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Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer in-
terfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit
synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning op-
timal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed
dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results
also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach.
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1. INTRODUCTION

A brain-computer interface (BCI) is a communication sys-
tem that relies on the brain rather than the body for control
and feedback [1]. Ideally, it should run in a servo mode, al-
lowing the subjects to initiate the communication anytime
and anywhere without resorting to external stimuli or trig-
gers. Such an interface not only offers a promising prosthetic
device for those severely paralyzed, but also signifies a radi-
cally new technology for the general public. Current BCI re-
search is still in its early stage and the emphasis is placed on
the design of algorithms to decode a prespecified set of brain
states. This involves three main aspects.

Brain states

Only brain states consciously controllable by the subjects
are suitable for BCI. Besides, these states should generate
distinct, repeatable, and measurable patterns whenever ac-
cessed. Among the most commonly used brain states are
imaginations of body movements (motor imaginations).
Motor imaginations can reliably change the neural activi-
ties over sensorimotor cortices. Depending on the part of the
body imagined moving, these changes exhibit distinct spatial
distributions [2]. Recognition of these patterns can then be
translated into control signals, as is the case in this study.

Recording devices

Motor imaginations can be recorded by both electroen-
cephalography (EEG) and magnetoencephalography (MEG).
EEG remains the most popular way to record BCI signals and
will be the focus of this study. It measures scalp electrical
activities diffused from the cortex. Compared to MEG, it is
portable and inexpensive. However, EEG can only measure
blurred cortical activities due to the diffusion of the skull and
the skin. Thus, EEG is normally used for studying cortical
patches in the centimeter scale. Furthermore, EEG signals are
contaminated by noise from various sources, such as mus-
cle activities and power line interference. Spatial and tempo-
ral filters are commonly applied before any further analysis
[3, 4].

Decoding algorithms

Prefiltered EEG signals still contain considerable noise, which
poses a challenge for its decoding. Statistical machine learn-
ing (ML) techniques have been introduced into BCI to com-
bat these variations. Techniques like artificial neural net-
works, support vector machine (SVM) [5], and Linear Dis-
criminant Analysis [4] have been employed to learn patterns
from training EEG signals and then classify new EEG signals.
This strategy often results in increased decoding success and
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significant shortening of subject training time (from several
months down to several days). The most prominent exam-
ples include the Berlin BCI [4], the MPI BCI [6], and the
Graz BCI [7].

Apart from the classifiers, these ML-based BCIs also dif-
fer in the features they extract from EEG signals. The most
successfully used features include autoregressive (AR) coef-
ficients [6, 8] and common spatial patterns (CSP) [4, 7]. In
this paper, we will employ a novel type of feature based ex-
plicitly on the neurophysiology of EEG signals instead. Basi-
cally, we consider EEG signals as the outputs of a networked
dynamical system. The nodes of this system consist of cortical
patches, while the links correspond to neural fibers. A large
and complex system like this often generates interesting col-
lective dynamics, such as synchronization in the activities of
the nodes, and they result in the change of EEG patterns mea-
sured on the scalp. These features from the collective dynam-
ics of the system can be employed for classification [9, 10].
This will be elaborated in Section 2.

To recover the cortical dynamics from the EEG sig-
nals, subject-specific spatial and temporal filtering is usually
needed [4, 11]. Instead of manually tuning these filters, we
propose a common framework in Section 3 to learn them
from the data. Our basic idea is to optimize the filters so that
the separability of the two classes is improved. Experimental
results show that the learned filters not only reduce the clas-
sification errors of the dynamical system (DS) features, but
also extract physically meaningful information from the EEG
signals. Comparisons are also made between the DS features
with the learned filters and the CSP and the AR features with
manually tuned filters. These comparisons together with fur-
ther comparisons to other filter learning methods, such as the
CSSP [12] and CSSSP [4] methods, demonstrate the com-
petitive performance of our method (Section 4). Finally, the
conclusion is given in Section 6.

2. DYNAMICAL SYSTEM FEATURES

The cortex is a highly folded sheet of neurons (≈100 bil-
lion neurons) and they self-organize into clusters. These neu-
ronal clusters not only tightly connect with their neighbors,
but also communicate with distal clusters through neural
fibers. Each cluster is often associated with certain aspect of
information processing. The collaboration of these clusters
achieves the normal functioning of the brain. In this section,
we will first describe a simple mathematical model of the cor-
tex, and then show how it leads to dynamical system features
related to motor imaginations.

2.1. Mathematical model of the cortex

Typically, a neuronal cluster will generate electrical oscilla-
tions. It has been modeled as an oscillator with phase θ and
output s. Its dynamics are governed by a simple phase model
[13]:

s = f (θ),

θ̇ = ω + g(t),
(1)

D

Figure 1: Networked dynamical system model of the cortex.

where ω is the intrinsic frequency of the oscillation and f is
a function 2π-periodic in θ. g(t) is the input to the oscillator.
g(t) will accelerate the oscillation if it assumes positive values,
and slow it down if negative.

