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The richness of multimodal dialogue makes the space of possible features required to describe
it very large relative to the amount of training data. However, conventional classifier learners
require large amounts of data to avoid over-fitting, or do not generalize well to unseen examples.
To learn dialogue classifiers using a rich feature set and fewer data points than features, we apply
a recent technique, ¢;-regularized logistic regression. We demonstrate this approach empirically
on real data from Project LISTEN’s Reading Tutor, which displays a story on a computer screen
and listens to a child read aloud. We train a classifier to predict task completion (i.e., whether
the student will finish reading the story) with 71% accuracy on a balanced, unseen test set. To
characterize differences in the behavior of children when they choose the story they read, we
likewise train and test a classifier that with 73.6% accuracy infers who chose the story based
on the ensuing dialogue. Both classifiers significantly outperform baselines and reveal relevant
features of the dialogue.

Categories and Subject Descriptors: 1.2.m [Computing Methodologies]: Artificial Intelli-
gence—Spoken Dialogue Systems; H.4.3 [Information Systems Applications]: Communica-
tions Applications; D.m [Software|: Miscellaneous—Feature Engineering

General Terms: Spoken Dialogue Systems, Feature Engineering, Feature Selection

Additional Key Words and Phrases: Task Completion, ¢;-regularized logistic regression, Project
LISTEN’s Reading Tutor

1. INTRODUCTION

Multimodal spoken human-computer dialogue is rich in detail, containing streams
of events of different types and grain sizes, whose features may change over different
timescales. It is therefore challenging to discover useful characterizations of such
dialogue, such as predicting whether, when, or how well it will succeed, or discerning
how it is affected by features such as whether the current activity was chosen by
the user or by the system.

To be useful, such characterizations should ideally be concise, expressed in terms
of a handful of observable features of the dialogue. But in order to discover such
descriptions, the discovery process must be able to consider a sufficiently rich set
of features to include the desired handful.

The space of possible descriptions explodes combinatorially as the number of
features considered increases. This explosion typically requires a commensurate
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increase in the size of the training set in order to avoid overfitting the data, so it
can generalize to unseen examples.

Fortunately, recent advances in statistical learning have made it possible to search
rich feature spaces and find sparse models that generalize well to unseen test data
despite using small amounts of training data. These techniques have been applied
in computational biology [Shevade and Keerthi 2003], but have not previously been
applied to classify spoken dialogue data with many features.

The rest of this paper is organized as follows. Section 2 discusses previous re-
search. Section 3 describes our approach. Section 4 applies it to multimodal spoken
tutorial dialogues logged by Project LISTEN’s Reading Tutor, which listens to chil-
dren read aloud and helps them learn to read [Mostow and Aist 2001]. Section 5
tests the approach on two dialogue classification problems: predicting whether the
student will complete the task of reading the story, and inferring from the student’s
reading behavior who chose the story, the tutor or the student. Section 6 concludes.

2. RELATION TO PRIOR WORK

Task-oriented spoken dialogue systems are systems where the user and the computer
agent try to accomplish a task together by using spoken language. Completion of an
entire dialogue is usually required to accomplish the user’s goal in a task-oriented
system, making task completion an important component of automatic evaluation
methodologies [Hajdinjak and Mihelic 2006].

In a task-oriented system, the goal is to complete a task for its own sake with as
little work by the user as possible. In contrast, here we analyze data from a tutorial
spoken dialogue system. Its goal is for the user to learn, typically by doing as much
of the shared task as possible, with as little help from the system as possible. Thus,
the shared oral reading goal of the Reading Tutor is for the student to read as much
of the text as possible and for the tutor to help only as much as necessary.

Although prior analyses of spoken dialogue systems have focused on task-oriented
systems rather than tutoring systems, this paper is nevertheless related to two cat-
egories of applications of machine learning from dialogue: (i) dialogue classification
and (ii) learning dialogue strategies.

2.1 Dialogue Classification

An important example of a dialogue classification problem is predicting task com-
pletion: classifying whether the dialogue is going to fail or if it is going to be
completed successfully. For example, predicting task completion has been used to
direct callers to a human operator, when it is likely that the automatic system will
not be able to handle the dialogue correctly [Walker et al. 2000].

