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bullet.pngABSTRACT
This paper presents a study on the efficiency of implementing classifiers for the detection of sleep apnea

moments based on a minute-to-minute Electrocardiogram (ECG) signal, detailing the comparison of the

accuracy for different classifiers. At each ECG signal, a Sgolay filter was applied to extract the Heart Rate

Variability (HRV) and the ECG-Derived Respiration (EDR) and they were used for the training, testing and

validation of the classifiers. The same features were extended in a second phase in order to understand if

all the classified features were important. According to the results obtained, the best accuracy was 82.12%,

with a sensitivity and a specificity of 88.41% and 72.29%, respectively. This study shows the importance

of choosing the right classifier for a specific problem as well as choosing and using the best features for

a better accuracy. These promising early-stage results may lead to complementary studies to improve the

classifiers for a possible real-world application.

The performance of the proposed model was compared with other approaches used for the detection of sleep

apnea.

bullet.pngINDEX TERMS Sleep Apnea, Electrocardiogram, Feature Extraction, Feature Selection, Artificial Neural

Network, Support Vector Machine

I. INTRODUCTION

S
LEEP apnea is a clinical disorder characterized by ces-

sation of breathing during sleep that can last seconds

or even minutes. Due to the fact that has direct effects on

the cardiovascular system, such as systemic hypertension and

sympathetic activity increment, it is considered an important

cause for morbidity and mortality [1]. Since sleep is a key

activity for each individual as it permits the human body

to repair and maintain health [2], then is crucial to promote

adequate clinical practices to mitigate its effects as evidenced

when patients with sleep apnea who developed COVID-19

were considered at risk of great morbidity and mortality

compared to other patients [3].

The gold-standard for sleep apnea diagnosis is the

Polysomnography (PSG) that aggregates data collected from

a myriad of body functions, such as: heart rhythm, eye

movement, brain activity, and muscle activity, among oth-

ers. However, this multi-parametric concurrent recording of

physiologic data, limits its adoption. Indeed, this is a com-

plex, cumbersome, and time-consuming activity because it

requires an exhaustive test in a controlled environment; like

an hospital setting, to monitor the patient’s sleep, hence this

diagnosis is both unfeasible for a large population and ex-

tremely expensive. So, is timely and promising the introduc-

tion of surrogate techniques that may be not only comfortably

applied to the patient but also a low-cost and simpler solution.

The literature in alternative models to PSG are very abundant,

namely related with proposals based on either a reduced

set of signals [4, 5, 6, 7, 8] or a combination of signals

[9]. Thus, in this study we demonstrate a comprehensive

benchmark of different classifiers and selected features based

on a single signal, the Electrocardiogram (ECG). In line

with this, four different classifiers to detect sleep apnea from

ECG data were evaluated. In addition, these classifiers were

tested on three different scenarios using distinct features

(also extracted from the signal). The proposed methods could
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provide practitioners with a robust, simple and cost-efficient

diagnosis tool compared with the classical screening schemes

provided by PSG.

The main contributions of this paper are as follows:

• Implementation of feature selection principles aiming at

to determine the most relevant descriptors

• Benchmark of multiple classifiers to detect sleep apnea

• Explanatory and up-to-date state of the art on sleep

apnea detection techniques.

The rest of the article is organized as follows. Section II

introduces related works with special focus on physiological

signals and classifiers for sleep apnea diagnosis. Section

III details methods, and experimental settings. Section IV

presents the results of our experiments and Section V expli-

cates their significance. Finally, Section VI brings the article

to conclusion.

II. BACKGROUND
In recent years, different methods have been proposed in

the literature for the diagnosis of sleep apnea disease. In,

[10] authors conducted a systematic review on classification

techniques used on computerised systems for sleep apnea

diagnosis, identifying clusters of classifiers as follows: neural

networks, regression, instance-based, Bayesian algorithms,

reinforcement learning, dimensionality reduction, ensemble

learning, and decision trees. On the one hand, separately

of the adopted classifier its accuracy is highly dependant

on an effectiveness features selection from the multitude of

sources of data . On the other hand, since the PSG requires

an exhaustive data collection fused by multiple sources of

data such as ECG, electroencephalogram (EEG), electroocu-

logram (EOG), electromyogram (EMG), oxygen-saturation

(SpO2), among others, an observed trend in the literature is

related with the adoption of a reduced number of physiologi-

cal signals [11] as an alternative methodology for sleep apnea

diagnosis.

Thus, is convenient to provide a brief perspective on can-

didate physiological signals for sleep apnea diagnosis with

special focus on the ECG due to its immense adoption into

these systems.

The flow of electricity generated from brain activity is

measured by the EEG signal whereas the EMG signal mea-

sures the electrical activity generated from muscle motion.

Furthermore, the electrocardiogram is a method of observing

the heart function by measure the electric potential change

related to the heartbeat resulting in the ECG signal [12, 13].

At a grassroots level, the ECG signal may be considered as

a response to an impulse originated by the body. Indeed, this

is an oscillatory signal due to the nature of the ECG signal.

First, the ECG encompasses six features which corresponds

to different stages that makes up a heartbeat which are

denoted by letters P, Q, R, S, T and U as depicted in Figure

1. Second, the RR (a.k.a. RR interval) is the interval between

successive heartbeats. Third, since R peaks are detected and

if we measure the time between them we obtain the Heart

Rate (HR). Four, the beat to beat variation in a heart-beat

pattern is known as Heart Rate Variability (HRV). Five, the

ECG-Derived Respiration (EDR) is the respiration signal

derived from the ECG. Six, the Instantaneous Heart Rate

(IHR) is the number of beats per minute.

