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Abstract

Recent advances in processing remote sensing data have pro-

vided unprecedented potential for monitoring land covers.

However, it is extremely challenging to deploy an automated

monitoring system for different regions and across different

years given the involved data heterogeneity over space and

over time. The heterogeneity exists on two aspects. First,

for many land covers, the distinguishing temporal patterns

are only visible in certain discriminative period. Due to the

change of weather conditions, the discriminative period can

shift across space and time, which causes heterogeneity to

the sequential data. Second, the collected remote sensing

data are affected by acquisition devices and natural vari-

ables, e.g., precipitation and sunlight. In this paper, we

introduce a novel framework to effectively detect land cov-

ers using the sequential remote sensing data. At the same

time, we propose new learning strategies based on attention

networks and domain adaptation to addresses the aforemen-

tioned challenges. The evaluation on two real-world applica-

tions - cropland mapping and burned area detection, demon-

strate that the proposed method can effectively detect land

covers under different weather conditions.

1 Introduction

Land Use and Land Cover (LULC) changes have drawn
great attention from governments, companies and non-
governmental organizations (NGOs) since they can pro-
vide promising insights for management of natural re-
sources. For example, growth in the worlds population
and the acceleration of industrialization are straining
already scarce natural resources and food supplies. The
land cover study can help monitor whether crop pro-
duction is being scaled up (to keep pace with growing
demand) at places that are most suitable from environ-
mental perspective. Monitoring cropland varieties and
planting area can also help analyze the consumption of
water and energy in tillage, irrigation and harvesting,
as well as the contaminants caused by fertilizers.

Advances in earth observation technologies have led
to the acquisition of vast amounts of timely and reliable
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remote sensing data that can be used for monitoring
changes on a large scale. Many existing land cover prod-
ucts are manually created through visual interpretation,
which takes advantage of human expertise in the label-
ing process [5]. The limitations of this approach are
manifold. First, manual labeling may result in both
false positives and false negatives due to observational
mistakes. Second, this approach usually requires multi-
ple observers to delineate land covers. Their own sub-
jective biases can result in inconsistent results. Most
importantly, the required substantial human resources
make it infeasible for large regions at yearly scale.

Hence, researchers are pursuing data-driven ap-
proaches to build automated monitoring system [8, 15–
17,26]. Although these methods have shown success for
local regions or a specific year given sufficient training
data, they greatly suffer from the involved data hetero-
geneity over space and time. For example, crops can
be planted under different soil types, precipitation and
other weather conditions for different places and differ-
ent years. Therefore, a classification model learned from
a specific region or a specific year cannot be generalized
to other regions and time periods.

An intuitive solution to address data heterogeneity
is to use domain adaptation techniques [12], which
aim to train a classification model given that the
joint distribution P (X,Y ) differs between training data
and testing data. However, most existing domain
adaptation approaches focus on static data while the
complexity of earth system makes many land covers
not able to be identified on a single date. Instead, the
successful detection requires the discovery of distinctive
temporal patterns from a sequence of collected data.
More critically, many land covers only show distinctive
temporal patterns during certain period of a year, which
is also referred to as the discriminative period [18]. For
example, croplands can be identified by analyzing their
growing patterns in certain part of growing season, but
they look similar to barren land after they are harvested.
Likewise, when identifying burned area, we need to
focus on fire seasons and burning scars.

Given these data characteristics, the heterogeneity
for sequential data can be summarized from two aspects.
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First, the discriminative period can shift across years
and across regions. For example, farmers plant and
harvest crops in different time across years due to
weather conditions. Second, even after we locate the
discriminative period from a long sequence, the obtained
features in the discriminative period can still vary across
regions and years. This is because the data collected by
the optical sensors in satellites are affected by climate
variables, such as precipitation and sunlight.

In this paper, we propose a novel learning frame-
work, Domain Adaptation for Sequential data (DAS),
which combines Long-Short Term Memory (LSTM) and
attention model [25] to discover temporal patterns from
the discriminative period. We first apply the Long-
Short Term Memory (LSTM) model to capture long-
term temporal dependencies in sequential remote sens-
ing data, which are critical for land cover changes due
to long-term climate impacts [16]. After we embed the
raw input using LSTM, we utilize the attention model to
capture the discriminative period in the entire sequence.

