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Abstract

Time series classification algorithms designed to use
local context do not work on landcover classification
problems where the instances of the two classes may
often exhibit similar feature values due to the large
natural variations in other land covers across the year
and unrelated phenomena that they undergo. In this
paper, we propose to learn discriminative patterns from
the entire length of the time series, and use them as
predictive features to identify the class of interest. We
propose a novel neural network algorithm to learn the
key signature of the class of interest as a function of the
feature values together with the discriminative pattern
made from that signature through the entire time series
in a joint framework. We demonstrate the utility of
this technique on the landcover classification application
of burned area mapping that is of considerable societal
importance.

1 Introduction

Multivariate time series classification is an important
problem because of the prevalence of temporal data in
several domains including signal processing, economics,
bioinformatics and remote sensing [1, 2, 3, 4]. The prob-
lems in the domain of remote sensing, which serve as
the motivation for this work, involve using data col-
lected by earth orbiting satellites to automatically mon-
itor different natural and man-made phenomena across
the globe such as deforestation, forest fires, urbaniza-
tion and crop land mapping. Accurate accounting of
land usage helps to ensure that depleting natural re-
sources such as forests and fresh water are judiciously
used. Thus, these problems are of great environmental
and societal importance.

Landcover classification is the problem of distin-
guishing a class of interest like burned forests from one
or multiple other classes like unburned forests, farms,
water etc. One of the key challenges with landcover
classification is that using features from a small segment

of the year is insufficient. Due to the large variation in
the spectral signatures of landcover classes across time
and space, assigning the class of the location based on
small subsequences of its multivariate time series may
be misleading [5]. This is because subsequences of time
series belonging to locations of different classes might
look similar. However, the time series will most likely
not look similar all through the length of time. This
is why we propose to model global sequence level pat-
terns instead of capturing local subsequence level con-
text. For example, consider the problem of identifying
burned forests. Burning a forest scars the ground and
creates a visible difference in its signature in the mul-
tivariate sensor data from the satellite. The signature
of this burn scar in the sensor data, although very dis-
tinct from the signature of healthy forests, can also be
exhibited by landcovers like wetlands due to other phe-
nomenon that they undergo and hence can be falsely
classified as burned forests by a classifier that just looks
at subsequence-level patterns.

For 4 instances (3 unburned, 1 burned) in South
CA, figure 1 shows the probability of a scar signature
given the features at every 8-day time step in 2008.
This probability was obtained from a logistic regression
classifier trained using per time step labels (these were
hand crafted manually, usually only sequence level
labels are available). For the burned location in figure
1d, the probability is close to 0 in the first half of the
year but it is high in the second half of the year, which
is expected since this is the time of the year when
the fires happened in CA in 2008. We would expect
the unburned locations to show close to 0 probability
all year and most unburned instances do. However,
a few like the ones shown here exhibit burn scar like
signature on several time steps of the year. Moreover,
since burned area is a rare class, even a small number of
such instances significantly impact the precision of the
classification output.

In this paper, we propose to learn discriminative
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(a) Unburned location 1
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(b) Unburned location 2
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(c) Unburned location 3
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(d) Burned location

Figure 1: Probability estimates of an per time step clas-
sifier for negative and positive instances corresponding
to the problem of burned area classification for the 2008
forest fires in California.

patterns from the entire multivariate time series and
use them as predictive features to identify the class of
interest. The example in figure 1 shows that just look-
ing at local context such as the fire season time steps
will not suffice because of instances like in figure 1c.
Thus it is important to look at all time steps. At the
same time, the time steps in the fire season are more
important than the non-season time steps and hence,
should be given more weight when determining the se-
quence label. This notion of seasonality is key to all
landcover classification tasks1. In this paper, we pro-
pose a neural network algorithm that models a two stage
classifier - the first stage learns a transformation on the
per time step features, and the second stage learns the
weights on each time step based on how discriminative
they are in predicting the sequence label. Table 1 shows
the discriminative pattern formed by the per time step
transformations for the class of interest and a sample of
patterns in the negative class for 2 different landcover
classification problems. For the burned area classifica-
tion task, the patterns can be considered to represent
the presence of burn scar at each time step. Cropland
mapping is another landcover classification task where
the patterns can be considered to represent the greenup
cycles of the crop being classified. We demonstrate how
an explicit modeling of seasonality in a simple model
outperforms other time series classification methods in
cases where training samples are not available in plenty,
which is common in landcover classification tasks. The

1Note that these seasons keep changing over space and time
and cannot be known beforehand.

algorithm proposed in this paper is also a key com-
ponent of a framework used to build a comprehensive
burned area product for the carbon-rich tropical forests.

