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Abstract 

Natural products (NPs) represent one of the most important resources for discovering new drugs. Here we asked 

whether NP origin can be assigned from their molecular structure in a subset of 60,171 NPs in the recently reported 

Collection of Open Natural Products (COCONUT) database assigned to plants, fungi, or bacteria. Visualizing this subset 

in an interactive tree-map (TMAP) calculated using MAP4 (MinHashed atom pair fingerprint) clustered NPs according 

to their assigned origin (https:// tm. gdb. tools/ map4/ cocon ut_ tmap/), and a support vector machine (SVM) trained 

with MAP4 correctly assigned the origin for 94% of plant, 89% of fungal, and 89% of bacterial NPs in this subset. An 

online tool based on an SVM trained with the entire subset correctly assigned the origin of further NPs with similar 

performance (https:// np- svm- map4. gdb. tools/). Origin information might be useful when searching for biosynthetic 

genes of NPs isolated from plants but produced by endophytic microorganisms.
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Introduction
Due to the importance of natural products (NPs) in 

drug discovery [1, 2], there is a considerable interest in 

describing and understanding their structural diversity, 

particularly by exploiting NP databases [3] using in silico 

methods such as machine learning (ML) [4]. Compu-

tational approaches have been reported to distinguish 

between NPs and non-NPs [5–9], between terrestrial and 

marine NPs [10], and to classify NP structural types [11, 

12] and visualize their chemical space [13].

In our own approach to this problem [14], we recently 

analyzed NPAtlas, an open-access database listing 25,523 

NPs from bacterial or fungal origin [15], by computing 

the MAP4 fingerprint (MinHashed Atom-Pair finger-

print up to four bonds) [16] of each NP and creating a 

TMAP (tree-map) [17] of the resulting high-dimensional 

dataset. In this analysis, NPs from bacterial or fungal ori-

gin formed separated clusters. �is separation effect was 

confirmed by showing that a support vector machine 

(SVM) trained with the MAP4 of NPAtlas was able to 

distinguish bacterial or fungal origin, including a recently 

reported NP isolated from the marine sponge Phakellia 

fusca assigned by our classifier to be of bacterial origin, in 

line with the fact that many NPs from this sponge origi-

nate from endosymbiotic actinobacteria [18, 19].

�e possibility to assign the origin of NPs from their 

structure was intriguing because most NPs are second-

ary metabolites produced by biosynthetic gene clusters 

[20] which are sometimes transferred between different 

organisms [21]. Such horizontal gene transfer may reflect 

adaptative relationships between host organisms such as 

plants and sponges and endosymbiotic bacteria or fungi 

[22]. Among the many endophytic NPs [23, 24], striking 

examples include the cancer drug paclitaxel, a plant NP 
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also produced by endophytic fungi of the yew tree [25, 

26], and maytansine, used in antibody-drug conjugates 

for cancer therapy and produced by endophytic bacteria 

in plants [27]. Due to the very widespread occurrence 

of endophytic bacteria and fungi in plants, we asked 

whether our MAP4 analysis might be able to distinguish 

plant NPs from bacterial and fungal NPs. To test this 

hypothesis, we considered the recently reported COCO-

NUT database, an open-access database currently offer-

ing the most extensive coverage and including plant NPs 

[28].

Results and discussion
Chemical space analysis of plant and microbial NPs 

from the COCONUT database

COCONUT collects over 400 thousand NPs from 52 dif-

ferent databases, 135 thousand of which are annotated 

with a taxonomical origin. For our analysis, we consid-

ered the 68 thousand entries annotated with a source 

organism that were also associated with a publication. 

We focused on those annotated as originating from 

plants (50%), fungi (23%), or bacteria (16%), leaving out 

a smaller subset of NPs originating from animals (2%), 

homo sapiens (2.5%), of marine origin (1.5%), or lacking 

one of the previous taxonomical annotations (5%). �e 

selected subset of 60,171 NPs contained 33,772 plant 

NPs, 15,648 fungal NPs and 10,751 bacterial NPs.

