
Machine Learning 2: 199 228, 1987
© 1987 Kluwer Academic Publishers, Boston Manufactured in The Netherlands

Classifier Systems and the Animat Problem

STEWART W. WILSON (WILSON@THINK.COM)

The Rowland Institute for Science, 100 Cambridge Parkway,
Cambridge, Massachusetts 02142, U.S.A.

(Received: February 15, 1986)

(Revised: February 26, 1987)

Keywords: Classifier systems, incremental learning, disjunctive concepts, payoff,
animal learning, genetic algorithm

Abstract. This paper characterizes and investigates, from the perspective of machine
learning and, particularly, classifier systems, the learning problem faced by animals and
autonomous robots (here collectively termed animats). We suggest that, to survive in
their environments, animats must in effect learn multiple disjunctive concepts incremen-
tally under payoff (needs-satisfying) feedback. A review of machine learning techniques
indicates that most relax at least one of these constraints. In theory, classifier systems
satisfy the constraints, but tests have been limited. We show how the standard classifier
system model applies to the animat learning problem. Then, in the experimental part
of the paper, we specialize the model and test it in a problem environment satisfying
the constraints and consisting of a difficult, disjunctive Boolean function drawn from the
machine learning literature. Results include: learning the function in significantly fewer
trials than a neural-network method; learning under payoff regimes that include both
noisy payoff and partial reward for suboptimal performance; demonstration, in a classi-
fier system, of a theoretically predicted property of genetic algorithms: the superiority of
crossovers to point mutations; and automatic control of variation (search) rate based on
system entropy. We conclude that the results support the classifier system approach to
the animat problem, but suggest work aimed at the emergence of behavioral hierarchies
of classifiers to offset slower learning rates in larger problems.

1. Introduction

This paper characterizes an important but quite unexplored machine
learning problem, assesses the relevance of existing techniques, and focuses
on a limited but challenging test of one technique - classifier systems (Hol-
land, 1976, 1986) - that appears particularly appropriate to the problem.

1.1 The Animat problem

To survive in its environment, an animal must possess associations be-
tween environmental signals and actions that will lead to satisfaction of its

200 S. W. WILSON

needs. The animal is born with some associations, but the rest must be
learned through experience. A similar situation might be said to hold for
an autonomous robot (say on Mars or under the sea). One general way
to represent the associations is by condition-action rules in which the con-
ditions match aspects of the animal's environment and internal state and
the actions modify the internal state or execute motor commands. We are
concerned with how, from a computational standpoint, the animal could
use its experience to discover an effective (i.e., needs-serving) set of rules.

This learning problem is difficult because information is hard to obtain.
In the first place, because the animal must keep on about its business,
instances of environmental situations relevant to development of particular
rules come one at a time, in arbitrary order, interspersed with instances
relevant to other rules. Though in principle large numbers of instances
might be stored over time and processed at leisure, it seems more realistic to
assume that the animal has only limited storage capacity for raw experience
and must extract information from each instance when it occurs. We are
thus assuming that the animal learns incrementally, with essentially no
direct memory of events in their original form or detail. (Past events are
of course implicitly represented more or less well - by the evolving rules,
and the power to "recall" an event - again more or less well - by rule
manipulation is not excluded by the incremental learning constraint.)

Second, the animal does not in general have the luxury of a teacher-like
environment to tell it which action was "right" (most needs-serving) in each
situation, or even to provide an error signal. Instead, on those relatively
rare occasions when an action brings immediate satisfaction of a current
need, the best the animal can do is rate the action (and the responsible
rule) according to the degree of satisfaction. However, there is no assurance
that some other action would not have resulted in greater satisfaction. We
shall use the term payoff as a shorthand for "degree of need satisfaction,"
and shall speak of the animal's "receiving payoff" from the environment
but will always mean by this that the animal is experiencing some degree
of need satisfaction as a consequence of being in a certain relationship to
the environment.

The payoff constraint is actually even tougher than this because usually,
after an action, no payoff at all is received. Yet that action (e.g., a certain
move) may have located the animal so that the next action will result in a
large payoff. Such "stage-setting" action chains can be long. To support
them, the animal must somehow get proper credit to the constituent steps,
but in a way that does not exceed the animal's limited raw storage capacity.
Thus in general the animal has to learn under payoff that may be delayed.

Finally, though the animal may have some built-in preprocessing of sen-
sory signals, useful combinations of perceptual elements are not given in

CLASSIFIER SYSTEMS 201

general and must be created by the animal. To reflect this, we assume that
the environmental signals are vectors of low-level features taking on dis-
crete values. In learning, the animal must discover significant combinations
of the features, generalizing them as much as possible (while still avoid-
ing error) to cope with the great diversity of the environment. Irrelevant
features, depending on the situation, should come to be ignored. From a
logical standpoint, the resulting concepts will usually be disjunctive: for
example, the many reasons why the animal might "move left" will tend to
have little in common.

Our underlying hypothesis, and the motivation for the more specialized
work in the experimental part of the paper, is that study by computer
simulation of learning under the above conditions should be useful both for
understanding learning in organisms and for the design of highly adaptive,
autonomous robots. We have termed such simulations artificial animals or,
briefly, animats (Wilson, 1985); we also apply the term animat informally
to the animals and autonomous robots themselves. A simulation requires
specification of environment, needs, sensory and motor equipment, and
learning method.

In light of the constraints we have assumed above, the "animat prob-
lem" may be characterized technically as: incremental learning of multiple
disjunctive concepts under payoff. To the extent this is an accurate char-
acterization of the organism's learning problem, simulations that succeed
in emulating an organism's behavior in realistic environments should, in
their computational principles, suggest models of the organisms themselves,
which can be compared with models from other sources (e.g., experimental
psychology, neurophysiology). Similarly, the animat approach should lead
to design principles for autonomous robots, though here one might suggest
that the constraints are too strict. For example, since computer memory is
inexpensive, why require incremental learning when large amounts of raw
experience (for "training sets") could presumably be stored? One answer is
that if natural organisms do learn incrementally, then since organisms are
remarkably competent, robot designs should benefit from understanding
how organisms manage without storing raw experience.

1.2 Available approaches

Many elegant techniques of machine learning turn out to be inapplicable
to the animat problem because the techniques require more information
than the problem constraints permit. Michalski (1986) distinguishes three
major research paradigms in machine learning: neural modeling and de-
cision theoretic techniques; symbolic concept acquisition; and knowledge-
intensive, domain-specific learning. The last covers systems having signif-

202 S. W. WILSON

icant amounts of built-in domain knowledge. The animat, though it may
have some instinctive responses, does not in general have prior knowledge
of the world, so that the third paradigm is not directly of interest.

Within the symbolic concept acquisition paradigm, the programs of Win-
ston (1975) and Mitchell (1982) are prototypes for incremental learning of
single concepts from examples, but they have trouble handling disjunctive
concepts and noise (also important in the animat world), and require a
teacher-like environment that labels the examples. Michalski and Larson's
(1978) AQ

11
 program and Quinlan's (1983) ID3 program learn multiple,

disjunctive concepts from (potentially noisy) examples but, because they
also expect the examples to be pre-classified, they are not capable of learn-
ing under payoff. In addition, ID3 is not incremental. AQ

11
 is described as

incremental by its authors, but there appear to be no published reports of
tests under the incremental constraint of the animat problem: one example
at a time with no storage of past events.