FIGURE 1. The ECG signal [14]

In [15] authors presented a sleep apnea detection model

using both HR, and RR signals extracted from the ECG

signal. The Support Vector Machine (SVM) and the Random

Forest (RF) were applied to classify normal and sleep apnea

episodes. The observations revealed that both classifiers have

yielded higher accuracies using features from HR signal

as compared to RR signal. In addition, the 10-fold cross-

validation demonstrated that the SVM has less error value

than the RF. Also based on the ECG signal, authors in [16]

combined the RR and the EDR signal as cornerstone of a

sleep apnea system. The SVM, and the Stacked Autoencoder

Based Deep Neural Network (SAE-DNN) were considered

for classification. The experimental results demonstrated that

SVM coupled with the Radial Basis Function (RBF) kernel

performs better as compared to SAE-DNN. Similarly, authors

in [17] proposed a sleep apnea detection system based on

EDR and RR signals. The performance was determined using

the fuzzy K-means clustering and the SVM classifier. The

experiments revealed that the RBF kernel-based SVM has

yielded the highest accuracy. In addition, authors recom-

mended either the adoption of entropy features [18] or the

implementation of deep learning algorithms. In [19] and [20]

authors also used the EDR signal, but this time jointly the

HRV. Authors in [19] implemented both Artificial Neural

Network (ANN), and SVM to benchmark the system per-

formance. The SVM classifier has yielded higher accuracy

as compared to the ANN. The experimental results demon-

strated that different features meet different significance in

the system performance. On the contrary [20] used the Kernel

Extreme Learning Machine (KELM) to distinguish between

normal, and sleep apnea episodes. Main findings revealed

that the polynomial kernel based KELM provided higher

average accuracy as compared to linear, RBF, and cosine

wavelet. Moreover, the inclusion of higher order spectral and

non-linear features based on EDR and HRV signals were

recommended.

On the contrary, [21] focused on the analysis of single-lead

ECG signals. The classification of events either normal or ap-
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nea were performed by the following classifiers: Logistic Re-

gression (LR), Linear Discriminant Analysis (LDA), SVM,

Naive Bayes (NB), RF, and k-nearest neighbors (kNN). Au-

thors findings included that not only RF provided higher

accuracy, but also increasing the number of features led to

a reduced accuracy. Congruently, [22] also used the single-

lead ECG and implemented the following classifiers: kNN,

Multilayer Perceptron Neural Network (MLPNN), SVM,

Least-Square Support Vector Machine (LS-SVM). The ex-

perimental results demonstrated that the RBF kernel-based

LS-SVM has yielded higher accuracy. Also based on a single-

lead ECG, [23], and [24] proposed the Adaptive boosting

(AdaBoost), and the SVM respectively to classify normal and

apnea events. In addition, authors in [23] suggested the usage

of time-frequency wavelet transforms to analyze oscillatory

signals such as the ECG. In [25], authors extracted the EDR

signal from the single-lead ECG and applied the following

classifiers to detect sleep apnea episodes: ANN, SVM, kNN,

Linear Discriminant (LD), and Quadratic Discriminant (QD).

Main findings revealed that the ANN with two hidden layers

performs better. Similarly in [26], authors used the HRV

signal in they proposal for sleep apnea detection and imple-

mented the following classifiers: ANN, BN, kNN, and SVM.

The linear kerner SVM obtained the highest performance. In

addition, authors highlighted that a feature extraction method

has different performance in every classification method. In

[27] authors proposed a sleep apnea detection system with the

edge-computing principles in mind. Based on data provided

by a single-channel ECG sensor, authors determined the

system’s performance through RF, Extremely Randomized

Trees, SVM, NB, AdaBoost, kNN, and LR. It was observed

that the SVM coupled with RBF kernel achieved the best

accuracy in spite of the reduced number of features provided.

In [28], authors proposed a microelectromechanical system

(MEMS) based acceleration sensor for sleep apnea detection.

The main goal was to measure diaphragm movements during

the respiratory activity. The ANN was used as classifier

of the proposed model. Furthermore, authors in [29] also

proposed a wearable for ambulatory sleep apnea monitoring.

The model used a single-lead ECG and a SVM classifier do

distinguish normal, and apnea events. On the other hand, in

[30] authors proposed a system based on the oronasal airflow

signal. The SVM was the classifier elected to access the

system’s performance. Authors in [31] used the SpO2 sensor

to acquire both oxygen blood rate, and heart rate. The notion

behind this model is to determine a correlation between the

oxygen saturation and the HRV during apnea episodes. The

experimental results evidenced that the SVM provided higher

accuracy as compared to KNN and ANN. In addition, it

was observed that the 1-min variance demonstrated a good

discriminant capacity.

Finally, [32] and [33] used deep learning methods on

the sleep apnea detection. In [32], authors used the ECG

signal and implemented the following deep learning models:

Deep Neural Network (DNN), one-dimensional (1D) Con-

volutional Neural Networks (CNN), two-dimensional (2D)

CNN, Recurrent Neural Networks (RNN), Long Short-Term

Memory (LSTM), and Gated-Recurrent Unit (GRU). In addi-

tion, authors suggested the implementation of either the 1D

CNN or the GRU coupled with time series signals. On the

other hand, [33] used the single-channel nasal pressure signal

and applied a CNN model. Moreover, [34] combined the IHR

with the SpO2 and applied the Long Short-Term Memory

Recurrent Neural Networks (LSTM-RNN).

III. METHODS AND MATERIALS
Based on lessons learned from the aforementioned literature

we formulate the hypothesis that: (1) the ECG alone is a

promising signal to use for sleep apnea detection. In addition,

(2) an adequate feature selection is preponderant for the

classifier accuracy, and (3) the SVM algorithm revealed its

suitability to cope with apneic ECG signals. With those

notions in mind, we developed a system to detect sleep apnea

in which feature selection and classifiers were benchmarket.

The flow of the proposed model is depicted in Figure 2

including: pre-process, feature extraction, classification, and

feature selection. These architecture is explained in detail in

the sections below.

FIGURE 2. Proposed system activity model.

For the development of this study, we used GNU Octave1,

which is software compatible with MATLAB2 and its pack-

ages.

A. DATABASE

Our experiments were based on the PhysioNet [35] database.