2 Related Work

Extensive work has been done in time series classifica-
tion. The nearest neighbor classifier with a given dis-
tance measure defined on sequences is a popular method
owing to its non-linear mapping capability and since it
does not require extensive parameter tuning [6]. Dy-
namic time warping is a distance measure defined on
sequences that is routinely combined with the nearest
neighbor classifier, since it robust to stretching and com-
pression in a sequence [7, 8]. However, these methods
may not perform well on multivariate time series espe-
cially when the length of a time series gets longer since
they rely on reliable computation of distance between
sequences.

Ye and Keogh [13] introduced the concept of us-
ing subsequences of time series as a primitive for de-
scribing each class of sequences. These subsequences
are called shapelets and the distance of a time series
to a shapelet is used as a predictive feature to assign
class membership. Using all contiguous subsequences of
time series in the training data set as candidates, the
subsequences that rank higher according to the infor-
mation gain criteria over the target class are chosen as
shapelets. Shapelets have been shown to perform really
well in a variety of applications with univariate time se-
ries. However, the main philosophy behind shapelets is
that the discriminating information for a target class lies
in local variations and there is not much to be gained
in looking at the global context [13, 14, 15]. As we de-
scribed in section 1, this is not true in many remote
sensing problems.

A popular way to model sequence data is through
a Hidden Markov Model (HMM). HMMs are genera-
tive models where the conditional distribution of the
observed features given the latent state of the sequence
at each time step is learned. A linear dependence in
time among the latent state variable is assumed. HMMs
have been used for classification where a different HMM
model can be learned for each class and using Bayes rule
to combine this with the class priors yields the posterior
probability. However, in the presence of limited train-
ing data as is routinely the case with remote sensing
applications, especially when doing global scale stud-
ies, generative models like HMMs may not be accurate
enough. A discriminative approach to adapt HMMs to
classification problems is through the use of Fisher ker-
nels [9, 10, 11] that are dot products on the transformed
feature space of gradients induced by a feature vector on
the generative probability function P (X|θ). These are
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Table 1: Sequence level discriminative patterns to identify the class of interest

Class of interest Burned Area Corn fields
Signature captured Burn scar Greenup of corn

Pattern observed in se-
quences of positive in-
stances

(True burn showing scar in
summer)

(Corn field showing peak
greenup during mid year)

Examples of patterns ob-
served in sequences of neg-
ative instances

Location with noisy
features

(Burned location from last
year that still shows scar)

(Unburned vegetation)

(Soybean fields with their
greenup cycle later in the

year)

(Unplanted fields)

known to perform at least as good as a MAP decision
rule given the same generative model [9].

Conditional Random Field (CRF) is a discrimina-
tive approach to modeling sequences that is popular in
several domains including natural language processing
[16, 17, 18]. They are typically used in cases where the
problem is to predict labels for every time step in the
sequence given the features at that time step. Such a
CRF model is trained using sequences with features and
labels available for each time step, as against our case
where labels are only available at the sequence level.
Some extensions of CRF to sequence classification have
been proposed, such as the hidden state CRF (HCRF)
[19] where a chain of latent variables models the hid-
den states and the sequence label is then modeled as a
function of these hidden states. Although the intuition
of methods like HCRF is similar to our proposed ap-
proach, the assumption of a linear dependency among
the latent state variables may not necessarily hold in
our case as shown in the examples in section 1.