�e subset spanned from molecular weight MW = 81 

Da for 1,2-dihydropyridine, a plant NP [29], to MW = 

2901 Da for lacticin 481, a bacterial peptide [30]. Plant 

NPs dominated the intermediate molecular weight range 

(200 < MW < 800), while fungal NPs were most abundant 

in the low molecular weight range (MW ≤ 200) and bac-

terial NPs in the high MW range (MW ≥ 800). �e three 

series had rather similar distributions of the fraction of 

 sp3 carbon atoms (Fsp3), which measures the degree of 

saturation. However, the estimated octanol:water parti-

tion coefficient AlogP indicated that highly polar NPs 

were almost absent from fungal NPs. Furthermore, plant 

NPs had overall higher percentages of glycosides, while 

peptides were almost absent from plant NPs and most 

abundant in bacterial NPs (Table 1).

To get a closer insight into structural features, we cal-

culated the MAP4 fingerprint for each of the 60,171 

selected NPs. MAP4 encoding combines the character-

istics of substructure fingerprints, which are well suit-

able for small molecules, and of atom pair fingerprints, 

which are instead preferable for larger structures, and 

it has been proven suitable for both [16]. It consists of 

listing all pairs of circular substructures of radius 1 and 

2 as SMILES, separated by their topological distance in 

bonds, and MinHashing the resulting set of SMILES pairs 

to a defined dimensionality (1024 in the present analysis). 

We then represented the MAP4 annotated NP dataset 

using the dimensionality reduction method TMAP. �is 

method is suitable for very large high-dimensional data-

sets and performs better than t-SNE or UMAP in pre-

serving local and global relationships in the data [17]. 

To create a TMAP, the algorithm computes an approxi-

mate nearest neighbor graph by locality sensitive hashing 

(LSH), cuts edges to obtain the minimum spanning tree 

of this graph, and creates an optimized 2D representation 

of the minimum spanning tree, in which each node rep-

resent a molecule connected to its approximate nearest 

neighbors. �is tree is then displayed with interactive the 

visualization tool Faerun [31]. Faerun shows each node 

as a sphere that can be color-coded according to various 

properties and uses Smilesdrawer [32] to depict molec-

ular structures. �e TMAP of our NP subset is avail-

able interactively at https:// tm. gdb. tools/ map4/ cocon ut_ 

tmap/.

�e TMAP of our NP subset color-coded by MW 

showed that most high MW compounds appeared in two 

groups, the first one (at right on the TMAP), contained 

peptides and related macrocycles, and the second one (at 

middle/lower left on the TMAP) corresponded to gly-

cosylated triterpenoids (Fig.  1a). Color-coding by Fsp3 

showed that the TMAP separated high Fsp3 molecules 

(left half of the TMAP), comprising many terpenes, ster-

oids, and glycosides, from low Fsp3 molecules (right half 

Table 1 Property distribution and origin of the 60,171 

COCONUT entries with a DOI and annotated as plants, fungal, or 

bacterial

a COCONUT entries with a DOI and the speci�ed taxonomical origin annotated; 

percentages refer to the total number of the selected entries within the 

speci�ed class: 33,772 plants NPs, 15,648 fungal NPs, and 10,751 bacterial NPs

b Molecular weight (MW) calculated with RDKit

c Fraction of sp3 (Fsp3) calculated with RDKit

d Octanol: water partition coe�cient calculated with RDKit following the 

Crippen method (AlogP)

e Containing a cyclic N- or O-acetal substructure de�ned through SMARTS 

language

f Containing a dipeptide substructure de�ned through SMARTS language

Plants  NPsa Fungal  NPsa Bacterial  NPsa

MW ≤  200b 7072 (21%) 4919 (31%) 2237 (21%)

200 ≤ MW <  800b 24,078 (71%) 10,111 (65%) 6066 (56%)

MW ≥  800b 2622 (8%) 618 (4%) 2448 (23%)

Fsp3 ≤ 0.2c 4213 (13%) 1580 (10%) 1073 (10%)

0.2 ≤ Fsp3 < 0.8c 22,032 (65%) 11,334 (72%) 7986 (74%)

Fsp3 ≥ 0.8c 7527 (22%) 2734 (18%) 1692 (16%)

