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Classifying postures of freely
moving rodents with the help of

Fourier descriptors and a neural network

D. J. HEEREN and A. R. COOLS
Nijmegen Institute ofNeuroscience, Nijmegen, The Netherlands

A computerized method for classifying the postures of freely moving rodents is presented. The be­
havior of the rats was recorded on videotape by means of a camera hanging perpendicular to an open
field. An automatic tracking system (10 images/sec) was used to transform the video images of postures
into a binary image, thereby providing silhouettes in a computer format. The contours of these silhou­
ettes were used for determining their characteristic features with the help of a Fourier transformation.
The resulting features were classified with the help of a Kohonen network composed of 32 neurons.
The four best winning neurons, rather than the usual one, were used for the classification. The reso­
lution (11,090 distinct classes of postures), reliability (96.9%), and validity of this method were deter­
mined. With the use of the same approach, the effectiveness of this method for classifying behaviors
was illustrated by analyzing grooming (247 grooming images vs. 4,950 nongroommg images). Wefound
15.4% false positives and 2.5% false negatives.

Today, several techniques are available for digitizing
video images ofan animal in space. These techniques are
primarily used for analyzing spatiotemporal displace­
ments ofanimals (Bonatz, Steiner, & Huston, 1995; Cools,
Brachten, Heeren, Willemen, & Ellenbroek, 1990; Cools,
Ellenbroek, Gingras, Engbersen, & Heeren, 1997; Dai &
Carey, 1994; Gallagher, Burwell, & Burchinal, 1993; Ker­
nan, Mullenix, & Hopper, 1988; Samsdodd, 1995; Spruijt
& Gispen, 1983; Spruijt, HoI, & Rousseau, 1992). Still,
these techniques have not yet resulted in an automatic and
computerized method that allows a reproducible, reliable,
valid, and objective analysis ofbehaviors and/or postures.
The goal of the present study was to develop a comput­
erized method that provides an objective description and
classification of rodent postures that can ultimately lay
the foundation for classifying behaviors.

An essential prerequisite for the development of such
a method is pattern recognition. Pattern recognition is a
generic topic in the field of artificial intelligence (AI):
Using the large speed and enormous storage capacity of
desktop computers, very sophisticated software programs
have been developed for pattern recognition. For that rea­
son, we used pattern recognition as it is assessed in AI.
The cornerstones of pattern recognition that we applied
are as follows.

1. Data were acquired and transformed into the input
domain of the computer. Thus, video images of rodent
postures were made and, subsequently, transformed into
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an adequate computer format. In practice, the actual pos­
tures were transformed into silhouettes, ofwhich the con­
tours were used for further processing.

2. The transformed data were reduced in order to in­
crease the computational speed of the required process­
ing. Relevant features were extracted, thereby removing
redundant and irrelevant data. For this purpose, we used
Fourier transformation. In comparison with other tech­
niques that allow feature extraction, Fourier transforma­
tion has a number of unique advantages: It provides data
reduction without losing information and results in a num­
ber of harmonics, of which each higher harmonic pro­
vides more details about the original contour. The contours
were described as two periodic changing signals in time,
because Fourier transformation requires such signals.

3. The extracted features were classified in such a way
that the output that was requested resulted. Thus, the ex­
traction should result in postures that are biologically rel­
evant according to the expert. Neural networks are very
apt for the construction ofclassification systems. In con­
trast to other statistical classifiers, a neural network is
model free: It does not require knowledge about the un­
derlying model (i.e., linear, quadratic, etc.). For that rea­
son, we preferred the assessment of neural networks. In
principle, there are two distinct types of networks: a su­
pervised and an unsupervised network. The so-called su­
pervised network requires a priori information about the
desired output: Given the goal of the present study, the
desired output would be classes ofpostures that had been
previously classified with the help of ethological tech­
niques (cf. Rousseau, Van Lochum, Gispen, & Spruijt,
2000). In contrast to the supervised network, the so-called
unsupervised network produces an output according to
its own rules; this kind of network has the advantage that
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processing and, in addition, hampers the classification, the data
were reduced as follows.

