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ABSTRACT
The performance of search engines crucially depends on their
ability to capture the meaning of a query most likely in-
tended by the user. We study the problem of mapping a
search engine query to those nodes of a given subject tax-
onomy that characterize its most likely meanings. We de-
scribe the architecture of a classification system that uses a
web directory to identify the subject context that the query
terms are frequently used in. Based on its performance on
the classification of 800,000 example queries recorded from
MSN search, the system received the Runner-Up Award for
Query Categorization Performance of the KDD Cup 2005.

1. INTRODUCTION
Most web search queries contain only two or three terms and
therefore provide very limited information about the user’s
information need to the search engine. Utilizing this infor-
mation is a key factor to constructing effective web search
engines. One way of approaching this problem computa-
tionally is to approximate the intended meaning of a query
by a node, or a set of nodes, in a given subject taxonomy.
For instance, a query “the raven” can indicate that a user
searches for information on entertainment/movies or on zo-
ology. Thus, the intuitive problem of capturing the intended
meaning of a query is reduced to the computational problem
of mapping the query string to a set of nodes in a given –
fixed, but arbitrary – subject taxonomy.

The KDD Cup 20051 casts this problem setting into a com-
petitive benchmarking framework that allows to evaluate
and compare methods and systems which solve this prob-
lem under a specified experimental setting. The KDD Cup
data set comprises of a two-level taxonomy with 67 second
level nodes and 800,000 MSN web search queries, 111 of
which are labeled with up to five nodes of the taxonomy.

The rest of this paper is organized as follows. We discuss
related work in Section 2, detail the problem setting in Sec-
tion 3, and describe the classification architecture in Section
4. Section 5 discusses the evaluation, Section 6 concludes.

1http://kdd05.lac.uic.edu/kddcup.html

2. RELATED WORK
Capturing the intended meaning of a search query with the
help of word sense disambiguation has been heavily investi-
gated. Early studies (see [12] for a complete overview) have
found no or only little improvement in precision. Word sense
disambiguation is often resolved implicitly when queries are
sufficiently long; in these rare cases, the additional words
provide sufficient context to resolve the intended meaning.
Web search queries most often contain only two or three
words and the work of Schütze and Pederson [13], Gonzalo
et al. [9] and Stokoe et al. [14] demonstrates that word
sense disambiguation can improve information retrieval.

A different line of research focuses on interactive query ex-
pansion or query reformulation; Bruza and Dennis [4; 6]
develop a hyper-index to provide the user with query re-
formulation recommendations. Anick and Tipirneni [3] de-
velop an interactive query refinement system that is based
on the analysis of semantically related lexical compounds.
Allan and Raghavan [2] refine query semantics with the use
of part-of-speech patterns and formulate clarification ques-
tions for the user. Glance [8] studies a collaborative rec-
ommendation system that records the queries of all users
and supports new searches by recommending related query
strings of other users.

Clustering the set of search results is another way to deal
with query ambiguity: ideally, ambiguous queries result in
multiple clusters that reflect the possible interpretations of
the query. After a topic insensitive web search the results
are clustered based on content [5; 16; 11] and link structure
[15].

Our solution is based on a taxonomic mapping between a
web directory and the subject taxonomy. Integrating ob-
jects from one taxonomy into another has been studied by
different authors. Agrawal and Srikant [1] develop an en-
hanced naive Bayes algorithm that is based on the intuition
that if two documents share their category in one taxonomy,
they are likely also share their category in another taxonomy.
Zhang and Lee [17] use a similar approach in combination
with Support Vector Machines; in addition, they develop a
co-bootstrapping method.

Instead of exchanging objects between taxonomies Doan et
al. [7] learn a direct mapping between taxonomy nodes us-
ing the joint distribution of concepts. All those approaches
require a substantial number of training examples in the
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source as well as in the target taxonomy. In our case, the web
directory provides an abundance of filed web pages whereas
there are only 111 example queries and no example docu-
ments for the subject taxonomy.

3. PROBLEM SETTING
The problem that we address is driven by the intuition that
a significant aspect of the semantics behind a search query
can be captured by identifying likely nodes in a subject tax-
onomy. An instance of the query categorization problem is
described by an arbitrary but fixed subject taxonomy. The
nodes are named (e.g., living, entertainment, sports for first
level, living/pets and animals, sports/olympic games for sec-
ond level nodes and so on), and their semantics are primarily
characterized by these names. In addition, example queries
that are labeled with nodes may be available that exemplify
search queries for documents within these categories.