The whole cortex can then be modeled as a networked
dynamical system D , as shown in Figure 1. Each node in the
system represents a neuronal cluster and each link a neural
interaction. The input, g(t), to each neuronal cluster now
consists of two parts: influence from other clusters and mod-
ulation by subcortical structures [2]. Suppose that the links
of the network are represented as an adjacency matrix G
(Gi j = 1 if node i and j are connected; Gi j = 0 otherwise).
Then, the dynamics of a node i take a more specific form:

θ̇i = ωi +
∑

j

ǫi jGi j

(
s j − si

)
+ hi(t), (2)

where si and s j denote the outputs from node i and j, respec-
tively,

∑
j ǫi jGi j(s j − si) represents the influence from other

nodes, and hi(t) is the subcortical input. Note that there is an
added parameter ǫi j in (2), which controls the strength of the
influence from node j to i.

2.2. Desynchronization of neuronal clusters

Two properties of the network of oscillators in (2) are of par-
ticular interest to BCI [13].

(i) Without the input h(t), all nodes will settle down into
an oscillation of the same frequency ω0, if the network
is connected and the influence ǫ is sufficiently strong
(mutual synchronization).

(ii) If the input hi(t) to node i is sufficiently strong and
oscillates at a frequency ω0, node i will then be forced
to oscillate in the same frequency ω0 (forced synchro-
nization).

These two properties explain well the spatial distribution of
the EEG signals during motor imaginations [2].

(i) If no imagination is carried out, the neuronal clusters
in the idle sensorimotor cortex tend to synchronize
with each other and oscillate in the frequency range
of 8–26 Hz (EEG α and β rhythm). The spatial sum-
mation of this unison is a strong α (and/or β) rhythm
in EEG signals.

(ii) If the subject is actively engaged in motor imagina-
tions, the associated neuronal clusters will be strongly
modulated by the subcortical structures. The dynam-
ics of these clusters will then stray away from their for-
mer synchronous state. This results in a decrease of α
(and/or β) power in EEG signals.
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This phenomenon is called event-related desynchronization
(ERD) in the neuroscience literature. Depending on the part
of the body imagined moving, neuronal clusters at different
locations will be active. These clusters desynchronize with
other clusters, and the spatial distribution of the desynchro-
nization will be different as the imagination contents change.
ERD suggests that the strength of the synchronization be-
tween neuronal clusters can be used as features for classifi-
cation [9, 10].

2.3. Features for motor imaginations

An EEG electrode measures mostly the activities of the neu-
ronal cluster directly underneath it (we will qualify this in
Section 3). Suppose that the pairwise synchronization of the
measured neuronal clusters can be computed from EEG sig-
nals and organized into a matrix S (S is symmetric with entry
Si j for clusters i and j). Each entry in S is a dynamical system
feature and the similarity between two EEG signals can then
be quantified in terms of these features as follows:

k(S, S̃) = Tr
(
(S ◦ A)T(S̃ ◦ A)

)
, (3)

where A is a weighting matrix, Tr(·) computes the trace of
a matrix, and ◦ represents element-wise matrix product. Es-
sentially, this measure transforms EEG trials into synchro-
nization features and then computes their similarity based
on these features. Since we will use a SVM classifier for our
later experiments, k(·, ·) can be interpreted as a kernel be-
tween EEG trials.

Preliminary analysis of our motor imagination data set
(this data set is further explained in Section 4) indicates that
the synchronization in our data appears to be either inphase
(θi − θ j = 0) or antiphase (θi − θ j = π). These two types of
synchronization can be well detected simply using the covari-
ance. Therefore, classifying EEG signals using the DS features
consists of three steps.

(i) Filter EEG signals. This is the step where filter learn-
ing techniques are applied. For our method, filters are
learned for individual channels. Hence, EEG signals
from different channels are filtered differently.

(ii) Compute the entries of S and apply A. In this paper,
S is simply the sample covariance matrix, and this is
computed for each trial separately. Each entry in S is a
DS feature, and the matrix A is mainly used for select-
ing the features. For instance, by setting 20 entries of A
(in (3)) to 1 and all others to 0, then only 20 features
are used for later classification.

(iii) Compute the kernel k(·, ·) (in (3)) for pairs of trials,
form the kernel matrix K, and pass it to SVM for clas-
sification. The entry in K corresponding to trial S and

S̃ is simply k(S, S̃) (as in (3)).

3. LEARNING OPTIMAL FILTERS

Filtering EEG signals is important for later classifications.
Due to the diffusion of the skull and skin, an EEG electrode
actually measures a mixture of signals from several neuronal
clusters. Spatial filters, such as a Laplacian filter, are usually

applied to concentrate the signals to a single neuronal clus-
ter. Furthermore, EEG signals are contaminated by various
noises, such as electrical signals from muscle movements.
Our interest lies in oscillation in the frequency range of 8–
26 Hz (α and β rhythm). Bandpass filtering is usually needed
to suppress other signals.