Predicting task completion has been studied extensively in the context of auto-
matic evaluation metrics for task-oriented spoken dialogue systems [Walker et al.
2001; Hajdinjak and Mihelic 2006; Moller et al. 2007; Moller et al. 2008; Gonzélez-
Brenes et al. 2009]. Previous work on dialogue classification has used carefully
engineered, relatively small feature sets and large training corpora. For example,
[Walker et al. 2000] used a data set consisting of around 5,000 dialogues and only
53 features to train a binary classifier to detect, early in the dialogue, cases where
the user cannot accomplish a task. Later work formulated multi-class classification
problems to predict user satisfaction in the context of the DARPA Communicator
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Challenge [Hastie et al. 2002] and the SympaFly corpus of flight booking dialogues
[Steidl et al. 2004]. Examples of features relevant to task completion in task-oriented
systems include confidence scores output by the speech recognizer, and the number
of retrials in a specific dialogue state. These features may or may not be relevant
to task completion in a tutoring system.

2.2 Learning Dialogue Strategies

A growing body of work has investigated how to use policy learning to improve
tutorial effectiveness [Boyer et al. 2010; Boyer et al. 2010; Chi et al. 2010; Chi et al.
2008; Ai et al. 2007; Beck and Woolf 2000; Beck et al. 2000]. Learning a strategy
for what to do at each point in a dialogue is a different problem than learning a
classifier. However, classifier and policy learning problems encounter some of the
same issues, such as combinatorially large feature spaces and sparse training data.

Reinforcement learning models a dialogue system as a Markov Decision Process
[Singh et al. 1999], where the system’s actions are its utterances and the learning
goal is to discover a policy to take actions so as to maximize the expected value of
a specified reward function. This approach has been applied to automated tutors
to optimize learning gains [Chi et al. 2010]. Depending on the reward function,
expected reward can predict task completion. However, it is not clear how to map
reinforcement learning to other classification tasks, such as inferring who chose the
story.

2.3 Learning with Limited Training Data

Learning with limited training data is a recurrent theme in the dialogue commu-
nity. For example, Henderson et al. [2008] learned dialogue policies from a large
state space and a small corpus of dialogues using a hybrid approach that combined
classifier learning with reinforcement learning. Rieser and Lemon [2010] worked
around the sparsity of their data by artificially increasing the training data size
with simulated dialogue data, generated by bootstrapping from small amounts of
real data. Classical feature selection techniques constitute a third approach to
taming large feature spaces, and have been explored in the context of learning poli-
cies for multimodal dialogue strategies [Rieser and Lemon 2006; 2010]. However,
there is both theoretical and experimental evidence that these classical methods are
outperformed by newer algorithms based on ¢;-regularization [Yuan and Lin 2006;
Park and Hastie 2007].

To our knowledge, we are the first to apply ¢, regularization to tutorial spoken
dialogue systems. We shall describe this technique shortly, but first we summarize
why we chose it over some alternatives.

Yang and Pedersen [1997] review different metrics, such as x? and Mutual In-
formation, to rank features that score above a threshold as the means to perform
feature selection. Other, more sophisticated greedy algorithms are reviewed in [Lee
et al. 2007; Xing et al. 2001]. However, recent results [Zhang and Huang 2008]
suggest that greedy methods are not always stable or computationally efficient for
high-dimensional data, and that ¢;-regularization should be preferred. Park and
Hastie [2007] claim not only that ¢;-regularization offers better performance than
forward stepwise feature selection algorithms, but also that it finds models through-
out the entire range of complexity. Forward stepwise regression stops before finding
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the most complex models, whereas ¢; regularization need not.

3. APPROACH

This section describes our approach for modeling dialogues in high-dimensional
space. Section 3.1 reviews logistic regression, a classifier learning method used very
successfully in language technologies [Rosenfeld 2000] and in the spoken dialogue
community [Rieser and Lemon 2006]. Unlike Naive Bayes classifiers, logistic re-
gression does not assume independence among the features used. Unfortunately,
Logistic Regression is prone to overfit the data when used with a high number of
features. To address this issue, Section 3.2 introduces ¢;-regularization.

3.1 Logistic Regression

Logistic regression, also called maximum entropy classification, is a supervised
learning method: given labelled training data, it learns to label unseen test data.
More formally, we represent each of the n data points as a p-dimensional vector
x with a dimension for each feature, and a class label y, which for binary logistic
regression is either +1 or -1. The probability of classifying x as class +1 is [Ng
2004

1

Ply=+1lw:0) = oo o

(1)
Here we represent the parameters of the model as the vector 6 € RP.