1

Within Michalski's first paradigm, neural modeling and decision theo-
retic techniques, two approaches using networks are representative. Both
do learn disjunctive concepts incrementally. The associations that the
animat needs to learn can be regarded as mappings from input strings
to output strings. Rumelhart, Hinton, and Williams (1985) discovered a
generalization of the perceptron learning rule that may permit a network
of nonlinear, neuron-like elements to learn an arbitrary binary mapping.
From the animat point of view, however, the technique has the drawback
that learning requires the environment to supply the correct value for each
bit of the output string. The animat, on the other hand, receives only pay-
off (i.e., a single scalar) for its output action as a whole. Even if there are
only two action possibilities, the correct choice is not necessarily indicated:
the payoff may be a quantity like "37."

The other network approach (Barto, 1985) is noteworthy because the
algorithm for adjusting the input weights of its so-called AR-P elements
is partly stochastic. This is believed to cause the network to explore more
thoroughly the space of possible activity patterns, which indirectly causes
the learning algorithm to explore more thoroughly the weight space. Such
a partly stochastic search can be helpful in avoiding entrapment at sub-
optimal solutions (Kirkpatrick, Gelatt, & Vecchi, 1983). Like Rumelhart
etal, Barto presents experiments showing his network learning several dif-
ficult nonlinear mappings. However, all are from an input string to {0,1},
leaving open the question of how the technique would apply to string-string
mappings. More broadly, from the animat viewpoint, it is not clear how

1
Anderson's (1983) ACT* system, which its author describes as a "theory of cogni-

tive architecture," is potentially quite relevant to the animat problem, but we defer its
discussion until section 2.4.

CLASSIFIER SYSTEMS 203

feedback in the form of payoff could be used.

The classifier systems originated by Holland (1976, 1986) are included
in Michalski's first paradigm, and are the focus of this paper. Classi-
fier systems appear to offer a broadly useful framework for addressing the
animat problem. In theory, a classifier system is suited to learn multiple
disjunctive concepts incrementally under payoff (including noisy payoff and
delayed payoff in sequential tasks). But the method has been investigated
experimentally in only a few cases. Holland and Reitman (1978) exhibited
successful performance by an animat-like classifier system that optimized
its rate of satisfaction of two distinct needs. Booker (1982) experimented
with an ariimat-like "hypothetical organism" in a simple environment that
contained both attractive and aversive stimuli. Goldberg (1983) used a
classifier system to adaptively control a simulated Newtonian system and
a gas pipeline. While the results in each case showed the potential of clas-
sifier systems, the problems solved were from a logical standpoint fairly
small.

2

Wilson (1985) used a classifier system for an animat that lived in an
environment containing 92 distinct sensory vectors. The animat's objective
was to satisfy its need for "food." With no initial knowledge of what food
looked like, the animat evolved classifiers (rules) that led it not only to move
toward food when it was in view but also to move on efficient multi-step
paths toward food not in immediate view, using other objects as clues to
the proximity of food. The system formed eight disjunctive generalizations,
showing the potential of classifier systems for larger problems.

These modest demonstrations suggest further investigation of the ap-
proach's power. For example, how logically difficult a problem can be
handled, and on what learning time scale? What determines the degree of
generality achieved by the classifiers, and can this be controlled? What is
the effect of different payoff regimes, including the use of penalties? One
way to investigate these questions is through additional simulations of the
kind cited. Another way is through focusing on a single, well-defined, but
difficult task that would challenge the method's basic mechanisms. In the
present research, we chose the latter course. We decided for simplicity
to leave out delayed payoff and concentrate on a non-sequential problem
environment in which the core animat constraints incremental learning
of disjuncts under (immediate) payoff - would still hold. As a test task,
we chose the Boolean multiplexer, a difficult logical function that would

2
Smith (1980) employed a significant variant of the classifier system idea in a poker-

learning system that rivaled Waterman's (1970) results. His interesting approach, which
applied the genetic algorithm to a population of classifier systems instead of a population
of classifiers, falls substantially outside the present framework, and we do not cover it
here. Also see Schaffer (1985).

204 S. W. WILSON

permit comparison with Barto's results on the same task. In the next sec-
tion we review the standard classifier system model and then, in Section
3, describe Boole, our specialization of the standard system for Boolean
problems. In Section 4 we present experiments on the questions above.

2. The standard classifier system

We shall refer to the system described by Holland (1986) as the "stan-
dard" classifier system.3 Structurally, it consists of (1) a finite population
[P] of fixed-length condition-action rules called classifiers, (2) a message
list, (3) an input interface consisting of a set of environmental feature de-
tectors, and (4) an output interface for affecting the environment. Sources
of environmental payoff must also be defined. Functionally, the system
employs three algorithms: a performance algorithm, a reinforcement algo-
rithm (called the bucket brigade), and a discovery algorithm.

The classifier population may be thought of as a set of hypotheses repre-
senting the system's current estimate of the best means of obtaining payoff.
The performance algorithm, together with the classifier population, deter-
mines the system's short-term behavior. The reinforcement algorithm de-
fines how received payoffs alter classifier strengths; that is, how credit is
to be apportioned to the apparently responsible classifiers. The discovery
algorithm uses a version of Holland's (1975) genetic algorithm to gener-
ate new, possibly better classifiers by recombining "building blocks" from
existing high-strength classifiers and inserting the new classifiers into the
population to compete for payoff.

2.1 Representation: Classifiers and messages

The system's basic elements are classifiers and messages. All messages
are strings of length L from {1,0}. All classifiers have the structure:

where the condition and action are separated by "/". The condition con-
sists of r individual taxa, ti; the action, a, is a message. Each taxon is
a string of length L from {1,0, #}. The condition is satisfied if and only
if every ti matches some message currently on the message list. An indi-
vidual ti matches a message if and only if for every 1 or 0 in ti, the same
value occurs at the corresponding position in the message; "#" functions
as a "don't care" symbol in a taxon and matches unconditionally. The #'s
confer generality on the taxon (and thus on the classifier) in the sense that

3Our summary will omit some details of the standard approach.

CLASSIFIER SYSTEMS 205

2" distinct messages can be matched by a taxon containing n #'s. As just
mentioned, each classifier also possesses a strength, a scalar quantity that
is adjusted by the reinforcement algorithm and that represents an estimate
of the classifier's value to the system.

Messages from the environmental interface have the same format as clas-
sifier action messages, i.e., they are strings of length L from {1,0}. The
output interface is a pre-defined mapping from some subset of the message
space to actual actions in the environment. For example, the interface
might respond to a message ending in "0110" by causing the system to
take a step forward, etc.

2.2 Performance and reinforcement algorithms

The operation of the performance and reinforcement algorithms consists
of an iterated major cycle in which: (1) messages from the input interface
are added to the message list; then (2) classifiers whose conditions are
satisfied by messages on the list post their own'messages to the list (and the
old messages are erased); and finally (3) any posted messages that would
trigger the output interface do so, but with resolution of effector conflicts if
necessary. In the bucket-brigade reinforcement algorithm, a (small) fraction
e of the strength of each posting classifier is transferred to the strengths
of the classifiers that left the messages matched by the posting classifier
(with the recipient classifiers sharing the transferred amount equally in the
simplest case). When external payoff enters the system, it is shared by the
classifiers whose messages are currently on the list.