As previous BCI researchers have experienced [4], the
optimal filters for each subject are very different, and it is
quite inconvenient to manually choose these filters. Attempts
have been made to learn these filters from the training EEG
data. Pioneering works have been reported in [4, 12], where
FIR (temporal) filters are learned for the CSP features to im-
prove the separability of the two classes. Our work is inspired
by their ideas, but our approach is different in two aspects.
First, our approach is directed to the dynamical system fea-
tures. Second, we have proposed a common framework for
the learning of both the spatial and the temporal filters. In the
following sections, the common framework is first described
before it is specialized into the spatial and the temporal filter
learning.

3.1. New framework

Our filter learning framework involves three steps: (i) quan-
tify the quality of a feature using the Fisher ratio; (ii) express
the Fisher ratio using the filter parameters; (iii) and then
maximize the Fisher ratio with respect to the filter parame-
ters. Given the data and the filter parameter a, our framework
can be formulated mathematically as follows

max
a

Q(a) =

(
µ+(a)− µ−(a)

)2

σ2
+(a) + σ2

−(a)
, (4)

where Q is the fisher ratio, µ the mean value of a feature, and
σ its standard deviation (the subscripts + and− restrict com-
putation to positive and negative classes, resp.). Higher val-
ues of Q usually indicate better separation of the two classes.
This learning framework can be applied to various problems.
However, only local optimum can be guaranteed for the so-
lution, since Q is in general not convex in terms of a. This is
also the case in learning the filters for the DS features. To find
an optimal solution efficiently, we will employ the subspace
optimization technique.

The filter learning is performed on each pair of EEG elec-
trodes separately. For a pair, two filters are learned, one for
each electrode. Suppose that the parameters of the two filters
are a and b, respectively. It turns out that for both the spatial
and the temporal filtering, Q assumes a form biquadratic in
a and b. For instance, if b is fixed, Q becomes the quotient
between aTV(b)a and aTW(b)a, where V(b) and W(b) are
matrices quadratic in b. The optimal a can then be obtained
by solving the following constrained optimization problem:

max
a

aTV(b)a, s.t. aTW(b)a + γbTbaTa = c. (5)

Note that the additional term γbTbaTa does not originate
from Q. It is a regularized product of the norms of a and
b, and the strength of this regularization is controlled by γ.
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Input: random initial values of a and b
Output: optimized value of a and b
(1) repeat
(2) ã ← a
(3) b̃ ← b
(4) compute V(a), W(a), Ṽ(a), and W̃(a)
(5) b ← eigenvector of Ṽ(a)b = λW̃(a)b

(6) compute V(b), W(b), Ṽ(b), and W̃(b)
(7) a ← eigenvector of Ṽ(b)a = λW̃(b)a

(8) until ‖a− ã‖2 < ε and ‖b− b̃‖2 < ε

Algorithm 1: Learning optimal filter a and b.

Using the Lagrange multiplier method (let the multiplier
be λ), the optimal a can be derived from the following gener-
alized eigenvector problem:

Ṽ(b)a = λW̃(b)a, (6)

where

Ṽ(b) = V(b) + V(b)T,

W̃(b) = W(b) + W(b)T + 2γbTbI.
(7)

The optimal a is then the generalized eigenvector corre-
sponding to the largest eigenvalue. Similarly, b can be opti-
mized by fixing a. Local maxima can then be found by op-
timizing a and b alternately (Algorithm 1). In our experi-
ments, the solution usually changes very little after two iter-
ations, and henceforth only two iterations are used. To spe-
cialize this algorithm into the learning of the spatial and the
temporal filters, we only need to derive the exact forms of
V(a), W(a), V(b), and W(b) for these two cases, respectively.

3.2. Learning spatial filters

Studies show that the spherical spline Laplacian filter is useful
for the study of cortical dynamics [14]. This method mod-
els the shape of the head as a unit sphere and uses orthog-
onal bases on the sphere to spatially interpolate EEG signals
[3]. The filtering is then achieved by computing the analyt-
ical Laplacian of the interpolation function. This filters only
high-passes EEG signals, and is unable to emphasize inter-
esting signals in the middle frequency range [11] (also see
Figure 2). This section will start with a reformulation of the
spherical spline Laplacian filter, which leads to a class of spa-
tial filters. The exact forms of V(a), W(a), V(b), and W(b)
are then derived.

For square integrable functions on a sphere, the Legen-
dre polynomials pn(·) evaluated at cos θ constitute a set of
orthogonal bases. The parameter n is the degree of the poly-
nomial and it controls the spatial frequency of a basis. A pn
with larger nwill generally represent higher spatial frequency.
θ is the latitudinal (zonal) angle. In this study, a maximum of
n = 20 is used for the interpolation of EEG signals (due to the
low spatial variation of EEG signals).