We assume that the training data S = {(z(?,4(*)}} are independent and iden-
tically distributed (iid), drawn from the true distribution D. Intuitively, training
the model fits its parameters by finding the 6* that maximizes the probabilities
assigned by Equation 1 to the training labels [Ng 2004; Nigam et al. 1999]. More
precisely:

n
0* = argmax Z log P(y@ |z, 0) (2)

0 i
The objective function in Equation 2 is convex, but does not have a closed-form
solution. However, it can be solved using numerical methods, such as Improved
Iterative Scaling [Berger et al. 1996]. Unfortunately, regardless of the optimization

procedure, logistic regression tends to overfit when using a large number of features
[Nigam et al. 1999].

3.2 High-Dimensional Feature Selection

Using a large number of features allows overfitting the training data so the learned
model does not generalize to unseen data. To prevent overfitting, we can transform
Equation 2 by adding a complexity penalty proportional to the number of non-zero
parameter values. Unfortunately, an exhaustive search for the smallest subset of
features to include becomes intractable even with a modest number of features,
since optimal feature selection is NP-hard [Guyon and Elisseeff 2003; Amaldi and
Kann 1998].

Instead, we use a method based on a complexity-penalized model that is tractable
to optimize. ¢;-regularization was first proposed for linear regression in the seminal
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LASSO paper [Tibshirani 1996], to optimize the trade-off between fitting the data
and model complexity. However, the concept also works for generalized linear
models, such as logistic regression. Instead of penalizing the number of (non-zero)
parameters, this approach modifies Equation 2 by adding a complexity penalty
proportional to the ¢;-norm of the vector of parameters, that is, the sum of their
absolute values. This penalty has the effect of being able to find models where
many parameters are zero. We refer to features with non-zero parameters as the

“features selected.” As presented in Ng [2004], training this model means finding
0*:

0" = argmaleog Py D1z®;0) — X||6|], (3)
0 i

Equation 3 combines feature selection and logistic regression to perform them
jointly. Here A is a hyper-parameter that controls the trade-off between bias and
variance of the model. The higher the value of A\, the more biased the model and
the smaller the number of features selected. Conversely, the smaller the value of A,
the better the fit to the training data, but the higher the risk of overfitting. A is
customarily selected by cross-validation on a held-out subset of the training set.

More generally, the ¢, norm of a vector 6 is defined as:

1611 = (D 16:™)M™ (4)
=0

Ng [2004] extensively investigates the difference between ¢; and ¢5 regularization
in logistic regression, concluding that although ¢; regularization is more difficult to
optimize, since it is not differentiable at every point, it tends to produce sparser
models, where many parameters weights have value 0. Furthermore, ¢; regular-
ization also gives theoretical guarantees that under some weak assumptions, the
number of features selected does not exceed the number of training data points.
More importantly, recent theoretical results [Lee et al. 2007] show that the sparsity
guarantees of /;-regularization allow the number of features to grow exponentially
in the number of training samples in density estimation [Dudik et al. 2004] and in
logistic regression [Ng 2004], making it possible to learn models where the dimen-
sionality of  may be much larger than the number of training data points (that is,
p>n).

Logistic regression finds a linear decision boundary. It is possible to escape this
restriction by projecting the features into a high-dimensional space using kernels
[Keerthi et al. 2005]. However, efficient solutions of kernel methods assume #s-
regularization [Hastie et al. 2003]. Moreover, models built using kernel methods
can be hard to interpret [Okanohara and Tsujii 2009].

To train ¢1-regularized logistic regression models, we use a MATLAB implemen-
tation of the Dual Augmented Lagrangian method (DAL) [Tomioka and Sugiyama
2009], an optimization algorithm that solves regularized minimization problems. In
the experiments to be described in Section 5, DAL converged to the global optimum
in seconds, much faster than a BFGS-style algorithm [Schmidt et al. 2008].

ACM Transactions on Speech and Language Processing, Vol. 2, No. 3, 09 2001.



116 . Gonzalez-Brenes and Mostow

A Y
e i e

Student name Kyte Loves To Read, Level C
Level C

Some
stories teach me new things.