3 Method

3.1 Problem Setting In this work, we propose a
method to classify fixed length time series into one of
2 given classes. Consider a data set X consisting of
N time series {X1, · · · , XT }. Every time series is of
fixed length T . Let Xi

t ∈ RD denote the feature vector
corresponding to the tth time step of the time series Xi.
We aim to learn a classifier f : Xi− > Y i that maps a
given time series Xi to its class label Y i ∈ 0, 1. In the
context of our application, Y i = 1 corresponds to the

class of interest (e.g burned forest) that we are trying to
identify and Y i = 0 corresponds to the other landcovers
(e.g unburned forests).

3.2 The SeqRep model Figure 2 shows the pro-
posed neural network model. The model has T×(D+1)
nodes in the first layer, corresponding to the D fea-
tures and a bias term for each time step. The model
has a hidden layer with T nodes {h1, · · · , hT }. Each
one of these hidden nodes corresponds to a time step.
Unlike a regular neural network with one hidden layer,
the hidden layer nodes ht corresponding to time step t
are connected only to input (first layer) nodes for that
time step. Thus, there is a correspondence between
every hidden layer node and a time step. Moreover,
the weights {β0, β1, · · · , βD} connecting the input layer
node at a time step to the corresponding hidden layer
node are assumed to be shared across time steps. Fi-
nally, there is an output node O that is a function of all
the per time step predictions captured in the T nodes
in the hidden layer. Weights {w0, w1, · · ·wT } connect
the T hidden layer nodes along with a bias term to the
output node O. The hidden layer nodes can be viewed
as outputs from a classifier that maps the features at a
time step (e.g., reflectance values) to the per time step
predictions (e.g., How scarred does the location look on
this time step?). The vector of these per time step pre-
dictions are then combined to output the prediction for
the whole time series (e.g.,does the time series represent
a burned location?).
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Figure 2: SeqRep model

3.2.1 Activation functions The activation func-
tion at the hidden layer is modeled as sigmoid function
i.e, the hidden layer node ht for the tth time step is
computed as,

ht =
1

1 + exp

(
−

(
D∑

d=1

βdXt(d) + β0

))

where Xt(d) represents the dth feature for the tth
time step. Similarly, given the values for hidden layer
nodes{h1, · · · , hT }, the value for the output node O
corresponding to the prediction for the whole time series
is computed as,

O =
1

1 + exp

(
−

(
T∑

t=1

wtht + w0

))

3.2.2 Training the model Given a training set of N
time series with corresponding features {{Xi

t}Tt=1}Ni=1

and labels {Y i}Ni=1, the values for the weights
{β0, β1, · · · , βD} and {w0, w1, · · ·wT } are optimized so
as to maximize cross entropy. Specifically, we choose
the weights that maximize the following cost function,

(3.1)
1

N

N∑
i=1

Y i log(Oi) + (1− Y i) log(1−Oi)

where Oi is the model prediction corresponding to the
ith time series. This cost function computes the average
cross entropy of the model output across all time series.
This optimization problem can be solved with batch
gradient descent using the standard back propagation
algorithm. The weights are initialized to a random
value and are iteratively updated using the following

equations until convergence.

if d ∈ {1 · · ·D},

βd = βd +
s1
N

N∑
i=1

(
Oi(1−Oi)

T∑
t=1

wth
i
t(1− hit)Xi

t(d)

)
if d = 0,

βd = βd +
s1
N

N∑
i=1

(
Oi(1−Oi)

T∑
t=1

wth
i
t(1− hit)

)

(3.2)

where the output Oi for each sequence and the values
for the hidden layer nodes hit are computed using
the parameters from the previous iteration. Similarly,
weights {w0, w1, · · ·wT } are updated as,

if t ∈ {1 · · ·T},

wt = wt +
s2
N

N∑
i=1

(
Oi(1−Oi)hit

)
, t ∈ {1 · · ·T}

if t = 0,

wt = wt +
s2
N

N∑
i=1

(
Oi(1−Oi)

)

(3.3)

Parameters s1 and s2 in the above equations represent
step size parameters for the gradient descent algorithm.