AlogP ≤ −  2d 4855 (14%) 373 (2%) 1446 (13%)

− 2 ≤ AlogP <  8d 28,315 (84%) 15,000 (96%) 8906 (83%)

AlogP ≥  8d 602 (2%) 275 (2%) 399 (4%)

Glycosidese 8260 (24%) 797 (5%) 1793 (17%)

Peptidesf 194 (<1%) 676 (4%) 2053 (19%)

https://tm.gdb.tools/map4/coconut_tmap/
https://tm.gdb.tools/map4/coconut_tmap/
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of the TMAP) featuring many polyphenols and related 

polyaromatic molecules (Fig. 1b). Furthermore, the color-

code by the calculated octanol:water partition coeffi-

cient AlogP, estimating polarity, showed several islands 

of highly polar NPs (low AlogP, magenta) correspond-

ing mostly to nucleosides and glycosylated polyphenols 

(upper part of the TMAP), glycosylated triterpenoids 

(lower left on the TMAP) and peptides (middle right on 

the TMAP), as well as a few groups of apolar NPs (high 

AlogP, red), corresponding primarily to lipids, terpenes, 

and steroids (Fig. 1c)

Color-coding by the annotated origin showed that NPs 

from plants, fungi, or bacteria formed many well-defined 

clusters spread across the entire TMAP (Fig.  1d). On 

the one hand, this separation illustrated how NP origin 

corresponded to differences in molecular structure that 

were well perceived by the MAP4 fingerprint used to 

generate the map. On the other hand, the taxonomical 

origin color code also showed that each subset contained 

diverse structural types. While there was no correlation 

of origin with properties such as MW, Fsp3, or AlogP, 

most glycosides were associated with plants, and most 

peptides were of bacterial or fungal origin, in line with 

Table 1 (Fig. 1e). �ese relationships were also well visible 

by color-coding the TMAP by six selected prioritized cat-

egories summarizing important characteristics of natural 

products (Fig. 1f )

Statistical modeling of NP origin using support vector 

machines (SVM)

�e clear separation of NPs from plants, fungi, or bac-

teria in the TMAP above clearly showed that our MAP4 

fingerprint distinguished between NPs of plant, bacterial 

or fungal origin. To further investigate this separation, 

we trained an SVM classifier using the MAP4 similar-

ity matrix of half of the COCONUT subset and used 

the other half to evaluate it. Indeed, the obtained MAP4 

SVM correctly predicted the origin of 94% of plant NPs, 

89% of fungal NPs, and 89% of the bacterial NPs (MAP4 

SVM), resulting in a balanced accuracy of 0.897, an MCC 

(Matthews correlation coefficient) of 0.890, and an F1 

score of 0.920 (see Methods for a detailed explanation of 

the used metrics).

To better identify the role of the MAP4 molecular 

encoding in the reported successful prediction, we com-

pared the performances of a MAP4 SVM with the per-

formances of an SVM trained using ECFP4 (Extended 

Connectivity Fingerprint ECFP of radius 2, ECFP4 SVM) 

and the RDKit atom pair fingerprint (AP SVM). We 

chose ECFP4 and the RDKit AP as widely used and avail-

able examples of substructures fingerprints and atom 

pair fingerprints. As a baseline model, we also included 

an SVM trained with a set of 11 calculated physico-

chemical properties, namely MW, Fsp3, HBD (hydro-

gen bond donor) count, HBA (hydrogen bond acceptor) 

count, AlogP, the number of carbons, oxygens, and nitro-

gens, the total number of atoms, number of bonds, and 

TPSA (topological polar surface area) (properties SVM). 

�e selected 60 thousand COCONUT entries were 

divided into five subsets, and each model was trained and 

evaluated five times using the five different 80-20 train-

ing test splits combinations of one subset as test set and 

the other four as training set. �en the mean balanced 

accuracy, MCC, and F1 score of the five evaluations were 

calculated.