Suppose that a position on the unit sphere is e, and the
position of the ith EEG electrode is ei. Let cos(e, ei) denote

the cosine of the angle between e and ei, we can construct a
matrix P(e) with entries:

(
P(e)

)
in =

1

4π

2n + 1(
n(n + 1)

)4 pn
(

cos
(

e, ei
))

, (8)

where i ranges through the index of the electrodes, and n =
1 · · · 20. Then, EEG signals at position e can be interpolated
as follows:

u(e) = c0 + CTP(e)1, (9)

where u(e) is a vector with each dimension corresponding
to a time point. 1 is a vector of all ones. c0 (a vector of the
same size as u(e)) and CT (a matrix with 20 columns and
the same number of rows as u(e)) are the interpolation co-
efficients estimated from actual EEG signals. The solution of
these coefficients can be found using two constraints [3]: (i)
the interpolated function has to pass the actual EEG mea-
surements; (ii) CT · 1 = 0. Our formulation in (9) is equiva-
lent to (1) in Perrin’s original formulation [3]. The difference
is that (9) describes the interpolation for each time point of a
time series rather than that of a single time point. Our refor-
mulation simply stacks separate interpolation for each time
point into a matrix notation. This provides us with insight to
how spatial filtering is performed.

Spatial filtering of EEG signals can then be achieved by
simply removing the DC component c0 and reweighting
other frequency components (the bases). Suppose that the
filter (weighting) is a. Thus, spatial filtering can be computed
as follows:

ũ
(

ei
)
= CTP

(
ei
)
(1 ◦ a) = CTP

(
ei
)

a. (10)

The spherical spline Laplacian filter can be obtained by sim-
ply setting entries of a to −n(n + 1) (equivalent to [3, equa-
tion (5)]). With formula (10), other types of filtering can also
be implemented by varying a. For example, a bell-shaped
bandpass filter can be obtained by setting the entries of a
to exp(−κn(n + 1))n(n + 1) (κ is a parameter controlling
the width and the peak). These two filters are illustrated in
Figure 2. Note that the weights in the figures are normalized
into the range between 0 and 1.

Suppose that filter a and b are applied to electrode ei and
e j , respectively, the covariance between the two filtered EEG
signals can then be computed as

covi j =
1

l
ũ
(

ei
)T

ũ
(

e j

)
=

1

l
aTPT

(
ei
)

CCTP
(

e j

)
b, (11)

where l is the number of time points. Further, denote

C̃i j = PT(ei)CCTP(e j). (Since the following derivations are
the same for each pair of electrodes, the superscripts i j are
dropped henceforth for convenience.) Then, µ+ in (4) can be
computed as follows:

µ+ =
1

m

∑

k∈+

covk = aT

(
1

ml

∑

k∈+

C̃k

)
b = aTD+b, (12)
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Figure 2: (a) Spherical spline Laplacian filter and (b) a bell-shaped filter.

where k ∈ + means that the index ranges through all m trials
in the positive class. (Suppose that the negative class also has
m trials). The variance σ+ can be computed as follows:

(
σ+

)2
=

1

m

∑

k∈+

(
covk − µ+

)2
= aTE+(b)a, (13)

where

E+(b) =
1

m2l2

(( ∑

k∈+

C̃k

)
b

)2

−
1

ml2

∑

k∈+

(
C̃kb

)2
. (14)

Similarly, µ− = aTD−b and (σ−)2 = aTE−(b)a. V(b) and
W(b) can then be derived as follows:

(
µ+ − µ−

)2
= aT

(
D+b−D−b

)2
a = aTV(b)a,

(
σ+

)2
+
(
σ−
)2
= aT

(
E+(b) + E−(b)

)
a = aTW(b)a.

(15)

Since a and b are symmetric, V(a) and W(a) can be de-
rived analogously by exchanging the positions of a and b and

transposing C̃k in (12)–(15). Substituting V(a), W(a), V(b),
and W(b) into Algorithm 1 will then produce the optimal
filters.

3.3. Learning temporal filters

Unlike [4] that formulated the learning of the temporal fil-
ters in the time domain (FIR filter), our formulation works
directly in the frequency domain. The basic idea of our ap-
proach is to place weighting directly on the complex coeffi-
cients of the discrete Fourier transformation (DFT).

Weighting the frequency components of an EEG signal
u(ei) will transform it to

ũ
(

ei
)
= F

−1
(
F
(

u
(

ei
))
◦ a
)
, (16)

where a is the filter (weighting), and F represents the for-
ward DFT (F −1, the inverse DFT). Suppose that filters a and
b are applied to EEG electrodes ei and e j , respectively. The
covariance of the filtered signals can then be computed as
follows:

cov =
1

l
ũ
(

ei
)T

ũ
(

e j

)

=
1

l

(
F
−1
(
F
(

u
(

ei
))
◦ a
))T(

F
−1
(
F
(

u
(

ei
))
◦ b
))
.