A classifier whose message is matched by a classifier on the next cycle is
said to be "coupled" to that classifier. If a sequence of coupled classifiers
leads to external payoff and the sequence gets repeated, strength increments
will in effect flow back, via the bucket brigade, to reinforce the sequence's
early-acting members. Thus early-acting, "stage-setting" classifiers that
make possible later payoff will receive due credit, even though the payoff is
delayed. In general, classifiers that match on a cycle do not automatically
have the right to post their messages, but must have strengths above a
threshold. Apart from this requirement, all matching classifiers gain the
opportunity to compete for the bucket brigade's payoff flow.

2.3 Discovery component

In the performance and reinforcement algorithms, classifiers that lead
to more payoff increase in strength and thus increase their own, and the
system's, effectiveness in gaining payoff. In the discovery component,
strengths play a distinct further role, influencing the generation of new
classifiers that are likely to be better at getting payoff than existing ones.

206 S. W. WILSON

The discovery component, using a version of Holland's (1975) genetic
algorithm, can be described as a multiple search through the space of clas-
sifier structures along trajectories influenced by the structures of current
above-average (strength) classifiers. Holland presents a deeper perspective
in viewing the current classifiers as sampling an underlying space of clas-
sifier "building blocks" or substrings (including discontinuous substrings).
He proves that the mechanisms of the genetic algorithm efficiently test and
rank extant substrings while continually introducing new substrings and
biasing the search of substring space toward above-average regions. Im-
provement in substring space leads to improvement in classifier space (and
therefore of the system) since, under the algorithm, instances of the best
substrings tend to be combined to form new classifiers.

Despite the subtle action just suggested, the basic cycle of the discov-
ery component is quite simple. Classifiers ("parents") are selected proba-
bilistically from the population [P] according to strength and then copied.
Genetic operators are applied to at least some of the copies. Then all of
the copies ("offspring") are added to [P], replacing a like number of weak
classifiers. The principal genetic operators are crossover and mutation. In
crossover, a randomly selected segment is exchanged between a pair of clas-
sifiers. In mutation, the values (alleles) at one or more positions (loci) in a
classifier are changed to one of the other possible values; e.g., 1 would be
changed to either 0 or # in the case of a taxon allele.

The discovery component operates in the background, producing off-
spring at a certain rate and inserting them in [P]. The offspring compete
with the parents, as well as with other members of [P] that may match
in similar situations. If the new classifiers are more effective in gaining
payoff than their competitors, they will survive and the competitors may
eventually be replaced. The new classifiers will not survive if they do not
better their competitors in a sufficiently large set of situations.

2.4 Comparison with ACT*

Classifier systems are related to production systems (Davis & King,
1977) in that both employ condition-action rules, message-passing, and
a recognize-act cycle. Holland (1986) discusses the differences in detail.
Anderson's (1983) system ACT* is perhaps the most sophisticated learn-
ing production system (but see also Laird, Rosenbloom, & Newell, 1986).
ACT* includes strengthening mechanisms for productions as well as gener-
alization, discrimination, and other operators. The system was motivated
by, and designed to simulate, results from human experimental psychology.

Perhaps the largest differences with classifier systems concern represen-
tation and discovery. ACT* productions manipulate "high-level" concepts

CLASSIFIER SYSTEMS 207

(e.g.. "red triangle," "Baptist"); the perceptual machinery for generating
such symbols in the first place tends to be assumed. In contrast, classifier
systems propose to create all required symbols - perceptual to high-level
through system action upon binary strings. Second, ACT*'s discovery op-
erators tend to be applied for reasons, or purposefully (e.g., discrimination
may be triggered by observed correct and incorrect applications of a pro-
duction). In contrast, classifier system operators act randomly on copies
of successful (strong) classifiers.

4
 ACT* appears to satisfy the incremen-

tal and disjunctive animat constraints (Anderson & Kline, 1979), though
its ability to learn under payoff is less clear. The two systems should be
compared on similar problems, if possible.

3. Boole: A specialized classifier system

The above discussion of the standard classifier system introduced broad
principles of operation. In this section we describe Boole, a specialized
classifier system for Boolean functions that we used for experimenting with
non-sequential learning under the core animat constraints. A Boolean func-
tion of L variables is a mapping from binary strings of length L to {0,1}.
Learning the function means acquiring the ability to give the correct out-
put value, 0 or 1, for any input string. A Boolean function makes a good
task since a difficult, disjunctive function (concept) is easy to define and
instances of known value are readily generated. Because all needed infor-
mation is available in the input string, Boole omits the standard system's
sequential aspects - the message list and bucket brigade and makes its
decision in a single time step.

3.1 Representation

Boole's classifiers each consist of a single taxon and an action. For L-bit
input strings, the taxon has length L. The action is simply a single bit, 0 or
1. representing one of the two possible values for the function. The classifier
says, in effect, "if my taxon matches the current input string, consider
making my action the system's decision." An example of a classifier for
L — 6 would be:

4
The distinction is somewhat reminiscent of that between Lamarckian and Darwinian

evolutionary mechanisms (Curtis. 1983).

The classifier population [P] is usually initialized by filling all taxa with
0. 1. and # according to some random rule; actions are similarly filled

208 S. W. WILSON

in. Except as specifically noted, in all the experiments reported here, [P]
contained 400 classifiers and was initialized with a uniform random distri-
bution. Initial strengths were set to a common value (100).

3.2 Performance component

In the performance cycle an input string is presented and the system
decides on its "answer": 0 or 1. The cycle has just two steps:

1. Form the match set [M] of all classifiers whose taxa match the input
string.

2. Select a single classifier from [M] using a probability distribution over
the strengths of [M]'s classifiers; that is, the probability of selection of
a particular classifier is equal to its strength divided by the sum of the
strengths of classifiers in [M]. Output the selected classifier's action as
the system's decision.

In effect, the system asks which classifiers in [P] "recognize" the current
input, then from these tends to choose the action having the greatest total
strength among the classifiers advocating that action.

3.3 Reinforcement component

The reinforcement component adjusts classifier strengths in accordance
with payoff received from the environment following each performance cy-
cle. There are a variety of possible schemes, arid the differences between
them are an important focus of research. The schemes we have tried are
encompassed by the following algorithm.

1. Form the subset of [M] consisting of classifiers whose action is the same
as the chosen action. We call this the action set [A]. The remaining
members of [M] are the set NOT[A].

2. Deduct a fraction e from the strengths of all classifiers in [A].

3. If the system's decision was correct, distribute a payoff quantity R to
the strengths of [A]; but

4. If the decision was wrong, distribute a payoff quantity R' (where 0 <
R' < R) to the strengths of [A] and deduct a fraction p from the
strengths of [A] (at least one of R' and p is equal to 0).

5. Deduct a fraction t from the strengths of NOT[A].

Particular reinforcement regimes will be discussed in detail later, but in
general every [A] both pays out and receives. For a correct decision, the

CLASSIFIER SYSTEMS 209

effect of reinforcement on [A] can be written:

where SA is [A]'s total strength prior to payoff and S'A is its total following
payoff. Assuming that R is the same over time for this [A] (the simplest
case), it can be shown that SA will gradually approach R/e. This suggests
that under reasonably steady payoff conditions, SA will function as an es-
timator of typical payoff. Similarly, the strength of any individual classifier
will be an estimator of its typical payoff. In general, equation (1) causes
the strength to be a recency-weighted average of previous payoffs (divided
by e); recent events get additional weight and the average changes faster
for larger values of e.

The total payoff to [A] is distributed by a distribution function D, which
in the simplest case gives each classifier an equal share of R. Biased distri-
bution functions are important and will be discussed later. In any event,
the more classifiers there are in [A], the less payoff each receives.