To overcome the challenges brought by data hetero-
geneity, we utilize the adversarial learning technique to
learn a mapping between the data collected under differ-
ent weather conditions. Combining with the attention
model, we develop a new domain adaptation method
which pays more attention to the discriminative period.
This is essential for transferring discriminative knowl-
edge across domains because the non-disriminative pe-
riods commonly involve much variability. Consider the
burned area mapping as an example. Since fires can
occur on a variety of land cover types (e.g., forest, sa-
vannas, crops), adaptation on the discriminative pe-
riod is especially helpful for identifying burned areas
because the model will not have to adapt the high vari-
ability in different land cover types before the fire pe-
riod. Furthermore, to ensure the robustness of the at-
tention model against different weather conditions, we
propose a new learning strategy by advancing cyclic
GAN model [20,35].

Our evaluation on two real-world applications, crop-
land mapping and burned area detection, shows the
superiority of DAS in classification performance over
multiple baselines. Besides, we demonstrate that the
proposed domain adaptation technique can reduce the
impact of domain variation on the effectiveness of at-
tention model. Finally, we discuss some interpretation
for the variation across domains.

2 Related Work

Domain adaptation (DA) aims to leverage abundant la-
beled data from a source domain to learn a discrimina-
tive classifier and then generalize it to a target domain
despite the data distribution discrepancy between the

source and target domains. This situation is most com-
mon in earth observation data where same datasets are
available at a global scale, but the data distribution
varies across regions and across years due to spatial and
temporal heterogeneity.

Existing DA techniques can be divided into two
categories - semi-supervised DA [9] and unsupervised
DA [12]. In this work, we focus on the unsupervised
DA where we assume no labeled data are available in
the target domain. The proposed method can be easily
generalized to the semi-supervised case.

DA techniques have shown success in a variety of
applications [19, 20, 24]. Many existing works [14, 23]
learn transferable features by minimizing Maximum
Mean Discrepancies (MMD) between source domain
and target domain, which measures the difference in
both marginal and conditional distributions. With the
recent advances in deep adversarial learning, researchers
have proposed another approach to learn task specific
features which are also consistent features across two
domains. These features are learned by minimizing
the classification accuracy of a well-trained domain
classifier [11,22,33]. However, some of these approaches
learn consistent features by training a single high-
capacity classifier for data from different domains [11].
These approaches have limited applicability to a broad
class of problems without sufficient labeled data to
train a high-capacity model. An alternative approach
is to learn a separate mapping function from the target
domain to the source domain for adaptation [35].

Due to the data heterogeneity and paucity of labels,
researchers have also applied DA techniques in remote
sensing [31]. For example, Elshamli et al. [10] utilize an
end-to-end neural network model to extract invariant
features across domains, which can further assist in
classifying remote sensing images. However, these
approaches mostly focus on static data, i.e., individual
image snapshots. In contrast, several approaches have
been proposed for health-care data that explore the
information transfer between multi-temporal data from
different patient groups using RNN and its variants [28,
29, 34]. However, the approaches introduced in [28,
29, 34] simply use the extracted features from RNN-
based models and apply them to transfer the knowledge.
They treat all the time steps equally in recurrent
models to connect different domains, and thus lack the
ability to avoid the transfer of non-informative time
steps. Consequently, these approaches can be adversely
affected by the variability in the non-informative period.

3 Problem Definition

In this problem, we are provided with the data points
from the source domain S and the target domain T . We
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represent these data points as XS and XT , respectively.
Here each domain can be instantiated as a specific year,
a region or a scenario with certain weather conditions.

Each data point from XS or XT contains multi-
variate spectral features for T time steps, e.g., a sam-
ple xS,i from the S can be expressed as {x1

S,i, ..., x
T
S,i},

where xt
S,i ∈ R

D. Moreover, we have the label
of each data point in the source domain S, YS =
{yS,1, ..., yS,N}. Each label yS,i belongs to one of K

land cover classes. We have no labeled data for the tar-
get domain. Hereinafter we omit the subscript i (sample
index) when it causes no ambiguity.

Our objective is to predict the labels YT for data
points in the target domain. To achieve this, we
aim to train a classification model using the provided
sequential data XS ,XT and labels YS . Due to the shift
of joint distribution across domains, i.e., P (XS , YS) 6=
P (XT , YT ), the obtained classifier from the source
domain via traditional learning approaches cannot be
directly applied to the target domain.

Besides the classification, we also wish to find the
most discriminative time period for each sample in the
source domain and the target domain. This provides
interpretability to the classification result.