3.3 SeqRep model - the heterogeneous variant
In the above model, we assume that the weights that
connect the input layer to the hidden layer (represent-
ing the per time step classifier) are the same for all time
steps. However, this may not necessarily be the case and
irrespective of the key signature (e.g, burn scar) being
present or not, the features can have some natural vari-
ation across time steps and hence, one might want to
model the weights at each time step differently. Thus
instead of having one set of weights {β0, β1, · · · , βD}
from the input layer, we have a different set of weights
{βt

0, β
t
1, · · · , βt

D} for each time step. We call this variant
that models the temporal heterogeneity as SeqRepHet.
We still optimize function 3.1 and similar update equa-
tions as equation 3.2 and 3.3 can be derived for this case.
Note that this is still different from the traditional neu-
ral network with one hidden layer in that each hidden
layer nodes is still associated with a unique time step.

4 Evaluation

Forest fires are known to generate a significant flux of
greenhouse gases and particulate matter into the at-
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Table 2: Summary of data sets used in this paper.

Dataset Land cover
of interest

Instances Skew = #Negatives
#Positives

South CA
(2008)

Burned
Forests

141,900 56.69

Montana
(2007)

Burned
Forests

276,310 44.87

South CA
(2007)

Burned
Savannas

198,287 60.73

mosphere and also contribute to several ecological ef-
fects such as the loss of animal habitat and biodiversity
[26]. To evaluate the performance of our algorithm, we
used it perform three classification tasks, each identify-
ing a different class of interest namely 1) Burned forests
in South California 2) Burned forests in Montana 3)
Burned Savannas in South California. One of the rea-
sons for choosing US for ground truth based validation is
the availability of good quality validation data in this re-
gion. Government agencies like Cal Fire are responsible
for monitoring and managing forests and wildfires [22].
The validation data is in the form of fire polygons, each
of which is associated with the time of burning. We con-
sider an event to be positive if the corresponding pixel
lies completely inside a polygon. Similarly, an event is
considered to be unburned (forming the negative class)
only if the entire pixel is outside a polygon. Since it
is difficult to decide the class (burned/unburned) for a
pixel which is partially inside the polygons, pixels that
partially overlap polygon boundaries are discarded from
the evaluation framework to avoid ambiguity. The de-
tails of these data sets is given in table 2.

For each one of these problems, every 0.25 sq.km
area on the ground is an instance we are trying to assign
a landcover class label to. We use the time series of
reflectance data collected over a year at each location as
features. Specifically, we use 500m-resolution MODIS
data product that captures the reflectance at every
location in 7 bands (620-2155 nm) collected by sensors
aboard the Terra and Aqua satellites [20], thus every
location has a multivariate observation at every time
step. We use the level-2 reflectance product that has
been georeferenced and corrected for sensor induced
errors. This product provides images at a global scale
for every 8 days. All datasets used in this paper and
codes for SeqRep can be downloaded here.

4.1 Model complexity The SeqRep model that has
(D + T + 2) parameters. The SeqRepHet model sub-
sumes this model and has (DT + 2T + 1) parameters.
The conventional neural network with one hidden layer
of DT 2 +T + 2 nodes further subsumes SeqRepHet and

Figure 3: Figure shows the variation in F-measure
(mean and standard deviation over 5 runs) with respect
to the number of training samples for the 3 schemes for
mapping burned forests in South California

has T parameters. As the number of parameters in-
creases, the space of decision boundaries modeled in-
creases. However, the number of samples needed to
train the model to reach its optimum performance also
increases. Figure 3 shows the variation in the perfor-
mance of these three schemes as the number of training
samples are varied on one of the test cases. It can be
seen that when the number of training samples is low,
SeqRep has better F-measure and lower standard devi-
ation. SeqRep also reaches it’s optimum performance in
fewer samples. However, given a large number of train-
ing samples, SeqRepHet starts to approach the perfor-
mance of SeqRep. Since, SeqRepHet and ANN are more
complex models, given enough training samples, these
schemes will eventually perform at least as good as Se-
qRep that assumes a certain structure to hold true in
the data. Note that, it may not always be possible to
find a large number of training samples for every land-
cover around all geographies around the globe. As we
see, the ANN performance is still increasing slowly but
we did not have enough training samples for this case
to see it through the end.