First, each silhouette encompassing the whole rat was reduced to
a silhouette of the body without a tail. For that purpose, the origi­
nal silhouette (Figure IA) was eroded (peeled off) until the silhou­
ette had lost its tail (Figure IB). Next, the silhouette was expanded
(dilated) in order to regain the original size of the silhouette (Fig­
ure IC). Subtraction of the latter silhouette from the original re­
vealed the base of the tail (Figure 2B). Eroding and dilating are
standard image-processing methods. The base was used as an an­
chor for the x-y position of the silhouette in the open field. Next, a
contour of the silhouette was made (Figure 2C) and transformed
into two periodically changing signals in time (Figure 3).

Second, the Fourier transformation was assessed to determine the
characteristic features of the various contours. The method of Kuhl
and Giardina (1982) was used for the calculation ofthe Fourier de­
scriptors of the contours. This method produces harmonics, being
characteristic features of the contours that are invariant for (I) the
x-y position ofthe base ofthe tail in space, (2) the orientation ofthe
rodent, and (3) the size of the rodent. At this step of the transfor­
mation, the contour is expressed in two sets of Fourier descriptors
(x and y), where the first pair of harmonics (an ellipse) provides a
raw approximation ofthe contour (Figure 20). Each additional pair
of harmonics provides more details and, accordingly, improves the
approximation of the actual contour (Figure 2). Adding too many
pairs of harmonics leads to details, such as ears, that are irrelevant
for classifying the resulting contours in terms of biologically rele­
vant postures (Figures 2G-2H). Using the unique advantage of the
Fourier transformation that a contour can be reconstructed with the
help of the harmonics, we assessed this so-called inverse Fourier
transformation, to match the resulting contour with the original
one: In the case of a mismatch, higher harmonics were added until
the required match was found. With the use of this method, it was
found that the first five pairs of harmonics were sufficient in this re­
spect and were, accordingly, used for further analyses (Figure 2F).

Each harmonic consists of a real number and an imaginary num­
ber. Because five harmonics were used for describing a contour, each
contour was characterized by 5 X 2 values for the x projection and
5 x 2 values for the y projection. Only 17 of the 20 numbers were
used for the approximation ofthe contour, because 3 ofthese num­
bers were 0 or I, as the result of the fact that the approximation was
made invariant for the orientation and size ofthe rodent (see above).

Figure 2. The tail ofthe silhouette (A) was removed by erosion
and dilation (B). Next, the contour (C) was used for the calcula­
tion of the Fourier descriptors. Increasing the number of har­
monics ofthe Fourier descriptors from one to nine (D = I, E =3,
F =5, G =7, and H =9) shows that the first five harmonics were
sufficient to describe the contour of a silhouette. Using more than
five harmonics (G, H) will add details that are not relevant (ears)
for classifying postures.

cBA
Figure 1. The original silhouette (A) was eroded until the sil­

houette lost its tail (B) and was dilated in order to regain the orig­
inal size of the silhouette (C).

it can even classify "unknown" postures. Because manip­
ulations such as gene therapy and the administration of
drugs often produce fully abnormal and, accordingly, new
behaviors, we preferred the assessment of the unsuper­
vised network of Kohonen (Hecht-Nielsen, 1989).

The present study provides an expert database that au­
tomatically and objectively classifies postures of freely
moving rodents. The kind ofquestion put forward by the
scientist determines whether the resulting posture or set
ofpostures is biologically relevant. The study also illus­
trates that the newly developed method is suitable for
constructing an automatic and objective classification of
behaviors.