4 Method

In this section, we start with the Long-Short Term
Memory (LSTM) networks and the attention model,
which jointly model long-term land cover patterns
and capture the discriminative period for classification.
Then we propose a domain adaptation technique that
handles the shift of both the data distribution and the
discriminative period across domains.

Figure 1: The structure of LSTM-Attention networks.

4.1 LSTM-Attention networks In this work, we
utilize an LSTM-Attention networks model to de-
tect the discriminative period from a sequence, which
subsequently contributes to the classification. The
structure of LSTM-Attention networks is shown in
Fig. 1. The LSTM model generates hidden represen-
tation/embeddings ht at every time step. These em-

beddings are then combined by the attention model via
weighted summation for the final classification. We now
briefly introduce the LSTM model and the attention
model. For simplicity, we ignore the domain notation S
when we describe the LSTM-Attention networks.

As an extension of standard recurrent neural net-
works (RNN), the LSTM model defines a transition re-
lationship through an LSTM cell, which takes the input
of features xt at current time step and the inherited
information from previous time steps.

Each LSTM cell contains a cell state ct, which
serves as a memory and allows the hidden units ht

to reserve information from the past. The cell state
ct is generated by combining ct−1, ht−1 and the input
features at t. Hence the transition of cell state over time
forms a memory flow, which enables the modeling of
long-term dependencies. Specifically, we first generate
a new candidate cell state c̃t by combining xt and ht−1

into a tanh(·) function, as:
(4.1) c̃t = tanh(W c

hh
t−1 +W c

xx
t),

where W c
h ∈ R

H×H and W c
x ∈ R

H×M denote the
weight parameters used to generate candidate cell state.
Hereinafter we omit the bias terms as they can be
absorbed into weight matrices. Then we generate a
forget gate layer f t ∈ R

H , an input gate layer gt ∈ R
H

and an output gate layer ot using the sigmoid function:

(4.2)

f t = σ(W f
h
ht−1 +W f

x xt),

gt = σ(W g
h
ht−1 +W g

xx
t),

ot = σ(W o
hh

t−1 +W o
xx

t),

where {W f
h ∈ R

H×H , W f
x ∈ R

H×M} and {W g
h ∈

R
H×H , W g

x ∈ R
H×M} denote two sets of weight

parameters for generating forget gate layer f t and input
gate layer gt, respectively. The forget gate layer is used
to filter the information inherited from ct−1, and the
input gate layer is used to filter the candidate cell state
at time t. In this way we obtain the new cell state ct

and the hidden representation as follows:

(4.3)
ct = f t ⊗ ct−1 + gt ⊗ c̃t,

ht = ot ⊗ tanh(ct),

where ⊗ denotes entry-wise product.
After obtaining the hidden representation

{h1, ..., hT } from LSTM, we use an attention model to
determine the discriminative period from the sequential
data. The attention model aims to enforce the classifier
to attend to different time steps based on different
relevance scores. The higher relevance score at a time
step indicates more expressed discriminative knowledge
at this time step. In land cover problem, the time
steps with higher relevance scores usually correspond
to growing seasons (for cropland monitoring) and fire
seasons (for burned area detection).

Specifically, we measure the relevance score of each
time step t according to the similarity between its
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hidden representation ht and the sequence embedding
v ∈ R

H . Here v represents an embedding of the entire
sequence, which has the same dimensionality with the
hidden representation, and is jointly learned during the
training process [21]. In the simplest case, we can embed
x1:T into v using another LSTM.

More formally, the relevance score of time step t is
computed as the inner-product between v and ht. To
normalize the relevance scores over all the time steps,
we also apply a softmax function on the inner-product:
(4.4) αt = softmax(vTht).

Then we aggregate ht from all the time steps based
on α, and apply a softmax function for classification:
(4.5) ŷ = softmax(Wy

∑

t

αtht),

whereWy ∈ R
K×E denotes the parameters to transform

aggregated hidden representation to the classification
output ŷ. Here we use ŷ to distinguish with the provided
ground-truth labels y.

We train the LSTM-Attention networks using the
labeled data from the source domain, i.e., XS and YS .
We adopt the cross-entropy loss to define the training
objective function, as follows:

(4.6) Jsup =
1

NS

∑

i

∑

k

yS,i,klog ŷS,i,k,

where NS denotes the number of samples in the source
domain. The provided label yS is expressed in a one-hot
representation where yS,i,k = 1 if the ith sample from
the source domain belongs to class k.

