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Classifier design is one of the key steps in the development of computer-aided diagnosis~CAD!
algorithms. A classifier is designed with case samples drawn from the patient population. Generally,
the sample size available for classifier design is limited, which introduces variance and bias into the
performance of the trained classifier, relative to that obtained with an infinite sample size. For CAD
applications, a commonly used performance index for a classifier is the area,Az , under the receiver
operating characteristic~ROC! curve. We have conducted a computer simulation study to investi-
gate the dependence of the mean performance, in terms ofAz , on design sample size for a linear
discriminant and two nonlinear classifiers, the quadratic discriminant and the backpropagation
neural network~ANN!. The performances of the classifiers were compared for four types of class
distributions that have specific properties: multivariate normal distributions with equal covariance
matrices and unequal means, unequal covariance matrices and unequal means, and unequal cova-
riance matrices and equal means, and a feature space where the two classes were uniformly dis-
tributed in disjoint checkerboard regions. We evaluated the performances of the classifiers in
feature spaces of dimensionality ranging from 3 to 15, and design sample sizes from 20 to 800 per
class. The dependence of the resubstitution and hold-out performance on design~training! sample
size (Nt) was investigated. For multivariate normal class distributions with equal covariance ma-
trices, the linear discriminant is the optimal classifier. It was found that itsAz-versus-1/Nt curves
can be closely approximated by linear dependences over the range of sample sizes studied. In the
feature spaces with unequal covariance matrices where the quadratic discriminant is optimal, the
linear discriminant is inferior to the quadratic discriminant or the ANN when the design sample size
is large. However, when the design sample is small, a relatively simple classifier, such as the linear
discriminant or an ANN with very few hidden nodes, may be preferred because performance bias
increases with the complexity of the classifier. In the regime where the classifier performance is
dominated by the 1/Nt term, the performance in the limit of infinite sample size can be estimated as
the intercept (1/Nt50) of a linear regression ofAz versus 1/Nt . The understanding of the perfor-
mance of the classifiers under the constraint of a finite design sample size is expected to facilitate
the selection of a proper classifier for a given classification task and the design of an efficient
resampling scheme. ©1999 American Association of Physicists in Medicine.
@S0094-2405~99!00212-6#
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I. INTRODUCTION

With the advent of digital imaging modalities, compute
aided diagnosis~CAD! is becoming an important area o
research in medical imaging. A CAD algorithm can dete
abnormalities and classify disease or normal cases base
image and/or patient information, and thus provide a sec
opinion to the radiologist in the detection or diagnostic de
sion making process.

Design of classifiers that can accurately distinguish n
mal and abnormal features is a critical step in the deve
ment of CAD algorithms. It has been shown that the perf
2654 Med. Phys. 26 „12…, December 1999 0094-2405/99/26 „
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mance of a classifier for unknown cases depends on
sample size used for training.1 When a finite design~train-
ing! sample size is used, the performance is pessimistic
biased in comparison to that obtained from an infinitely lar
design sample. In order to design a classifier with a per
mance generalizable to the population at large, one has to
a sufficient number of case samples that are representativ
the population. However, the availability of case samples
often limited in medical imaging research. It is therefore im
portant to study the sample-size dependence of different c
sifiers and determine the most efficient way of training
classifier, under the constraint of a finite sample size.
265412…/2654/15/$15.00 © 1999 Am. Assoc. Phys. Med.
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2655 Chan et al. : Classifier design for CAD 2655
We note that the concept of generalizability may be u
in several technical senses when assessing the perform
of a classifier: one with respect to mean classifier per
mance, the other with respect to the variance of class
performance. In many classifier design problems, one is m
interested in investigating if the mean performance of a c
sifier estimated from a given set of finite design samples
be generalized to classification performance with unkno
test samples drawn from the same population of cases.
generalizability in this regard can be observed from the
ases of the mean performances in the finite design set an
the test set in comparison to the optimal performance e
mated from an infinite design set. The bias in the mean p
formance of different classifiers under various input con
tions is the subject of investigation in this study. We w
discuss further other interpretation of generalizability in t
Discussion section of this paper.

A number of investigators have studied the finite-samp
size problem1–9 Fukunaga1,3 derived a general formulation
for the bias and variance of a function,f, which is to be
estimated from the available samples. Whenf is a nonlinear
function of the mean vectors and covariance matrices of
feature distributions, it has been shown that a bias res
from the nonlinear propagation of the finite-sample varian
in the estimates of the mean vectors and covariance mat
of the distributions through this function. For multivariat
normal data, these variances are proportional to 1/Nt , where
Nt is the design sample size, and this dependence propa
into the lowest-order terms in the bias. The bias is indep
dent of the test sample size,Ntest. All measures of classifie
performance that count the fraction of times the decis
value for an abnormal case exceeds that for a normal
~independent of underlying distribution!, and various mea-
sures of error for normally distributed decision functions, a
nonlinear functions of the parameters of the underlying d
tributions. They are thus subject to this effect. Fukunaga
Hayes3 analyzed the finite sample effects on the probabi
of misclassification~PMC! of a classifier and suggested
technique that makes use of the linear dependence of P
on 1/Nt to estimate the performance atNt→` with a finite
sample set.