3.4 Discovery component

Boole's version of the genetic algorithm is as follows:

1. Select a first classifier C1 of [P] using a probability distribution over
the strengths of all classifiers in [P];

2. With probability x, select a second classifier C2 using the technique
of step 1 and apply the crossover operation to copies of C2 and C1;
choose one of the resulting pair as an offspring and discard the other;

3. If step 2 was not carried out, form an offspring by making a copy of
C1;

4. Apply the mutation operation to the offspring, changing each taxon
allele with probability n (choose the new allele equiprobably from the
two possibilities);

5. If the offspring resulted from crossover, reduce each of the parents'
strengths by one-third and set the offspring's initial strength to the
sum of the reductions; else reduce C1's strength by one-half and set the
offspring's initial strength to the amount of the reduction (the total
strength of parents and offspring is unchanged);

6. Add the offspring to [P];

7. Delete a classifier using a probability distribution over the inverses of
the strengths of all classifiers in [P].

210 S. W. WILSON

The algorithm is invoked with probability p per trial, i.e., per perfor-
mance cycle. It is essentially the same as the standard system's algorithm,
except that it produces just one offspring per invocation whereas the stan-
dard usually produces numerous offspring, but at longer time intervals.
Our intention was to alter the population less discontinuously than the
standard algorithm. Also, in the present algorithm, crossover and muta-
tion actually applied only to the taxa; the action bit was not involved.

The discovery component has one further mechanism, called creation,
which generates a new classifier during the performance cycle if [M] is
empty. The taxon of the created classifier is a copy of the current input
string, except that #'s are inserted with a probability equal to the current
percentage of #'s in [P]. The action is chosen randomly,

5
 and the strength

is set to the mean strength of [P]. To make room in [P], a classifier is
deleted as in step 7 above. Then [M] is recomputed and the performance
cycle continues. Creation is an "emergency" measure that permits the
system to extract information from, and respond to, unrecognized events,
and prevents it from ignoring such events. Creation plays a minor role if
the initial percentage of #'s is large enough, which was the case in the
present experiments.

4. Experiments with Boole

In this section we present four sets of experiments with the specialized
classifier system, Boole. The first subsection defines the class of Boolean
functions that formed the problem environment.

4.1 The multiplexer problem

The Boolean "multiplexer" is a useful test function because it represents
a rather intricate disjunctive concept, and generates a family of problems
of increasing difficulty. In fact, for each integer k > 0 there is a multiplexer
function of binary strings of length L = k + 2

k
. The basic function can be

defined by thinking of each input string as having k "address" bits ai and
2

k
 "data" bits di with the string represented by

The value of the function is given by the value (0 or 1) of the data bit that
is indexed by the pattern on the address bits. For example, the following

5
Since the system is in a teacherless payoff environment, it has no immediate way to

determine the correct action.

CLASSIFIER SYSTEMS 211

Figure 1. System quantities during solution of the 6-multiplexer. The upper curve

represents a moving average of percentage correct decisions over past 50

trials (divide vertical scale by 10). The lower curve is the solution count,

or the total number of instances of "solution set" [S6] in [P], System

parameters for the experiment were: e — 0.1, x = 0.12, L = 0.001,

G = 4.0, R' = 0, p = 0.8, p = 1.0, t = 0.1.

are input strings and correct output values for the "6-multiplexer" (L = 6,
k = 2) function:

Since k = 2, the address bits of the first example are 00, telling us to
select as output the value of data bit 0, which is 0. In the second example
the address bits are 11, so we look at data bit 3, with value 1, etc. Written
in disjunctive normal form, the function is:

212 S. W. WILSON

showing, since there are four terms, that the function is indeed disjunctive
(in general there are 2k terms).

We ran experiments with the 6-multiplexer, the 11-multiplexer (L = 11,
k = 3), and the 20-multiplexer (k = 4). In each case Boole's task was to
learn to give the correct value of the function for any input string. Strings
were generated by a uniform random process and presented one at a time
(i.e., incrementally), with each presentation constituting a trial. After each
trial Boole received payoff according to its decision and the particular payoff
regime in effect.

4.2 Learning the 6-multiplexer

Figure 1 shows an experiment in which Boole learned to respond cor-
rectly in the 6-multiplexer problem. The graph plots two relevant system
quantities versus the number of trials since the experiment began. The up-
per plot shows the system's average score, a moving average over the past
50 trials of the percentage of the system's decisions that were correct. The
lower plot shows a quantity we call the solution count, whose meaning re-
quires some discussion. At an early point in our work we noticed that Boole
would almost invariably tend to discover and multiply the members of a
particular set of classifiers. For the 6-multiplexer, they were the following:

We named this set [S6]. Fortunately, the members of [S6] are not just
any old classifiers. Inspection shows that each matches exactly eight of
the 64 possible input strings and recommends the right answer each time.
Furthermore, the eight matched sets are disjoint. The members of [S6]
mirror the function F6 in the sense that the four with action "1" have taxa
whose specified positions match the four conjuncts of F6, and the other
four (necessary because the system must generate a "0" output overtly,
not by default) match the conjuncts of the complement of F6. There does

CLASSIFIER SYSTEMS 213

not seem to exist a more efficient, complete set of "solution" classifiers than
[S6] (and its analogues for larger multiplexers). For this reason we termed
[S6] the solution set and used a count of its total number of instances in
[P], the solution count, as a measure of the system's progress in evolving
correct, maximal generalizations.

Returning to Figure 1, we see that by about 15,000 trials (on average
about 230 exposures to each of the 64 possible input strings), the system has
stabilized and shows no further progress. To summarize [P] at this point
it is useful to compute the population's macrostate, a term borrowed from
statistical thermodynamics and used here analogously. We first defined a
"concept." technically, as a set of structurally identical classifiers in [P] such
that all other classifiers in [P] are different from those in the set. (To avoid
confusion, we shall use quotes when entering a discussion in which this
technical sense is intended.) Then, to form the macrostate, we examined
[P], identified each of its "concepts," and listed them in descending order
of number of instances.

The result for the experiment of Figure 1 (at 15,000 trials) appears in
Table 1. The top eight concepts, with the lion's share of the strength,
are the members of [S6]. Many of the remaining classifiers are wrong
at least part of the time. They appear to be a kind of residual noise
resulting primarily from crosses between members of [S6]. Since [S6] now
dominates, crossover cannot produce further improvement, yet it continues
to act due to the discovery component. The implication is that the number
of non-[S6] classifiers at equilibrium should be a function of x, the crossover
probability, as well as the rate at which such classifiers can be properly
evaluated and deleted by the system. Furthermore, since errors can only
be made by non-[S6] classifiers, the equilibrium error rate should increase

with x-

These conclusions were supported by further runs in which Figure 1 's pa-
rameter regime was maintained but x was varied. In each case, the system
was operated out to 64,000 trials to ensure that it had stabilized. Then
from the data were computed: (1) a, the mean of the average score in the
final 8,000 trials; (2) s, the mean of the solution count in the final 8,000
trials; and (3) shoulder, defined as the number of trials at which the solu-
tion count first reaches 90% of s. Table 2 shows the results (curves were
qualitatively similar to Figure 1). Shoulder comes earlier with increasing
crossover probability, suggesting that higher crossover rate or faster in-
troduction of variation relative to the reproduction rate - produces faster
progress. The price for this, though, is shown by the other two measures.
Both a and s worsen as x increases. This was a general result, seen in
many experiments: learning speed traded off with learning reliability - at
least when the rate of variation was fixed throughout an experiment.