4.2 Domain Adaptation Having described the
LSTM-Attention model for discriminative period detec-
tion. Now we propose a domain adaptation approach so
that the learned model can be applied to other places
and other years under different weather conditions.

As mentioned earlier, we train an LSTM-Attention
model using the data XS and YS from the source
domain. However, this model cannot be directly applied
to XT due to the shift of data distribution across
domains, i.e., PS(X,Y ) 6= PT (X,Y ). To apply the
model to the target domain, we wish to first learn
a transformation function from the target domain to
the source domain g : T → S. Such transformation
aims to map the data in target domain to the similar
distribution with the source domain. Then we will use
the transformed data g(XT ) as input to the learned
LSTM-Attention model.

An effective domain adaptation process for our
problem requires two properties: 1) Since the non-
informative period in sequential data contains much
variability and it is not relevant to the classification,
the domain adaptation process should focus on the
discrminative period. 2) After applying the attention

Table 1: Notation used for cyclic domain adaptation.

Symbol Expression Meaning

x̄S f(xS) transformed data from S to T

x̄T g(xT ) transformed data from T to S

x̃S g ◦ f(xS) reconstructed data from S

x̃T f ◦ g(xT ) reconstructed data from T

model to the data transformed from the target domain
(e.g., g(XT )), the attention model should still be able
to precisely locate the discriminative period.

To meet these requirements, we develop a new
adversarial learning model based on cyclic GAN [35]. In
this model, besides the mapping function g : T → S, we
also introduce another function f : S → T , which maps
the data from the source domain to the target domain.
Given the mapping function f , we can better adapt
the knowledge learned from the source domain to the
target domain. This is especially helpful for transferring
the knowledge of discriminative periods learned by the
attention model from the source domain. For the ease
of presentation, we define several notations in Table 1.

Since the LSTM-Attention model is trained on the
source domain, it can generate meaningful outputs
only given inputs from the source domain or data
transformed to the source domain (e.g., xS , x̄T , and
x̃S). Using the LSTM model, we generate three sets of
hidden representation, as follows:

(4.7)

h1:T
S = LSTM(x1

S,(k), x
2
S,(k), ..., x

T
S,(k))

h̄1:T
T = LSTM(x̄1

T ,(k), x̄
2
T ,(k), ..., x̄

T
T ,(k))

h̃1:T
S = LSTM(x̃1

S,(k), x̃
2
S,(k), ..., x̃

T
S,(k)),

where hS denotes the hidden representation for xS , h̄T

denotes the hidden representation for the transformed
testing data g(XT ), and h̃S denotes the hidden repre-
sentation for the reconstructed training data g ◦ f(XS).

To learn the mapping relationships between S and
T , we wish to minimize the difference between hS and
h̄T , and between h̄T and h̃S . For the first group (i.e.,
hS and h̄T ), the intuition is to first transfer the data
XT to the source domain (i.e., X̄T ) and then reduce its
divergence with the training data (i.e., XS). In contrast,
for the second group (i.e., h̄T and h̃S), we first map XS

to the target domain via f(·) and then compare with
XT in the target domain. However, since the hidden
representation can only be computed from the source
domain, we apply another g(·) mapping for both XT

and f(XS) to obtain h̄T and h̃S .
Since there exist no coupled correspondence be-

tween data in the source domain and the target domain,
we adopt the adversarial regularization [11], which en-
forces that the data from different domains cannot be
easily distinguished by an extra well-trained classifier.

Instead of directly conducting adversarial regular-
ization on the hidden representation, which have been
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Figure 2: The adversarial regularization on weighted
summation of hidden representation between XS and
X̄T . We also include another regularization term
between X̄T and X̃S in DAS.

widely adopted in previous works [28,29], here we apply
the adversarial training on the weighted summation of
hidden representation at different time steps (Fig. 2).
In this way, the adaptation process can assign higher
weights for the periods with more discriminative infor-
mation. Specifically, we utilize the relevance scores com-
puted from attention model as the weight for each time
step. We first compute the relevance scores for xS , x̄T ,
and x̃S , using the attention model, as follows:

(4.8)

α1:T
S = Attention(x1

S,(k), x
2
S,(k), ..., x

T
S,(k))

ᾱ1:T
T = Attention(x̄1

T ,(k), x̄
2
T ,(k), ..., x̄

T
T ,(k))

α̃1:T
S = Attention(x̃1

S,(k), x̃
2
S,(k), ..., x̃

T
S,(k))