For the KDD Cup 2005, a two-level taxonomy of 67 nodes
is provided together with a total of 111 example queries;
each of these 111 queries is manually tagged with up to
five nodes in the taxonomy. An example excerpt of these
data is displayed in Table 1. The example queries are not
guaranteed to be drawn from the same distribution that
governs the evaluation data.

From this input, a classifier has to be obtained that auto-
matically labels new queries with one or several nodes of
the taxonomy. The subject taxonomy can be assumed to
be fixed (over a reasonable period of time) for any given
problem instance. Therefore, it is reasonable to allow for
some manual involvement over the process of generating a
classifier. The classifier, on the other hand, has to work
automatically and be efficient in order to process a large
volume of queries posted to a search engine.

For the KDD Cup, a set of 800,000 hold-out queries are
available. For a subset of these queries (it has been un-
known which subset), manually annotated labels are avail-
able. A natural performance criterion to be maximized is
the F-measure, the harmonic mean of classification preci-
sion and recall. In addition, a second sub-task of the Cup
is to maximize precision, subject to the constraint that the
F-measure be within the ten highest values for F-measure
obtained by all submissions. This criterion is difficult to
maximize because it requires a conjecture about the sub-
missions of competitors.

4. CLASSIFICATION ARCHITECTURE
The classification system that we devise consists of a compo-
nent that searches a given query in a web directory; we use
the Google directory search interface that searches the open
web directory Dmoz.org. This component generates an or-
dered list of categories of the web directory. In general, the
categories of the web directory will be distinct from the sub-
ject taxonomy that defines the query categorization problem
instance at hand. Therefore, a second component of the ar-
chitecture maps directory categories to nodes of the subject
taxonomy. Web directories tend to be large and manually
mapping each of their nodes to a node of the given subject
taxonomy is impractical; we therefore construct a tool that
supports a semi-automatic mapping.

Given a query, the third component processes the sorted list
of categories returned by the web directory search compo-
nent, consults the mapping component to translate these

into nodes of the subject taxonomy, and combines all infor-
mation into probability scores for the nodes of the subject
taxonomy. This component conjectures the final result of
up to five nodes in the subject taxonomy that maximize ei-
ther the F-measure, or the precision at a desired minimum
F-measure level.

4.1 Web Directory Search
This component of our classification architecture searches a
web directory – we use the Domz.org web directory – for
the query. The component preprocesses the query by first
removing search options (e.g., “filetype:”) from the query
string, and then posts the query to the Google directory
search which scans the Dmoz directory for occurrences of
the query within the Dmoz categories.

The web directory searching component processes the first
100 search results and transforms them into an ordered list
of those directory categories that the 100 retrieved docu-
ments are classified into. Note, however, that the Dmoz
taxonomy (or any other web directory) is generally distinct
from the given subject taxonomy, in our case the KDD Cup
taxonomy.

The web directory searching component exploits two ad-
ditional features of the Google directory search service.
Google suggests alternative queries that in many cases cor-
rect spelling errors in the posted queries (“did you mean:
. . . ”). The web directory searching component always ac-
cepts these suggestions which in many cases improves the re-
sults on misspelled search queries. Google directory search
also provides a list of “related categories” along with the
search results. These related categories are stored and in-
fluence the final weighting process.

4.2 Semi-Automatic Category Mapping
The taxonomy of the web directory generally differs from
the subject taxonomy that defines the instance of the query
classification problem. The category mapping component of
our classification architecture therefore translates the direc-
tory taxonomy into the subject taxonomy.

The subject taxonomy is characterized by the descriptive
names of its nodes and very few example queries—for many
nodes, only a single exemplifying query is available in the
KDD Cup data. The web directory taxonomy, on the other
hand, is defined by the collection of web pages filed under
each node in addition to the descriptive name of each node.
Given the salient role played by the descriptive names in the
subject taxonomy and given the substantial size of the Dmoz
web directory that contains thousands of nodes, a semi-
automatic mechanism is advised. Fully automatic learning
of a taxonomy mapping is an elegant alternative path that
can be taken when sufficiently many example queries for
both taxonomies are available—in our case, a total of 111
training examples renders this approach little promising.