(17)

(Note that the superscripts are dropped for convenience.)
Computation (17) is inefficient, since two forward and in-
verse DFTs are needed. The computation, however, can be
reduced using the correlation theorem. This theorem states
that the covariance between two signals u(ei) and u(e j) is
equal to (F (u(ei)))∗F (u(e j)) (∗ denotes conjugate trans-
pose). Thus, (17) can be simplified to:

cov =
1

l
aTDiag

((
F
(

u
(

ei
)))∗

◦F
(

u
(

e j

)))
b, (18)

where Diag(·) transforms its vector argument into a diagonal
matrix. Formula (18) requires only two DFT computations,
and hence it is more efficient.

The derivations for V(a), W(a), V(b), and W(b) become
straightforward if we compare (18) with (11). By setting

C̃i j = Diag((F (u(ei)))∗ ◦ F (u(e j))), they can be obtained
from (12)–(15). Substituting these matrices into Algorithm 1
produces the optimal filters.

4. RESULTS AND COMPARISON

The dynamical system (DS) features and the filter learning
approach are evaluated using data set IVa from the Berlin
BCI group [8]. This data set contains EEG signals (118 chan-
nels, sampled at 100 Hz) for five healthy subjects (labeled
“aa,” “al,” “av,” “aw” and “ay,” resp.). During the recordings,
they were prompted by visual cues to imagine for 3.5 seconds
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Table 1: Averaged dynamical system features (DS) and common spatial patterns (CSP) for five subjects (“aa,” “al,” “av,” “aw,” and “ay”) over
three-time windows (0–0.5 second, 0.5–2.5 seconds, and 3.5–4.0 seconds) during the motor imagination. The top 20 most discriminative
DS features are shown as edges connecting the corresponding electrodes (dots). The most discriminative CSPs for right-hand imagination
are plotted as color maps.

0–0.5 s 0.5–2.5 s 3.5–4 s
DS DS DSCSP Filter

← Left ↑ Frontal ← Left ↑ Frontal ← Left ↑ Frontal

aa

al

av

aw

ay

either right-hand (the positive class) or right-foot move-
ments (the negative class). Our classification analysis will fo-
cus on the data between 0.5 seconds and 2.5 seconds (i.e.,
200 time points for each channel), since in an online BCI
setting a sliding window seldom exceeds 2 seconds [4]. For
convenience, the period between 0 s and 1 s of a trial is called
imagination preparation stage, and the period between 3.5
seconds and 4.0 seconds is called postimagination stage. Each
type of imagination was carried out 140 times. Thus, there
are 280 labeled trials in total for each subject (note: each trial
is a multivariate time series of 118 dimensions). The task is to
classify the type of the imagination for each trial in an offline
fashion.

Two sets of experiments were conducted in our evalua-
tions. They are designed to reveal two major aspects: (i) us-
ing DS features for classification, and (ii) learning spatial and
temporal filters. We will first describe procedures common to
these experiments. All our classifications are carried out us-
ing SVM and the errors are obtained from 10×10 fold cross-
validation. An identical temporal prefiltering (bandpass be-
tween 8–40 Hz) is applied to all subjects. In the case of the
DS features, an identical spatial prefiltering (a bell-shaped
bandpass filter exp(−κn(n + 1))n(n + 1) with κ = 0.01) is
also applied for all subjects. Furthermore, only the top 20 DS
features (in terms of their Fisher ratios) are used for classifi-
cation.

4.1. Dynamical system features

4.1.1. Where are the discriminative dynamical
system features?

The dynamical system (DS) features during motor imagina-
tion (0.5–2.5 s) are scored by Fisher ratio for each fold of
the cross-validation, and these scores are further averaged
over the folds. The top 20 most discriminative DS features
are plotted in the second column of Table 1. For compari-
son, typical common spatial patterns (CSPs) for the right-
hand imagination (corresponding to the smallest generalized
eigenvalues) are also shown beside the DS features.

For four of the five subjects (“aa,” “al,” “av,” and “ay”),
the DS features share clear pattern across the subjects—they
tightly concentrate on the area in charge of right-hand imag-
ination (left motor cortex, hand region in the Homunculus).
This phenomenon can be well explained by the theory of
event-related desynchronization (ERD): as the hand region
in the left motor cortex is actively engaged in imagination,
its neuronal activities deviate from those of the neighboring
cortices; and such localized spatial discordance results in the
tight cluster of the DS features.

Furthermore, the typical common spatial patterns (CSP)
also show nice agreement with the DS features. The areas of
the ERD correspond to the peaks in the CSPs.
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Table 2: Classification errors (%) of the CSP, the AR, and the DS
features with optimized filters.