Fig. 1. Project LISTEN’s Reading Tutor

4. REPRESENTING DIALOGUE IN A HIGH DIMENSIONAL SPACE: EXAMPLE

In this section we apply the ¢;1-regularized logistic regression approach to two dia-
logue classification problems, using data collected by the tutorial spoken dialogue
system described in Section 4.1. Section 4.2 describes the classification problems.
Section 4.3 explains our feature engineering.

4.1 Project LISTEN's Reading Tutor

We use data logged by Project LISTEN’s Reading Tutor, which listens to a child
read aloud, and takes turns picking stories to read [Mostow and Aist 2001]. The
Reading Tutor adapts the Sphinx-II speech recognizer [Huang et al. 1993] to analyze
the students’ oral reading, and intervenes when it notices the reader make a mistake,
get stuck, click for help, or encounter difficulty. Figure 1 shows a screen shot of
the 2005 Reading Tutor. The sentence being read is in boldface, and the tutor is
giving help on the highlighted word.

4.2 Modeling Task Completion and Story Choice Initiative

We used two classification problems to test our approach for modeling dialogues
with a rich feature set. For both problems, we will use “multimodal dialogue”
to refer to the interaction of a student reading one story with the tutor. Other
problems can involve other units of analysis, whether shorter (e.g. a single sentence)
or longer (e.g. an entire session from login to logout).

4.2.1 Task Completion. We want to predict at runtime, based on the dialogue
so far, whether the student will finish reading the story or is about to stop reading.
Accordingly, we calculate all features using only information available at prediction
time. Thus for positive training examples, we truncate each finished story to a
random number of sentence encounters before calculating features. For negative
training examples, we use unfinished stories, but we do not truncate them, because
our goal is to discover features that signal disengagement, which may not arise until
later in a story. Such truncations might well be harder to classify.

4.2.2  Story Choice Initiative. The Reading Tutor and the student take turns
deciding which story to read. Previous research showed that who has this initiative
affects how often students read new material [Aist and Mostow 2000; 2007], the
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Table I. Raw dialogue features considered

Dynamic features
Prosodic features: Various duration, pitch, and intensity features detailed in [Mostow
and Duong 2009]
Sentence features: Features of a sentence to be read, such as percentage of story read
so far, number of word types and tokens, number of clicks for help, and statistics on word
length and frequency

Static features
Student features: Grade(K-6), age, story choice initiative, number of stories read by
the student
Story features: Story length, popularity of the story, how often do children finish this
story, did this student finish the story

difficulty level of the text [Mostow et al. 2003], and how much they learn [Beck
2007].

Here our goal is to discover how story choice initiative affects reading behavior.
That is, how does the tutorial dialogue differ as a function of who picked the story?
To discover such differences, we train a model to classify who chose the story, based
on features of the ensuing dialogue. In contrast to the task completion model,
which predicts a future event (finishing a story), the story choice model “predicts”
a past event as a way to characterize its effects on the dialogue.

4.3 Features

Table I summarizes the sorts of dialogue features we use to model task completion
and story-choice initiative. Static features have the same value throughout the
entire dialogue, while dynamic features may change over the course of the story
because they change over time or differ from sentence to sentence.

To give the model greater expressive power, we systematically derive three addi-
tional types of features from each basic feature listed in Table 1.

4.3.1 Feature windows. Many dialogue features are dynamic rather than static
over the course of the dialogue. For instance, the average value of a prosodic
feature calculated from the whole dialogue, its beginning, or its end, may yield
very different values. We want our algorithm to learn the relative importance of
each feature across time.

To include dynamic features in our feature vector, we first decide the size w and
position in the dialogue of the window over which to compute them. Figure 2 il-
lustrates three ways to extract dynamic features; each row represents a dialogue,
and the circles correspond to different sentence encounters. The shadowed circles
represent where the features are extracted, namely the first three sentence encoun-
ters (head) of the dialogue (hg), the last three encounters (¢3), or the first and last
three sentence encounters (hsts).

If a dialogue is shorter than w, we have missing values for some positions. To
assign values to them, we follow standard practice for logistic regression: we use
the average over the positions for which we have values. If a dialogue is between
w and 2w sentence encounters, its head and tail features will overlap, but they are
still defined, so we use them anyway.