For the evaluation of medical diagnostic systems,
most commonly used performance index is the area un
the receiver operating characteristic~ROC! curve, Az . We
have derived analytically that, for linear discriminant clas
fiers, the classifier performance in terms ofAz can be ap-
proximated by a linear function in 1/Nt , under conditions
when higher order terms inNt can be neglected. We hav
been investigating the dependence ofAz on sample size by
simulation studies.7–9 Wagneret al.10,11 have also analyzed
the effects of design and test sample sizes on the varia
components of the classifier performance. Although th
behaviors depend strongly on the class distributions and
properties of the classifier, the studies will provide some
sight into the sample size requirements for the design
different classifiers. This work may eventually lead to t
selection of an efficient resampling scheme for classifier
sign, as well as the development of a statistical test of
Medical Physics, Vol. 26, No. 12, December 1999
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sample size requirements and the generalizability of
trained classifier.

In this paper, we will describe the simulation studies a
analyze the effects of sample size on classifier performa
Several commonly used classifiers, including the linear d
criminant, the quadratic discriminant, and the bac
propagation neural network will be studied and compa
under different input conditions. Feature distributions w
markedly different characteristics will be used to represen
variety of situations that may be encountered in classifica
problems for many detection or diagnostic tasks.

II. MATERIALS AND METHODS

We performed simulation studies to evaluate the effects
sample size on classifier design. Normal and abnormal c
samples were randomly drawn from known probability d
tributions of the two classes. These samples were then u
to design classifiers for differentiation of normal and abn
mal cases. The simulation approach assures that any nu
of case samples can be obtained from populations w
known statistical properties. It thus allows evaluation of t
dependence of classifier performance on design sample
and comparison of the performance with theoretically p
dicted optimal classification based on the chosen probab
distributions.

A. Simulation study

The sampling and evaluation scheme of the simulat
study is shown in Fig. 1. In this study, we considered on
the situation in which equal numbers (5Ntotal/2) of normal
and abnormal cases randomly drawn from the class distr
tions were available in our data set. A resampling strate
similar to the technique suggested by Fukunaga and Ha
was devised to generate theAz-vs-1/Nt curve. Subsets of
Nt1

,Nt2
,...,Nt j

design samples were randomly drawn fro
the available sample set, again under the constraint tha
numbers of normal and abnormal samples were equal in e
subset, i.e.,Nti ,normal5Nti ,abnormal5Nti

/2 (i 51,...,j ). A clas-
sifier was designed by using each subset of samples.
random sampling of a given subset from the available se
Ntotal samples was performed without replacement, wher
the random sampling of different subsets always started f

FIG. 1. The sampling and evaluation scheme of the simulation study
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2656 Chan et al. : Classifier design for CAD 2656
the same set ofNtotal samples. Therefore, after drawing
given design subsetNti

, the remaining samples,Ntotal–Nti
were independent of the design samples and used as th
samples. For simplicity, the number of design samples
class is denoted asN in the following discussion.

In general, there are two methods, resubstitution and h
out, for testing classifier performance. In the resubstitut
method, the design sample set is resubstituted into
trained classifier to test its performance, whereas in the h
out method, an independent test set is used. It has b
shown1 that, for a Bayes classifier, if the classifier is train
with a finite number of design samples, the resubstitut
estimate of the classifier performance is optimistically bia
whereas the hold-out estimate is pessimisticaly biased
comparison to that achievable with an infinite design sam
set. The mean performance obtained from the former esti
tion provides an upper bound and that from the latter p
vides a lower bound on the true classifier performance. W
the design sample size is limited, it is important to evalu
the hold-out performance to avoid an overly optimistic p
diction of the classifier performance. In the limit of ve
large sample size, the upper and lower bounds converge
wards the unbiased estimate.

In this study, we evaluated the performance of the cla
fier using both the resubstitution and the hold-out method
a function of finite design sample sizeNt . In order to reduce
the variances in the estimates ofAz , we randomly resampled
without replacement eachNti

from the sameNtotal samples

Np times, trained and tested the classifier, and estimated
averageAz from theNp individual Az’s as shown in Fig. 1.
The resubstitution or hold-outAz-vs-1/Nt curve was plotted
from thej points and the unbiased estimate ofAz in the limit
of Nt→` could be extrapolated from either curve.

This method of estimating classifier performance at la
Nt by generating a few data points at finite sample size
similar to the Fukunaga and Hayes technique. However,
did not assume that thej points were in the linear region o
the Az-vs-1/Nt curve and we used resampling to reduce
variances. In fact, one of the goals of this study was to
vestigate the range of design sample size in which the
formance curve was approximately linear for various clas
fiers and probability distributions of the class populatio
Therefore, we used a much larger total number of sam
(Ntotal52000) in our simulation study than was genera
available for classifier design. We could then chooseNti

over
a wide range and study the behavior of the entireAz-vs-1/Nt

curve.
To estimate the population mean ofAz at eachNti

, we
repeated the above experimentNe times, each with 2000
independently drawn samples from the population. T
population mean ofAz was estimated by averaging theAz

values obtained from theNe experiments. We did not ana
lyze the variances in this study because of the complica
in the correlation among theNp values ofAz introduced by
resampling. A detailed analysis of the variances and its m
eling was performed in a separate study by Wagneret al.10,11

in which a different study design was used.
Medical Physics, Vol. 26, No. 12, December 1999
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By varying the number of design samples per class,N,
over a large range from 20 to 800, the regime where the 1Nt

dependence dominated could be observed from theAz ~popu-
lation mean!-vs-1/Nt ~or 1/N! curves. It is important to note
that, although the number of test samples,Ntesti

52000
2Nti

, varied from point to point on both the resubstitutio
and the hold-out curves, the bias inAz is independent of
Ntesti

.1 The shape of theAz-vs-1/N curve is independent o
Ntesti

after Nti
is fixed. However, the variance of a givenAz

does depend on the test sample size.
For simplicity, we will refer to these estimates ofAz

~population mean!as Az(tr) for the resubstitution and a
Az(ts) for the hold-out performance in the following discu
sions.