�e results of this evaluation are presented in Table 2; 

Fig.  2. Remarkably, all four SVM performed reason-

ably well. �e good performance of the property based 

SVM reflected the fact that relatively large NP families 

with characteristic properties are essentially all from the 

same origin. For example, almost all large peptides or 

cyclic peptides are assigned to bacteria, while most gly-

cosylated triterpenoids and polyphenols are assigned to 

plants. Nevertheless, there was a significant performance 

increase with the ECFP4 SVM and MAP4 SVM, which 

performed best, showing that correct origin assignment 

works better if specific substructures are considered. 

Among the four SVM evaluated, our MAP4 SVM per-

formed best with significantly higher values compared to 

the ECFP4 SVM, probably because the MAP4 fingerprint 

encodes a more precise representation of the molecular 

structures than ECFP4. Indeed, MAP4 considers pairs of 

local substructures and the topological distance between 

them, while ECFP4 only encodes the presence of local 

substructures.  

Using the MAP4 SVM to assign the origin of NPs

�e SVM evaluation above showed that the MAP4 anal-

ysis of NP molecular structure identified features dis-

tinguishing between NPs assigned to plants, fungi, and 

bacteria. Assuming that most of the assigned origins 

were correct among the 60,171 NPs used for training, 

one may use an SVM to tentatively assign the origin of 

further NPs as originating from plants, fungi, or bacteria. 

Fig. 1 MAP4 TMAP of the 60 thousand selected COCONUT entries. The maps are colored according to a molecular weight MW in Da, b fraction 

of sp3 carbon atoms Fsp3, c calculated octanol:water partition coefficient AlogP, d COCONUT annotated origin, e presence of a glycoside (blue) 

or peptide (green) substructure, or both (magenta), f prioritized categories: glycosides (entries containing a glycoside substructure, blue) > 

peptides (entries containing a peptide substructure, cyan) > high MW (green) > high Fsp3 (yellow) > low Fsp3 (orange) > low MW (red). Entries not 

belonging to any category are reported in gray. All maps are accessible in an interactive format at https:// tm. gdb. tools/ map4/ cocon ut_ tmap/

(See figure on next page.)

https://tm.gdb.tools/map4/coconut_tmap/
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To best exploit the information in the COCONUT data-

base, we trained a MAP4 SVM using the entire set of 

60 thousand COCONUT NPs assigned to plants, fungi, 

or bacteria. We used the resulting classifier to build an 

online tool that takes any molecular structure as input 

(drawn or pasted as SMILES) and returns the assigned 

origin and the corresponding percentages from the SVM 

classifier. �is tool is freely accessible online at https:// 

np- svm- map4. gdb. tools/.

�e online tool performed quite well in assigning the 

origin of newly published NPs which were not present 

in COCONUT. Among 20 recently reported NPs from 

plants, fungi, or bacteria, 17 were correctly assigned to 

their origin, while only three were misassigned (Table 3; 

Fig. 3). In details, the fungal epicospirocin 1 [33], penici-

meroterpenoid A [34], beetleane A [35], funiculolide D 

[36], and fusoxypenes A [37], the bacterial vertirhodin 

A [38], bosamycin A [39], and dumulmycin [40], and 

the plant fortuneicyclidin A [41], meloyunnanine A [42], 

hyperfol B [43], pegaharmol A [44], hunzeylanine A [45], 

mucroniferal A [46], perovsfolin A [47], horienoid A [48], 

and erythrivarine J [49] were correctly classified. On the 

other hand, the fungal rhizolutin [50] and myxadazoles 

A [51] and the bacterial marinoterpin A [52] were mis-

classified. Note that in these cases, the percentage val-

ues to the assigned class were lower than for the correct 

predictions.  

As an additional test of our online tool, we investi-

gated the predicted origin of the 3364 NPs (Additional 

file  1) in COCONUT reported with an origin and a 

publication for which the organism name was reported 

(e.g. Brachystemma calycinum) but not the correspond-

ing taxonomical annotation as plant, fungi, bacteria. 