Then we define the adversarial loss between XS and
the transformed data X̄T as follows:

(4.9)

JS = sup
DS

∑

k

Eh,α|x∼XS,(k)
logDS(

∑

t

αt
S,(k)h

t
S,(k))

+ Eh̄,ᾱ|x∼XT ,(k)
log(1−DS(

∑

t

ᾱt
T ,(k)h̄

t
T ,(k))),

where k ∈ [1, 2, ...,K] is the index for different classes.
Here we assume we have the provided labels for XS

and the pseudo-labels for XT . We will discuss how
to generate these pseudo-labels in Section 4.3. DS

represents a domain classifier that maps RH to [0,1].
The supDS

operation aims to find the optimal classifier
to distinguish between hS and h̄T . On the other hand,
by minimizing JS , we will reduce the classification
performance by the optimal DS . This ensures that
after transforming XT to the source domain through
the mapping function g(·), the transformed data cannot
be easily distinguished with the original training data
XS even by a well-trained classifier.

Similarly, we define the adversarial loss between h̄T

and h̃S with another classifier DT , as follows:

(4.10)

JT = sup
DT

∑

k

Eh̄,ᾱ|x∼XT ,(k)
logDT (

∑

t

ᾱt
T ,(k)h̄

t
T ,(k))

+ E
h̃,α̃|x∼XS,(k)

log(1−DT (
∑

t

α̃t
S,(k)h̃

t
S,(k)))

By incorporating the cost of JS and JT , the model
can learn functions f(·) and g(·) to map data from
one domain to the similar distribution with the other

Figure 3: The loss of attention shift in domain adapta-
tion process. Here we only illustrate the loss between
xS and f(xS). In DAS, we also include another term
for the loss between x̄T and f(x̄T ).

domain. However, in practice, the computation of
relevance scores (using the learned model from S) for
transformed data from T can be adversely affected by
the heterogeneity across domains. As we compute ᾱT

and α̃S using the transformed data from the target
domain (i.e., which involve g(·) mapping), it is critical
to have a robust attention model so that it can produce
accurate estimation for these relevance scores.

To this end, we define another loss function which
accounts for the attention shift across domains. Intu-
itively, after we map each instance from the source do-
main to the target domain, the discriminative period
should stay the same. Here we consider two mapping
directions. First, after we transform a sample xS to the
target domain via f(·), f(xS) should have the same rel-
evance scores with xS (Fig. 3). Since LSTM-Attention
model only takes the input from the source domain, the
relevance scores of f(xS) can be computed after apply-
ing another g(·) function, which is equivalent to α̃S .
Second, we consider the attention shift between x̄T and
f(x̄T ) (equivalent to x̃T ). We first compute the the
hidden representation and relevance scores for x̃T , as:

(4.11)
h1:T
tc = LSTM(g(x̃1

T ), g(x̃2
T ), ..., g(x̃T

T )),

α1:T
tc = Attention(g(x̃1

T ), g(x̃2
T ), ..., g(x̃T

T ))

Then we define the loss for attention shift as follows:
(4.12)

Jatt = Eα,α̃|x∼XS
‖αS − α̃S‖

2 + Eᾱ,αtc|x∼XT
‖ᾱT − αtc‖

2

On the other hand, even though we can learn f(·)
and g(·) to map data from one domain to the other by
reducing JS and JT , these mapping functions cannot
guarantee that an individual input sample x and the
output (e.g., f(x) or g(x)) are paired up in a meaningful
way. Consider an example with two input training
samples {xS,1, xS,2} and the expected corresponding
outputs in the target domain {xT ,1, xT ,2}. If the model
mistakenly learns a mapping such that f(xS,1) = xT ,2

and f(xS,2) = xT ,1, the output distribution is still the
same as the expected output distribution. Moreover,
the optimization process in practice commonly leads to
the well-known problem of mode collapse [13], where all
input data map to the same output data.

To address these challenges, we introduce an addi-
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tional cyclic self-reconstruction cost Jcyc so that each
sample from the source domain can be recovered after a
composite g ◦ f mapping and each sample from the tar-
get domain can be recovered after f ◦g mapping. In this
way, we can define the cyclic self-reconstruction loss, as:

(4.13)

Jcyc = Ex∼XS

∑

t

∥

∥xt
S − x̃t

S

∥

∥

2
+ Ex∼XT

∑

t

∥

∥xt
T − x̃t

T

∥

∥

2

Combining the aforementioned loss objectives, the
overall loss function can be expressed as:
(4.14) J = Jsup + λ(JS + JT ) + µJcyc + γJatt,

where λ, µ and γ are hyper-parameters to control the
weight of each loss function.