B. Class distributions

1. Multivariate normal distributions

For three of the four types of class distributions, we a
sumed that the normal and abnormal classes followed m
variate normal distributions in the feature space. The dim
sionality of the feature space,k, was varied from 3 to 15. The
characteristics of the multivariate normal distributions can
completely specified by the multivariate mean vector of
r th class, denoted asm r (r 51,2) and its covariance matrix
denoted asS r . The separation of the normal and abnorm
classes is measured by the Bhattacharyya distance,B, de-
fined as1,12

B5
1

8
D1

1

2
ln

det@~S11S2!/2#

AdetS1AdetS2

, ~1!

where detSr denotes the determinant ofS r , and D is the
squared Mahalanobis distance,12 defined as

D5~m22m1!TS S11S2

2 D 21

~m22m1!. ~2!

The Mahalanobis distance is the Euclidean distance betw
the means of the two distributions, normalized by the squ
root of the average of their covariance matrices. It can the
fore be considered to be a measure of the signal-to-n
ratio ~SNR! between the abnormal and the normal distrib
tions. The second term ofB is the contribution from the
difference in the covariance matrices of the two class dis
butions. If the covariance matrices are equal, the second
will be zero and the Bhattacharyya distance will be equa
1/8 of the squared Mahalanobis distance.

In the current study, three types of multivariate norm
class distributions were considered. In the following disc
sion, we shall refer to the use of simultaneous diagonal
tion for the two covariance matrices of the class distrib
tions. This operation leaves the normal-based decis
functions unchanged because the distance measures that
in these decision functions are invariant to any non-singu
linear transformation.1

„1… Equal covariance matrices and unequal means:In
this case, the covariance matrices of the normal and ab
mal class distributions can be simultaneously diagonali
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2657 Chan et al. : Classifier design for CAD 2657
and the variances of the individual feature components
be scaled to unity. Therefore, without loss of generality,
covariance matrices of the two classes could be assume
be equal to identity matrices,S15S25I . The mean feature
vector for the first class was assumed to be zero,m150, and
the mean feature vector for the second class,m25M with all
components ofM equal to a constantm. The magnitude ofm
could be adjusted to obtain a desired separation of the
classes. For the purpose of this simulation study, we chosm
such that the squared Mahalanobis distance was 3, i.e.
Bhattacharyya distance was 3/8, for feature spaces of
dimensionality. As discussed below, this separation co
sponds to a theoreticalAz of 0.89, which is in the perfor-
mance range of many classification problems in CAD ap
cations. An example of the two class distributions in a
feature space is shown schematically in Fig. 2.

„2… Unequal covariance matrices and unequal means
The covariance matrix of the first class was again diago
ized and scaled to be an identity matrix,S15I , and the mean
feature vector for the first class was assumed to be z
m150. The covariance matrix of the second class,S2 , was
simultaneously diagonalized to have eigenvaluesl i , i
51,...,k. For this study, we generated the values ofl i with
the simple relationship:

l i5lmin1
~ i 21!~lmax2lmin!

~k21!
, i 51,...,k ~3!

and evaluated one condition wherelmin51, andlmax52 for
all dimensionalities of the feature spaces. We also assu
that the components of the mean feature vectorm2 were
equal, the values of which were adjusted to achieve a B
tacharyya distance of 3/8. For the purpose of demonstra
the general trends of theAz-vs-1/N curves and comparing
the relative performance of the different classifiers under
various conditions, the specific choices of these values
not critical. Figure 3 illustrates an example of the two cla
distributions in a 2D feature space.

„3… Unequal covariance matrices and equal means
The covariance matrix of the first class was the same as
in the first two cases described above. The covariance m
of the second class was proportional to the identity mat
S25aI , where the proportionality constanta was adjusted
to provide a Bhattacharyya distance of 3/8. The mean fea

FIG. 2. A schematic illustration of the two class distributions with equ
covariance matrices and unequal means in a 2D feature space. The c
represent contours of equal probability in each distribution.
Medical Physics, Vol. 26, No. 12, December 1999
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vectors of the two classes were equal,m15m250. In this
case, the discriminatory power of the two classes comes
tirely from the difference in the covariance matrices. A sch
matic of the two class distributions in a 2D feature space
shown in Fig. 4.

2. Checkerboard distributions

The fourth type of class distributions was a checkerbo
where the normal and abnormal classes were located in
ternate square box regions of the feature space. Within e
box of the checkerboard, the feature vectors were uniform
distributed. The two classes did not overlap with each ot
so that they could be perfectly separated by an ‘‘ideal’’ cla
sifier with Az51. We considered a 233 checkerboard in
2D feature space and a 23232 checkerboard in a 3D fea
space. The example of a 233 checkerboard in a 2D featur
space is shown in Fig. 5. Such class distributions may no
common in actual classification problems encountered
CAD. However, it was included in this study to demonstra
the capability and limitations of the different classifiers wh
the class distributions were not multivariate normal.

C. Classifiers

We studied three types of classifiers: the linear discrim
nants, the quadratic discriminants, and the back-propaga
neural networks. They represent a range of classifiers c
monly used in the field of pattern recognition at present.

l
les

FIG. 3. A schematic illustration of the two class distributions with unequ
covariance matrices and unequal means in a 2D feature space. The c
curves represent contours of equal probability in each distribution.