4.2 Comparison with baselines

4.2.1 Baselines In our experiments, we compare the
performance of our method to the following baselines -

1. 1 NN + DTW: The nearest neighbor classifier
with dynamic time warping distance is a widely
used classifier for time series data.

2. Hidden CRF: The Hidden Conditional Random
Field (HCRF) [19] is a discriminative classifier that
can be used to model the sequential nature of time
series data [19], [23]. We use the implementation
provided by the authors in [19].
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3. FKL: Fisher Kernel Learning (FKL) [11] uses the
fisher kernel based on gradient on the parameters
of a hidden markov model (HMM) learned on the
time series. It has been shown to perform well on a
range of time series classification problems. We use
the SVM classifier on top of the kernel. We use the
implementation provided by the authors in [11].

4. Shapelets: Shapelets capture the notion of
using local context to classify time series and
have been shown to be really effective for several,
mostly univariate, time series classification tasks.
We compare with the shapelet discovery algorithm
proposed in [14] since it is shown to work well on
multivariate time series classification tasks. We use
the implementation provided by the authors in [14].

5. Stacked TS ANN: This is a neural network with
one hidden layer. This is similar to our model
except that our model assumes that the hidden
layer nodes are only connected to the corresponding
input nodes and the weights of these connections
are the same across all time steps. We include
this baseline because in principle, if provided with
a large number of training samples, this baseline
can capture the structure that we hard coded in
our design.

6. Long-short Term Memory (LSTM): Here we
implement recurrent neural networks with LSTM
cell using Keras library. This baseline method is
capable of capturing long-term temporal patterns
over long multi-variate sequence by introducing an
internal memory flow and has shown tremendous
success in various applications, including natural
language processing, health-care records, etc [27].
However, this method involves large number of
parameters and is vulnerable to overfitting.

In reporting our results, for methods that output a con-
tinuous score instead of a binary output, the threshold
that maximizes the desired metric (F1-score) on the test
set is used as a threshold to binarize the output and
compute the evaluation metric.

4.2.2 Results In each experiment, we use 500 loca-
tions (250 burned, 250 unburned) for training the clas-
sifier. The remaining locations were used for testing.
Since, burned area is a rare class, we use F1-score as
the evaluation metric. Table 3 reports the average F1-
score corresponding to 5 random partitions of the data
set into train, and test sets for each of the 3 problems.
Our method clearly outperforms the baselines for these
tasks. Because of the rarity of the burned class, even a

Table 3: Table shows the mean of F-measures for
each algorithm for different test cases computed over
5 random partitions of training and test sets for each of
the 3 burned area mapping tasks.

Algorithm South CA Montana South CA
Forests Forests Savannas

StackedTS ANN 0.72 0.78 0.77
DTW + 1NN 0.42 0.27 0.52

Shapelets 0.34 0.32 0.66
HCRF 0.19 0.17 0.46

FKL + SVM 0.27 0.26 0.38
LSTM RNN 0.44 0.50 0.33
SeqRepHet 0.88 0.86 0.91

SeqRep 0.91 0.93 0.93

small number of false positives can result in a low pre-
cision and hence a low F1 score. Hence, it is important
for the classifier to be really precise. For example, the
accuracy of Shapelets baseline on the problem of de-
tecting burned forests in South CA on the test set is
0.94, and its false positive rate is only 0.08, but since
the skew of this data set as shown in table 2 is 56.69,
the resulting F1 score is poor. Moreover, methods like
HCRF and LSTM, albeit powerful, need a lot of samples
to attain optimal performance and do not perform well
in limited training sample scenarios, which is the case in
landcover classification problems. Also, inverse to the
order of model complexity, SeqRep has a slightly bet-
ter performance than SeqRepHet which is significantly
better than the stacked ANN baseline.