The considered datasource comprises 70 records, but only 35

records were used as only these were annotated. The signals

during the 8h episodes were sampled with a frequency of

100 Hz, and annotated every minute by sleep disorder experts

using standard criteria with respiratory signals, namely, each

minute was labeled as ’A’ or ’N’ in case of sleep apnea

moment or no-apnea, respectively.

1https://www.gnu.org/software/octave/
2https://www.mathworks.com/products/matlab.html
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B. PRE-PROCESS SIGNAL

The database used for evaluation has a wide variety of QRS

complexes and P- and T-wave morphologies and the records

have noise and artefacts that occur in a clinical setting. In line

with this, as QRS detection is based on the time of occurrence

of the QRS complex in the ECG signal it is pertinent to

reduce the signal noise since it tends to decrease the clas-

sifiers’ performance. Thus, the Sgolay filter [36] was used

to remove the baseline wander, as it decreases the accuracy

of the EDR. Afterwards, the obtained signal was subtracted

from the original to yield the waveform. With an ECG signal

free from noise, it is possible to detect the R-peaks and the

QRS complex without missing or misclassifying a heartbeat.

The TEO algorithm [37] was applied off-line over the signal

on the basis of the discrete time domain. In addition, to

detect the R-waves, the signal was processed in a one-second

window. An adaptive threshold at 10% of the maximum R

amplitude was applied due to the contrasting amplitude of

the R-peaks along the signal. If the output at t0 exceeds the

threshold and no greater value was observed in the next 0.25

seconds, then t0 is marked as an R-peak.

C. FEATURE EXTRACTION

The feature extraction was processed on both signals: the

HRV and the EDR. In addition, features were extracted

from one-minute segments congruently with the database

annotations. Thus, in a first phase, 18 features were extracted

from the HRV as detailed in Table 1, and 2 features were

extracted from the EDR as presented in Table 2, giving a total

of 20 features.

In a second phase of the study, and to extend it with

existing results from the literature, more features were added,

allowing for an extended analysis of the results and of the

behavior of different classifiers. In line with this, our experi-

ments included 50 features in total for the HRV and 34 from

the EDR signal, giving a total of 84 features. The additional

features were extracted from the the 256-point FFT power

spectral density, namely 32 points for each HRV, and EDR

were considered.

D. CLASSIFICATION

With the classification in mind, all records extracted from

one-minute segments were labeled as 0 or 1 representing

non-apnea or apnea event respectively. The database con-

taining 17401 records in which 46.33% are related to apnea

moments, whereas non-apnea moments are observable in

53.67%. Then, database was segmented into three different

vectors for training, testing, and validation purposes. The

k-fold cross-evaluation method was adopted with k=10, in

order to improve the training of the classifiers. Finally, sensi-

tivity, specificity and accuracy were calculated as follows:

sensitivity =
TP

TP + FN
(1)

specificity =
TN

TN + FP
(2)

TABLE 1. Time-Domain Measure For HRV(m) Epoch Sequence

RR(m) RR(m) = [rri]
m
i=1 Feature

Count

Mean µ =
∑

rri
m

1

Standard Deviation σ =

√

∑

(rri−µrr)2

m
1

Sum of beats with inter-
beat difference over 50 ms,
variant 1

NN50v1 =
∑m

i=2 unit[|rri − rri+1| −
50ms]

1

Sum of beats with inter-
beat difference over 50 ms,
variant 2

NN50v2 =
∑m−1

i=1 unit[|rri+1 − rri|−
50ms]

1

Ratio of NN50v1 to seg-
ment length

pNN50v1 = NN50v1
m

1

Ratio of NN50v2 to seg-
ment length

pNN50v2 = NN50v2
m

1

Mean of interbeat differen-
tials

µrd =
∑

rdi
m

, where rdi =
rri+1 − rri

1

Standard deviation of in-
terbeat differentials

σ =

√

∑

(rdi−µrd)
2

m
1

Root mean square of inter-
beat differentials

RMSSD =

√

∑

rd2
i

m
1

Serial correlation coeffi-
cients (k=1,...,5)

rk =
∑m

i=1(rri−µrd)(rri+k−µrr)
∑

m
i=1

(rri−µrr)2

5

Fractal Alan Factors
(k=5,10,15)

ATk =
∑

(Ni+1[k]−Ni[k])
2

2∗
∑

Ni+1[k]
,

Ni[k] is the number of beats in
the i-th window of k seconds

3

NEP (Number of Extreme
Points)

NEP = 1
m−2

∑m−1
i=2 (1 −

unit[(rri − rri−1)(rri+1 −
rri)])

1

TABLE 2. Time-Domain Measure For EDR(q) Epoch Sequence

EDR(q) EDR(q) = [edr]qi=1 Feature Count

Mean µedr =
∑

edri
q

1

Standard Deviation σedr =

√
∑

(edri−µedr)
2

q
1

accuracy =
TP + TN

P +N
(3)

where P: Positive. N: Negative. TP: True Positive. TN:

True Negative. FP: False Positve. FN: False Negative.

In the classification phase, five classifiers (ANN, SVM,

LDA, PLS, and aNBC) were implemented and its perfor-

mance were comparatively evaluated. All algorithms were

implemented following its default settings except the ANN

and the SVM that were configured for our experiments.

1) Artificial Neural Network (ANN)

The ANN was implemented with both 20 and 84 input neu-

rons (congruently with the 20 and the 84 features extracted

respectively). The hyperbolic tangent sigmoid transfer func-

tion, i.e. tansig was used as a transfer function between the

input layer and the hidden layer. Then, the linear transfer

function i.e. purelin was used as a transfer function between

the hidden layer and the output layer. The tansig function is

defined as:

4 VOLUME 4, 2016
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tansig(n) =
2

1 + e−2n
− 1

and the purelin function is defined as:

purelin(n) = n.