We manually assign directory categories to categories of the
subject taxonomy by inspecting the web directory up to the
second level, in some branches to the third or forth level
where a finer granularity is needed. Bounding the depth for
the manual inspection is necessary to keep the task manage-
able. Each directory node is assigned up to three categories
of the subject taxonomy, resulting in an n : m mapping
between the taxonomies. Some examples of the resulting
mapping table are shown in Table 2.

The web directory organizes country specific pages in the
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Table 1: Examples of the training queries with first two categories.

Query Subject taxonomy node 1 Subject taxonomy node 2 ...

bank loans living/finance & investment information/companies & industries ...

bar exam result information/law & politics living/career & jobs ...

basset hound dogs living/pets & animals information/science & technology ...

beginner guitar entertainment/music information/education ...

behr paint color samples living/furnishing & houseware shopping/buying guides & researching ...

Beijing 2008 sports/Olympic Games information/local & regional ...

bench grinders living/tools & hardware living/landscaping & gardening ...

bowling clip art pictures entertainment/pictures & photos sports/other ...

Table 2: Examples of the taxonomy mapping after applying the semi-automatic assignment.

Web directory taxonomy node Subject taxonomy node 1 Subject taxonomy node 2

health living/health & fitness

health/animal living/pets & animals

health/beauty living/fashion & apparel living/health & fitness

health/medicine living/health & fitness information/science & technology

health/medicine/employment living/career & jobs

health/mental health/humor entertainment/humor & fun

health/nursing/education living/health & fitness information/education

health/search engines information/references & libraries living/health & fitness

health/weight loss/low fat cooking living/food & cooking

same structure as the main taxonomy. They can be reached
from the main taxonomy under the regional branch. Be-
cause the regional information is not relevant for the cate-
gorization the path nodes that correspond to regional infor-
mation get removed, so that the regional directory nodes are
projected onto the non-regional parts of the main taxonomy.
For example, the category regional/Europe/Germany/health
is treated like health.

When a node of the web taxonomy is mapped to a node of
the subject taxonomy then, by default, its entire subtree is
mapped to the same node. This default behavior is overruled
when nodes within that subtree are explicitly mapped to a
distinct node of the subject taxonomy.

The manual mapping of the first two (partially up to four)
levels of the taxonomies imposes the risk of missing relevant
nodes hidden deeper in the hierarchy. On the other hand,
constructing a mapping for thousands of nodes is cumber-
some. We develop an automatic recommendation system
that provides suggestions for correspondences of deeper cat-
egories. We define a characteristic query for each category
of the subject taxonomy; e.g., information/law & politics
is assigned the query “legal OR politics”. The mapping
recommendation system posts these queries to the web di-
rectory search engine; the categories of retrieved web pages
are added to a candidate list of recommended mappings.

After manually inspecting these recommendations for the
KDD Cup task and accepting some 200 of them, we ob-
tain a mapping that entails 763 rules following the schema
visualized in Table 2.

4.3 Generating a Final Conjecture
The web directory searching component returns for each
query q an ordered list of up to 100 web directory categories
C′(q), we denote the elements of C′(q) as c′i. The mapping
component maps a web directory category c′i to a list of sub-
ject taxonomy categories M(c′i) whose elements we write as
cj . Conversely, let M−1(q, cj) be the ordered subset of C′(q)
whose elements c′i have cj in their assigned subject taxon-
omy nodes; i.e., M−1(q, cj) ⊆ C′(q) with c′i ∈ M−1(q, cj)
if and only if cj ∈ M(c′i). The ordering of the elements of
M−1(q, cj) is equal to their ordering in C′(q).
Equation 1 defines the weight that associates the query q to
subject taxonomy category c.

w(q, cj)=f1(cj)f2(q)
∑

c′
k
∈M−1(q,cj)

k=1...|M−1(q,cj)|

f3(q, c′k)αk
6α

d1(c′k)
7 α

d2(c′k)−d1(c′k)
8 (1)

The terms of the weighting function are defined as fol-
lows. Many technical decisions were made according to pre-
liminary experimental studies. The weighting parameters
α1, . . . , α8 are determined through an iterative procedure.
Starting with intuitive values, we repeatedly pick one of
those parameters and manually adjust it to achieve opti-
mal accuracy on the training set while holding the other
ones fixed.

• Regularization term f1(cj) = α1 if cj is an “other” cat-
egory (e.g., sports/other), and 1 otherwise. This factor
compensates for the disproportionally large number of
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these categories in the manual mapping. In our set-
ting, α1 is empirically adjusted to 0.5.