4.3 Learning weights on time steps Methods Se-
qRep and SeqRepHet capture the classifier at every time
step {β0, β1, · · · βT } jointly with the weight wt assigned
to each time step t based on its discriminating capac-
ity. In this section, we experimentally justify our logic
of giving different weights to all time steps and learning
these weights in a joint framework with the per time
step classifiers. One way to judge the discrimination of
each time step is to learn a classifier ft : Xt− > Y that
maps the features at that time step to the sequence la-
bel. The accuracy on the training set for each of these T
classifiers can be used as a proxy for how discriminating
each time step is. We illustrate this for the test case
of detecting burned forests in South CA. We learned a
different logistic regression classifier on every time step
using a balanced training set of 500 samples. Figure 4
shows the plot of the error on the training set for the
classifier at each time step. Using this idea of per time
step classifiers, we consider 3 classifiers that lead up to
our scheme -
Method 1 - Use the best time step One way to
classify the sequence would be to consider the time step
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Figure 4: Accuracy for classifiers trained to predict the
time series label using features at a single time step.

with the maximum accuracy. From figure 4, time step
45 is the one with the maximum accuracy. So, we could
use the classifier trained on features from time step 45
to predict the time series label.
Method 2 - Use all time steps, treating them
equally In this method, we generate predictions from
classifiers at every time step and then use max aggrega-
tion to generate time series prediction. So, if the clas-
sifier at any time step calls the time series as positive,
we assign it a positive class label. This is better than
method 1 because it is taking all time steps in to ac-
count.
Method 3 - Use the predictions from each time
step as predictive features In this method, we use
the idea of SeqRepHet where we have a classifier at
each time step and another logistic regression classifier
is learned over the vector of predictions from each time
step. This is better than method 2 because in addition
to considering multiple time steps, it is also weighting
them appropriately.

We evaluate these methods on the test set consisting
of all instances not used for training. The F1 score for
method 1 is 0.31 which shows that it is not sufficient to
just consider the most discriminating time step. Method
2 that considers all time steps, but treats them equally
has a F1-score of 0.39. Figure 5 shows the performance
of the method 3. Here, we order the time steps accord-
ing to their discriminating they are according to the per
time step classifier. For the top k most discriminating
time steps, we take the vector of predictions from their
respective per-time step classifiers and learn a second
classifier that maps this vector to the time series label.
Figure 5 shows the variation in F1-score on the test set
as the number of time steps k is increased. F1 scores for
other schemes including method 1, method 2, SeqRep
and SeqRepHet are added for reference. The plot starts
from where method 1 left us and considering the top few
(5) time steps, that correspond to the fire season, takes
the F1-score from 0.31 to about 0.7. However, it is in-
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Figure 5: Variation in F1-score as features from more
time steps are used for classification using method 3
in section 4.3. The method learns weights w and
per time step classifier β independently and hence has
suboptimal performance as compared to SeqRepHet. F1
scores for other schemes including method 1, method 2,
SeqRep and SeqRepHet are added for reference.

teresting to see that the 23rd time step in the ordering
(actual time step 14) contributes significantly to the F1-
score (a jump of almost 0.1) even though its per time
step classifier is not discriminating enough. The F1-
score when we consider all time steps is 0.81. However,
this is still lower than the performance of SeqRepHet
(0.88) on the same data set. Note that SeqRepHet is
doing the same thing as this method, except that the
per time step classifiers and the weights on each time
step are learned in a joint fashion. This is the reason
for the difference in their F-scores.

4.4 Interpreting weights on time steps Figure
6 shows the per time step weights i.e the vector w
learned for the 3 tasks of mapping burned area. The
vector w captures the weight placed on each time
step when the pattern of per time step scores from
the whole time series is mapped onto the final time
series prediction. We expect that discriminative time
steps will be assigned higher magnitude weights while
the weights assigned to non-discriminative time steps
should be close to zero. Figure 6a shows the plot of
the weights connecting the hidden layer to the output
node corresponding to each of the 46 time steps in
the network learned for classifying the 2008 forest fires
of southern California. As expected, time steps 23-
39 in the second half of the year (time steps 23-46)
have been assigned higher positive weights since these
correspond to the forest fire season in this region. Some
time steps get assigned close to zero weight because
they’re probably not very discriminating. However, it
is interesting to note that some time steps in the first
half get assigned high magnitude negative weights. This
implies that if a location looks burned at this time step,
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(b) MT forest fires (2007)

Time step
0 10 20 30 40 50

W
e

ig
h

t

-3

-2

-1

0

1

2

3

4

5
Weights per time step

Reference line

(c) S. CA savanna fires (2007)

Figure 6: Figure showing the weights connecting the
hidden layer to the output node in the network learned
for the 3 tasks of identifying burned area.

the model reduces the probability of the location being
burned.