MATERIAL AND METHOD

Data Acquisition
In general, the behavior of each rat was recorded on videotape by

means of a camera (Sony OXC-107P) hanging perpendicular
(height, 160 em) to an open field (100 x 100 em). Thus, each ex­
periment provided six tapes, each of these lasting 50 min. A com­
puterized automated tracking system (CCO camera; video proces­
sor, Fast FSP60; computer, Pentium 166, Windows 95; Cools et al.,
1990) was used to capture 10 images per second. Each image con­
sisted of 512 X 512 pixels, and each pixel had 256 intensity levels.
This system was used to remove noise and to transform the video
image of the rodent's posture into a binary image (rat, I; back­
ground, 0). Thus, postures were transformed into binary images,
forming silhouettes. Run length encoding was used to compress the
data to approximately 6 Mb. The resulting data set was saved on
hard disk.

Raw Data
The material that was used for testing the newly developed

method was collected in two distinct sets of experiments. The ulti­
mate aim of these experiments was to investigate the behavioral
changes that were elicited by bilateral injections into the neostria­
tum. In Experiment I, dexamphetamine was injected; in Experi­
ment 2, the solvent ofdexamphetamine sulpiride-namely, distilled
water-was injected. Each experiment was done with 6 male Wistar
rats, weighing 230-260 g at the time of the experiment, and lasted
50 min.

Data Transformation
As was mentioned in the introduction, data reduction is essential

for the computational speed that is required for the processing. Be­
cause there is a lot of redundancy in the data that slows down the
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Figure 3. Projection of each point of Contour A on the x-axis andy-axis provides
two changing signals in time (B, C). For the sake of simplicity, we have taken an el­
lipse as the contour.

Kohonen Network: General
The resulting contours were classified with the help of a Koho­

nen neural network. This network classifies contours according to
its own rules, implying that a human expert has to determine the bi­
ological relevance ofeach resulting contour by using one ofthe fol­
lowing methods: (I) The expert uses the library of ethologically ac­
cepted postures in order to match the resulting contours, or (2) the
expert designs an experiment that allows him to establish whether
the resulting contour provides biologically relevant information. The
originally stored image or the approximation of the contour can be
used for the labeling of the postures, whereby the definition used
depends on the objective: building a relational database that pro­
vides yes/no answers or building a fuzzy database that provides an­
swers with a calculated confidence factor. A relational database is
apt for classifying contours in terms of biologically relevant pos­
tures, whereas a fuzzy database is required for classifying behaviors
(see below).

Kohonen Network: Classification
Generally, the learning and recall algorithms for a Kohonen net­

work are based on the geometrical layout of the processing ele­
ments, the so-called neurons. Briefly, an input vector (data) is pre­
sented to the network. Next, the euclidian distance between the
input vector and the weight vector of each of the neurons is calcu­
lated, and the neuron that is closest to the input vector is the so­
called winner. As a result of training the network with a particular
training set of data, the input vectors are attributed to a particular
neuron that represents a cluster of typical features (Figure 4: Neu­
ron I is the winner ofInput Vectors A-C). This trained network is
subsequently used for classifying new input vectors, with the help

of these neurons. The result is that each new input vector is attrib­
uted to a particular neuron-that is, the winning neuron-and all
input vectors that are attributed to the same neuron are grouped to­
gether into one class. For a more detailed description, the reader is
referred to Kasabov (1996). This approach has two disadvantages:
(I) a network with N neurons can maximally distinguish N distinct
classes, and (2) the input vectors can only be grouped into classes
that result from training the network, implying that no new classes
are created. These problems have to be solved, because (I) the ac­
tual number of distinct postures is unknown, and (2) several ma­
nipulations with rodents can produce types ofdistinct postures/sil­
houettes/contours that do not occur in naive animals.