• Prior adjustment term f2(i) = α
log #Results(q)
2 , where

#Results(q) is the total number of results returned by
the web directory search engine for query q. A higher
total number of results implies better quality of the
top 100 result and so our intuition is that the category
associations of queries with more search results should
influence the result stronger; α2 is set to 1.05.

• The f3(q, c
′
k) term is defined as f3(q, c

′
k) = α

r(q,c′k)

3

if r(q, c′k) < 10, and α10
3 α

r(q,c′k)−10

4 otherwise, where
r(q, c′k) is the position of c′k within the result list of
the web directory search engine. This term reflects
the relevance of the results for the query, as the search
engine sees it. The relevance of a result degrades ex-
ponentially with its rank within all results, for the first
10 results with decay factor α3 (we choose α3 = 0.9),
and for subsequent results with decay factor α4 > α3

(α4 = 0.97). In addition, f3(q, c
′
k) allows to integrate

the “related categories” that Google directory search
retrieves in addition to the ranked list of matching
pages. Web directory categories that have been ob-
tained in such a way are weighted with a factor of
f3(q, c

′
k) = α5 = 1.1.

• The factor αk
6 accounts for the redundancy in multiple

web directory taxonomy categories that are mapped to
the same subject taxonomy category. Any result for
cj beyond the first provides less new information than
the preceding ones, so the exponential decay factor of
α6 is applied, which we set to 0.9.

• Two depth parameters account for the depth d1(c
′
k) of

the left hand side of the mapping rule that maps c′k
to its counterparts in the subject taxonomy, and the
depth d2(c

′
k) of c′k itself in the web taxonomy. The

term α
d1(c′k)

7 reflects the higher confidence in mapping
rules for more specialized branches of the hierarchy.
For instance, the application of the rule with left-hand
side arts/performing arts/acting/actors and actresses
yields a higher confidence in the resulting taxonomic
category than the application of the rule with left-hand
side arts. Experiments with the training set indicate
α7 = 1.3 as a good value.

The difference d2(c
′
k) − d1(c

′
k) measures the number

of taxonomic levels that separate a web taxonomy
node from its matching rule. For instance, if the cat-
egory health/nursing/employment gets matched with
the rule health → living/health & fitness, two excess
levels are ignored which reduces the quality of the
resulting category set. The decay factor is set to
α8 = 0.8.

The final classification conjecture for a query q is based
on three factors: firstly, the weights w(q, cj) for each cat-
egory cj . Secondly, the rank rw(q, cj) of category cj is
the position at which cj occurs when all categories are or-
dered according to w(q, cj). Thirdly, an additional margin
criterion that measures the distance between the weights
of cj and the next likely category, δ(q, cj) = w(q, cj) −
maxc:w(q,c)≤w(q,cj)∧c6=cj

{w(q, c)}.

We determine the category weights w(q, cj) for all training
queries q and fit a logarithmic curve to the data to model the
probability P (c|w(q, cj)). Figure 1 shows the empirical data
and the fitted curve; queries are grouped into equally sized
batches. We estimate the discrete distribution P (cj |rw(cj))
from the training data, Figure 2 shows the result.
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Figure 1: Relation between category weight w(q, cj) of
a query-category pair and its probability of correctness
P (c|w(q, cj)) on the training data.
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Figure 2: Relation between category rank rw(cj) and its
probability of correctness P (cj |rw(cj)) on the training data.

A logistic regression model combines the weight, rank, and
margin into a single probability P (cj |q). We fit the logistic
regression model [10] as given in Equation 2 using the Mitch

data analysis software package.

P (cj |q) =
1

1 + e−(β0+β1P (c|w(q,cj))+β2P (cj |rw(cj))+β3δ(q,cj))
(2)

The final step is to determine the probability thresholds
for the two tasks (F-measure and precision). The probabil-
ity threshold θ for the best F-measure score is determined
through a hill climbing procedure. The value θ is initialized
to 0.5 and we determine the direction of search by comput-
ing the F-measure gradient ∇F (θ) = limǫ→0 F (θ+ǫ)−F (θ).
This gradient is dependent on a binary random variable X

that determines whether a query with probability P (cj |q) =
θ + ǫ is correct. We calculate the expectation over X in
Equation 3. The expected gradient of F can be split up in
Equation 4 because for the case that X = 1 only TP in-
creases and only the gradient with respect to TP is relevant
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Table 3: Performance measures of our and winning solutions.

