC’s complexity will be worse than BM’s whenever |L| > | X| holds.

Also, although the chaining procedure implies that CC cannot be parallelized,
it can be serialized and therefore still only requires a single binary problem in
memory at any point in time — a clear advantage over other methods.

The order of the chain itself clearly has an effect on accuracy. Although there
exist several possible heuristics for selecting a chain order for CC, we instead solve
the issue by using an ensemble framework with a different random chain ordering
for each iteration. In the next section, we present this framework.

4 Ensembles of Classifier Chains (ECC)

The classifier presented in this section is an Ensemble of Classifier Chains (ECC).
Ensembles are well known for their effect of increasing overall accuracy and
overcoming over-fitting, as well as allowing parallelism. They have successfully
been used in various multi-label problems [10, 8, 15, 16].

Note that binary methods are occasionally referred to as ensemble methods
because they involve multiple binary models. However, none of these models is
multi-label capable and therefore we use the term ensemble strictly in the sense
of an ensemble of multi-label methods.

ECC trains m CC classifiers C1,Cs, - - -, C,,. Each C}, is trained with:

— a random chain ordering (of L); and
— a random subset of D.

Hence each C model is likely to be unique and able to give different multi-
label predictions. These predictions are summed by label so that each label
receives a number of votes. A threshold is used to select the most popular labels
which form the final predicted multi-label set.

Each kth individual model (of m models) predicts vector yx = (I1,--- , 1) €
{0, 1L, The sums are stored in a vector W = (Ay, - - AlL)) € RIZ! such that
Aj = Y p,lj € yg. Hence each \; € W represents the sum of the votes for
label [; € L. We then normalise W to W™ which represents a distribution of
scores for each label in [0,1]. A threshold is used to choose the final multi-label



set Y such that I; € Y where A\; > ¢ for threshold ¢. Hence the relevant labels
in Y represent the final multi-label prediction.

This is a generic voting scheme and it is straightforward to apply an ensemble
of any multi-label problem transformation method. We can therefore apply BM
under this same scheme to create an Ensemble of the Binary Method (EBM). This
is carried out identically to ECC (except that chain ordering has no effect on BM).
As far as we are aware, this scheme has not been previously evaluated in the
literature.

5 Related Work

Using labels in the feature space has been approached in the past by Godbole
and Sarawagi [2]. In the main contribution of their work, the authors stacked BM
classification outputs along with the full original feature space into a separate
meta classifier, thereby creating a two-stage classification process. Similar to
CC, this process is able to take into account label correlations, but their meta
classifier implies an extra iteration of both training and test data as well as
internal classifications on the training data to acquire the label outputs for this
meta step. In contrast, CC only requires a single training iteration like BM, and
uses labels directly from the training data without any internal classification.
We evaluate and compare Godbole and Sarawagi’s meta-stacking (MS) in our
experimental evaluation.

A method reviewed in [9] maps confidence predictions of a single-label clas-
sifier to actual label subsets (observed in the training data) using Hamming
distance. The subset with the shortest Hamming distance to the predictions is
chosen as the predicted set. This procedure can also be applied to the binary out-
puts of BM. Hence we use this Subset Mapping method (SM) in our experimental
evaluation.

The work in [3] is based upon the binary approach but their algorithm adds
a second part for deriving a low-dimensional shared subspace in order to model
label correlations. This is computationally expensive, despite an approximation
algorithm, which is reflected in their experimental setup where they randomly
select 1000 data points for training — relatively small sets. Similarly [11] uses a
computationally complex hypergraph method to model label correlations and,
despite a proposed approximate formulation, induces high computational com-
plexity.

MLANN [19] is a nearest-neighbor based method with similar time complexity
to BM. MLANN performs well against BM, but in [12], it did not perform as well
as RAKEL (see below), which we use in our evaluation.

A boosting algorithm is introduced by [18] that aims to reduce complexity by
reducing redundancy in the learning space and sharing models between labels.
Binary models are trained on subsets of the instance and feature spaces, i.e. a
random forest paradigm is used. This is a good example of how the complexity
of the binary approach can be significantly reduced, and supports the conclusion
of this paper that binary methods have been underrated.