Once we determine the dialogue window over which to extract dynamic features,
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Fig. 2. Comparison of feature extraction strategies

we decide whether to (i) use their individual values as separate features, or (ii) use
their average as a single aggregated feature. For the individual features strategy,
each colored circle in Figure 2 represents a separate feature. This strategy multiplies
the number of dynamic features by the chosen window size w (or 2w for a double
window Ay ty).

For the aggregated feature strategy, each group of three colored circles represents
an aggregate feature. For example, if the “pitch variation” feature on the first
three sentence encounters is 8, 109, and 148, then it can be encoded (i) as three
different features, or (ii) as their average (88.3). This strategy leaves the number
of dynamic features unchanged for h,, and t,, models, but doubles them for h,,t,,
(double window) models. Our experiments included comparison of the individual
and aggregated feature extraction strategies.

After adding feature windows, we further tranform the expanded set of features
by squaring and thresholding them, as we now describe.

4.3.2 Quadratic Features. Squaring the value of a feature is a standard tech-
nique to capture quadratic relationships between the feature and the output vari-
able. Accordingly, for every dialogue feature (whether static or dynamic) we define
its square as another feature, thereby doubling the number of features.

4.3.3 Threshold Features. Although not specific to dialogue systems, learning
threshold features automatically is useful in the context of feature engineering. A
threshold feature is a binary feature that activates when a dialogue feature is less
than a specific value [Dudik et al. 2004]. Introducing different thresholds explodes
the size of the feature space, but can express non-linear effects. For our experiments
we create threshold features for all non-binary dialogue features. As threshold
values we use multiples of 0.1 standard deviations of the value of the dialogue feature
in the training set, ranging from —3.0 to +3.0: {-3.0,—-2.9,...,42.9,43.0}. The
transformed feature set can express distinctions between feature values as close as
0.1 standard deviations apart, at the cost of multiplying the number of non-binary
dialogue features (both static and dynamic) by 61.

Composing the quadratic and thresholding feature transformations with window-
ing vastly expands the set of features considered.

4.4 Data Preparation

We queried the database logged by the Reading Tutor for the raw dialogue features
described in Table I, from which we computed the additional features described
in Section 4.3. To predict task completion, we use “task completion” as a data
label rather than a dialogue feature, because its value is unknown at prediction
time. Similarly, to avoid trivial results we refrain from extracting features of the
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last sentence encounter in the dialogue, such as clicking on the “STOP” button.
To model story choice, we similarly use “initiative” as a data label rather than a
dialogue feature. We include the rest of the dialogue features except for student
features, which we omit because our goal is to characterize how students behaved
rather than which students happened to pick more stories.

Using the entire data set, we cap outlier values of continuous features below
the 5" percentile and above the 95" percentile (this preprocessing step is called
winsorization). To increase numerical stability and compare the contributions of
different features, we perform the standard transformation of centering the feature
values as z-scores with mean zero and standard deviation one. To speed up training,
it is common practice in machine learning experiments to remove features that have
the same value with fewer than 15 exceptions. Instead of the fixed minimum of
15 examples, we use the corresponding percentage of our training data, namely
0.7%, so as to adjust the minimum appropriately in our experiments on varying the
amount of training data.

5. EXPERIMENTAL EVALUATION

The data set we used was logged by the Reading Tutor while used regularly at ele-
mentary schools during the 2005-2006 school year. For both problems, we included
only dialogues with at least four sentence encounters, as a minimum amount of
data from which to extract dynamic features.

For predicting task completion by 162 children, we used a balanced set of 2,112
story readings, i.e., as many completed as not. The dialogues average 18 sentences
long.

Unless noted otherwise, we report all results using 10-fold cross-validation across
students. That is, we train on 90% of the students, and test on the other 10%.
Following standard practice in machine learning, we optimize the hyper-parameter
A (explained in Section 3.2) on a development set held out from the training data.
Although the folds vary in size, non-overlap of students between training and test
data is necessary to estimate accuracy on unseen students. The conventional alter-
native, called random k-fold cross-validation, uses equal-size folds but allows such
overlap. Training and testing on the same students would risk relying on peculiar-
ities of individual students. We compute the classification accuracy on each fold,
average across the folds to compute mean accuracy, and report its 95% confidence
interval as computed by MATLAB.