Task Description Evaluation data F-measure Precision

F-measure our submission training 0.51 0.52

F-measure our submission hold-out 0.41 0.45

F-measure winner hold-out 0.44 0.41

Precision our guess 1 (submission) training 0.29 0.89

Precision our guess 1 (submission) hold-out 0.21 0.75

Precision our guess 2 hold-out 0.41 0.45

Precision winner hold-out 0.43 0.42

because ∇F (θ) = δF
δTP

(θ) and for X = 0 only the one with
respect to FP is relevant. TP and FP are the number of true
positives and false positives respectively. We get Equation 5
by substituting P (X = 1) = θ+ǫ and P (X = 0) = 1−(θ+ǫ).

∇F (θ) = lim
ǫ→0

E[F (θ + ǫ) − F (θ)] (3)

= lim
ǫ→0

[

P (X = 1)
δF

δTP
(θ) + P (X = 0)

δF

δFP
(θ)

]

(4)

= lim
ǫ→0

[

(θ + ǫ)
δF

δTP
(θ) + (1 − (θ + ǫ))

δF

δFP
(θ)

]

(5)

= θ
δF

δTP
(θ) + (1 − θ)

δF

δFP
(θ) (6)

With Equation 6 we determine the direction of search from
each new threshold value θ and conduct a binary search. In
each search step the search space is halved and the direction
of search is determined through the F-gradient.

For the precision task we need to specify a minimum F-
measure that we want to achieve. For finding the best pre-
cision we start with a threshold θ = 1 and step down in suffi-
ciently small steps until the minimum F-measure is reached.

5. EVALUATION
The trade-off between F-measure and precision, dependent
on the probability threshold θ, is visualized in Figure 3. The
hill climbing procedure described in Section 4.3 successfully
finds the maximum F-measure at 0.51. Table 3 gives an
overview of the different solutions of our team and the win-
ning team. We can see that the F-measure performance of
our submission on the held out data set that is used for the
competition result is lower (0.41) than the estimation on
the training data. In this case measuring the performance
on the 111 training examples can only be used as a rough
estimate of the actual performance. The winning solution
for the F-measure task of the winning team reaches 0.44;
our submission of 0.41 is rated second best and receives the
Runner-Up Award.

For the precision task we have to make a guess at the F-
measures of the competing teams as the goal is to achieve
the maximum precision while remaining within the top ten
F-measure submissions. We prepare two guesses, one with
an F-measure of 0.29 and the other with an F-measure of
0.51 (same as the submission for the F-measure task) on the
training data (see Table 3). Assuming that most competing
teams would risk a high precision at a relatively low recall
level, we decided to submit the first solution that achieves
75% precision on the hold-out data. Refuting our assump-

tion, the ten teams whose solutions achieve the highest F-
measure decide for more balanced solutions that outperform
our F-measure without getting close to our precision. Our
second guess of an F-measure of 0.41 and a precision of 45%
would even have beaten the winning team’s submission of an
F-measure of 0.43 and 42% precision. So the winning team
not only had an excellent solution to the query categoriza-
tion problem, but also solved the “poker playing” problem
of predicting their competitors’ hands well.
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Figure 3: Relation between F-measure/precision and the
probability threshold θ estimated on the training data.

6. CONCLUSIONS
Extracting semantic information from search queries is im-
portant for a search engine to understand a user’s informa-
tion need. Mapping a search query to a set of nodes of a
subject taxonomy captures an aspect of that query’s seman-
tics.

We devised an architecture that allows to map queries to
an arbitrary subject taxonomy; the instantiation of the ar-
chitecture to a given taxonomy requires manual effort that
is supported by a tool that suggests translation rules from
the web directory to the taxonomy. The architecture com-
prises of a web directory search component that determines
a ranked list of categories of directory categories that are
relevant to the query. A taxonomy mapping component
translates these categories into (possibly multiple) nodes of
the target taxonomy, and a conjecturing component com-
bines this information into the final taxonomy categories. A
logistic regression model trained with the Mitch software
package combines the association weights between query and
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taxonomy nodes, the ranking of the nodes, and a margin
term into a probability used to determine the most likely
nodes.

The KDD Cup 2005 provides a benchmarking framework
for the query categorization task. Our system achieved the
second-highest F-measure among all participants; this ar-
gues that our system and architecture provide a good and
appropriate solution to this problem.
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