Sb CSP AR DS + S + T

aa 8.5± 5.4 10.5± 6.0 9.5 ± 5.7

al 0.8± 1.8 1.6 ± 2.5 2.7± 3.1

av 29.1± 8.2 23.3 ± 7.6 21.5± 7.6

aw 3.1± 2.8 7.7± 3.8 6.5± 4.5

ay 5.3± 3.8 9.5± 4.4 8.5 ± 5.0

Table 3: Classification errors (%) of the combinations of the CSP,
the AR, and the DS features.

Sb CSP + AR CSP + DS AR + DS ALL

aa 7.6 ± 5.0 7.3± 5.1 7.7± 4.7 7.3± 4.9

al 1.6± 2.3 0.9± 1.9 1.6± 2.5 1.5 ± 2.2

av 22.3± 7.4 22.5± 7.8 21.4± 7.4 21.6± 7.1

aw 3.5± 3.2 2.8± 3.1 5.2± 3.8 3.4 ± 3.2

ay 8.9± 4.6 5.5± 4.3 9.1± 4.6 8.7 ± 4.5

Beside the similarity also revealed in the figures is the dif-
ference of the DS features across subjects. Especially for sub-
ject “aw,” half of the DS features locate in the contralateral
hand region. A plausible explanation is that the subject may
have imagined movements of both hands.

4.1.2. How do dynamical system features
evolve over time?

The top 20 DS features in the imagination preparation stage
(0–0.5 s) and the postimagination stage (3.5–4.0 s) are scored
similarly and plotted, respectively, in the first and the third
column of Table 1. These figures provide us an idea of the
evolution of the DS features over time.

During the preparation stage, the DS features scatter
around the whole scalp. They mostly connect distal regions
of the brain; other than that, no clear pattern is shared across
subjects. In fact, these DS features provide classifications only
slightly better than random (the errors are not reported).
This implies that the DS features within this period do not
contain useful information for classification.

During the imagination, tight clusters of DS features are
formed and they lead to good classification. Then, as the sub-
jects are signaled to stop their imaginations (3.5–4.0 s), the
clusters start to diffuse into wider areas of the brain. Such
trend is most clearly revealed in subject “av,” where parts of
the DS features are replaced by long range connections across
hemispheres of the brain.

The formation and the dissolution of clusters over the
course of an imagination present a unique characteristic for
the DS features. Potentially, such pattern can be exploited for
online detection of motor imagination.

4.1.3. Dynamical system features are competitive

The DS features obtained with learned filters were compared
to the CSP and the AR features obtained with manually cho-

sen parameters. The parameters for the CSP features (filter-
ing frequency, selected channels, and the number of projec-
tion subspaces) and the AR features (filtering frequency, se-
lected channels, and the order of the AR model) were tuned
according to the winning entry of BCI competition III [15].
The results are shown in Table 2.

Overall, the CSP features perform the best, the DS fea-
tures follow, and the AR features produce lower accuracy.
Furthermore, the DS features often obtain the best (high-
lighted in bold) or the second best place (highlighted in
italic). Especially for subject “av,” the DS features outper-
form the CSP features by 6%. It is important to note that
the parameters for the CSP and AR features have been tuned
manually and intensively, while the results for the DS features
are obtained with exactly the same starting parameters. This
shows the usefulness of the DS features and our filter learning
approach.

4.1.4. Dynamical system features extract
complementary information

The CSP, AR, and DS features are computed differently from
the EEG signals. An interesting question is whether they
complement each other during classification. To investigate
this, we combine more than two types of features (CSP +
AR, CSP + DS, AR + DS, and ALL three) using the META
scheme described by [8]. The classifications of the combined
features are presented in Table 3. The combination with the
smallest error for each subject is highlighted in bold and the
second place in italic. Furthermore, we surround an error
with a box, if it is the smallest ever (in Tables 2 and 3) for
a subject.

The DS features indeed complement the CSP and the AR
features, as is evidenced by the further reduction of errors in
subject, “aa,” “av,” and “aw.” The reduction, however, is not
large (the largest being around 1% for subject “aa”). Further-
more, the combination of all three types of features does not
necessarily further reduce the errors. This happens when the
best features have already extracted almost all information
about the separability of the two classes. Additional features
may only provide redundant or even conflicting information
for the classification. This is very likely in our case since we
have optimized each type of features intensively. Finally, our
results suggest that the combination of the CSP and the DS
features performs the best, and the DS features complement
the CSP features better than the AR features.

4.2. Learned filters

4.2.1. Learned filters improve classification

For each pair of EEG electrodes (equivalent to a DS feature),
the optimal spatial and temporal filters were learned sequen-
tially. In Table 4, we present the classification errors using the
following: (i) the DS features without the spatial and the tem-
poral filter optimization (DS column); (ii) the DS features
only with the spatial filter optimization (DS + S column);
(iii) the DS features only with the temporal filter optimiza-
tion (DS + T column); (iv) the DS features with both the
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Table 4: Classification errors (%) of the DS features before and after
applying the learned filters.