The purpose of our evaluation was to answer the following questions. First, how
well did our approach work? Section 5.1 analyzes how accurately our approach
solves the two classification problems, compared to baseline approaches.

Next, what did we learn about applying our approach to spoken dialogue? Section
5.2 describes how accuracy varies with the number of features. Section 5.3 describes
how accuracy varies with the amount of training data.

Finally, what did we learn about the problem domain? Section 5.4 identifies the
most predictive features for each problem.

5.1 Classification Accuracy

Figures 3 and 4 show classification accuracy for the two problems. Their horizontal
axes show window size in sentence encounters, and their vertical axes show classifi-
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Fig. 3. Classification accuracy for Task Completion

cation accuracy. Accuracy varies with window size, so each figure compares models
over a range of window sizes w from 0 (i.e. without dynamic features) to 8. The
six models compared in each figure consist of four ¢;-regularized logistic regression
models and two baseline models:

(1) heyty: uses individual features across a double window

(2) hwty-avg: averages features across a double window

(3) hy or ty,: uses individual features across a single window

(4) hy-avg or t,-avg: averages features across a single window

(5) hy (unreg) or t, (unreg): an unregularized logistic regression baseline that
averages features across a single window. The unregularized solution does not
have any hyper-parameters to tune, and its solution is unique. We didn’t
bother to include h,t,, (unreg) as a model because adding more features to an
unregularized model would have caused even worse overfitting.

(6) Random baseline: guesses randomly, with 50% expected classification accuracy

For predicting task completion, recent sentence encounters turn out to be more
informative than initial sentence encounters, so t,, models outpredict h,, models.
The reverse is true for story choice initiative. Accordingly, we reduce clutter by
omitting h,, models from Figure 3 and t,, models from Figure 4.

As Figures 3 and 4 show, all four ¢;-regularized logistic regression models out-
perform the random-guess baseline. With one exception, they also outperform the
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Fig. 4. Classification accuracy for Story Choice Initiative

unregularized logistic regression baseline, whose accuracy ranges from 0.55 to 0.63,
and tends to get worse as window size increases. The exception occurs for story
choice initiative at w = 0, where the 0.71 £0.07 accuracy of the unregularized base-
line exceeds the 0.66 +0.03 accuracy of the ¢;-regularized methods. However, this
difference is not statistically significant (their 95% confidence intervals overlap).

The relation of window size w to accuracy is problem-specific. For predicting
task completion, performance improves with window size, and hgtg does best, with
accuracy 0.71+0.04. For modeling story choice initiative, hoty performs best, with
0.74+£0.03 accuracy, but h,t,, for w as large as 8 do nearly as well, with statistically
insignificant differences.

5.2 Accuracy Versus Number of Features

Several modeling decisions affect the number of features considered: window size w;
single window h,, or t,, vs. double window h,,t,,; individual features vs. averaging;
and the hyper-parameter A\. How do these decisions affect classification accuracy
of the resulting models for the two problems?

Individual and aggregate features models are equivalent for window size w of
0 or 1, but diverge starting at w = 2. The top models for both classification
problems use double windows, for which individual features work as well as or
better than averaging them. This trend extends to single windows except for a
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statistically insignificant difference in the opposite direction between hs and ho-
avg. Double windows with individual features have the most features for a given
window size, suggesting that accuracy may tend to increase with the number of
features considered. This hypothesis is consistent with the hgts model doing best
in Figure 3, and although the hoto model beats hgts in Figure 4, the difference is
not statistically significant.

By varying the hyper-parameter X of Equation 3, ¢1-regularized logistic regression
finds models along a spectrum of complexity. Since all of the dialogues have at
least four sentence encounters, we analyze how accuracy changes in h4ts models
that select different numbers of features. As Figure 5 shows, test set classification
accuracy on both problems increases the most between 0 and 20 features, and more
gradually thereafter.

The most complex hgts models select on average only 523 of 68,721 features
considered for predicting task completion and 187 of 72,402 features considered for
modeling story choice initiative. By limiting the number of features selected, the
regularization penalty prevents overfitting.
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Fig. 6. Classification accuracy for different corpora size (for averaged models)

5.3 Accuracy Versus Amount of Training Data

To evaluate robustness to data scarcity, we vary the amount of training data in order
to determine how much is required for our approach versus for the unregularized
logistic regression baseline. Figure 6 compares their random 10-fold cross-validated
accuracy on the two classification problems. The horizontal axis shows the amount
of training data as a percentage of the original training corpus: 10%, 25%, 50%
75%, or 100%. To make the comparison as favorable as possible to unregularized
logistic regression, we compare models with single rather than double windows and
averaging rather than independent features.