2) Support Vector Machine (SVM)

An RBF kernel-based SVM was implemented as defined

below:

K(xi, xj) = e−γ‖xi−xj‖
2

, γ ≥ 0 (4)

In which γ determines the variance i.e. the similarity

measure between two points. A large value means a small

variance (two points are similar when they are close to each

other). On the contrary, a lower value means a large variance

(two points are similar even if are distant to each other) [19].

On the other hand, aiming at to obtain a better overall

fit model [38], we tuned the SVM soft margin, namely the

C parameter. Based on the experimental results the models

performed best with the C parameter equal to 512.

3) Linear Discriminant Analysis (LDA)

The LDA was introduced by [39] for dimensionality re-

duction. On the one hand its simple to implement since is

based on generalized eigenvalue decomposition. In addition,

its easy to adapt for discriminating non-linearly separable

classes [39]. In other words, the LDA aims to identify a low-

dimensional linear subspace whereon instances of multiple

classes; at least two, are best separable [40]. Figure 3 depicts

a two class-separation using the LDA by means of axes

maximization.

FIGURE 3. LDA maximizing the component axes for class-separation.

4) Partial Least Squares (PLS) Regression
The (PLS) regression may also be applied to reduce the

data dimensionality. Indeed, the main goal of PLS regression

is to determine an input vector composed by relevant and

informative data according to the output [41]. As depicted

in Figure 4, the notion behind PLS regression is to describe

the relationship between multiple response variables and pre-

dictors through the latent variables wisely selected to provide

maximum correlation with the dependant variable.

FIGURE 4. PLS summarizing variability of variables and use it as predictor.

5) augmented Naïve Bayes Classifier (aNBC)
The aNBC is an extension of the naive Bayes classifier, in

which the class node directly points to all attribute nodes, and

there exist links among attribute nodes [42]. At a grassroots

level, all attributes are independent given the value of the

class variable in the naive Bayes classifier, while they are

dependents in the aNBC scheme. As depicted in Figure 5,

the attribute A1 is dependent on A2, and An whereas A2 is

dependent on A1, and A3. Finally A3 is dependant on A2.

FIGURE 5. Example of aNBC.
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TABLE 3. Results when using 84 features with comparison between the
classifiers

Classifiers Accuracy Sensitivity Specificity

ANN
SVM
LDA
PLS
aNBC

59.40%
61.61%
60.57%
63.00%

62.12%

96.43%
99.23%

98.56%
54.93%
0%

2.67%
0.87%
0.95%
65.24%

62.12%

IV. RESULTS ANALYSIS
Our computational experiments were based on the above

mentioned classifiers. Firstly, 20 extracted features were

applied to train and simulate the model. Secondly, 64 ad-

ditional features obtained via PSD/FFT points were added

to the initial features set (i.e., 84 features in total). All five

classifiers were trained using 8507 records of features, with

2836 records used as training set and 5671 records used to

evaluate the performance. The data provided to the classifiers

for training and testing were divided using the k-fold cross-

validation method with k=10.

The classification performance was assessed on both data

sets (of 20 and 84 features) as shown in Table 3, Table 4,

Figure 6, and Figure 7.

Our experiments encompassed two scenarios: (1) extrac-

tion and classification of features; (2) additional features

extraction and classification. On the one hand, when 20

features were extracted and classified then we may observe

that most accurate model is the ANN classifier (82.12% with

a sensitivity of 88.41%). On the contrary, when 84 features

were extracted the PLS classifier performed better (63.00%).

Moreover, we also observe that the higher specificity was

obtained by the aNBC (79.21%), and PLS (62.24%) respec-

tively. Finally, we note that the LDA (83.98%), and the SVM

(68.36%) presented the higher sensitivity.

FIGURE 6. Results when using 84 features with comparison between the
classifiers

V. FINDINGS
The results obtained in our experiments are comparable with

other studies; using the same database (PhysioNet ECG-

Apnea Database), existing in the literature. This is relevant

to consolidate the knowledge on the use of ECG signal for

sleep apnea detection and diagnosis.

TABLE 4. Results when using 20 features with comparison between the
classifiers

Classifiers Accuracy Sensitivity Specificity

ANN

SVM
LDA
PLS
aNBC

82.12%

70.94%
62.93%
64.49%
41.20%

88.41%

80.87%
83.98%
57.78%
39.24%

72.29%
54.94%
28.40%
66.05%
79.21%

FIGURE 7. Results when using 20 features with comparison between the
classifiers

In [43] authors compared the performance of different

classifiers based on a selected feature set, being that the

most accurate was the Bagging.REPTree with an accuracy of

84.40%, and a specificity of 85.90%. The best sensitivity was

achieved by the AdaBoost algorithm with a score of 87.03%.

On the contrary, on the absence of feature selection the per-

formance is lower, namely the observed accuracy, sensitiv-

ity, and specificity was 77.74% (Bagging.REPTree), 72.47%

(AdaBoost), and 80.29% (Bagging.REPTree) respectively. In

[1], only four features were selected to be considered on

the classification leading to the following results: sensitivity,

88.84%, specificity, 83.29% and accuracy, 85.07%.

In addition, in [44]; that used the the ELM classifier,

authors obtained results as follows: an accuracy of 87.71%,

a specificity of 91.70% and a sensitivity of 81.30%. Despite

this good performance, the sensitivity is lower compared with

similar studies. It should be noted that, since is more relevant

to detect the sleep apnea moments than the normal moments

then sensitivity is more crucial than specificity. In a real-

time monitor [45] a high sensitivity was obtained (96.00%),

however the use of the PSG is mandatory to collect patients’

data.

Finally, in [46], the LD and the QD classifiers were tested

using three different methods (no optimization, feature se-

lection, and co-variance regularization) which resulted that

the QD provided the best specificity (94.60%), and LD the

best sensitivity (94.00%) with no optimization. The highest

accuracy (93.20%) was obtained by the QD using feature

selection.