The binary pairwise problem has also been employed for multi-label classifi-
cation. This is the one-vs-one approach, as opposed to the one-vs-rest approach
used by BM, therefore requiring |L|? classifiers as opposed to |L|. [7] accompanies
each pairwise classifier with two probabilistic models to isolate the overlapping
feature space. They cite a computational bottleneck for this method for large
datasets. Another pairwise approach [4] works with large datasets when used
with simple and efficient perceptrons, although this method is only able to pro-
vide a ranking and not actual multi-label classification sets. A related approach
is taken in [1] which can conduct classification by using a virtual label to sep-
arate relevant and irrelevant labels. This method performed well against BM in
terms of ranking evaluation, but only marginally in classification.

While label rankings can in most cases be turned into a multi-label classi-
fication, the reverse is not always true. Both BM and CC, for example, cannot
naturally provide prediction confidences, and therefore are unable to provide a
ranking. ECC can output a ranking directly from its voting scheme, although
this ranking is only coincidental as a means to achieve a classification. Ranking
methods and evaluation of ranking performance itself falls outside the scope of
this paper.

Several ensemble approaches have been developed based on the common
problem transformation methods introduced in Section 1, particularly CM due to
its inherent ability to take into account label correlations.

A good example is the RAKEL system by Tsoumakas and Vlahavas [15].
For m iterations of the training data, RAKEL draws a random subset of size k
from all labels L and trains a CM classifier using these labels. A simple voting
process determines the final classification set. Using appropriate values of m and
k, RAKEL was shown to be better than BM and CM.

HOMER [14] is a computationally efficient multi-label classification method
specifically designed for large multi-label datasets. Its efficiency is due to hi-
erarchically splitting up the label set L using a modified k-means algorithm,
and solving each subproblem individually. We note that the authors use Naive
Bayes as their base classifier to further reduce complexity. In our experiments
we use the more computationally demanding SVMs, known for their predictive
performance, particularly on text data.

In [8] we presented EPS: an ensemble method that uses pruning to reduce the
computational complexity of CM, and an instance duplication method to reduce
error rate as compared to CM and other methods. This method proved to be
particularly competitive in terms of efficiency.

6 Experiments

We perform an experimental comparison based on several experimental setups
designed to test a variety of methods in different contexts. Initially we carry out
experiments to justify the value of CC by comparing to related methods and then
later compare ECC to other state-of-the-art methods.



We consider our evaluation one of the most extensive in the multi-label lit-
erature. To the best of our knowledge, our collection of multi-label datasets
represents the largest one so far in multi-label evaluation, and we have used four
evaluation methods. First we introduce some evaluation measures, the datasets
and relevant statistics, and following this, we review our experimental method
and setup, and then present the results.

6.1 Evaluation Measures

It is essential to include several evaluation measures in multi-label evaluation.
Given the extra label dimension, it is otherwise possible to optimise for certain
evaluation measures. We use four different evaluation measures.

Multi-label classification requires a different measure of accuracy from stan-
dard single-label (multi-class) classification. Recall that for each ith classified
instance, Y; is the predicted set of labels, and S; is the actual set. It is possible
to measure accuracy by example (instance i is correct if S; = Y;), or by indi-
vidual label (each [ € Y; is a separate evaluation), but in practice the former
tends to be overly harsh and the latter overly lenient. Instead, we use accuracy
as defined in [13]:

Accuracy = lij:l [9: 0 Y|
Y7 Dl & 15,0

Accuracy is micro-averaged across all examples. As a contrast we include
macro-averaged F-measure, where the average is calculated per label and then
averaged across all labels. The F-measure is the harmonic mean between preci-
sion and recall, common to information retrieval. If p; and r; are the precision
and recall for all [; € Y; from [; € S;, the macro-averaged F-measure is:

F1l N ZQXp]XT]
o =] 2 4 )

We also evaluate using the average area under the precision recall curve
(AU(PRC)). Instead of setting a fixed threshold, the threshold is varied on the
confidence predictions W™ (see Section 4) in steps 0.00,0.02,- - ,1.00, thus
producing different precision and recall values for each label. The average across
all labels is the average area under the precision recall curve. More information
about this measure can be found in [16].