214 S. W. WILSON

Table 1. Macrostate of the population of Figure 1 at 15,000 trials.

Number of "Concept" Total
instances (taxon) (action) strength

56 0 1 # 0 # # / 0 7655
52 0 1 # 1 # # / 1 7541
48 0 0 0 # # # / 0 7056
46 1 0 # # 0 # / 0 7095
45 0 0 1 # # # / 1 6665
41 1 1 # # # 0 / 0 5964
39 1 1 # # # 1 / 1 6323
35 1 0 # # 1 # / 1 5145
7 # 1 # 1 # 1 / 1 1044
1 # ### / 1 522
3 # 0 # # 1 # / 1 293
3 1 1 # # 0 # / 0 210
2 # 0 1 # # # / 1 330
2 0 1 1 # # # / 1 212
2 1 0 0 # 0 # / 0 1 5 0
2 0 0 # # # # / 1 219
2 # # # ! # / 1 3 2 6
2 1 0 # 0 # # / 0 238
1 # 1 # 0 # # / 0 129
1 1 0 # # # # / 0 168
1 1 1 # # # # / 0 97
1 1 0 # # 0 0 / 0 100
1 0 0 # # 1 # / 1 81
1 1 # # # # 0 / 0 212
1 1 0 # # 0 1 / 1 56
1 0 1 # # # # / 1 116

The results of Table 2 may be compared with Barto's results on the 6-
multiplexer task. Barto's network consisted of four AR-P elements, each
with inputs from each bit of the input string, and a fifth (output) unit get-
ting its inputs from the other four plus the bits of the input string. As in
our case, the input strings were generated randomly. His "reward-penalty"
regime was analogous to the one we used for the Table 2 experiments. Barto
states that the network achieved a 99% (in 1000 consecutive trials) perfor-
mance level within 133,149 trials, on the average. The second experiment
in Table 2 has a equal to 99%; in this case, shoulder occurred at 16,000
trials. In all four experiments of Table 2, the average score flattened out
to its final range by the point at which shoulder occurred (as seen, e.g., in
Figure 1). Thus, though the data are presented differently, it is reasonable
to conclude that Boole will reach a given performance level in significantly
fewer trials than the AR-P network, at least on this problem.

CLASSIFIER SYSTEMS 215

Table 2. Effects of crossover rate x (other parameters same as for Figure 1).

X Shoulder s a

0.03 25,500 391 99.4
0.06 16,000 388 99.0
0.12 12,000 378 98.4
0.25 9,000 353 96.7

4.3 Selection pressure

The discovery component's genetic algorithm introduces variation and
reproduces high-strength classifiers, but it is the reinforcement component
that determines which kinds of classifiers, or "concepts," will be selected
and come to dominate [P]. If the system is to reach a state in which, for
example, [S6j dominates, it is important that the reinforcement algorithm
reward classifiers that lead

6 in that direction and not some other. Two
kinds of "pressure" appear to be central in steering the system: pressure
toward accuracy and pressure toward generality.

Pressure toward accuracy can be achieved in several ways, but basically
one makes the correct or best answer pay more than other answers: the
greater the difference, the greater should be the pressure toward accuracy.
But one would also like a system to be robust enough to learn the best
answer even when the payoff difference between the best answer and other
answers is not large. We experimented with all three payoff regimes defined
in steps 3 and 4 of the reinforcement algorithm. In each case the correct
answer received a payoff R equal to 1000. In the payoff-penalty regime, error
caused the removal of a fraction p (the penalty fraction) from the strengths
of all classifiers in [A], i.e., those matching classifiers that advocated the
decision actually taken. In payoff-only, [A] was left unaffected. In payoff-
payoff, [A] received a positive payoff R' < R. Of course, the latter two
are the payoff regimes we have suggested are typical of the animat's state.
But to the extent the animat can determine that a particular outcome
is definitely undesirable (e.g., painful), a regime like payoff-penalty could
realistically apply.

We obtained pressure toward generality by biasing the distribution of
payoff to [A] using the distribution function D. The idea was to pay a
classifier a bit more than an equal share if it had more #'s than the average
number of #'s in classifiers of [A], and a bit less if it had fewer #'s than
the average. To be precise, let the ith classifier in [A] have generality
gi = (number of its #'s)/L. Define further a quantity di = 1 + G x gi

6
Initial populations contained no instances of [S6].

216 S. W. WILSON

Table 3. Effects of selection regime (other parameters same as for Figure 1, except

for t = 0.05 in fourth experiment).

Selection Shoulder s a
regime

G = 4
p = 0.8 12,000 378 98.4

G= 1
p = 0.0 none 0 50.0

G = 0
p = 0.0 23,000 370 98.5

G = -0.4
p = 0.0
R' = 500 25,500 284 86.4

G = 0
p = 0.0
Noise = 0.1 33,000 364 97.8

where G is a real number. Finally, let the distribution function D(G) pay
the ith classifier an amount

Here G controls the bias in D(G). Examination will show that if G = 0,
the distribution is uniform, while G > 0 favors generality.

In combination, these two pressures tended to emphasize classifiers that
match in as many situations as possible while at the same time being 100%
accurate (advocate the preferred answer) in those situations. If a competing
classifier is equally general but less accurate, it will be weaker due to its
losses where it is wrong. If a competing classifier is equally accurate but
less general, it will be weaker due to receiving less from D(G). There are
limits, however. If D(G) favors generality too strongly, then overly general
classifiers, whose action is right in some situations and wrong in others,
will win out. In effect, it becomes more remunerative for a classifier to
add a # than to stay accurate. On the other hand, if D(G) is too weak
the system may not discover the most efficient ''concepts," or do so only
very slowly. D(G) also has the property that it not only weakens classifiers
that arc biased against, it drives them out. For example, if two accurate
concepts share payoff in a situation but one is more general (and G > 0),
the less general tends toward zero members. We examine the nature of
D(G) further in the Appendix.

CLASSIFIER SYSTEMS 217

Figure 2. Experiment with the 6-multiplexer under payoff-payoff. Curves have

same meaning as in Figure 1. Values of system parameters are the same

as in Figure 1, except G = -0.4, R' = 500, p = 0, t = 0.05.

Effects of selection regime are illustrated by five experiments shown in
Table 3. In the first experiment, a strong generalization "pull" was played
off against a substantial penalty for error. As indicated by shoulder, the
solution count climbed relatively rapidly to a high asymptotic value. The
second experiment, an example of payoff-only, shows what happened when
the penalty was eliminated: even at lower G, generality won out over
accuracy and [P] became dominated by overly general classifiers. In the
third experiment both G and p, the penalty fraction, were zero; the solution
set [S6] took over [P], but more slowly and less completely than under
payoff-penalty. Since G — 0, this experiment suggests that a "natural"
generalization bias of some strength exists in the system. (The Appendix
discusses a possible source of this bias.)

The fourth experiment exemplifies payoff-payoff. Besides getting payoff
of 1000 for right answers, Boole got payoff 500 for wrong answers. To
succeed, it had in effect to determine statistically that right answers paid

218 S. W. WILSON

more, and to emphasize the corresponding classifiers. This happened, but
not without some struggle, as is illustrated by the curves of Figure 2. Note
that G = —0.4 in this experiment. Negative G's, which cause D(G) to favor
specific classifiers over general ones, were necessary to get progress under
payoff-payoff. With G = 0, the system became overgeneral and the average
score stayed at chance levels. Because errors receive positive reinforcement
under payoff-payoff, it took little surplus generalization pressure to give
overly general classifiers the edge. Apparently, the progress in the fourth
experiment was due to offsetting part of the natural generalization pressure
with negative G.