FIG. 4. A schematic illustration of the two class distributions with unequ
covariance matrices and equal means in a 2D feature space. The c
represent contours of equal probability in each distribution.
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2658 Chan et al. : Classifier design for CAD 2658
„1… Linear discriminant classifier: The linear discrimi-
nant classifier can be derived from the means and the c
riance matrices of the class distributions as follows:1,13

hl~X!5~m22m1!TS̄21X1 1
2~m1

TS̄21m12m2
TS̄21m2!, ~4!

where S̄5(S11S2)/2, and X is the feature vector to be
classified. The means and covariance matrices have t
estimated as the sample means and sample covariance m
ces from the available design samples. The sample m
and covariance matrices undergo a nonlinear transforma
to become the discriminant scores, which in turn are tra
formed nonlinearly into a measure of the performance. T
variances in the estimated parameters propagate into
mean classifier performance and result in a bias through
second derivative of the transformation function.

It is known that, for multivariate normal distributions wit
equal covariance matrices, the linear discriminant classifie
optimal and the classifier performance in the limit of lar
design samples is determined by the Mahalanobis dista
given by

AZ5
1

A2p
E

2`

AD/2
e2u2/2 du. ~5!

For the class distributions withD53 to be used in this study
it can be derived from Eq.~5! that the maximumAz that the
optimal linear discriminant can achieve in the limit of larg
design samples is 0.89.

„2… Quadratic discriminant classifier: The quadratic dis-
criminant classifier can be expressed as1

hq~X!5
1

2
~X2m1!TS1

21~X2m1!

2
1

2
~X2m2!TS2

21~X2m2!1
1

2
ln

detS1

detS2
. ~6!

When the class distributions are multivariate normal w
unequal covariance matrices, the quadratic discriminant c
sifier is optimal in the limit of large training samples. Th
Bhattacharyya distance gives an upper bound on the B

FIG. 5. An example of a 233 checkerboard in a 2D feature space.
Medical Physics, Vol. 26, No. 12, December 1999
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error.1 The general properties of the linear and quadra
classifiers have been described in the literature~for example,
Fukunaga1!.

„3… Back-propagation neural network: Many different
architectures and training methods have been developed
artificial neural networks~ANN!14 in various applications. In
this study, we considered only a three-layered neural n
work trained with a feed-forward back-propagation metho
The neural network hask input nodes,n hidden nodes, one
output node, and a bias node in both the input and the hid
layers. The ANN architecture is denoted ask2n21. The
nodes in the ANN are fully connected and are trained wit
minimum sum-of-squares-error criterion. The number
weights to be estimated is equal ton(k11)1(n11). A
schematic diagram of an ANN is shown in Fig. 6.

III. RESULTS

In our simulation study, we compared the performance
the linear, quadratic, and backpropagation neural netw
classifiers for the different class distributions in the featu
spaces of dimensionality ranging from 3 to 15. The num
of repeated experimentsNe was chosen to be 20 for all case
in the multivariate normal feature spaces and 100 in
checkerboard feature space. The number of data set parti
ings Np in each experiment ranged from 1 to 20. The
choices are a compromise between computation time
estimation accuracy, especially for ANN classifiers with
large number of hidden nodes in high dimensional feat
spaces. As shown in the graphs discussed below, some o
performance curves may exhibit fluctuations that could
reduced by a larger number of experiments. However,
general trend of the performance curves should not
changed by the statistical uncertainties.

„1… Multivariate normal distributions—Equal covari-
ance matrices and unequal means:For class distributions
with equal covariance matrices, the linear discriminant
theoretically the optimal classifier when the design sam
size is large. However, when the design sample size is sm
the performances of all classifiers are biased. Figures 7~a!–
7~c! show the dependence of theAz obtained from resubsti-
tution ~training!, Az(tr), and theAz obtained from the hold-
out method~testing!,Az(ts), on 1/Nfor the linear, ANN, and

FIG. 6. A schematic diagram of a backpropagation neural network with
hidden layer.
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FIG. 7. The dependence of theAz obtained
from resubstitution~training-solid lines!,
Az(tr), and theAz obtained from the hold-
out method ~testing—dashed lines!,
Az(ts), on 1/N for the class distributions
with equal covariance matrices and un
equal means.~a! Linear,~b! ANN, and~c!
quadratic classifier. Legend: F353D fea-
ture space, etc.
Medical Physics, Vol. 26, No. 12, December 1999
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FIG. 8. The performances of the classifie
for class distributions with unequal cova
riance matrices and unequal means.~a!
Linear, ~b! ANN classifier. Legend:
F353D feature space, etc., solid line
5Az(tr), dashed lines5Az(ts).
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quadratic classifier, respectively. Two hidden nodes w
used for the ANN (k2221) because it is the smallest num
ber of hidden nodes in a nonlinear ANN. An ANN with on
one hidden node will be a linear classifier and behave i
similar manner as the linear discriminant. On the other ha
ANNs with a large number of hidden nodes~not shown!will
overfit the design samples and have poor generalizabilit
the unknown cases, similar to the ANN curves to be d
cussed below. All three classifiers can reach the optimal c
sification accuracy ofAz50.89 in the limit of largeN. The
curves for the linear classifier and the ANN (k2221) at
400 training epochs~iterations!are approximately linear ove
the entire range. The quadratic classifier does not reach
approximately linear region untilN is greater than about 10
(1/N,0.01) in the higher-dimensional feature space. The
ases on both the resubstitution and hold-out curves for
quadratic classifier are greater than those for the linear c
sifier and the ANN (k2221). The large biases again ind
cate overfitting and poor generalization by the quadratic c
sifier in the equal-covariance-matrices situation.
Medical Physics, Vol. 26, No. 12, December 1999
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„2… Multivariate normal distributions—Unequal cova-
riance matrices and unequal means:The performances o
the classifiers for class distributions with unequal covaria
matrices are shown in Figs. 8~a!–8~b!. The linear discrimi-
nant and the ANN (k2221) classifier ~not shown! are
again approximately linear over the entire range ofN stud-
ied. However, theAz at 1/N50 decreases as the dimensio
ality of the feature space increases. This is because both
linear discriminant and the near-linear ANN (k2221) can-
not make use of the class separability due to the differen
in the covariance matrices which is the second term in
Bhattacharyya distance. The second term increases rel
to the first term, the squared Mahalanobis distance, when
Bhattacharyya distance is fixed and the dimensionality of
feature space increases.