Finally we introduce the use of log loss, distinct from other measures because
it punishes worse errors more harshly, rewarding conservative prediction. The
error is graded by the confidence at which it was predicted: predicting false
positives with low confidence induces logarithmically less penalty than predicting
with high confidence. Therefore, again, we use the confidence predictions for each
label A € W™ to compare to the actual value of each label I; € S;:
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We have used a dataset-dependent maximum of log(5;) to limit the magni-

1
D
tudes of penalty. Such a limit, as explained in [9], servels |to smooth the values
and prevent a small subset of poorly predicted labels from greatly distorting
the overall error. Note that, as opposed to the other measures, the best possible
score for the log loss is 0.0.

In the analysis of time complexity we measure train and test times in seconds.

6.2 Datasets

Table 1 displays datasets from a variety of domains and their associated statis-
tics. Label Cardinality (LCard) is a standard measure of “multi-labelled-ness”
introduced in [13]. It is simply the average number of labels relevant to each
instance. The Proportion of Distinct label combinations (PDist) is simply the
number of distinct label subsets relative to the total number of examples:

1Dl g
LCard(D) = 1|:5|Sl| PDist(D) = |

{S[3(x, 5) € D}
D]

Table 1: A collection of multi-label datasets and associated statistics; n indicates nu-
meric attributes. Dr is the training split used in some experiments.

|D| |L| |X| LCard(D) PDist(D) Type Dr |Dr|x |L|x |X]|

Scene 2407 6 294n 1.07 0.006 media 1211 2.14E4-06
Yeast 2417 14 103n 4.24 0.082 biology 1500 2.16E+06
Medical 978 45 1449 1.25 0.096 text 652 4.25E407
Slashdot 3782 22 1079 1.18 0.041 text 1891 4.49E4-07
Enron 1702 53 1001 3.38 0.442 text 1135 6.02E4+07
Reuters 6000 103 500n 1.46 0.147 text 3000 1.55E408
OHSUMED 13929 23 1002 1.66 0.082 text 6965 1.61E+08
TMC2007 28596 22 500 2.16 0.047 text 21519 2.37TE+08
MediaMill 43907 101 120n 4.38 0.149 media 30993 3.76E+08
Bibtex 7395 159 1836 2.40 0.386 text 3698 1.08E+09
IMDB 95424 28 1001 1.92 0.036 text 47712 1.34E+09
Delicious 16105 983 500 19.02 0.981 text 12920 6.35E409

We strived to include a considerable variety and scale of multi-label datasets.
In total we use 12 datasets, with dimensions ranging from 6 to 983 labels, and
from less than 1,000 examples to almost 100,000. The datasets are roughly
ordered by complexity (|Dr| x |L| x |X]|) and divided between regular and



large sizes. Included are two new real-world multi-label text collections: Slash-
dot, which we collected from http://slashdot.org, and IMDB from http://
imdb.org (data obtained from http://www.imdb.com/interfaces#plain). All
datasets and further information about them can be found at various sources?.

6.3 Algorithms

For easy reference, Table 2 lists all the algorithms used in the experiments,
their corresponding abbreviation, and any relevant citation (where citations are
absent, the method has been introduced in this paper).

Table 2: Algorithms used in the experiments, and associated citations.