4.3 Learning process The proposed learning frame-
work can be trained in a recursive EM-style fashion. In
E-step, we aim to assign pseudo labels to data in the
target domain. In M-step, we will update the model pa-
rameters and estimate mapping function f(·) and g(·).
We now present the details in E-step and M-step.

E-step: For each data instance xT in the tar-
get domain, we first transform it to the source do-
main through g(·). Then we apply the LSTM-Attention
model (Section 4.1) to determine the posterior probabil-
ity of P(y|g(xT )) (Eq. 4.5). Then we sample the pseudo-
labels YT according to this probabilistic distribution.

M-step: We implement M-step in two stages.
First, we wish to update the domain classifiers DS and
DT . These classifiers can be trained by maximizing the
objective described in Eqs. 4.9 and 4.10. The training
of domain classifiers involves the provided data XS , XT

and the labels YS , YT .
Next, we update the parameters in LSTM-attention

networks and in f(·) and g(·) by minimizing the objec-
tive function in Eq. 4.14. This can be implemented by
standard back-propagation algorithm.

The time complexity for the learning process is
O((NT + NS)Tη), where η is a constant factor deter-
mined by the dimensionality of input features, hidden
representation, and the number of classes. The detailed
setting for hyper-parameters and network architecture
will be discussed in Section 5.

5 Experimental Results

We evaluate the proposed algorithm in two applications,
cropland mapping and burned area detection. We first
describe the MODIS dataset used to populate the input
sequential features for both applications.

We utilize MODIS MOD09A1 multi-spectral data
product [2], collected by MODIS instruments onboard
NASA’s Terra satellites. This dataset provides global
data for every 8 days at 500m spatial resolution. At
each date, MODIS dataset provides reflectance values

on 7 spectral bands (620-2155 nm) for every location.
We compare the proposed method against several

baselines, including static methods: Artificial Neural
Networks (three-layer ANN) and Random Forest (RF)
(most popular in remote sensing) that are applied to
the concatenation of data, sequential models: standard
LSTM and LSTM-Attention networks (ATT), as well as
advanced baselines:
ATT+MMD (ATMMD): We first learn the LSTM-
Attention networks for the source domain, and estimate
the mapping function g(·) by minimizing MMD between
the source domain and the target domain [27].
ATT+ADV (ATADV): In this baseline, we utilize the
standard adversarial learning method [13, 32] for esti-
mating the mapping function g(·).
ATT+ADV2 (ATADV2): Rather than using the map-
ping function g(·), we train an LSTM-Attention model
with adversarial learning using the data from both
source and target domains such that their hidden rep-
resentation cannot be easily distinguished [11].

For the baselines with domain adaptation process
(ATMMD, ATADV, ATADV2), we also utilize the same
EM learning strategy as discussed in Section 4.3. When
deploying DAS, we set both f(·) and g(·) to be a two-
layer neural networks with 30 hidden units. For the
LSTM model, we utilize 50 hidden units, i.e., H = 50.

5.1 Learning tasks and dataset description

Cropland mapping: We aim to distinguish between corn
and soybean in southwestern Minnesota, US. The an-
nual ground-truth information on these two classes is
provided by USDA Crop Data Layer product [1]. Al-
though this product also provides labels for other crop
types, previous survey study shows that the labels are
more reliable for major crops like corn and soybean.

This task is challenging in agricultural domain
because corn and soybean frequently look similar in
most single dates of a year but are more likely to be
identified using the temporal profile at certain stage [30].
Also, the crops in different places and different years can
look different due to the weather conditions.

We utilize the data from 2016 as the source domain.
We select 1,000 balanced training data points from a
region where farmers plant the same crop type in 2015
and in 2016. In this way, the residues left on the ground
at the beginning of the 2016 are consistent with the
crops planted in the growing season.

We conduct three different tests: 1) Group-test:
We predict the crop types for a set of locations from
a different region in Minnesota in 2016. These locations
have different types of residues at the beginning of the
year. 2) 2015-test: We apply the model to the same
region in 2015. 3) 2011-test: We apply the model
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Table 2: Classification performance of each method in cropland mapping: training data (source domain), Group-
test, 2015-test and 2011-test, and in burned area detection: training data (source domain), Group-test, Year-test
and Region-test.