Therefore, we increased the resolution of the classification sys­
tem by creating the possibility of classifying a single contour with
the help of four neurons rather than just one neuron-namely, the
winning neuron, as well as the second, third, and fourth best neurons.
Accordingly, each contour got a four-digit code rather than a single­
digit code. Thus, this approach results in a network with N neurons
that can theoretically distinguish N X (N - I) X (N - 2) X (N - 3)
distinct classes. Furthermore, this network can create new classes.
Let us assume that Input Vector A is attributed to Neuron I after
training, the new Input Vector B wi1lalso be attributed to this neu­
ron, given that a single-digit code is used for the classification (Fig­
ure 5); in that case, Input Vectors A and B are grouped into a single
class. In contrast, using the four-digit code results in the creation of
anew class for Input Vector B (Figure 5B: 1-2-4-3), apart from the
already existing class for Input Vector A (Figure SA: 1-4-3-2).

Thirty-two neurons were incorporated into the network, after it
was found that networks with either 16 or 64 neurons did not com­
ply with our aim of classifying the resulting contours in terms of'bi-
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Figure 4. The network cannot distinguish Input Vectors (Con­
tours) A and B, because both input vectors have exactly the same
distance to the winning neuron.

ologically relevant postures. The network was trained by repeatedly
presenting a particular set ofdata until an equilibrium was reached:
In this respect, 500 iterations turned out to be sufficient. The se­
quence ofthe samples in the training set was randomized, to prevent
the initial set of data from creating a bias in the system, The learn­
ing rate (a = e-iter/lOO) was decreased after each iteration, Next, a
new or the same set of data was analyzed with the trained network.

RESULTS

Resolution of the Classification System
The resolution of the classification system that is ap­

plied in this study is determined by the number of neu­
rons used for coding the postures. As was mentioned
above, the network contained 32 neurons, ofwhich a com­
bination of 4 neurons was used to classify postures, Thus,
each posture could be labeled by a four-digit code, theo­
retically producing thereby 863,040 [N(N - I)(N - 2)
(N - 3)] distinct postures; this number greatly exceeds
the 32 distinct postures that are found after using a single­
digit code. In order to evaluate the resolution ofthis clas­
sification system, we trained the network by presenting
a set ofdata from a so-called training rat (Experiment I,
Rat 1: 0-10 min: 6,000 samples). Next, a new set ofdata
from this rat (Experiment I, Rat I: 0-50 min: 30,000 sam­
ples) was analyzed with the trained network. The trained
network distinguished 11,090 distinct postures. As was
mentioned, a human expert has to determine the biologi­
cal relevance ofeach ofthese postures. In other words, the
original problem of "splitting and lumping" in ethology
is now a matter of labeling a particular posture with a
one-digit, two-digit, three-digit, or four-digit code, de­
pending on the number of digits necessary for distin­
guishing this posture from other biologically relevant
postures (Figure 6).

Reliability of the Classification System
Weconsider a system among other things reliable when

the outcome is more or less independent of its training
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set. In order to investigate this aspect of reliability, two
distinct training sets were used to classify a single set of
data. First, the network thaf was trained with the data
from a training rat (Experiment 1, Rat 1, 0-10 min: 6,000
samples) was used to analyze the data of the so-called
experimental rat (Experiment 1, Rat 2,0-50 min: 30,000
samples): The network distinguished 9,562 postures.
Second, the network was retrained with the data from the
experimental rat (Experiment I, Rat 2, 0-10 min: 6,000
samples) and, subsequently, was fed with the above­
mentioned experimental set (Experiment 1, Rat 2, 0­
50 min: 30,000 samples): The network now distinguished
9,261 distinct contours. Thus, the difference between
both analyses was less than 3.1%, underlining the large
reliability of the chosen approach, This result shows that
the outcome was nearly independent of the training set
used.