BM-based algorithms Ensemble algorithms
BM Binary Method  [13]| EBM Ensembles of Binary Method
CM Chaining Method ECC Ensembles of Classifier Chains
SM Subset Mapping  [9]| EPS Ensembles of Pruned Sets [8]
MS Meta Stacking [2]|RAKEL RAndom K labEL subsets [15]

6.4 Setup and Method

Our default experimental setup is as follows. We evaluate all algorithms under
a WEKA-based [17] framework running under Java JDK 1.6 with the following
settings. Support Vector Machines are used as the internal classifier using WEKA’s
SMO implementation with default parameters. Ensemble iterations are set to 10.
Evaluation is done in the form of 5 x 2 fold cross validation on each dataset
and the corrected paired t-test [6] determines significance under a value of 0.05.
The exception to this is the experiments on large datasets where cross validation
is too intensive for some methods, and a train/test split is used instead. These
splits are shown in Table 1 where Dy is the training set (and therefore (D \ D)
the test set). Experiments are run on 64 bit machines, allowing up to 2 GB RAM
per ensemble iteration.

The thresholds for all ensemble voting schemes, necessary for determining
accuracy and the macro F-measure, are set as following, where D7 is the training
set and a classifier H; has made predictions for test set Dg under threshold ¢:

t= arg min |LC’ard(DT) — LC’ard(Ht(DS))| (1)
{t€0.00,0.001,---,1.00}

This is the closest approximation of the label cardinality of the training set to the
predictions made on the test set. This implies a close balance between precision

! http://www.cs.waikato.ac.nz~/jmr30/#datasets and http://mlkd.csd.auth.
gr/multilabel.html#Datasets



and recall and therefore benefits accuracy and F-measure. It also avoids ad-hoc
or arbitrary thresholds or intensive internal cross-validation.

All ensemble methods involve subsampling for the individual models. EBM,ECC,
and EPS subsample the training set (we set 67% for each model), while RAKEL
subsamples the label set according to its k parameter.

For RAKEL we always set parameter k = % and for EPS we set p =1 and n
is set according to the LCard(Dr) training set statistic. Both these algorithms
allow a trade-off between predictive performance and training time costs and
vice versa: using smaller k£ for RAKEL and higher p EPS will lead to reduced
computational complexity for both algorithms. However, in these experiments
we optimise for predictive performance. Results in the relevant papers [8] and [15]
show that our choice of parameter values generally provides highest accuracy.
One of the notable advantages of ECC is that it requires no additional parameters
other than the generic ensemble parameters which we set as above.

6.5 Results

Initially we compare standalone CC to BM and BM-related methods: a reproduction
of the MS method, and the SM method. CC is used as the base for determining
statistical significance. Results for accuracy and macro-averaged F-measure are
shown in Table 3 (the other evaluation methods are not appropriate because not
all these methods can supply confidence predictions). Train times are graphed
in Figure 3.

Secondly, we perform an experiment comparing ensemble implementations.
We compare EBM and ECC to the state-of-the-art algorithms EPS and RAKEL.
Statistical significance is taken against ECC. Results for all evaluation measures
are displayed in Table 4 and train times are graphed in Figure 4.

Finally we compare ensembles separately on large datasets, for which we use
train/test splits for evaluation. Results for predictive performance are displayed
in Table 5; train and test times are displayed in Table 6. DNF indicates that the
experiment Did Not Finish within one week under the available resources.

Table 3: Binary Methods - Predictive Performance.

Accuracy Macro F-measure
Dataset | CC BM  SM  MS CcC BM SM MS
Scene [67.359.1 e 63.0 61.9 /0.696 0.685 0.666 0.694
Yeast |51.549.6 50.4 49.8 |0.346 0.326 0.327 0.331
Slashdot|46.7 43.4 ¢ 44.7 e 43.6 ¢| 0.327 0.329 0.298 0.328
Medical [75.1 73.0 ¢ 73.1 73.1 ¢/0.377 0.364 0.321 e 0.370
Enron |[39.5386 40.3 388 |0.198 0.197 0.144 ¢ 0.198
Reuters [39.6 31.9 ¢ 33.6 @ 32.4 ¢/0.245 0.224 ¢ 0.194 ¢ 0.229
@, e statistically significant improvement or degradation vs. CC
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Fig. 3: Binary Methods - Train times (average seconds).

Table 4: Ensemble Methods.