Checking individual predictions showed that the pre-

dicted origin was in many cases correct, in line with our 

performance evaluation. For example, the 49 NPs with 

Euphorbia as a source, many of which were peracety-

lated polycyclic terpene alcohols, as well as the 45 NPs 

Table 2 SVM evaluation with balanced accuracy, MCC, and F1 

score

a Mean value and standard deviation (σ) of the �ve di�erent test/training sets 

split of the �vefold cross-validation

b 1024 dimensions

c 11 properties: MW, Fsp3, HBD) and HBA, calculated logP with the Crippen 

method (AlogP), number of carbons, oxygen, and nitrogen, the total number of 

atoms, number of bonds, and topological polar surface area (TPSA)

Balanced acc. MCC F1

MAP4 SVM a,b 0.919 ± 0.005 0.879 ± 0.005 0.929 ± 0.003

ECFP4 SVM a,b 0.890 ± 0.005 0.827 ± 0.006 0.897 ± 0.003

RDKit AP SVM a,b 0.735 ± 0.005 0.592 ± 0.006 0.752 ± 0.004

Properties SVM a,c 0.758 ± 0.005 0.613 ± 0.007 0.761 ± 0.004

a b c

Fig. 2 Fivefold cross-validation mean values and 3σ confidence intervals of the a balanced accuracy, b MCC, and c F1 score for the four SVM 

classifiers. In all panels, the MAP4 SVM is reported in blue, the ECFP4 SVM in orange, the RDKit AP (AP) SVM in green, and the properties (Prop.) SVM 

in red

https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
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with Radula as a source, which were polyphenols and 

terpenes, were all correctly assigned to a plant origin.

In several cases, the SVM prediction conflicted with 

the taxonomy of the reported source organism. For 

example, the indole alkaloids cephalinones A-D and 

cephalandoles A-C isolated from the orchid Ceph-

alanceropsis gracilis  [53] and whose structures were 

partly revised by total synthesis [54], were all assigned 

to bacteria by our SVM. In fact, �ese NPs might stem 

from an endophytic bacterium considering that endo-

phytic microorganisms produce several related indole 

alkaloids [55]. Our SVM also reassigned the cancer 

drug maytansin from an annotated plant origin in 

the training set to a predicted bacterial origin, in line 

with its endophytic origin [27]. On the other hand, our 

classifier also assigned a bacterial origin to two cyclic 

peptides (CNP0085258 and CNP0085259) [56] and 

a cyclotide (CNP0085363) [57] isolated from plants. 

Although these plants indeed contain endophytic bac-

teria, the plant origin of such peptides is well estab-

lished [58, 59], and the SVM assignment to bacteria 

reflects the fact that the majority of cyclic peptides and 

cyclotides in the COCONUT set used for training the 

SVM were assigned to bacteria, compared to only a 

handful of cyclotides of plant origin.

While the classifier may point to the possible endo-

phytic origin of NPs isolated from plants, its use on NPs 

from other sources is problematic. For instance, among 

the 1,035 marine NPs from COCONUT with an anno-

tated origin, 639 were assigned to plants by our SVM. 

�is prediction must be mostly wrong considering 

that most marine organisms such as algae, corals, and 

sponges are not plants. For example, the 44 NPs from the 

soft coral Sinularia, or the macrocyclic terpene lactone 

lobophytolide A (CNP0275045) stemming from the soft 

corral lobophytum cristagalli [60, 61], were all incorrectly 

assigned to plants. However, the remaining 231 fungal 

and 165 bacterial predictions might be partly correct 

considering that many marine organisms carry endos-

ymbionts. For example, our classifier assigned a bacterial 

origin for echinosulfonic acid B (CNP0318329), a bro-

minated bis-indole NP isolated from the marine sponge 

Echinodictyum gorgonoides  [62]. In this case, other 

authors have reported the isolation of a bacterial strain 

from the same sponge as a probable source of its biologi-

cal activities [63].

Conclusions
In summary, we visualized the chemical space covered 

by a subset of 60 thousand NPs from the COCONUT 

database with an assigned origin and publication using a 

TMAP calculated on the basis of MAP4 as molecular fin-

gerprint, which is available at https:// tm. gdb. tools/ map4/ 

cocon ut_ tmap/. Analyzing this TMAP revealed that NPs 

from plant, fungal or bacterial origin form well sepa-

rated groups. We then trained an SVM classifier with the 

MAP4 fingerprint to assign the origin of NPs and found 

that it performed excellently and significantly better than 

classifiers trained with ECFP4, RDkit AP, or physico-

chemical descriptors.