The performance curves of the ANN at largeN improve
when a greater number of hidden nodes and a sufficient n
ber of training epochs are used. The number of hidden no
required to reach the optimal classification ofAz50.89 at
1/N50 increases with the dimensionality of the featu
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FIG. 9. The dependence of the perfo
mance curves on the number of trainin
epochs for an ANN with nine hidden
nodes in a 9D feature space: ANN~929
21!. Legend: it5005500 training epochs,
etc., solid lines5Az(tr), dashed lines
5Az(ts). The expanded view in~b! shows
the trend of the curves at large samp
sizes.
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space. Figure 8~b!shows the performance of the ANNs whe
the number of hidden nodes is equal to the dimensionalit
each feature space. Since the number of weights to be tra
increases rapidly with increasing number of nodes in
ANN, the number of epochs required for training the ANN
achieve a reasonable classification accuracy increases
cordingly. The resubstitution and hold-out performan
curves of each ANN shown in Fig. 8~b!were chosen at the
smallest number of training epoch that resulted in appro
mately the highestAz value when the hold-out curve wa
extrapolated to 1/N50. The number of training epochs re
quired to reach the highestAz increased as the dimensiona
ity and the number of hidden nodes in the ANN increased
ranged from about 4000 to 10 000 for the conditions sho
in Fig. 8~b!. We did not attempt to perform an exhaust
search for the ‘‘optimal’’ number of hidden nodes in ea
feature space because of the extensive computation tim
quired for the search. Instead, we evaluated ANNs wit
few different numbers of hidden nodes in each feature sp
and chose the ‘‘best’’ ANN within those studied. With th
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approximation we observed that, in ak-dimensional feature
space and with these class distributions, an ANN with
proximatelyk hidden nodes can approach the optimal perf
mance when the design sample size and the number of t
ing epochs are sufficiently large, as shown in Fig. 8~b!.

To illustrate the training of an ANN with a large numbe
of hidden nodes, we show the dependence of the resubs
tion and the hold-out curves on the number of training e
ochs for ANN ~92921! in Fig. 9. A number of commonly
discussed problems of an ANN can be observed. In the sm
N region below about 60 samples per class, ov
parametrization and over-training are obvious, i.e., near p
fect classification during training@Az(tr) greater than 0.95#
and poor generalization@Az(ts) below about 0.8#. The prob
lem becomes more pronounced with an increasing numbe
training epochs. In the middle range of 200 to 400 samp
per class whereAz(ts) increases to a maximum then d
creases with further training, an ‘‘optimal’’ number of train
ing epoch exists. Only in the region with a sufficiently larg
N ~greater than about 500 per class!,Az(ts) increases with
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FIG. 10. The dependence of the perfo
mance curves of an ANN on the numbe
of hidden nodes in the 9D feature spac
for class distributions with unequal cova
riance matrices and unequal means. Le
end: F9215ANN with two hidden nodes
etc., solid lines5Az(tr), dashed lines
5Az(ts).
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increasing number of training epochs within the range st
ied. TheAz(ts!-vs-1/N curve becomes linear forN greater
than about 200. This dependence of ANN on training ep
is generally observed for ANNs with a large number of h
den nodes and in high-dimensional feature spaces, altho
the design sample size required in order to avoid ov
training and over-parametrization varies. It reinforces o
general experience that the ANNs with a large number
weights can overfit the design samples easily and prov
poor generalization when the sample size is small.

The performance curves of ANNs with different numbe
of hidden nodes in the 9D feature space are shown in Fig.
The curves for a given ANN were again chosen at a train
epoch in which the hold-out curve approached approxima
the highest performance at 1/N50. The chosen training ep
och ranged from 600 to 12 000 for the 2- to 15-hidden-no
ANNs shown. When the number of hidden nodes is sm
the highestAz obtained by extrapolation to 1/N50 appears
to be below the theoretical optimum of 0.89. For examp
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the Az extrapolated to 1/N50 is about 0.85 for ANN~922
21!, and is about 0.87 for ANN~92621!. The ANN with
nine hidden nodes appears to approach the optimalAz of
0.89 in the limit of 1/N50. However, the ANN~92921!
does not reach the approximately linear region untilN is
greater than about 200~easier to see in Fig. 9!. As can b
seen from the hold-out curves, increasing the number of h
den nodes further will increase overfitting, reduce genera
ability, and increase train time without gaining true improv
ment in performance for classification of unknown ca
samples.