Accuracy Log Loss
Dataset | ECC EBM EPS RAK. ECC EBM EPS RAK.
Scene 70.8 68.6e 73.7¢® T2.7¢d| 1.32 1.97e 1.41 1.78 o
Yeast 53.3 H52.7e 54.9¢ 5H4.3 9.41 1148 ¢ 9.16 10.26 o
Slashdot| 51.0 50.9 50.9 51.4 3.45 394e 38l e 44l e
Medical | 77.6 76.7 75.1 ¢ 76.2 1.87 1.93 2.08 ¢ 2.19
Enron 44.6 44.2 44.5 45.9 |10.84 11.00 12.15 e 12.00 ®
Reuters | 44.7 36.0e 49.6 & 45.3 752 833e T7.09d 823e
Macro F-measure AU(PRC)
Dataset | ECC EBM EPS RAK. ECC EBM EPS RAK.
Scene 0.742 0.729 ¢ 0.763 0.750 0.778 0.706  0.780 0.736 o
Yeast 0.362 0.364 0.420 & 0.413 §|0.645 0.618 e 0.643 0.623 o
Slashdot| 0.343 0.346  0.336  0.353 |0.514 0.464 e 0.498 0.443 o
Medical [0.386 0.382 0.324 e 0.377 |0.789 0.782 0.752 e 0.744 e
Enron 0.201 0.201  0.155 e 0.206 |0.488 0.481 e 0.440 @ 0.453 @
Reuters [0.286 0.264 o 0.264 o 0.282 0.347 0.311 ¢ 0.378 & 0.330 @

@, e statistically significant improvement or degradation vs. ECC
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Fig. 4: Ensemble Methods - Train times (average seconds).




Table 5: Large Datasets - Ensembles - Predictive Performance.

Accuracy Log Loss
Dataset ECC EBM EPS RAK.] ECC EBM EPS RAK.
OHSUMED| 41.1 41.39 41.98 41.55 5.36 5.35 6.17 6.65
TMC2007 [53.03 52.74 52.30 52.85 5.70 6.02 4.87 5.82
Bibtex 35.50 35.10 34.13 DNF| 11.95 11.88 12.73 DNF
MediaMill [40.39 39.80 38.20 31.40| 25.37 27.05 26.52 29.97
IMDB 24.88 1.92 DNF 2.06| 13.34 21.30 DNF 20.61
Delicious [17.93 16.93 9.41 DNF|119.92 128.30 133.34 DNF

Macro F-measure AU(PRC)
Dataset ECC EBM EPS RAK.] ECC EBM EPS RAK.
OHSUMED| 0.378 0.379 0.376 0.398| 0.495 0.499 0.506 0.501
TMC2007 | 0.551 0.548 0.561 0.557| 0.620 0.620 0.614 0.620
Bibtex 0.324 0.313 0.257 DNF| 0.437 0.433 0.423 DNF
MediaMill |0.395 0.366 0.338 0.309| 0.523 0.518 0.482 0.413
IMDB 0.221 0.075 DNF 0.080| 0.329 0.023 DNF 0.025
Delicious 0.154 0.133 0.038 DNF| 0.182 0.158 0.095 DNF

Table 6: Large Datasets - Ensembles - Train and Test Times.

Train Times (seconds)

Test Times (seconds) |

ECC EBM EPS RAK.|ECC EBM EPS RAK.
OHSUMED| 5E3 5E3 8E3 5E3| 2E2 7TE1 2E4 3E3
TMC2007 | 5E4 5E4 3E3 3E4|9E1 9E1 2E3 3E3
Bibtex 3E3 2E3 T7E3 DNF|2E3 2E3 1E4 DNF
MediaMill | 1E5 2E5 6E4 2E5| 1E3 7TE2 2E5 2E5
IMDB 4E5 3E5 DNF 3E5| 2E3 9E2 DNF 1E4
Delicious 1E5 1E5 3E2 DNF| 1E4 6E3 1E2 DNF

Shown in E notation where 5E3 ~ 5000 seconds.



7 Discussion

7.1 The Value of Classifier Chains

The value of CC’s chaining method can be seen in Table 3 where it is compared to
related classifiers. CC improves convincingly over both the default BM method and
related methods MS and SM 10 out of 12 times, and in many cases the difference
is statistically significant. Hence the results justify using CC as a base method.