To help assign NP origin, we then trained a MAP4 

SVM classifier using the entire set of 60 thousand NPs. 

�is tool is available online at https:// np- svm- map4. gdb. 

tools/ and returns an origin prediction for any molecu-

lar structure drawn or pasted as SMILES. We found 

that this classifier correctly predicts the origin of plant, 

bacterial or fungal NPs not included in the 60 thousand 

COCONUT set used for training, as exemplified with the 

correct prediction of 17 out of 20 newly published NPs. 

Broader testing of the classifier with further NPs from 

COCONUT showed limitations for NPs not from plant 

or microbial origin, such as marine NPs, but it also led to 

interesting use cases suggesting that the tool might serve 

as a help to assign NP origin. �is concerns in particular 

NPs isolated from plant but which might in fact be pro-

duced by endophytic microorganisms. Such information 

could be essential when searching for the corresponding 

biosynthetic genes.

Table 3 MAP4 SVM origin prediction for 20 recently published 

microbial and plants NPs that are not present in COCONUT

a Predicted using the MAP4 SVM available online at https:// np- svm- map4. gdb. 

tools/

Natural product Origin MAP SVM  predictiona

Epicospirocin 1 Fungal Fungal (97%)

Penicimeroterpenoid A Fungal Fungal (82%)

Beetleane A Fungal Fungal (97%)

Funiculolide D Fungal Fungal (85%)

Rhizolutin Fungal Plant (55%, fungal: 29%)

Fusoxypenes A Fungal Fungal (69%)

Myxadazoles A Fungal Bacterial (74%, fungal: 16%)

Vertirhodin A Bacterial Bacterial (88%)

Marinoterpin A Bacterial Plant (44%, bacterial: 37%)

Bosamycin A Bacterial Bacterial (94%)

Dumulmycin Bacterial Bacterial (80%)

Fortuneicyclidin A Plant Plant (98%)

Meloyunnanine A Plant Plant (99%)

Hyperfol B Plant Plant (93%)

Pgaharmol A Plant Plant (77%)

Hunzeylanine A Plant Plant (95%)

Mucroniferal A Plant Plant (73%)

Perovsfolin A Plant Plant (92%)

Horienoid A Plant Plant (95%)

Erythrivarine J Plant Plant (91%)

https://tm.gdb.tools/map4/coconut_tmap/
https://tm.gdb.tools/map4/coconut_tmap/
https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
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Fig. 3 Chemical structure of 20 recently published microbial and plants NPs which are not present in COCONUT. The MAP4 SVM prediction is 

identical with the origin unless marked otherwise
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Methods
Database preprocessing

�e COCONUT database was downloaded. Only the 

135,091 (out of 400,837) entries having a taxonomical 

annotation were selected. �e selected subset was fur-

ther filtered down to the 67,730 entries having an anno-

tation not shorter than ten characters in the DOI field. 

�en, the taxonomy field was split by commas and match 

towards the words “plant”/“plants”, “fungi”/“aspergillus”, 

“bacteria”/“bacillus”/“bacta” to select the NPs with an 

annotated plant, fungal, or bacterial origin, respectively. 

�e entries common between multiple origins were 

assigned with the following priority: human > animal 

> bacteria > fungi > plant > marine. �e process led to 

the selection of 33,772 plant NPs, 15,648 fungi NPs, 

and 10,751 bacterial NPs with annotated DOI, for a 

total of 60,171 structures. �e number of carbons, oxy-

gen, and nitrogens, the total number of atoms, number 

of bonds, and TPSA were extracted from the COCO-

NUT annotations. MW, Fsp3, HBD, and HBA count, 

AlogP, were calculated using RDKit [64]. �e presence/

absence of a peptide or a glycoside moiety was evaluated 

using Daylight [65] SMILES arbitrary target specification 

(SMARTS) language. SMARTS were used with RDKit 

to identify COCONUT entries containing a dipep-

tide substructure, defined as “[NX3,NX4+][CH1,CH2]

[CX3](=[OX1])[NX3,NX4+][CH1,CH2][CX3](=[OX1])

[O,N]”, or a containing a glycoside defined as cyclic N- 

or O-acetal substructure with the SMARTS “[CR][OR]

[CHR]([OR0,NR0])[CR]”. Substructures were used only 

for recognizing and labeling peptidic and glycosylated 

NPs and they were not removed.