Cropland mapping Burned area detection

Train Group-test 2015-test 2011-test Train Group-test Year-test Region-test

Method AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

ANN 0.863 0.797 0.763 0.731 0.665 0.679 0.664 0.602 0.940 0.905 0.897 0.708 0.782 0.504 0.768 0.435
RF 0.863 0.788 0.775 0.734 0.672 0.688 0.662 0.523 0.939 0.908 0.904 0.709 0.773 0.367 0.767 0.403
LSTM 0.865 0.807 0.786 0.734 0.767 0.718 0.762 0.704 0.943 0.916 0.901 0.730 0.801 0.576 0.772 0.517

ATT 0.909 0.811 0.828 0.767 0.786 0.731 0.775 0.712 0.965 0.935 0.925 0.743 0.835 0.637 0.796 0.629
ATMMD 0.909 0.811 0.836 0.785 0.799 0.753 0.779 0.721 0.965 0.935 0.931 0.815 0.859 0.677 0.846 0.679

ATADV 0.909 0.811 0.842 0.796 0.819 0.756 0.784 0.727 0.965 0.935 0.934 0.822 0.865 0.692 0.879 0.682
ATADV2 0.895 0.810 0.833 0.785 0.805 0.757 0.776 0.714 0.949 0.920 0.935 0.822 0.863 0.704 0.875 0.679
DAS 0.909 0.811 0.867 0.819 0.844 0.787 0.832 0.756 0.965 0.935 0.952 0.886 0.918 0.725 0.895 0.722

to the same region in 2011. Different environmental
conditions across years results in the variation of multi-
spectral features. The variation is even more obvious
between 2016 and 2011 according to the weather history
in Minnesota [6]. Each test is conducted on a balanced
dataset with 2,000 selected data points.
Burned area detection: In this application, we wish to
detect burned area across regions and across years using
limited manually labeled data. We randomly select
1,000 burned locations and 1,000 normal locations in
California, US 2008 as training data (i.e., the source
domain). The burned area samples are only taken
from the locations which used to be the forests. We
obtained fire validation data from government agencies
responsible for monitoring and managing forests and
wildfires [4]. For the land cover information before the
fire period, we refer to NASA land cover dataset [3].

We apply each method to three tests: 1) Group-test:
we test on a region in California 2008 which contains
1,200 burned locations and 5,800 normal locations. Here
the fires occur on the woody savannas rather than
forests. 2) Year-test: we test on a region with forest
fire in California 2007. The testing data contains 300
burned locations and 1,200 normal locations. 3) Region-
test: we apply each method to detect burned area in
Montana, US 2007. The selected testing data contain
2,000 burned locations and 9,000 normal locations.

5.2 Classification performance In Table 2, we
report the performance of each method in terms of Area
Under Curve (AUC) and F-1 score. We can observe
that DAS outperforms other baselines by a considerable
margin for all the three tests. Compared with cropland
mapping, the F1-scores in burned area detection are
lower due to the skewness of the testing data.

The comparison between LSTM and static baselines
(ANN and RF) shows that the modeling of temporal
profile can help detect the crop type. The improvement

from LSTM to ATT shows that the attention model as-
sists in further improving the classification performance
by explicitly modeling the discriminative period.

In general, the performance of each method is de-
graded in all other test domains compared with the
training domain. The domain adaptation-based base-
line approaches (ATMMD, ATADV, ATADV2) shows
superior performance compared with ATT since they
can potentially reduce the divergence between source
and target domains. However, they are limited in their
ability to properly adapt the information of discrimina-
tive period to the target domains, and thus their per-
formance is inferior to that of DAS.

ATADV slightly outperforms ATADV2 in cropland
mapping, but they are similar in burned area detection.
This is because burned areas show more distinctive
signatures than croplands. Hence, it is more likely to
have a single classifier that can identify burned areas
under different weather conditions.

5.3 Impact of data heterogeneity Now we inspect
the impact on the attention model by the data hetero-
geneity. Figs. 4 (a) and (b) show the obtained rele-
vance scores for the corn locations (in cropland map-
ping) in 2016 by LSTM-Attetion networks (ATT) and
the obtained relevance scores by ATT and DAS in 2015
and 2011, respectively. Figs. 4 (c) and (d) depict the
obtained relevance scores for the burned locations (by
forest fires) in California, 2008 by ATT and the ob-
tained relevance scores by ATT and DAS for Group-
test (woody savannas fires) and Region-test (Montana,
2007), respectively. It is noteworthy that in Fig. 4 (c)
the discriminative periods are expected to be the same
between training and testing since fires occur at the
same region and in the same year.