In our study two different methods were implemented

using a set of 20 and 84 features respectively. In spite of the

better performance of SVM compared to ANN as observed in

the aforementioned literature, our experiments revealed that

the best combination is achieved with the ANN coupled with

6 VOLUME 4, 2016
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20 features. Indeed, an accuracy of 82.12%, a sensitivity of

88.41%, and a specificity of 72.29% were obtained for the

ANN classifier. One explanation for this could be that these

features are more correlated with the detection of sleep apnea

and normal moments. Further, it provides additional evidence

that when the pair sensitivity-specificity ratio is higher it

may lead to an accurate detection of either normal or sleep

apnea moments. Moreover, Table 4 evidences that using LDA

or SVM results in a very sensitive classifier, bur very low

specific. On the contrary, the aNBC results in a very specific

classifier, but very low sensitive. In addition, it should be

noted that higher sensitivity combined with reduced speci-

ficity may lead to poor classifier performances as evidenced

in Table 3 on ANN (Sensitivity: 96.43% Specificity: 2.60%

Accuracy: 59.40%) and SVM (Sensitivity: 99.23% Speci-

ficity: 0.87% Accuracy: 61.61%) classifiers.

In line with this, the proposed model revealed its suitability

for sleep apnea detection and diagnosis based on a single

signal, the ECG.

Finally, a particularly relevant finding of the present study

is the correlation between the wisely feature selection and

the accuracy. Into the context of this study, when the quantity

of selected features increased lead to reduce the accuracy of

the proposed model. Thus, it would be interesting to explore

whether and how a wise selection of features may improve

sleep apnea detection model.

VI. CONCLUSIONS
This study presents an ECG-based model for minute-based

analysis of sleep apnea. The main goal is to implement an

efficient and precise alternative method to the classical PSG,

based on a single signal, the ECG. In addition, a benchmark

with five classifiers are implemented, namely: ANN, SVM,

LDA, PLS, and aNBC.

As expected and according with the presented results, it

can be concluded that different classifiers have different be-

haviors to solve the same problem. Additionally, it is shown

that the model proposed in this study is suitable, feasible

and accurate in the detection of sleep apnea with an ECG

signal. Our findings highlighted the ANN using 20 features

as the most accurate model with an accuracy of 82.12%, a

sensitivity of 88.41% and a specificity of 72.29%. Moreover,

the experimental results revealed that is crucial determining

the most relevant features with the ambition to enhance the

accuracy of the model. Indeed, a same classifier may present

contrasting performances as observed on the lower accuracy

obtained when classifiers were evaluated with 84 features.

Future work may include the introduction of feature selec-

tion in order to determine an optimized characteristic set for

the detection of sleep apnea; improving sensitivity so that all

apnea moments are detected; comparing and calculating the

performance of the different methods applied in the study,

including evaluating the computational costs of classifiers;

and simulating the same study in real patients to examine the

viability of the method presented here and its implementa-

tion.

References
[1] C. Varon et al. “Sleep apnea classification using least-

squares support vector machines on single lead ECG”.

In: 2013 35th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society

(EMBC). 2013 35th Annual International Conference

of the IEEE Engineering in Medicine and Biology

Society (EMBC). July 2013, pp. 5029–5032. DOI: 10.

1109/EMBC.2013.6610678.

[2] Greg Atkinson and Damien Davenne. “Relationships

between sleep, physical activity and human health”.

In: Physiology Behavior 90.2 (2007). Includes a Spe-

cial Section on Chronobiology Aspects of the Sleep–

Wake Cycle and Thermoreregulation, pp. 229–235.

ISSN: 0031-9384. DOI: https : / / doi . org / 10 . 1016 / j .

physbeh.2006.09.015. URL: http://www.sciencedirect.

com/science/article/pii/S0031938406003957.

[3] Michael Thorpy et al. “Management of sleep apnea

in New York City during the COVID-19 pandemic”.

In: Sleep Medicine 74 (2020), pp. 86–90. ISSN: 1389-

9457. DOI: https : / / doi . org / 10 . 1016 / j . sleep . 2020 .

07.013. URL: http://www.sciencedirect.com/science/

article/pii/S1389945720303142.

[4] A. Patangay, P. Vemuri, and A. Tewfik. “Monitoring

of Obstructive Sleep Apnea in Heart Failure Patients”.

In: 2007 29th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society.

Aug. 2007, pp. 1043–1046. DOI: 10 . 1109 / IEMBS .

2007.4352473.

[5] T. Al-ani et al. “Automatic recognition of obstructive

sleep apnoea syndrome using power spectral analysis

of electrocardiogram and Hidden Markov Models”. In:

2008 International Conference on Intelligent Sensors,

Sensor Networks and Information Processing. Dec.

2008, pp. 285–290. DOI: 10 . 1109 / ISSNIP . 2008 .

4762001.

[6] T. Sugi, F. Kawana, and M. Nakamura. “Automatic

EEG arousal detection for sleep apnea syndrome”.

In: Biomedical Signal Processing and Control. Spe-

cial Issue on Biomedical Systems, Signals and Con-

trol Extended Selected papers from the IFAC World

Congress, Seoul, July 2008 4.4 (Oct. 2009), pp. 329–

337. ISSN: 1746-8094. DOI: 10 . 1016 / j . bspc . 2009 .

06 . 004. URL: https : / / www . sciencedirect . com /

science / article / pii / S1746809409000494 (visited on

01/30/2017).

[7] Chien-Chang Hsu and Ping-Ta Shih. “A novel sleep

apnea detection system in electroencephalogram using

frequency variation”. In: Expert Systems with Applica-

tions 38.5 (2011), pp. 6014–6024. ISSN: 0957-4174.

DOI: http://dx.doi.org/10.1016/j.eswa.2010.11.019.

URL: / /www.sciencedirect . com/science /article /pii /

S095741741001256X.