Similar weights are learned for the 2007 savanna
fires as shown in figure 6c. The probable reason for this
is the fact that the state of California experiences fires
each year and some of these fires are strong enough that
the scars from them do not recover for multiple years.
So, several locations that did not experience any burn
activity this year might look burned in the first half of
the year because of the fires they experienced last year.
However, our model has learned from the training set
that the first half of the year is not the true fire season
in this region.

Figure 6b shows the weights learned for the problem
of mapping forest fires in Montana. This case also shows
high weights in the beginning of the second half of the
year when the fires occur here. However, unlike the
other two cases, the first half does not have a consistent
stretch of negative weights of high magnitude. This is
probably because the primary cause of confusion in this
region is not previous year fires, but the snow that covers
the ground in winter. Note that snow is not an exact
match to burned ground (and it does not always cover
the ground, hence we do not see consistently strong
negative weights) but in the spectral space, it is much
more similar to burned ground than to healthy forests.

5 SeqRep at work

In section 4, we demonstrated the performance of the
proposed method on test regions in the US. The pri-

mary reason for this is that the US government has the
resources to invest in developing these landcover maps
via agencies like CalFire [22] that deploy huge man-
power and resources to create these maps using systems
that are not fully automated. Our goal in developing
methods like the one proposed here is to develop land-
cover maps on a global scale in an automated fashion.

This method is part of a two-component framework
that has been used to build a comprehensive product
[25] for the carbon rich tropical forests. Tropical forest
fires contribute significantly to carbon loss and are often
associated with active deforestation fronts and linked to
illegal establishment of industrial timber, oil palm, soy,
and tea and coffee plantations [21]. Mapping burned
area in the tropics is challenging because of the number
of confounding factors like the poor quality of landcover
maps, occlusion by smoke and clouds is much more in
the tropical areas. The other factor is that the available
training labels are very noisy. In [24], we proposed a
method to handle the noisy nature of training labels.
That work is used in conjunction with the classifier
proposed in this paper to develop a product which has
three times the coverage of the burned area reported
by the state-of-the-art NASA product MCD64A1 [26]
while having comparable or better precision.

In [25], we provide extensive validation of the
burned area product via semi-automated inspection of
high resolution imagery of randomly sampled smaller ar-
eas in the region. In addition, we have made our burned
area maps accessible to ecologists and to the general
public via a web viewer http://z.umn.edu/fireviewer.
The web interface lets you inspect every 0.25 sq.km
pixel in our burned area maps for the high carbon tropi-
cal forests of southeast Asia and Amazon for every year
since the beginning of MODIS program in 2001. For
each location, users can judge the quality of the detec-
tion by examining its temporal profile via time series
of indices like Enhanced Vegatation Index (EVI), Nor-
malized Burned Ratio (NBR) along with the best high
resolution imagery available for that region around the
date of the fire. We believe that such comprehensive
publicly available burned area maps are critical in en-
suring that we deploy sustainable means to cultivate
plantations in the region, which is crucial for protecting
these forests and the wildlife that depends on it.

6 Conclusion

In this work we presented a multivariate time series clas-
sification algorithm that learns discriminative patterns
from the whole length of the time series rather than
looking at local contexts. We demonstrate the utility
of the application on real world problems of mapping
burned area in the US where validation data is read-
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Figure 7: Figure shows the screenshot of the web
viewer (http://z.umn.edu/fireviewer) for the burned
area product in the tropics and the manual validation
using high resolution (30 m) Landsat images that it
enables to handle lack of validation data.

ily available. The method is also a key component of
the framework used in developing a burned area prod-
uct [25], which is much more comprehensive than the
state-of-the-art, in the more challenging and important
region of tropics. In the future, this method can be
extended to work with variable length time series and
variable temporal frequency of features. This can hap-
pen because of multiple data sources with different time
span or frequencies of data acquisition.
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