Sb DS DS + S DS + T DS + S + T

aa 16.7± 7.2 14.6± 7.0 9.7± 5.7 9.5± 5.7

al 3.7± 3.3 3.2± 3.2 3.6± 3.4 2.7± 3.1

av 27.3± 7.9 25.1± 8.0 21.4± 7.9 21.5± 7.6

aw 13.1± 6.0 12.1± 5.7 7.5± 4.4 6.2± 4.5

ay 11.0± 5.3 9.6± 5.0 9.7± 5.1 8.5± 5.0

spatial and the temporal filter optimization (DS + S + T col-
umn). Note that for all four comparisons prefilters have al-
ready been applied in both temporal and spatial domains.

The results demonstrate that both the learned spatial and
temporal filters improve the classification (DS + S and DS
+ T columns). Although there is no absolute winner in the
two types of filters, when applied separately, the temporal
filters outperform the spatial filters in general (the winning
filter for each subject is highlighted in bold). Especially for
subjects “aa” and “aw,” the temporal filters reduce about 5%
more errors than the spatial filters.

The combined application of the learned filters almost al-
ways further reduces the errors (only subject “av” slightly vi-
olates this rule). The maximum reduction is around 7% (for
subject, “aa” and “aw”). The errors obtained (DS + S + T col-
umn) are now lower than 10% for 4 of the 5 subjects (except
“av”). It seems that the learned filters help less for some sub-
jects (“al” and “ay”). The reason can be that the prefiltering
is already near the optimal solution.

The classification for subject “av” has the largest error.
Our preliminary studies indicate that the most responsive
frequency range of this subject shifts above 26 Hz (contrary
to the usual 8–26 Hz). While most energy in the EEG signals
concentrates below 26 Hz, this makes it difficult to extract
good features for the subject.

4.2.2. Learned filters extract meaningful information

Several details related to Section 4.2.1 are clarified here. The
spatial and the temporal filters can be interpreted as weight-
ing in the corresponding frequency domain. We have further
restricted them to be polynomial models in our experiments.
The results in Table 4 are obtained with polynomial func-
tions of degree 6 (for both the spatial and the temporal fil-
ter learnings). The regularization parameters γ for the spa-
tial and the temporal filters are 10−7 and 10−13, respectively.
For the case of the temporal filter, a bell-shaped prefilter is
also applied (− exp(−κn(n + 1))n(n + 1) with κ = 0.001 for
all subjects). Note that the filters are always learned in pairs,
that is, one for each channel in a pair. We will illustrate the
learned filters in two ways.

The first way is the joint effect of the bell-shaped prefilter
and a learned filter from a single channel. Since the learned
filter is always applied after the prefiltering, we will show the
shape of the prefilter, the learned filter, and their multiplica-
tion in one picture (Figures 3(a) and 4(a)).

The second way is the joint effect of the overall filtering
from two channels. Since a DS feature is bilinear in the filters
applied to the two channels, our optimization in Algorithm 1
only has exact control over their multiplicative effect. There-
fore, we will illustrate the filtering effects for two channels
and their multiplication in one picture (Figures 3(b) and
4(b)).

Figure 3(a) shows a learned spatial filter (thin line, bow-
shaped) and the prefilter (thin line, bell-shaped) for one
channel. Although both filters are simple, their multiplicative
effect creates a double-peak characteristics (dotted line). This
is equivalent to emphasizing the frequency contributions un-
der these two peaks. The overall effect of the learned filters
from two channels (dotted lines in Figure 3(b)) is also dou-
ble peaked (thick line in Figure 3(b)). We believe that these
peaks are somehow related to the electrode spacing on the
scalp. It is likely that the learned filters weight the informa-
tion from the actual electrodes more heavily than that from
the interpolated positions.

For the temporal filters, we will interpret the learned fil-
ters in terms of their effects on the power spectrum. Hence,
only the absolute values of the weighting are displayed. The
final filter for an example channel (dotted line in Figure 4(a);
it is the multiplication of a prefilter and a learned filter, both
in thin lines) does not appear to emphasize the motor imagi-
nation signals (i.e., ERD in 8–26 Hz). The meaning, however,
becomes clearer when we examine the filters from two chan-
nels together. In Figure 4(b), the filters from two channels
are shown in dotted lines and their multiplication in thick
line. The multiplication creates the strongest peak within 10–
18 Hz, and a second strongest peak within 18–28 Hz. This
corresponds well to the most responsive frequency range of
the motor imaginations.