[8] Necmettin Sezgin and Necmettin Sezgin. “EMG clas-

sification in obstructive sleep apnea syndrome and

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3036024, IEEE Access

periodic limb movement syndrome patients by us-

ing wavelet packet transform and extreme learning

machine”. tr. In: Turkish Journal of Electrical En-

gineering and Computer Science 23.3 (Aug. 2015),

pp. 873–884. DOI: 10.3906/elk- 1210- 6. URL: http:

//sdu.dergipark.gov.tr/tbtkelektrik/144851 (visited on

01/30/2017).

[9] N. Pombo and N. M. Garcia. “ubiSleep: An ubiqui-

tous sensor system for sleep monitoring”. In: 2016

IEEE 12th International Conference on Wireless and

Mobile Computing, Networking and Communications

(WiMob). Oct. 2016, pp. 1–4. DOI: 10.1109/WiMOB.

2016.7763192.

[10] Nuno Pombo, Nuno Garcia, and Kouamana Bousson.

“Classification techniques on computerized systems to

predict and/or to detect Apnea: A systematic review”.

In: Computer Methods and Programs in Biomedicine

140 (2017), pp. 265–274. ISSN: 0169-2607. DOI: http:

/ / dx . doi . org / 10 . 1016 / j . cmpb . 2017 . 01 . 001.

URL: / /www.sciencedirect . com/science /article /pii /

S0169260716306113.

[11] A. M. da Silva Pinho, N. Pombo, and N. M. Garcia.

“Sleep apnea detection using a feed-forward neural

network on ECG signal”. In: 2016 IEEE 18th Inter-

national Conference on e-Health Networking, Appli-

cations and Services (Healthcom). 2016, pp. 1–6.

[12] S. Saechia, J. Koseeyaporn, and P. Wardkein. “Human

Identification System Based ECG Signal”. In: TEN-

CON 2005 - 2005 IEEE Region 10 Conference. 2005,

pp. 1–4.

[13] J. S. Kim, G. H. Choi, and S. B. Pan. “A Study on

Electrocardiogram based Biometrics using Embedded

Module”. In: 2019 International Conference on Plat-

form Technology and Service (PlatCon). 2019, pp. 1–

4.

[14] Aykut Diker et al. “A novel ECG signal classification

method using DEA-ELM”. In: Medical Hypotheses

136 (2020), p. 109515. ISSN: 0306-9877. DOI: https:

/ / doi . org / 10 . 1016 / j . mehy . 2019 . 109515. URL:

http : / / www. sciencedirect . com / science / article / pii /

S0306987719312381.

[15] R.K. Tripathy, Pranjali Gajbhiye, and U. Rajendra

Acharya. “Automated sleep apnea detection from

cardio-pulmonary signal using bivariate fast and adap-

tive EMD coupled with cross time–frequency anal-

ysis”. In: Computers in Biology and Medicine 120

(2020), p. 103769. ISSN: 0010-4825. DOI: https : / /

doi.org/10.1016/j.compbiomed.2020.103769. URL:

http : / / www. sciencedirect . com / science / article / pii /

S0010482520301414.

[16] Himali Singh, Rajesh Kumar Tripathy, and Ram Bilas

Pachori. “Detection of sleep apnea from heart beat

interval and ECG derived respiration signals using

sliding mode singular spectrum analysis”. In: Digital

Signal Processing 104 (2020), p. 102796. ISSN: 1051-

2004. DOI: https://doi.org/10.1016/j.dsp.2020.102796.

URL: http://www.sciencedirect.com/science/article/

pii/S105120042030141X.

[17] ChS.S.S. Viswabhargav, R.K. Tripathy, and U. Ra-

jendra Acharya. “Automated detection of sleep apnea

using sparse residual entropy features with various

dictionaries extracted from heart rate and EDR sig-

nals”. In: Computers in Biology and Medicine 108

(2019), pp. 20–30. ISSN: 0010-4825. DOI: https : / /

doi.org/10.1016/j.compbiomed.2019.03.016. URL:

http : / / www. sciencedirect . com / science / article / pii /

S0010482519300897.

[18] S. M. Pincus and A. L. Goldberger. “Physiological

time-series analysis: what does regularity quantify?”

In: American Journal of Physiology-Heart and Circu-

latory Physiology 266.4 (Apr. 1994), H1643–H1656.

DOI: 10.1152/ajpheart.1994.266.4.h1643. URL: https:

//doi.org/10.1152/ajpheart.1994.266.4.h1643.

[19] André Pinho et al. “Towards an accurate sleep apnea

detection based on ECG signal: The quintessential of

a wise feature selection”. In: Applied Soft Computing

83 (2019), p. 105568. ISSN: 1568-4946. DOI: https :

/ / doi . org / 10 . 1016 / j . asoc . 2019 . 105568. URL:

http : / / www. sciencedirect . com / science / article / pii /

S1568494619303485.

[20] R.K. Tripathy. “Application of intrinsic band function

technique for automated detection of sleep apnea us-

ing HRV and EDR signals”. In: Biocybernetics and

Biomedical Engineering 38.1 (2018), pp. 136–144.

ISSN: 0208-5216. DOI: https : / / doi . org / 10 . 1016 / j .

bbe . 2017 . 11 . 003. URL: http : / / www. sciencedirect .

com/science/article/pii/S0208521617303133.

[21] Asghar Zarei and Babak Mohammadzadeh Asl. “Per-

formance evaluation of the spectral autocorrelation

function and autoregressive models for automated

sleep apnea detection using single-lead ECG signal”.

In: Computer Methods and Programs in Biomedicine

195 (2020), p. 105626. ISSN: 0169-2607. DOI: https:

/ / doi . org / 10 . 1016 / j . cmpb . 2020 . 105626. URL:

http : / / www. sciencedirect . com / science / article / pii /

S0169260720314590.

[22] Hemant Sharma and K.K. Sharma. “An algorithm for

sleep apnea detection from single-lead ECG using

Hermite basis functions”. In: Computers in Biology

and Medicine 77 (2016), pp. 116–124. ISSN: 0010-

4825. DOI: https: / /doi .org/10.1016/j .compbiomed.

2016.08 .012. URL: http : / /www.sciencedirect .com/

science/article/pii/S0010482516302086.