The quadratic classifier is the theoretically optimal clas
fier for the class distributions with unequal covariance m
trices. It can optimally utilize the class separability contri
uted by both the differences in the means and the covaria
matrices. The performance curves for the quadratic class
~not shown!in feature spaces of different dimensionaliti
are very similar to those obtained for the equal covaria
matrices situation@Fig. 7~c!#. TheAz of the quadratic classi-
e

s
d

FIG. 11. Comparison of the performanc
curves of the linear, quadratic, ANN~922
21!, and ANN~92921!classifiers in the
9D feature space for class distribution
with unequal covariance matrices an
unequal means. Legends: L5linear;
Q5quadratic, ANN5neural network,
solid lines5Az(tr), dashed lines5Az(ts).
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FIG. 12. The dependence of the perfo
mance curves on dimensionality of featur
space for the class distributions with un
equal covariance matrices and equ
means. ~a! Linear, ~b! ANN classifier.
Legend: F353D feature space, etc. F92
5ANN with two hidden nodes, etc. solid
lines5Az(tr), dashed lines5Az(ts).
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fier reaches the optimal value of 0.89 in the limit of largeN
for all dimensionalities studied.

Figure 11 shows a comparison of the performance of
linear, quadratic, and the ANN classifiers with two and n
hidden nodes. The biases on the resubstitution and the h
out curves of the quadratic classifier are not as large as t
of the ANN ~92921! classifier. However, in the regime o
small design sample sizes, the hold-out curve of the opti
quadratic classifier can be much lower than the correspo
ing curves of the linear classifier or ANN with one or tw
hidden nodes. This result indicates that the theoretically
timal classifier may not be the optimal choice when t
available design sample size is small and ov
parametrization becomes an important consideration.

„3… Multivariate normal distributions—Unequal cova-
riance matrices and equal means:Figure 12~a!shows the
dependence ofAz on 1/N for the linear classifiers for the
class distributions with equal means. Since the Mahalan
distance is zero when the means of the two class distr
tions are equal, the linear classifier performs no better t
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random guessing in the hold-out situation (Az(ts)50.5).
However, it is somewhat surprising that the resubstitut
curve can be biased to very highAz values, when the design
sample is small. The bias increases with increasing dim
sionality of the feature space because the severity of ove
ting to the design samples worsens with increased param
ization in the linear discriminant function. This indicates th
the predicted performance of a classifier can be unreal
cally optimistic if the test samples are not independent of
design samples.

For the class distributions with equal means, it is mu
more difficult to train the ANN classifier. The number o
hidden nodes and the number of training epochs required
the ANN to approximate the decision surfaces, which
spherical hypersurfaces in thek-dimensional feature space
increase ask increases. Figure 12~b!shows theAz-vs-1/N
curves for the ANNs in which the number of hidden nodes
2 times the dimensionality of the feature space. The num
of training epochs required to approach the highest per
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FIG. 13. ~a! The dependence of the perfor
mance curves of an ANN on the numbe
of hidden nodes in the 9D feature spac
for class distributions with unequal cova
riance matrices and equal means. In t
expanded scale~b!, the approximately lin-
ear regions of the curves can be observe
Solid lines5Az(tr), dashed lines5Az(ts).
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mance for a given ANN architecture ranges from about 18
to 20 000 in these cases. Again we did not attempt an
haustive search for the ‘‘optimal’’ number of hidden nod
in each case. These ANNs were chosen because they a
to approach the maximum performance ofAz50.89 in the
limit of large N and their number of hidden nodes is a simp
multiple of the dimensionality. Compared to the class dis
butions with unequal means, for a given dimensionality,
number of hidden nodes and the number of training epo
required for achieving the near maximum performance
largeN are greater in this equal-mean situation. Figure 13~a!
shows an example of the dependence of the performa
curves on the number of hidden nodes in the 9D feat
space. Figure 13~b!is an enlarged view of the curves in Fig
13~a! in the range where the sample size is greater than
per class. The hold-out performance of ANN~92921! at
1/N50 reaches about 0.85. When the number of hidd
nodes is greater than nine, the performances of the ANN
1/N50 are similar and approach the optimalAz .

The quadratic discriminant is again the theoretically op
Medical Physics, Vol. 26, No. 12, December 1999
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mal classifier for the class distributions with unequal cova
ance matrices. Its performance curves~not shown!are very
similar to those plotted in Fig. 7~c!, except that the extrapo
latedAz values at 1/N50 do not reach as high as those in t
equal covariance matrices situation. By using the appro
mately linear region of theAz-vs-1/Ncurve atN greater than
100, the extrapolatedAz ranges from about 0.873 to 0.88
for the 3D to 15D feature spaces. In this case, it is mu
more efficient to train a quadratic discriminant than t
ANN. Since the linear discriminant and ANNs with few hid
den nodes cannot provide effective classification regard
of the design sample size, the quadratic discriminant is
viously the optimal classifier both in terms of performan
and training efficiency.

„4… Checkerboard distributions: In a feature space with
checkerboard class distributions, classification is difficult
many classifiers because of the disjoint clusters of sam
belonging to the same class. We compared the three cla
fiers in such a situation by two examples. Figure 14 sho
the performance curves of the three classifiers in a 2D fea
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FIG. 14. Performance curves of the thre
classifiers for a 233 unit checkerboar
in a 2D feature space. L5linear,
Q5quadratic, ANN2515backpropagation
neural network with five hidden nodes
Solid lines5Az(tr), dashed lines5Az(ts).
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space with a 233 unit checkerboard distribution. Both
linear and the quadratic discriminants perform poorly ev
for the resubstitution method whereAz values are in the
range of 0.6 to 0.7. However, the ANN~22321!can achieve
an Az of 0.96 ~not shown!and the ANN~22521!a near-
perfect classification at a training epoch of about 1200.