Note that one can not simply replace individual filters, a
and b, from a pair of electrodes by the square root of their
multiplication. This is because the two filters a and b always
appear in the form of baT in the objective and the constraint
of (5). For instance, one can show that according to (15)

aV(b)a = Tr
(((

D+ −D−

)
baT
)2)

. (19)

Therefore, only when two pairs of filters, a and b versus a′

and b′, produce the same outer product (i.e., baT = b′a′T),
they can be equated with each other. In Figures 3(b) and 4(b),
we only showed the diagonal of baT to produce a concise
summary of their joint filtering effect. One should keep in
mind that the learned filters have further effect beyond what
is visualized here.

4.2.3. Learned filters are competitive

The DS features obtained with the learned filters were com-
pared to the CSP features produced by the CSSP [12] and the
CSSSP [4] methods. These two methods are also designed to
remove the manual filter tuning, and they have incorporated
the filter learning into the original CSP method. The com-
parisons are presented in Table 5.
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Figure 3: Illustration of spatial filters: (a) the prefilter (thin line, bell-shaped), a learned filter (thin line, bow-shaped), and their multiplica-
tion (dotted line); (b) learned filters from a pair of channels (dotted lines) and their multiplication (thick line).
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Figure 4: Illustration of temporal filters: (a) the pre-filter (thin line, bell-shaped), a learned filter (thin line, wedge-shaped), and their
multiplication (dotted line); (b) learned filters from a pair of channels (dotted lines) and their multiplication (thick line).

Table 5: Classification errors (%) of the CSSP, the CSSSP, and the
DS + S + T methods.

Sb CSSP CSSSP DS + S + T

aa 14.6± 6.2 11.6 ± 6.3 9.5± 2.1

al 2.3 ± 3.0 2.1± 2.7 2.7± 3.1

av 32.6± 7.6 31.8 ± 7.7 21.5± 7.6

aw 3.5± 3.3 6.5 ± 4.3 6.5 ± 4.5

ay 6.0± 3.9 10.5± 5.7 8.5 ± 5.0

It can be seen that the three methods are quite com-
petitive. Each method has its best performance in certain
subjects. Notably, our method does the best in subject “av,”
outperforming the other two methods by about 10%. As
mentioned earlier, the most responsive frequency range of
“av” shifts above the normal α and β bands (8–26 Hz). This
seems to suggest that for such BCI “abnormal,” the DS fea-
tures may be a better choice for the classification task.

5. DISCUSSION

5.1. Relation to other filter learning methods

In Section 4, a bell-shaped spatial filter is applied as a prepro-
cessing for the DS features. Equivalently, this prefilter can be
viewed as a weighting on the electrodes. Spatially, it resem-
bles a Mexico hat, a positive peak surrounded by a ring of
negative peaks (as illustrated in Figure 5(a)).

Our filter learning method further optimizes this pre-
filter by modifying its shape in the frequency domain
(e.g., Figure 3(a)). After the optimization, the spatial influ-
ence of the resulting filter remains similar to the prefilter
(Figure 5(b)). However, the separation between the positive
and the negative peaks of the learned filter increases. This
allows signals of lower spatial frequency to pass. Such adap-
tation helps the filter to extract more discriminative signals
from the EEG signals.

An interesting observation is that the spatial filters ob-
tained from the CSP method locally resemble the prefilter we
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Figure 5: (a) A bell-shaped spatial filter; (b) a learned spatial filter.

applied for the DS features. As shown in the middle column
of Table 1, the filters learned by the CSP method emphasize
the electrode directly above the neuronal cluster in charge of
the imagination; at the same time, they suppress the contri-
bution from adjacent electrodes.

While our filter learning method employs the prefilter as
a prior knowledge and successively refines this knowledge lo-
cally, the CSP method arrives at similar results by computing
a global filter instead. In the cases where this prior knowl-
edge is accurate, we expect that better filters can be obtained
by our method, which eventually leads to lower classification
error (e.g., the classification error for subject “av” in Table 2).

5.2. Higher-order dynamical system features

In this paper, the covariance is used as a measure of de-
pendence between different regions of the brain. Covariance,
however, can only detect second-order dependence between
the signals. Other more-powerful measures are needed if one
wants to exploit higher-order dynamical system (DS) fea-
tures of the brain.

Various measures have been explored in the literature.
For instance, phase synchronization has also been employed
as DS features for classifying BCI signals [9, 10]. Another ex-
ample is the mutual information [13], but its use in BCI con-
text remains unexplored. In all these cases, however, it is not
yet clear how spatial and temporal filters can be learned au-
tomatically from the data.

6. CONCLUSION

In this paper, we exploited the collective dynamics of the cor-
tex as features for BCI. We also proposed a framework for
learning the optimal spatial and temporal filters during the
extraction of these features. For 4 of the 5 subjects tested,
our automated approach reduces classification errors to less
than 10%. This performance is comparable to that of the CSP
features obtained with manually tuned parameters. Further
comparisons with other filter learning approaches also show
the competitive performance of our method. Our results sug-
gest that the dynamical system features combined with filter
learning approach are very promising for BCI. More investi-
gation is needed to fully demonstrate its advantage.
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