Effectiveness of the Classification System
The effectiveness of the method for detecting new

postures was assessed as follows. First, the design of the
resolution test was used. Thus, the network was initially
trained with data from a training rat (Experiment 1, Rat I,
0-10 min: 6,000 samples). Next, a new set of data from
the same rat (Experiment 1, Rat 1, 0-50 min: 30,000
samples) was analyzed, and 11,090 silhouettes were dis­
tinguished. Finally, the data from another rat (Experi­
ment I, Rat 3, 0-50 min: 30,000 samples) were presented:
The network detected 5,752 new postures among the
9,562 postures that were classified. In this case, too, it is
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Figure 5. Using the arrangement ofthe four best winning neu­

rons, it is possible to distinguish Input Vector A (1--4-3-2) and
Input Vector B (1-2--4-3),
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Figure 6. Nine successive video images (0.1 sec/image) of the behavior rearing
show that the method even distinguishes nearly identical images by assigning dis­
tinct codes. Note that it is sometimes the third best winning neuron that reveals the
difference (see 14-12-2--6 and 14--12-11-(6).

the human observer that has to determine the biological
relevance of each of these postures. Theoretically, it is
possible that the postures in the samples from the 2nd rat
are all within-class variations of postures in the samples
from the Ist rat. However, this does not occur when all of
the postures that are considered to be biologically relevant
according to the human expert are described with a four­
digit code.

Fail-Safeness of the Classification System
We consider a classification system ofanimal postures

fail-safe when it produces neither false positives, implying
that it does not produce within-class variations of pos­
tures, nor false negatives, implying that it does not lump
postures that have to be considered as distinct postures in
accordance with their biological relevance.

As long as the system is used for classifying postures
in accordance with ethological principles, this fail-safe
problem does not exist, for it is the human expert who
determines whether a one-digit, two-digit, three-digit, or
four-digit code has to be attributed to a particular posture.
Dsing the four-digit codes, the human expert matches all
the available postures that have the same four-digit code,
excepting the fourth digit; he will lump these as long as
they have to be considered to be within-class variations
ofethologically identified postures, but he will split these
as long as they have to be considered to be distinct types
of ethologically identified postures. Of course, it is also

possible to use codes that have only three digits (or even
two digits) for the classification. In principle, the same
procedure has to be followed in that case.

If the classification system, however, is used for de­
tecting and classifying spontaneously occurring or exper­
imentally induced changes in behaviors, especially pos­
tures, it is necessary to prevent the occurrence of false
positives. In order to investigate this aspect of the classi­
fication system, the outcome ofthe classification systerr
was compared with the results ofa frame-by- frame analy­
sis of the videotapes. A series of 100 identical four-digi:
codes was selected and randomly mixed with a series 01

four-digit codes, of which the fourth digit varied. The
video images that belonged to these codes were visually
analyzed by a human expert (A.R.C.). His task was to spli
the video images into two classes-namely, a class wid
identical video images (Class A) and a class with dissim­
ilar video images (Class B). Subsequent analysis revealec
that all identical four-digit codes represented video im­
ages that were clustered in Class A, implying that the
system did not produce false positives. Given these results
it appears that the system's ability to distinguish distinc
postures is equal to or even better than that of humans.

Validity of the Classification System
We consider a classification system to be valid wher

the classifier has the ability to generalize. This implie:
that the training set has to produce classes that not onlj
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Figure 7. Means and SEMs are given for a control group (n = 6) and a treated
group (n = 6). The two groups differ significantly in time (see the text).

classify the data of the training set, but also classify in­
dependent data. In order to illustrate this aspect of our
classification system, we used the following data for our
training set: The initial 10 min of Rats 1 and 2 per ex­
periment (n = 3) were lumped and formed the training set
for the network (Experiment 1, 2 rats, 0-10 min + Ex­
periment 2, 2 rats, 0-10 min + Experiment 3, 2 rats,
0-10 min: 360,000 samples). Weused the initial 10min of
Rats 3---6 of Experiment I as independent data. Only the
winner and the second best neurons were used for cod­
ing the postures in this case. After training the network,
we determined the number of unique classes of postures
for Rats I and 2 (Experiment I) in the data of the train­
ing set and compared these unique classes with those for
Rats 3, 4,5, and 6 of Experiment 1 (independent data set).
This analysis revealed that 94% of the total number of
distinct classes for Rat I ofthe training group (273) was
also found in the independent set of data (n = 4), showing
that the classifier had not specialized itself to the pecu­
liarities of the training set. A similar analysis with Rat 2
of Experiment I revealed that even 98% of the total num­
ber ofdistinct classes for Rat 2 ofthe training group (272)
was also found in the independent set of data (n = 4). In
sum, both sets of results clearly show that the present
classification system has the ability to generalize.