For both tests, we can observe that the LSTM-
Attention networks cannot detect a period with larger
relevance scores when directly applied to the testing
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(a) (b)

(c) (d)

Figure 4: The impact of heterogeneity on the attention
model in (a) 2015-test, and (b) 2011-test for cropland
mapping, and (c) Group-test and (d) Region-test for
burned area detection. Train: The relevance scores on
training data. Test: the relevance scores on test data
by directly applying LSTM-Attention networks. DAS:
the relevance scores on test data by DAS.

scenario. Therefore it cannot precisely capture the
discriminative period. In contrast, DAS is capable
of mitigating the impact of variability across domains
and thus producing meaningful relevance scores. Here
the discriminative periods last longer than the periods
detected in cropland mapping because fires commonly
leave burning scars on the ground which also help
identify burned locations.

We can also observe that the discriminative periods
lasts longer in burned area detection than in cropland
mapping because fires commonly leave burning scars on
the ground which also help identify burned locations.

5.4 Discussion on domain variation We now dis-
cuss the interpretation of the variation across domains.
As mentioned earlier, data heterogeneity exists on two
aspects - the shift of discriminative period and the vari-
ation of multi-spectral data. For the shift of discrimi-
native period, we can easily find the discriminative pe-
riod for both domains S and T using the robust atten-
tion model learned by DAS. According to Fig. 4 (a), we
can observe that the crops in 2015 are planted earlier
than the crops in 2016. To verify this, we show high-
resolution Landsat images around 25th time step in 2015
(Fig. 5 (a)) and 2016 (Fig. 5 (b)). It can be seen that
the selected region shows higher greenness level at this
selected time in 2015 than in 2016.

More critically, we investigate the difference in
multi-spectral data across domains using the learned
mapping function g(·). This can help scientific re-
searchers analyze the exact difference of land cover phe-
nology across regions and years. As we standardized the

(a) (b)

Figure 5: The Landsat images (in RGB, 30 m resolu-
tion) for an example region in southwestern Minnesota
in (a) 2016 and (b) 2015 at the beginning of July (cor-
responding to around 25th time step in MODIS).
Table 3: The spectrum range of each spectral band, and
the variation of each band in crop mapping (2011-test)
and burned area detection (Region-test).

Band Range(nm) Crop Burned area

Band 1 620-670 0.77±0.34 0.39±0.18

Band 2 841-876 1.71±0.55 0.40±0.15

Band 3 459-479 0.83±0.47 0.13±0.06

Band 4 545-565 0.96±0.34 0.59±0.28

Band 5 1230-1250 2.21±0.61 0.11±0.09

Band 6 1628-1652 1.15±0.34 0.45±0.22

Band 7 2105-2155 0.49±0.15 0.14±0.08

input in the training process, the features should fall
in N (0, I). Then we randomly sample 20 data points
from N (0, I) as input to g(·). For each spectral band
(i.e., each feature), we measure the average and stan-
dard deviation of the absolute difference between the
input value and the output value (Table 3).

For cropland mapping, the variation mostly oc-
curs in Band 2, Band5 and Band 6. According to
NASA’s document on MODIS [7], Band 2 reflects
“Vegetation Land Cover Transformation”, Band 5 re-
flects “Leaf/Canopy Differences” and Band 6 reflects
“Snow/Cloud Differences”. The meaning of these bands
conforms to our result since all these three factors play
important roles in identifying crops in Minnesota.

For the burned area detection, the variation mostly
occurs in Band 2, Band 4 and Band 6. Here Band 4
reflects “Green Vegetation”. The meaning of these three
bands also verify the correctness of our result since fires
can directly impact the vegetation level.
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7 Conclusion

In this paper, we propose a framework DAS that uti-
lizes the discriminative temporal information for do-
main adaptation. The results demonstrate the effec-
tiveness of DAS in classifying land covers under differ-
ent weather conditions and maintaining the robustness
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of the attention model. Also, DAS can provide inter-
pretations for the heterogeneity across domains.

Although the proposed advancements are motivated
by land cover application, they are generally applicable
to other applications as well. For example, the LSTM
and attention model can be used to model discrimi-
native patterns for disease progression in EHRs (Elec-
tronic Health Records). The proposed domain adap-
tation technique can be used for adapting the model
across different patient groups.
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