As the error bars show, ¢1-regularized logistic regression significantly outperforms
unregularized logistic regression (and the random baseline) across the board, except
perhaps when they use 10% of the training data (only 211 dialogues for predicting
story completion, and 166 dialogues for modeling story initiative). Morever, unreg-
ularized logistic regression does not significantly outperform the random baseline
except by using over 50% of the training data.

ACM Transactions on Speech and Language Processing, Vol. 2, No. 3, 09 2001.



124 . Gonzalez-Brenes and Mostow

Table II.  Top 4 Most Predictive Features For Task Completion

Feature Name 0
Percentage of words accepted 0.1484
‘Words per minute<g.1 -0.0152
Correlation with adult word durations 0.0134
Percentage of story completed so far 0.0105

5.4 Features Selected

The value of a model lies not only in its predictive accuracy but in what it reveals
about the domain. Tables IT and IIT show the most predictive features for the two
problems using hgtg-avg models. Each cross-validation fold can return different
features, so we report only the results of the first fold. Averaging features over an
8-sentence window should smoothe out noise and make results more interpretable.
In Table II, the subscript “< 0.1” means that the feature is a binary threshold to
represent when the z-score for the words per minute is less than 0.1. In Table III,
a feature with a superscript “2” means that the value of the feature was squared.
For consistency, all features were squared, although squaring binary features does
not change their values.

As Table III illustrates, a model may contain two or more equivalent features,
which may seem counter-intuitive for a method to attain a given level of accuracy
with as few features as possible. Logistic regression is guaranteed to find an optimal
solution to Equation 3, but multiple equally good solutions may exist, because the
problem is convex but not strictly convex. For example, if two features are equal,
reweighting them in the model without changing their weighted sum or the sum
of the absolute values of their coefficients yields the same optimal value for the
objective function in Equation 3.

For predicting task completion, positive feature weights contribute to the proba-
bility of finishing the story. The most informative features in this case reflect three
aspects of oral reading fluency: oral reading accuracy, speed, and prosody. The
more fluently the student is reading, the likelier he will finish the story. The fourth
feature means that the further the student has gotten in the story, the likelier he
will finish.

For story choice initiative, positive feature weights contribute to the probability
that the student chose the story. The most informative features in this case involve
the level of difficulty and how often students (not just this student) finish the story.
Students are likelier than the tutor to pick easy stories that students often finish.

Both models make sense after the fact. However, neither model was known
beforehand, nor did we know which of many features considered would turn out
to be most informative. Omitting some informative features could reveal more
interesting ones. For example, removing story difficulty from the feature set might
reveal more about children’s behavior once a story is chosen.

6. CONCLUSIONS

We have described a recent technique, ¢;-regularized logistic regression, that makes
it feasible to classify dialogues in a high-dimensional space, even when the number
of features exceeds the number of training examples. We used our approach to solve
two problems in classifying children’s oral reading dialogue with Project LISTEN’s
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Table ITI. Most Predictive Features for Story Choice Initiative

Feature Name 0
Story level = 2”dgrade 0.1446
Story level = 2"dgrade? 0.1446
Story level = 15tgrade 0.0808
Story level = 15tgrade? 0.0808

Number of times this story has been completed?  0.0367
Number of times this story has been completed 0.0330

Reading Tutor: predicting which stories they would finish and characterizing stu-
dent behavior according to who chose stories, respectively achieving 71.1% and
73.6% cross-validated classification accuracy on balanced sets of data from unseen
students.

The significance of this work lies in the freedom to consider a large set of candidate
features without worrying that they will overfit the training data and therefore fail
to generalize to unseen data. Modeling dialogue in high-dimensional space opens
the door from small, manually generated sets of features to richer, automatically
generated sets of features. In this paper, we formulated raw features manually
and expanded them automatically into a much larger set by windowing, squaring,
and thresholding them, relying on ¢;-regularized logistic regression to select a few
good features. Future work should explore large, systematically generated sets of
features.
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