Fingerprint calculation

�e 1024 dimensions MinHashed atom pair fingerprint 

of radius 2 was calculated using the open-source code of 

MAP4.

TMAP layout

�e indices generated by the MinHash procedure of the 

MAP4 calculation were used to create a locality-sensi-

tive hashing (LSH) forest [66] of 32 trees. �en, for each 

structure, the 20 approximate nearest neighbors (NNs) 

in the MAP4 feature space were extracted from the LSH 

forest, and the tree layout was calculated. �e LSH forest 

and the minimum spanning tree layout were calculated 

using the TMAP open-source code. Finally, Fearun [31] 

was used to display the obtained layout interactively.

MAP4 SVM implementation

�e coconut SUBSET entries used to generate the TMAP 

were assigned to training or test set with a 50% random 

split. �e SVM was trained using the MAP4 fingerprints 

of the training set. It utilized a custom kernel that calcu-

lates the similarity matrix between two MAP4 fingerprints, 

where the similarity of fingerprint a and fingerprint b is 

calculated (1) counting of elements with the same value 

and the same index across a and b, and (2) dividing the 

obtained value by the number of elements of fingerprint a. 

�e class weights were inversely proportional to the class 

frequency, and the hyperparameter C was optimized using 

fivefold cross-validation. During the hyperparameter opti-

mization, 20% of the training set was left out as a valida-

tion set, and the balanced accuracy of the validation set was 

maximized. �e hyperparameter C was optimized among 

the values 0.1,1, 10, 100, and 1000, resulting in C = 1. To 

overcome the intrinsic incapability of SVMs in handling 

more than two classes, the classifier was implemented 

using scikit-learn [67] with the “one versus rest” strategy, 

where in the background one classifier per class is trained 

and the class is fitted against all the other classes. and all 

not mentioned hyperparameters were used in their default 

values. Platt scaling [68], was used to obtain probabilistic 

prediction values. After the evaluation process, a second 

version of the MAP4 SVM classifier was trained using both 

training and test to learn from all curated 60 thousand data 

points.

MAP4, ECFP4, RDKit AP, and properties SVMs comparison

�e MAP4, ECFP4, and the RDKit AP fingerprints and 

a set of 11 properties (MW, Fsp3, HBD and HBA count, 

AlogP, number of carbons, oxygens, and nitrogens, total 

number of atoms, number of bonds, and TPSA) were 

used to train four different SVM classifiers in a fivefold 

cross-validation. For all classifiers, the class weights were 

inversely proportional to the class frequency, and the 

hyperparameters were optimized using 10% of the available 

data (Table 4). For the properties SVM, the 11 values were 

scaled to zero mean and unit variance.

Classi�ers evaluation metrics

�e F1 score is defined as the harmonic mean of precision 

and recall:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 ×
(Precision × Recall)

(Precision + Recall)
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 Where TP stands for true positives, TN for true nega-

tives, FP for false positives, and FN for false negatives 

predicted by the classifier.

�e balanced accuracy is defined as:

�e Matthews correlation coefficient (MCC) is a corre-

lation between the observed and the predicted class and 

it is defined as:

Online MAP4 SVM

�e MA4 SVM classifier trained with the whole 60 thou-

sand COCONUT subset is found at https:// np- svm- 

map4. gdb. tools/. �e query molecule can be provided as 

a drawn structure or pasted SMILES in the JSME editor 

[71]. �e given query is canonicalized, chirality informa-

tion is removed with RDKit, and the MAP4 fingerprint 

is calculated. To obtain probabilistic prediction values for 

each class, we use Platt scaling [68].
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