The last experiment in Table 3 had the same parameters as the third
experiment except that payoff was made "noisy." With probability 0.1,
the environment withheld payoff when the system's answer was correct
and gave payoff when the answer was wrong. Though learning took longer,
the average score and solution count reached nearly the same final levels as
in the third experiment, indicating that Boole can overcome this amount
of classification noise.

Step 5 of the reinforcement algorithm deducts a fraction t from the
strengths of NOT[A], the members of the match set that did not advo-
cate the decision made by the system. This is a different sort of selection
pressure than that exerted by the payoff regime of steps 3 and 4. Experi-
mentally, the effect was to push the system to decide more quickly which
answer it preferred in each matching situation. Reducing the strength of
NOT [A] increases the relative strength of classifiers in [A], and their chance
of constituting [A] the next time. The resulting instability tended eventu-
ally (other things being equal) to cause one set to disappear. As long as t
was small, say 0.1, the survivor was usually the correct one, and the overall
rate of evolution was increased. Usually, the average score also improved.

To summarize this section: Boole learned most quickly and decisively un-
der payoff-penalty and least so under payoff-payoff. Explicit generalization
pressure can be exerted, but there is an inherent pressure as well. In the
presence of considerable classification noise, the system will still converge
on the correct classifiers. Within limits, performance can be improved by
deliberately weakening classifiers that disagree with the system's decision.

4.4 Crossover vs. mutation

We now turn to a set of experiments that sought to determine the relative
contributions of crossover and mutation to the discovery component. Mu-
tation is a conservative operator, since a mutated classifier is a small step
in classifier space from its parent. In contrast, a crossover offspring can be
(though need not be) a large jump from its parents. Similarly, in the space

CLASSIFIER SYSTEMS 219

of classifier substrings, mutation introduces a set of small steps away from a
classifier's constituent substrings, whereas one cross both creates numbers
of novel substrings and tests extant substrings in many new contexts. From
considerations of this sort, Holland (1975) suggested that crossover is the
primary discovery operator in natural systems and that mutation serves as
a background operator needed only to preclude the possible permanent loss
of alleles. De Jong (1975) confirmed the superiority of crossover in experi-
ments using the genetic algorithm for function optimization. We used the
11-multiplexer problem to investigate the question in classifier systems.

The 11-multiplexer is a good setting from comparing crossover and mu-
tation because the "solution set" [Sll] is a far smaller subset of its classifier
space than is [S6] of its space. Since the search problem is more difficult,
any advantage of crossover over mutation should be easier to bring into
relief. The space of the 6-problem contains 2 x 36 = 1458 classifiers of
which 8, or 0.55% belong to [S6]. The space of the 11-problem contains
2 x 311 = 354,294 classifiers of which 16, or 0.0045% belong to [Sll]. Mem-
bers of [Sll] are analogous to those of [S6]; an example is

In comparing crossover and mutation, there would seem to be two pos-
sibilities: (1) crossover adds search power that cannot be gained by any
amount of mutation; or (2) crossover is just another way of "stirring the
pot" and is not more powerful than some equivalent amount of mutation.
To investigate this we had Boole learn the 11-multiplexer under various
combinations of crossover and mutation probabilities, as shown in Figure
3. Other parameters were the same as in Figure 1, except that the genetic
algorithm was invoked with probability p = 0.25 per trial. Figure 3 shows
the solution count reached in each case after 64,000 trials.

The largest entry in Figure 3 is a solution count of 297 for (x , m) =

(0.25,0.0025). That value is significantly larger than for any experiment
with crossover equal to zero, even though j was varied over a wide range.
The implication is that crossover indeeds adds search power that cannot
be provided by any amount of mutation. A further implication, from the
points with x — 0.25, is that the optimal value for the mutation probability
is around 0.001 or 0.0025, close to the reciprocal of population size (and
so possibly related to a similar result found by De Jong for populations of
size 50).

4.5 Variation control

In Section 4.2 we noted the "noise" classifiers that remained even after
a population had converged on the solution set and stabilized. The noise

220 S. W. WILSON

Figure 3. Solution count for the 11-multiplexer at 64,000 trials for various values of

crossover and mutation probabilities. Values of other system parameters

are the same as in Figure 1, except p = 0.25.

was due to the continued, but no longer necessary, introduction of variation
by the discovery component. Yet "noise" (crossover and mutation) was
necessary earlier, in order to find the solutions in the first place. If the
system had access to the solution count - which of course it does not
it could in principle itself control the rate of variation. This would let it
progress rapidly in the beginning but reduce exploration later on, avoiding
the trade-off between learning speed and reliability. In this section we
suggest that the system may be able to achieve this objective by using an
environment-independent measure of its own entropy.

7

To control variation profitably, the system needs both a control pol-
icy and a measure of system progress. There are many conceivable control

7 See Booker (1985) for a different approach to variation control, in which the relative
probability of crossing depends on the similarity of the potential parents. Also see Baker
(1985) on premature convergence.

CLASSIFIER SYSTEMS 221

policies but there appear to be few fundamental, computable, environment-
independent measures of progress. For the latter, we chose to experiment
with entropy because it measures "uncertainty" and "disorganization,"
both of which a classifier system presumably reduces as it learns. In ad-
dition, classifiers exist in a space formally similar to the "phase space" of
statistical mechanics (Sears, 1953) so the application of the entropy concept
is straightforward and plausible.

The space of Boole's classifiers has L + 1 dimensions: L for each taxon
position and one more for the action. The possible values on a taxon di-
mension are 0, 1, and #, while on the action dimension the values are
just 0 and 1. Each point in this space defines a possible classifier. The
actual classifiers of a particular population [P] may be thought of as oc-
cupying a particular set of points in classifier space. If two classifiers in
[P] are identical, they occupy the same point. More generally, the classi-
fiers of a "concept" all occupy the same point. From this perspective, [P]'s
macrostate (Section 4.2) is a listing of the occupancy numbers and total
strengths of points occupied by [P].

The entropy of such a distribution of classifiers over points in classifier
space may be expressed by the Shannon (1948) entropy

if the pi are taken equal to N i /N , where Ni- is the number of classifiers
occupying the ith occupied point (concept) and N is the total number of
classifiers in [P]. K is an arbitrary constant. Because concept strengths
anticipate occupancy numbers and tend to be proportional to them, we
prefer to take the pi as S i /ST , the concept strength divided by the total
strength of [P]. We then define classifier system entropy as

The factor l/(ln N) is a normalization in the sense that if all classifiers
in [P] are different and of equal strength, then the system has maximal
uncertainty and Hc = 1.

Experimentally, we found that Hc does indeed fall as the solution count
rises. In fact, Hc begins falling before any solution classifiers appear, re-
flecting the development of precursor concepts. If the solution count even-
tually reaches a plateau, so does Hc. In an experiment in which no strong
concepts develop, the entropy falls little. But Hc is not perfect: it falls
rapidly if [P] becomes overgeneral; and it can assign a low entropy to a
state in which only some solutions have been found. Hc measures order,

222 S. W. WILSON

which does not always equal progress. For example, in the state of lowest
entropy all classifiers are identical.