In a 3D feature space with a 23232 unit checkerbo
distribution, the difficulty in classification experienced by t
linear and quadratic discriminants is even more appar
Figure 15 shows that the hold-out curve of the linear cla
fier is basically the same as random guessing. The hold
curve of the quadratic classifier is slightly higher than 0.5
small design sample sizes but approaches 0.5 as the d
sample increases. On the other hand, the ANN~32321! can
attain a testAz of 0.9 ~not shown!and the ANN~32521!can
reach near-perfect classification at large design sample s
after about 1500 training epochs. These two examples d
onstrate that an ANN classifier can be superior to the lin
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or quadratic classifiers for class distributions that are v
different from the idealized multivariate normal distribu
tions.

IV. DISCUSSION

Classifier design is an important field of research
computer-aided diagnosis. Yet many of the issues relate
classifier design have not been explored systematically. T
simulation study is a part of our on-going investigation of t
sample size effects on classifier design.7–11,15 In this study,
we evaluated classifier performance for three multivari
normal class distributions with specific properties: equal
variance matrices, unequal covariance matrices, and e
means. These distributions are idealized but they do appr
mate a range of situations that may occur in real classifi
tion problems. Since the optimal classifier and the up
bound of classification accuracy in the limit of 1/N50 are
e
d
d:

-

FIG. 15. Performance curves of the thre
classifiers for a 23232 unit checkerboar
distribution in a 3D feature space. Legen
L5linear, Q5quadratic, ANN3515back-
propagation neural network with five hid
den nodes.
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known for each of these cases, we can compare the pe
mances of the classifiers under each condition with the o
mum. In addition, a checkerboard class distribution was
cluded in the study. A comparison of the performances of
different classifiers for this class distribution can illustra
their effectiveness when the distributions are very differ
from multivariate normal.

For all three classifiers, theAz(tr) obtained by resubstitu
tion is biased optimistically while theAz(ts) obtained by
testing with an independent test set is biased pessimistic
relative to theAz in the limit of N→`, except for the situ-
ations whenAz(tr) is bounded from above by perfect class
fication (Az51) or whenAz(ts) is bounded from below by
random guessing (Az50.5). The magnitude of the biase
increases as the design sample size decreases and as
mensionality of the feature space increases. In the c
where a given classifier has no discriminatory power fo
given class distribution, for example, the linear discrimina
for the equal-mean or checker-board class distributions
the quadratic discriminant for the 3D checker-board cl
distribution, the testAz(ts) remains almost constant at 0.
independent of the design sample size. In many cases
Az-vs-1/N curve cannot be approximated by a straight li
that extrapolates to theAz at 1/N50 until the design sample
sizes are very large, beyond the range of sample sizes
are generally available for CAD classifier design. To es
mate the performance of a classifier at largeN under the
constraint of a small design sample, one may use the Fu
naga and Hayes resampling scheme3 to derive several points
along theAz-vs-1/N curves in the small sample size regio
If the extrapolated resubstitution and hold-out curves do
converge to approximately the sameAz at 1/N50, an aver-
age of the points on the two curves which correspond to
same design sample size may be a closer estimate ofAz than
eitherAz(tr) or Az(ts). It may be noted that the resubstitutio
and the hold-out curves are not biased symmetrically fr
the Az at infinite N, the average thus obtained will only be
rough estimate. It is also not valid in cases when the cla
fier has no discriminatory power withAz(ts) constant at
about 0.5 or when the resubstitution curve is overly optim
tic with Az(tr) constant at about 1.

In any case, caution should be taken in estimating cla
fier performance by extrapolation to 1/N50 or by averaging
the resubstitution and hold-out performance as discus
above. The estimated performance contains variances
have to be estimated using further tools. One such attem
estimating the components of variance by a bootstrapp
resampling scheme has been studied recently by Wa
et al.11 These estimates reveal the amount of bias and v
ance in the classifier performance obtained with the fin
design samples, thus allowing estimation of the sample
required to achieve a desired degree of generalizabi
rather than replacing the need for a larger sample set
further studies.

With the equal-covariance-matrix class distributions,
linear discriminant is the optimal classifier as expected. T
biases are low and the computation is efficient. Moreov
since theAz-vs-1/N relationship is linear over almost th
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entire range of design sample sizes, the classifier per
mance at very largeN can be estimated from the sma
sample size performance by linear interpolation, as s
gested by Fukunaga and Hayes3 and demonstrated previousl
by Wagneret al.9