[23] Ahnaf Rashik Hassan. “Computer-aided obstructive

sleep apnea detection using normal inverse Gaussian

parameters and adaptive boosting”. In: Biomedical

Signal Processing and Control 29 (2016), pp. 22–30.

ISSN: 1746-8094. DOI: https://doi.org/10.1016/j.bspc.

2016.05 .009. URL: http : / /www.sciencedirect .com/

science/article/pii/S1746809416300519.

[24] Binish Fatimah et al. “Detection of apnea events from

ECG segments using Fourier decomposition method”.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3036024, IEEE Access

In: Biomedical Signal Processing and Control 61

(2020), p. 102005. ISSN: 1746-8094. DOI: https : / /

doi . org / 10 . 1016 / j . bspc . 2020 . 102005. URL: http :

/ / www . sciencedirect . com / science / article / pii /

S1746809420301610.

[25] P. Janbakhshi and M.B. Shamsollahi. “Sleep Ap-

nea Detection from Single-Lead ECG Using Features

Based on ECG-Derived Respiration (EDR) Signals”.

In: IRBM 39.3 (2018), pp. 206–218. ISSN: 1959-0318.

DOI: https : / /doi .org/10.1016/ j . irbm.2018.03.002.

URL: http://www.sciencedirect.com/science/article/

pii/S1959031818300794.

[26] Billy Sulistyo, Nico Surantha, and Sani M. Isa. “Sleep

Apnea Identification using HRV Features of ECG Sig-

nals”. In: International Journal of Electrical and Com-

puter Engineering (IJECE) 8.5 (Oct. 2018), p. 3940.

DOI: 10.11591/ijece.v8i5.pp3940-3948. URL: https:

//doi.org/10.11591/ijece.v8i5.pp3940-3948.

[27] Aleksandar Stojanovski et al. “Real-time Sleep Ap-

nea Detection with One-channel ECG Based on Edge

Computing Paradigm”. In: ICT Innovations 2018, Web

Proceedings ISSN 1857-7288 (2018), pp. 124–134.

[28] Ahmet Hayrettin Yüzer et al. “A different sleep apnea

classification system with neural network based on

the acceleration signals”. In: Applied Acoustics 163

(2020), p. 107225. ISSN: 0003-682X. DOI: https : / /

doi . org / 10 . 1016 / j . apacoust . 2020 . 107225. URL:

http : / / www. sciencedirect . com / science / article / pii /

S0003682X19314483.

[29] G. Surrel et al. “Online Obstructive Sleep Apnea

Detection on Medical Wearable Sensors”. In: IEEE

Transactions on Biomedical Circuits and Systems 12.4

(2018), pp. 762–773.

[30] Bijoy Laxmi Koley and Debangshu Dey. “Automatic

detection of sleep apnea and hypopnea events from

single channel measurement of respiration signal em-

ploying ensemble binary SVM classifiers”. In: Mea-

surement 46.7 (2013), pp. 2082–2092. ISSN: 0263-

2241. DOI: https://doi.org/10.1016/j.measurement.

2013.03 .016. URL: http : / /www.sciencedirect .com/

science/article/pii/S0263224113000833.

[31] Li Haoyu et al. “An IoMT cloud-based real time sleep

apnea detection scheme by using the SpO2 estimation

supported by heart rate variability”. In: Future Gener-

ation Computer Systems 98 (2019), pp. 69–77. ISSN:

0167-739X. DOI: https : / /doi .org /10 .1016/ j . future .

2018.12 .001. URL: http : / /www.sciencedirect .com/

science/article/pii/S0167739X18326980.

[32] Urtnasan Erdenebayar et al. “Deep learning ap-

proaches for automatic detection of sleep apnea events

from an electrocardiogram”. In: Computer Methods

and Programs in Biomedicine 180 (2019), p. 105001.

ISSN: 0169-2607. DOI: https : / / doi . org / 10 . 1016 / j .

cmpb.2019.105001. URL: http://www.sciencedirect.

com/science/article/pii/S0169260719303086.

[33] Sang Ho Choi et al. “Real-time apnea-hypopnea event

detection during sleep by convolutional neural net-

works”. In: Computers in Biology and Medicine 100

(2018), pp. 123–131. ISSN: 0010-4825. DOI: https:/ /

doi.org/10.1016/j.compbiomed.2018.06.028. URL:

http : / / www. sciencedirect . com / science / article / pii /

S0010482518301768.

[34] R. K. Pathinarupothi et al. “Single Sensor Techniques

for Sleep Apnea Diagnosis Using Deep Learning”. In:

2017 IEEE International Conference on Healthcare

Informatics (ICHI). 2017, pp. 524–529.

[35] T. Penzel et al. “The apnea-ECG database”. In: Com-

puters in Cardiology 2000. Computers in Cardiology

2000. 2000, pp. 255–258. DOI: 10 .1109/CIC.2000 .

898505.

[36] Abraham. Savitzky and M. J. E. Golay. “Smooth-

ing and Differentiation of Data by Simplified Least

Squares Procedures.” In: Analytical Chemistry 36.8

(1964), pp. 1627–1639. DOI: 10.1021/ac60214a047.

eprint: https : / /doi .org/10.1021/ac60214a047. URL:

https://doi.org/10.1021/ac60214a047.

[37] H. M. Teager and S. M. Teager. “Evidence for Nonlin-

ear Sound Production Mechanisms in the Vocal Tract”.

In: Speech Production and Speech Modelling. Ed. by

William J. Hardcastle and Alain Marchal. Dordrecht:

Springer Netherlands, 1990, pp. 241–261. ISBN: 978-

94-009-2037-8. DOI: 10 . 1007 / 978 - 94 - 009 - 2037 -

8_10. URL: https : / /doi .org /10 .1007/978- 94- 009-

2037-8_10.