Nevertheless, Hc can permit an effective control of variation that gives
faster and more complete learning than under fixed variation rates. We ex-
perimented with control policies that increased crossover as long as entropy
was falling (Boole is "absorbing" variation, so give it more), but reduced
crossover if entropy was flat or rising (let the system digest the current
diversity). A specific algorithm (executed every 100 trials) was:

1. Measure Hc. Compare it with the previous value and compute the
change;

2. If the change is less than A1 (a negative number), increment x, the
crossover probability, by T1 percent; else if the change is greater than
or equal to A2, decrement x by F2 percent.

Figure 4 shows an experiment using the 11-multiplexer. Control param-
eters were: A1 = -0.010, A2 = 0.007, T1 = F2 = 10; x was initialized at
0.25. Curves of the solution count for high and low fixed x (0.50 and 0.12)
are included for comparison. The controlled solution count curve tends to
have the best of both regimes: rapid growth early and low noise later on.

Entropy-based variation control is experimental at this stage; the pa-
rameters of the algorithm must be chosen carefully. But the technique
appears to offer a promising kind of system self-control.8 Variation control
in classifier systems is analogous to "temperature" control in networks us-
ing simulated annealing (Kirkpatrick et al., 1983), though the latter process
is based on a definition of network "energy" and is seldom made automatic.

5. Discussion

The results with our specialized classifier system are in several respects
positive for the general application of classifier systems to the animat prob-
lem. With respect to learning speed, the results raise questions that should
be addressed by future research.

The positive results center around the fact that Boole learned a rather
complex, disjunctive concept, incrementally, under payoff regimes that in-
cluded both noisy payoff and partial reward for incorrect performance
("payoff-payoff"). As discussed in the beginning, these conditions are char-
acteristic of the animat learning problem, which occurs for animals and au-
tonomous robots. In addition, the classifiers evolved by Boole corresponded
closely to the task's expression in disjunctive normal form, making it easy

8This may also prove useful in applications of the genetic algorithm to function opti-
mization (Grefenstette, 1985).

CLASSIFIER SYSTEMS 223

Figure 4. Solution count for the 11-multiplexer with and without automatic

crossover rate control. For the dotted curve, crossover probability x

was fixed at 0.5; for the dashed curve, x was fixed at 0.12; for the solid

curve, x was initialized at 0.25 and then controlled according to the al-

gorithm in the text. Values of other system parameters are the same as

in Figure 1.

to "see the system's knowledge" and suggesting the hypothesis that Boole
will tend in general toward the disjunctive normal form. The ability to
learn under payoff-payoff is important for the extension of our results to the
standard classifier system, since the reinforcement regime within the bucket
brigade takes this form. The experiments also illustrated, for classifier sys-
tems, the theoretically predicted superiority of crossover to mutation. In
comparison with Barto's network solution to the same task, Boole learned
in substantially fewer trials, possibly because it was able to recombine ten-
tative solution hypotheses via crossover, while the network employed only
a kind of point mutation. Finally, an environment-independent method
by which Boole could advantageously control its own variation (crossover)
rate was suggested and successfully demonstrated, illustrating a primitive
form of system self-judgement.

224 S. W. WILSON

Against these plusses was the fact that Boole progressed quite slowly
in absolute terms under all payoff regimes, and was slowest under payoff-
payoff. Learning times for the 11-multiplexer were somewhat longer than
for the 6-multiplexer (compare Figures 1 and 4), though not dramati-
cally so. To probe farther, we did a preliminary experiment with the
20-multiplexer, for which there are 220 input strings and 2 x 320 possi-
ble classifiers. Under payoff-penalty, the system reached an average score
above 90% within 70,000 trials; by 120,000 trials, the solution count (there
are 32 solution "concepts" for this problem) reached 1200 out of a popula-
tion size of 1600. This seems quite remarkable given that by 120,000 trials
Boole had seen, on average, less than 1/8 of the possible input strings.
Thus, it appears Boole can solve the multiplexer for longer and longer
strings. But the learning times clearly increase, and in this experiment we
had to increase the population size to get learning started.

The implication of these problems for the standard classifier system is
that as classifiers become more complex, slowness may compound and pop-
ulations may get very large. Bucket-brigade chains may grow slowly due
to slow learning in each link. Furthermore, the less definite learning under
payoff-payoff may make long, reliable chains hard to set up.

These are important points. But both computer science and nature sug-
gest a solution via modularity. In structured programming languages, con-
trol sequences (and indeed whole programs) can be expressed as a short
sequence of steps wherein each step is itself expandable into a short se-
quence of substeps, etc. Thus potentially extensive and complex behaviors
(e.g., "going to the opera" or "finding and eating a zebra") can be de-
scribed, down to the motor signal level, in terms of a hierarchy of modules
each consisting of a few steps. Albus (1979) presents a behavioral model
having this form, and there is clearly a relation to problem-solving systems
employing subgoals (Laird et al., 1986). Our suggestion is that research on
classifier systems aim at ways of inducing bucket-brigade chains whose mes-
sage sequences "name" subchains, which in turn name or call subchains,
etc. Holland (1985) considers this question, and we have offered a proposal
(Wilson, in press). In addition, modularity should permit simpler classi-
fiers, since the essence of a module is that it is nearly context-independent
and so has a simple activation condition.

Keeping both classifiers and bucket-brigade chains short through mod-
ularity or hierarchy offers promise of overcoming the slowness that our
results suggest may occur in extensive applications of classifier systems.
The details of implementing a classifier system with hierarchical structure
are a problem for future research. The present work's principal contribu-
tion has been to show that a classifier system can learn a difficult logical
task under realistically difficult environmental constraints.

CLASSIFIER SYSTEMS 225

Acknowledgements

I would like to thank Pat Langley and Ryszard Michalski for their helpful
comments on earlier drafts of the paper.

References

Albus, J. S. (1979). Mechanisms of planning and problem solving in the brain.
Mathematical Biosciences, 45, 247-293.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R., & Kline, P. J. (1979). A learning system and its psychologi-
cal implications. Proceedings of the Sixth International Joint Conference on
Artificial Intelligence (pp. 16-21). Tokyo, Japan: Morgan Kaufmann.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Pro-
ceedings of an International Conference on Genetic Algorithms and Their
Applications (pp. 101-111). Pittsburgh, PA.

Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-
like computing elements (COINS Technical Report 85-11). Amherst: Uni-
versity of Massachusetts, Department of Computer and Information Science.

Booker, L. (1982). Improving behavior as an adaptation to the task environ-
ment. Doctoral dissertation, Department of Computer and Communication
Sciences, University of Michigan, Ann Arbor.

Booker, L. (1985). Improving the performance of genetic algorithms in classifier
systems. Proceedings of an International Conference on Genetic Algorithms
and Their Applications (pp. 80 92). Pittsburgh, PA.

Curtis, H. (1983). Biology. New York: Worth.

Davis, R., & King, J. (1977). An overview of production systems. In E. W. Elcock
& D. Michie (Eds.), Machine intelligence (Vol. 8). New York: American
Elsevier.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. Doctoral dissertation, Department of Computer and Communica-
tion Sciences, University of Michigan, Ann Arbor.

Goldberg. D. E. (1983). Computer-aided pipeline operation using genetic algo-
rithms. Doctoral dissertation, Department of Computer and Communication
Sciences, University of Michigan, Ann Arbor.

Grefenstette, J. J. (1985) (Ed.). Proceedings of an International Conference on
Genetic Algorithms and Their Applications. Pittsburgh, PA.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor,
MI: University of Michigan Press.

Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.), Progress in
theoretical biology (Vol. 4). New York: Plenum.