Classification of Postures: An Illustration
In order to illustrate the usefulness ofthe present clas­

sification system, the behavioral effects of two manipu­
lations were analyzed, with the help of this system. For
that purpose, the data sets of Experiment I (striatal in­
jections of dexamphetamine; n = 6) and Experiment 2
(striatal injections ofthe solvent of dexamphetamine; n =

6) were analyzed, after the network was trained with the
set that was also used for testing the validity ofthe system
(see above). Figure 7 shows that dexamphetamine signif­
icantly enhances the total number of distinct classes of

postures in time [two-way analysis ofvariance, F(4,50) =

9.5,p < .001]. This figure also illustrates that a training
set encompassing the data of 6 rats is representative for
the whole population, for the SEM is extremely small in
both groups of rats.

Classification of Behaviors
To illustrate that the present classification system of

postures lays the foundation for a classification system
ofbehaviors, the network was used to trace the display of
grooming. First, a frame-by-frame analysis (6,000 sam­
ples) was used to identify the display of grooming in
time; this was done with the data ofRat A and Rat B.Next,
the network was trained with the data of Rat A (6,000
samples). Then, the trained network was used to trace the
codes of the grooming postures in Rat A; grooming pos­
tures that lasted no longer than 0.2 sec were removed, be­
cause grooming is by definition, a behavioral item that
lasts 0.2 or more seconds. Even when just one neuron was
used for coding these postures, 0.6% false positives (l
out of 155) and 0% false negatives (0 out of 2,845) were
found. To validate this approach, the trained network was
used to trace the codes of grooming postures in Rat B;
again, grooming postures that lasted no longer than 0.2 sec
were removed. The network found 15.4% false positives
(38 out of247) and 2.5% false negatives (123 out of4,950)
in case just one neuron for the coding was used. The pres­
ence of false positives was due to the fact that a particu­
lar posture that was found to be specific for the groom­
ing sequence ofRat A also occurred in the sequence that
coded pivoting in Rat B. Thus, the relational database that
was used provided a yes/no answer, implying that 100%
ofthe selected postures represented grooming despite the
15.4% false positives. Using a fuzzy database, however,
would have made it possible to state that it was groom­
ing that occurred with a calculated confidence factor of
<.5 in these cases, illustrating the advantage of a fuzzy
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database over a relational database. The presence of false
negatives was due to the fact that the training set ofRat A
did not incorporate all of the distinct types of grooming.
Because it was not the primary aim of the present study
to provide a classification system for behaviors, we did
not further improve the present classification system.
Nevertheless, it will be evident that the classification of
behavioral items can be simply improved by (I) incor­
porating the sequence ofpostures in time and (2) adding
data that contain all the distinct types of grooming.

Miscellaneous
DJ.H., at the Department of Psychopharmacology of

the Nijmegen Institute of Neuroscience, developed all
the software. The system consists of three separate pro­
grams: (1) a program for data acquisition that collects 10
images per second (real time); (2) a program for deter­
mining the contours and calculating the Fourier descrip­
tors that requires about 2 h for off-line analysis of30,000
samples; and (3) a program for classification that takes
1 min for the analysis of 30,000 samples. Once the three
programs are combined, on-line real-time processing of
5 images per second is feasible. By using a faster computer
and faster algorithms, 10 images per second will become
feasible in the near future.

CONCLUSION

The method described provides a fullyobjective method
for automatically analyzing postures and behavioral
items in a reproducible, reliable, and valid manner. Be­
cause no a priori information about the postures has to be
given, this method is also suitable for delineating new
postures that are not present in the training data.
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