With the unequal-covariance-matrices and equal-m
class distributions, the linear discriminant and the ba
propagation neural network with one hidden layer are in
rior to the quadratic classifier when the design sample siz
large. The linear discriminant cannot utilize the difference
the covariance matrices and underestimates the class se
bility even when an infinite number of design samples
available. The ANN needs a relatively large number of h
den nodes and a large number of training epochs in orde
reach the optimal performance. Its hold-out performance
the computation efficiency are both inferior to those of t
quadratic classifier. However, for the unequal-covarian
matrices and unequal-mean case and a small design sa
size, the linear classifier or an ANN with very few hidde
nodes, e.g.,n52, provides better hold-out performance th
the more complex ANNs or the optimal quadratic classifie
These results indicate that the bias on classifier performa
increases with increasing complexity~loosely related to the
number of parameters to be estimated! of the classifier. The
linear classifier contains (k11) independent parameters an
the quadratic classifier contains (k11)(k12)/2 independent
parameters in their formulations. The number of weights
be estimated for the ANN depends on the number of hid
nodes asn(k11)1(n11). The number of weights in an
ANN can therefore easily exceed that of a quadratic cla
fier, although the estimation of the mean and covariance
trices for the linear and quadratic discriminants may contr
ute additional ‘‘complexity’’ to the classifier design. Tw
observations can be made. First, when the available sam
size is small, a simple classifier will have better generali
tion than a more complex classifier. Second, a complex A
or a quadratic classifier trained with an insufficient numb
of design samples generalizes poorly, even if it is the optim
classifier for the class distributions. It is therefore importa
to select an appropriate classifier by taking into considera
the design sample size.

A further problem in classifier design is that the tru
population distributions of the classes in the feature space
generally unknown. It was suggested that the quanti
quantile~Q–Q! plot and the chi-square plot may be used f
investigating the normality of univariate and multivaria
sample distributions, respectively.16 However, it is still un-
known under what criteria the chi-square plot will indica
that it is optimal to use a classifier designed under the n
mality assumption. For any measure of goodness-of-fit, w
the sample size is small, only the most aberrant deviati
from the normal distribution can be identified as a lack of
from these plots.16 Therefore, there is often noa priori
knowledge to select an ‘‘optimal’’ classifier or to predi
whether the observed performance is caused by the sa
size, the choice of an overly complex classifier, or by
actual poor separation of the classes in the feature spac
one observes poor generalization of a trained classifier
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truly independent test set, it will be important to take in
consideration all these factors and redesign the classifie

In this study, we assumed that the best features have
ready been determined for the classification task. In a gen
classifier design problem, the best set of features usually
to be selected based on the available design samples.
feature selection step will introduce additional biases to
classifier performance. The number of features selected
has a strong influence on the classifier design, as can be
from the dependence of the bias on the dimensionality of
feature space. The investigation of this more complex sit
tion including both the feature selection and classifier tra
ing steps is underway.17

The term generalizability is nonspecific and needs to
qualified here. The present paper is concerned with the g
eralizability of the mean performance of classifiers to u
known test samples drawn from the same population
cases. We have shown in this paper that the mean pe
mance of a classifier depends on the number of samples
to train the classifier, the architecture of the classifier, an
for multivariate-normal data—the means and covariance
the population distributions. Suppose in this context tha
classifier is trained on a given finite number of desi
samples~patients!. The mean performance of the classi
over independent replications with the same number of
sign samples is generalizable to studies characterized by
same number of design samples. In other words, the m
resubstitution or hold-out performance is an unbiased e
mate for repeated sampling of independent design and
sample sets, respectively, when the same number of de
samples is used. The classifier performance may not, h
ever, be generalizable to studies characterized by a diffe
number of design samples. In particular, when a very la
and representative design sample size is used, the mean
formance may be very different from the mean performa
that characterizes the finite-training-sample condition. Wh
the mean performance under the conditions of a finite de
sample size is close to that expected with a very large de
sample size, the finite-training sample performance is sai
be generalizable to the population performance.

The term generalizability is not only used with respect
mean performance, it is also used with respect to uncerta
in performance, as reflected in estimates of error bars~stan-
dard deviations, or the corresponding variances!. For ex-
ample, if we think of repeating a given training and testi
experiment on a classifier and if only the test samples
drawn independently on the repeated trials, then the e
mated uncertainties are said to be generalizable only
population of test samples. If, however, we think of repe
ing the experiment and independently drawing new train
samples as well as new test samples, then the estim
uncertainties are said to be generalizable to a populatio
trainers and a population of testers.17 Models for the com-
ponents of variance in both paradigms are the subj
of current work in progress.10,11 A key point of this latter
work is the fact that for computer-aided diagnosis, m
available software for ROC analysis only provides estima
Medical Physics, Vol. 26, No. 12, December 1999
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of uncertainty that are generalizable to a population of t
samples.

In this investigation, we have limited our study to on
three types of classifiers: the linear discriminant, the q
dratic discriminant, and the backpropagation ANNs with o
hidden layer. There are, of course, many other variations
the ANN architecture and other parametric or non-parame
classifiers available for feature classification tasks. The p
pose of our work is not to exhaustively evaluate all possi
combinations of class distributions and classifiers. Rather
limiting our investigation to some well-known situations, w
can perform systematic analyses and gain some insights
the classifier design problems. Furthermore, we have lim
our discussion here to the estimates of the mean class
performance. Wagneret al.10,11 have investigated the vari
ances of classifier performance estimated from a fin
sample set and developed models to study the relative
portance of the sizes of the training and test samples. It
been demonstrated that a components-of-variance mode
be estimated with a finite sample set by using a boots
method. More importantly, the analysis of variances can
veal the generalizability of the performance estimates
other training and test sample sets in the population. O
long term goals are to find some guidelines for design
efficient resampling schemes that can minimize the bias
variance of a trained classifier using the available samp
and to provide a quantitative design tool that can estimate
design sample size requirement for a larger ‘‘pivotal’’ stu
from the results of a smaller ‘‘pilot’’ study in order to
achieve a desired precision inAz and the desired generaliz
ability.
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