Holland, J. H. (1985). Properties of the bucket brigade algorithm. Proceedings of
an International Conference on Genetic Algorithms and Their Applications
(pp. 1 7). Pittsburgh, PA.

226 S. W. WILSON

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Holland, J. H., & Rcitman, J. S. (1978). Cognitive systems based on adaptive
algorithms. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-directed
inference systems. New York: Academic Press.

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220, 671 680.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR: The
anatomy of a general learning mechanism. Machine Learning, 1, 11-46.

Michalski, R. S. (1986). Understanding the nature of learning: Issues and research
directions. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
Machine learning: An artificial intelligence approach (Vol. 2). Los Altos,
CA: Morgan Kaufmann.

Michalski, R. S., & Larson, J. B. (1978). Selection of most representative train-
ing examples and incremental generation of VL1 hypotheses: The underlying
methodology and the description of programs ESEL and AQ11 (Technical Re-
port No. 867). Urbana: University of Illinois, Computer Science Department.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203
226.

Qninlan, J. R. (1983). Learning efficient classification procedures and their ap-
plication to chess end games. In R. S. Michalski, J. G. Carbonell, & T. M.
Mitchell (Eds.), Machine learning: An artificial intelligence approach. Los
Altos, CA: Morgan Kaufmann

Rumelhart, D. E., Hinton, G. E., & Williams. R.. J. (1985). Learning internal rep-
resentations by error propagation (ICS Report 8506). San Diego: University
of California, Institute for Cognitive Science.

Schaffer, J. D. (1985). Learning multiclass pattern discrimination. Proceedings of
an International Conference on Genetic Algorithms and Their Applications
(pp. 74-79). Pittsburgh, PA.

Sears, F. W. (1953). Thermodynamics. Reading, MA: Addison-Wesley.

Shannon, C. E. (1948). The mathematical theory of communication. Bell System
Technical Journal, 27, 379-423, 623 656.

Smith, S. (1980). A learning system based on genetic algorithms. Doctoral disser-
tation, Department of Computer Science, University of Pittsburgh, PA.

Waterman, D. A. (1970). Generalization learning techniques for automating the
learning of heuristics. Artificial Intelligence, 1. 121 170.

Wilson, S. W. (1985). Knowledge growth in an artificial animal. Proceedings of
an International Conference on Genetic Algorithms and Their Applications
(pp. 16 23). Pittsburgh, PA.

Wilson, S. W. (in press). Hierarchical credit allocation in a classifier system.
In L. D. Davis (Ed.). Genetic algorithms and simulated annealing. London:
Pitman.

Winston. P. H. (1975). Learning structural descriptions from examples. In P. H.
Winston (Ed.), The psychology of computer vision. New York: McGraw-Hill.

CLASSIFIER SYSTEMS 227

Appendix

We discuss here some heuristic approaches to understanding the generalization and
"drive out" effects that occur in Boole.

The macrostate of [P] (see Section 4.2) is a partition of the population into "concepts"
[C]i, each consisting of Ni- identical classifiers with total strength Si. The N classifiers
of [P] have total strength ST- There is a useful rule of thumb, supported empirically,
which says that any two concepts [C]1 and [C]2 tend toward an equilibrium in which

The rule may be justified by noting that, at equilibrium, the probability PR that [C]i

will reproduce (add one member) at the next invocation of the genetic algorithm must
equal the probability PD that one member will be deleted. (For simplicity we ignore
crossover and mutation.) Thus we have

Now, if deletion is a uniform random process, then

so that at equilibrium,

which implies (Al). However, if the probability of deleting a classifier is proportional to
the reciprocal of its strength (as in this study).

where we assume all classifiers in a concept have equal strength. Then, at equilibrium,
(A2) and (A4) imply

which also implies (Al), since the right side is independent of i. Derivation of (Al)
requires the assumption that an equilibrium is possible. This is reasonable for classifier
systems, since the payoff to a concept is limited and thus the strength is as well. (An
analogous assumption definitely does not hold in the case of systems using the genetic
algorithm for function optimization. This is an important difference between the two
uses of the algorithm.)

Equation (Al) states two slightly different things. First, it says the size (number of
members) of a concept is proportional to its strength. But it also says that individual
classifiers in different concepts tend to have the same strength, which is indeed a frequent
observation in populations that are not changing rapidly.

A further implication of equation (Al) is that, in the absence of other forces, any
concept whose strength is greater than zero will persist in [P]. This is desirable in that
two concepts which do not compete for the same payoffs - for example, two members of
[S6] will not place pressure on each other, thus permitting [P] to develop solutions to
basically separate subproblems. However, it is undesirable in that two concepts which
do compete for the same payoffs - for instance, a member of [S6] and a more specific
version of the same will exist in some sort of equilibrium, whereas one might prefer a
situation in which the more general one "drove the other out."

The distribution function D overcomes this drawback, permitting more general clas-
sifiers to win out over less general ones, as long as their accuracies are equal. (The effect

228 S. W. WILSON

is not restricted to generality; D can be designed to favor any other characteristic that
depends on a classifier's formal structure.) To see this, assume [C]1 and [C]2 share payoff
in a certain situation and that they do not get payoff anywhere else. Further assume that
D gives payoff shares P1 and P2, respectively, to members of each concept, in accordance
with equation (2) (Section 4.3). Using the basic reinforcement equation (1) (Section 3.3),
we can then write:

and

where the (unequal) d's contain the generalization biases. These equations imply that
[C]1 and [C]2 will tend toward equilibrium strengths

and

The ratio of strengths is:

However, this ratio is not consistent with equation (Al), required by the reproductive
process, except if S1 = N1 = 0 or S2 = N2 = 0; that is, by elimination of one or the
other concept. If [C]1 is more general than [C]2, the bias will favor it and [C]2 will be
driven out.

Now let us assume that [C]1 is overgeneral; that is, other situations exist in which
[C]1 is incorrect (or, under payoff-payoff, has lower payoff). What is the effect? We can
get a crude idea by letting f S1, with / a factor, represent the relative loss suffered by
[C]1 in these other situations. Following the same steps as in deriving (A6), we get

In this case, the instability will favor [C]1 or [C]2, depending on whether

is greater or less than unity.

Apart from effects of the distribution function D, certain equilibria implied by (Al)
are under pressure from the deletion operator, which affects less active concepts relatively
more than more active ones. Deletion of a classifier c from [C] 1 reduces [C] 1 's strength
by the strength of c. If [C]1 is active, i.e., receives frequent payoffs relative to the
reproduction rate, its total concept strength - and therefore, by reproduction, the lost
classifier - will be quickly made up. But a less active concept will take longer to restore
the strength and lost member. Now assume [C]1 and [C]2 are often in [A] together -
that is, they frequently compete for the same payoffs - but that [C]2 is less general and
therefore less active than [C]1. For the reason just given, whatever the ratio N 1 / N 2 may
be at some common payoff event, by the next one it is likely to be larger. However, this
will "steer" a larger payoff share to [C]1, causing a further increase in N1/N2 through
reproduction. The cycle repeats until [C]2 is eliminated. We hypothesize that this
process is responsible for the "natural" generalization pressure noted in Section 4.3.

The deletion effect probably also helps the system "decide" which answer to give in
a matching situation, i.e., which concept in [M] should win out. The more remunerative
concept has the higher probability of constituting [A], but this forces relative inactivity
on the other members of [M]. The deletion effect then makes the latter even less likely
to get in [A], which leads finally to their being "driven out." Note that both these cases
depend on a specific mechanism by which any ascendancy of one concept takes payoff
away from the other.