[38] Corinna Cortes and Vladimir Vapnik. “Support-

Vector Networks”. In: Machine Learning 20.3 (1995),

pp. 273–297. ISSN: 1573-0565. DOI: 10 . 1023 / A :

1022627411411. URL: http://dx.doi.org/10.1023/A:

1022627411411.

[39] R. A. FISHER. “THE STATISTICAL UTILIZATION

OF MULTIPLE MEASUREMENTS”. In: Annals of

Eugenics 8.4 (1938), pp. 376–386. DOI: 10 . 1111 /

j . 1469 - 1809 . 1938 . tb02189 . x. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.

1938.tb02189.x. URL: https://onlinelibrary.wiley.com/

doi/abs/10.1111/j.1469-1809.1938.tb02189.x.

[40] Nuno Pombo, Nuno Garcia, and Kouamana Bous-

son. “Machine Learning Approaches to Automated

Medical Decision Support Systems”. In: Handbook of

Research on Artificial Intelligence Techniques and Al-

gorithms. Ed. by Vasant Pandian. Hershey: IGI Global,

2015, pp. 183–203.

[41] David Kleinbaum. Applied regression analysis and

other multivariable methods. Australia Belmont, CA:

Brooks/Cole, 2008. ISBN: 978-0495384960.

[42] Harry Zhang. “The Optimality of Naive Bayes”. In:

Proceedings of the Seventeenth International Florida

Artificial Intelligence Research Society Conference

(FLAIRS 2004). May 17-19, 2004 (Miami Beach,

Florida, USA). Ed. by Valerie Barr and Zdravko

Markov. AAAI Press, 2004.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3036024, IEEE Access

[43] B. Xie and H. Minn. “Real-Time Sleep Apnea Detec-

tion by Classifier Combination”. In: IEEE Transac-

tions on Information Technology in Biomedicine 16.3

(2012), pp. 469–477. ISSN: 1089-7771. DOI: 10.1109/

TITB.2012.2188299.

[44] N. Sadr and P. de Chazal. “Automated detection of

obstructive sleep apnoea by single-lead ECG through

ELM classification”. In: Computing in Cardiology

2014. Computing in Cardiology 2014. Sept. 2014,

pp. 909–912.

[45] M. Bsoul, H. Minn, and L. Tamil. “Apnea MedAssist:

Real-time Sleep Apnea Monitor Using Single-Lead

ECG”. In: IEEE Transactions on Information Technol-

ogy in Biomedicine 15.3 (2011), pp. 416–427. ISSN:

1089-7771. DOI: 10.1109/TITB.2010.2087386.

[46] P. de Chazal et al. “Automated processing of the

single-lead electrocardiogram for the detection of ob-

structive sleep apnoea”. In: IEEE Transactions on

Biomedical Engineering 50.6 (June 2003), pp. 686–

696. ISSN: 0018-9294. DOI: 10 . 1109 / TBME . 2003 .

812203.

NUNO POMBO is an Assistant Professor at Uni-

versity of Beira Interior (UBI), Covilhã, Portu-

gal. His current research interests include: infor-

mation systems (with special focus on clinical

decision support systems), data fusion, artificial

intelligence, and software. He is the coordinator

of the Assisted Living Computing and Telecom-

munications Laboratory (ALLab) at UBI. He is

also member of BSAFE Lab, and Instituto de

Telecomunicações - IT at UBI.

BRUNO M. C. SILVA is an Assistant Professor,

Head of the Technology Department and coordi-

nator of Games Apps Development Course. He

received his PhD degree in Informatics Engineer-

ing from the University of Beira Interior in 2015.

From 2015 until today, he is a senior researcher

in Instituto de Telecomunicações, Universidade da

Beira Interior, co-coordinator of NetGNA Lab,

integrated with the Network Protocols and Algo-

rithms research group. Bruno is also a research

member of the Centro de Investigação em Cidades Inteligentes do Instituto

Politécnico de Tomar.

Dr. Bruno M. C. Silva is a member of many international TPCs and

participated in several international conferences organization. He authors or

co-authors several international conference papers and International Journal

publications. His research areas include: Computer Networks, Mobile Com-

puting, Cloud Computing, but especially:e-Health, Mobile Health, Internet

of Things and Ambient Assisted Living.

ANDRÉ PINHO holds a BSc at Universidade da

Beira Interior (UBI), Covilhã, Portugal (2016). He

is a member of the Assisted Living Computing

and Telecommunications Laboratory (ALLab), a

research group within the Instituto de Telecomu-

nicações at UBI. His current research interests in-

clude machine learning, algorithms for bio-signal

processing, e-Health and clinical decision support

systems.

NUNO GARCIA holds a Ph.D. in Computer Sci-

ence Engineering from the University of Beira

Interior (UBI, Covilhã, Portugal)(2008) and he is

a 5-year BSc in Mathematics/Informatics (Hons.)

also from UBI (1999-2004). He is Assistant Pro-

fessor at the Faculty of Engineering Computer

Science Department at UBI and Invited Associate

Professor at the Universidade Lusófona de Hu-

manidades e Tecnologias (Lisbon, Portugal). He

was the founder and is the coordinator of the

Assisted Living Computing and Telecommunications Laboratory (ALLab),

a research group within the Instituto de Telecomunicações at UBI. He was

also co-founder and is the coordinator of the Executive Council of the

BSAFE LAB - Law enforcement, Justice and Public Safety Research and

Technology Transfer Laboratory, a multidisciplinary research laboratory in

UBI. He is the coordinator of the Cisco Academy at UBI and Chair of the

COST Action IC1303 AAPELE - Architectures, Algorithms, and Platforms

for Enhanced Living Environments (Brussels, Belgium). He is the main

author of several international, European and Portuguese patents. He is a

member of the Non-Commercial Users Constituency, a group within GNSO

is ICANN. He is also a member of ISOC. His main interests include Next-

Generation Networks, algorithms for bio-signal processing, distributed and

cooperative protocols.

b
u
l
l
e
t
.
p
n
g

10 VOLUME 4, 2016