The training times of BM and CM (Figure 3) support the theory presented in
Section 2. BM is naturally the fastest. This complexity is exceeded only marginally
by CC. On smaller datasets, the effect is even negligible, and tiny variances in
runtime conditions cause CC to run marginally faster in some cases - similarly to
SM. SM also involves only minimal overhead over BM. Not surprisingly, because of
MS’s two-stage stacking process, its train times are about twice that of BM.

7.2 Ensemble Methods on Regular Datasets

In Table 4, we see that ECC competes well against the other ensemble methods.
Although in some cases these methods demonstrate better performance than
ECC, such gains are not paralleled under all evaluation measures. Under both log
loss and AUPRC, ECC improves over other methods in four out of six cases, and
the improvement is for the most part statistically significant.

As expected, the timing results again weigh in favour of EBM and ECC, es-
pecially for small |L|. This is shown in Figure 4. An exception is the Medical
dataset which has a very high |L| : |D| ratio, spiking ECC’s build time. EPS’s
reductions to complexity are considerable in some cases, but sporadic and not
theoretically bounded as low as those of the BM-based methods, which are closely
related to the dataset constants |L| and |D].

7.3 Ensemble Methods on Large Datasets

We presented ECC as an efficient method for multi-label classification, so the
experiment on large datasets is important to justify this claim. Results are dis-
played in Table 5. Although the t-test could not be used on the train-test evalua-
tion, we can still see overall superiority for ECC, even more so on regular datasets.
ECC shows a clear majority of wins over the CM-based methods on all measures of
predictive performance. EBM also performs particularly well in this experiment,
indicating that, particularly on larger datasets, the disadvantages of BM-based
methods are outweighed by the large number of examples they can train on.

Only the ECC method performs satisfactorily on the IMDB dataset under the
experiment setup. The other methods suffer problems. EPS’s pruning mechanism
fails and the individual models of EBM and RAKEL predict too many empty sets.
The different chain orderings prevent this effect in ECC.

Again the BM-based methods show an overall advantage in time costs (Ta-
ble 6). These datasets are much larger than those typically approached in the
literature. Although ECC and EBM are not always the fastest, they are the most



consistent, and are the only methods to complete on every dataset under the time
and memory constraints of the experiment. Again, EPS’s reductions to training
time are in some cases effective, but not reliable. For example, on IMDB, where
there are few outlying label combinations to prune (indicated by a low PDist
value), EPS’s pruning mechanism is ineffective, resulting in DNF. On Delicious,
the effect is the opposite: EPS prunes away far too much information, resulting
in particularly poor predictive performance. This is arguably an improvement
over RAKEL (DNF), but only about half as accurate as the binary methods.

7.4 Summary

CM-based methods and other methods that intensively model label correlations
obviously have a place in multi-label classification, especially for datasets of
relatively small dimensions. On larger datasets, however, not only does it become
computationally challenging to model all label correlations, but there are no
significant predictive advantages in doing so. These other methods work hard to
model the label correlations in the training data but end up sacrificing individual
label accuracy. ECC models correlations using an approach which is efficient and
not prone to over-fitting, and for this reason performs strongly over a wide range
of datasets and evaluation measures.

8 Conclusions

This paper presented a novel chaining method for multi-label classification. We
based this method on the binary relevance method, which we argued has many
advantages over more sophisticated current methods, especially in terms of time
costs. By passing label correlation information along a chain of classifiers, our
method counteracts the disadvantages of the binary method while maintaining
acceptable computational complexity. An ensemble of classifier chains can be
used to further augment predictive performance.

Using a variety of multi-label datasets and evaluation measures, we carried
out empirical evaluations against a range of algorithms. Our classifier chains
method proved superior to related methods, and in an ensemble scenario was
able to improve on state-of-the-art methods, particularly on large datasets. De-
spite other methods using more complex processes to model label correlations,
ensembles of classifier chains can achieve better predictive performance and are
efficient enough to scale up to very large problems.
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