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1. INTRODUCTION

In its 15 year lifetime, Web search has grown tremendously; it has simultane-
ously become a factor in the daily life of maybe a billion people, and at the same
time a twenty billion dollar industry fueled by Web advertising. One thing,
however, has remained constant: people use very short queries. Various stud-
ies estimate the average length of a search query between 2.4 and 2.7 words,
which by all accounts can carry only a small amount of information. Commer-
cial search engines do a remarkably good job of interpreting these short strings,
but they are not (yet!) omniscient. Therefore, using additional external knowl-
edge to augment the queries can go a long way in improving the search results
and the user experience.

At the same time, better understanding of query meaning has the poten-
tial of boosting the economic underpinnings of Web search, namely, online ad-
vertising, via the sponsored search mechanism that places relevant advertise-
ments alongside search results. For instance, knowing that the query “SD450”
is about cameras while “nc4200” is about laptops can obviously lead to more
focused advertisements even if no advertiser has specifically bid on these partic-
ular queries. Advertising lies at the heart of modern Web search monetization,
and better understanding of search queries is likely to result in more focused
ads, eventually leading to better user experience. Better leveraging of the ads
mechanism can also lead search engines to provide additional services to the
searchers.

In this study we present a methodology for query classification, where our
aim is to classify queries onto a commercial taxonomy of Web queries with ap-
proximately 6000 nodes. Given such classifications, one can directly use them
to provide better search results as well as more focused ads. The problem of
query classification is extremely difficult owing to the brevity of queries. Ob-
serve, however, that in many cases a human looking at the search query and the
search results does remarkably well in making sense of it. For instance, in our
example, sending the query “SD450” to a Web search engine brings pages about
Canon cameras, while “nc4200” brings pages about Compaq laptops, hence to a
human the intent is quite clear. Of course, the sheer volume of search queries
does not lend itself to human supervision, and therefore we need alternate
sources of knowledge about the world.

Search engines index colossal amounts of information, and as such can be
viewed as large repositories of knowledge. Following the heuristic we described,
we propose to use the search results themselves to gain additional insights for
query interpretation. To this end, we employ the pseudo-relevance feedback
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paradigm, and assume the top search results to be relevant to the query. Cer-
tainly, not all results are equally relevant, and thus we use elaborate voting
schemes in order to obtain reliable knowledge about the query. For the pur-
pose of this study we first dispatch the given query to a general Web search
engine, and collect a number of the highest-scoring URLs. We crawl the Web
pages pointed to by these URLs, and classify these pages. Finally, we use these
result-page classifications to classify the original query. Our empirical evalua-
tion confirms that using Web search results in this manner yields substantial
improvements in the accuracy of query classification.

Note that in a practical implementation of our methodology within a com-
mercial search engine, all indexed pages can be preclassified using the normal
text-processing and indexing pipeline. Thus, at runtime we only need to run the
voting procedure, without doing any crawling or classification. This additional
overhead is minimal, and therefore the use of search results to improve query
classification is entirely feasible at runtime.

Another important aspect of our work lies in the choice of queries. The volume
of queries in today’s search engines follows the familiar power law, where a few
queries appear very often while most queries appear only a few times. While
individual queries in this long tail are rare, together they account for a consid-
erable mass of all searches. Furthermore, the aggregate volume of such queries
provides a substantial opportunity for income through online advertising.1

For frequent queries, searching and advertising platforms can be trained to
provide good results, including auxiliary data such as maps, shortcuts to related
structured information, successful ads, and so on. “Tail” queries, however, sim-
ply do not have enough occurrences to allow statistical learning on a per-query
basis. Therefore, we need to aggregate such queries in some way, and to reason
at the level of aggregated query clusters. A natural choice for such aggregation
is to classify the queries into a topical taxonomy. Knowing which taxonomy
nodes are most relevant to the given query will help us to provide the same
type of support for rare queries as for frequent queries. Consequently, in this
work we focus on the classification of rare queries, whose correct classification
is likely to be particularly beneficial.

The main contributions of this article are as follows. First, we build the
query classifier directly for the target taxonomy, instead of using a secondary
auxiliary structure; this greatly simplifies taxonomy maintenance and devel-
opment. The taxonomy used in this work is two orders of magnitude larger
than that used in prior studies. Empirical evaluation demonstrates that our
methodology for using external knowledge achieves greater improvements than
those previously reported. Since our taxonomy is considerably larger, the clas-
sification problem we face is much more difficult, making the improvements
we achieve particularly notable. We also report the results of a thorough em-
pirical study of different voting schemes and different depths of knowledge

1In our examples, “SD450” and “nc4200” represent gadget models that existed on the market for
a long time, and hence there are advertisers placing ads on these queries. However, in this article
we mainly deal with rare queries that are extremely difficult to match to relevant ads because
normally no advertisers specifically bid on those queries.
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(e.g., using search summaries vs. entire crawled pages). We found that using
the full text of search hits yields deeper knowledge and leads to greater improve-
ments than mere summaries. This result contrasts with prior findings in query
classification [Shen et al. 2006b], but is supported by research in mainstream
text classification [Gabrilovich and Markovitch 2007].

This article is organized as follows. Section 2 surveys related work. Section 3
provides background on sponsored search advertising. We present our method-
ology for query classification using Web search in Section 4. The results of
empirical evaluation are reported in Section 5. Finally, we discuss the obtained
results in Section 6.

2. RELATED WORK

In its abstract form, query classification can be regarded as a multiclass catego-
rization problem, which has been extensively studied in the machine learning
literature. If we regard each query as a short text segment, then text catego-
rization techniques can be easily applied. The standard feature representation
in text categorization is the so-called bag-of-word representation, where the
features are the word counts in the text document. For general text categoriza-
tion problems, this simple representation often achieves state-of-the-art perfor-
mance. Standard text categorization methods that can be used with this feature
representation include nearest neighbor [Yang 1999], naive Bayes [McCallum
and Nigam 1998], SVM [Joachims 1998], and more generally, regularized lin-
ear classification methods [Zhang and Oles 2001]. See Sebastiani [2002] for a
comprehensive survey of text categorization techniques.

In text categorization, each category is often associated with a number of
words that are indicative of the category. Since text documents often contain
at least a few hundred words, a number of indicative words will likely appear
in each document. It is thus relatively easy for a standard machine learning
method to find most of these words even with a small amount of training data. A
weighted average of the words will give a good estimate of whether a document
belongs to a certain category or not. The situation changes dramatically for
query classification, where each query often contains only a very small number
of words. It is therefore very difficult for standard machine learning methods
to find many indicative words for a category from the training queries. In fact,
many words that appear in the test queries do not occur in the training queries
at all—this problem is also referred to as the data-sparsity problem in natural
language processing. For this reason, the simple bag-of-word representation for
text categorization does not work well for query classification.

Even though the average length of search queries is steadily increasing over
time, a typical query is still shorter than three words. Consequently, many
researchers have studied possible ways to enhance queries with additional in-
formation.

One important direction in enhancing queries is through query expansion.
This can be done either using electronic dictionaries and thesauri [Voorhees
1994], or via relevance feedback techniques [Manning et al. 2008] that make
use of a few top-scoring search results. Early work in information retrieval
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concentrated on manually reviewing the returned results [Salton and Buckley
1990; Rocchio 1971]. However, the sheer volume of queries nowadays does not
lend itself to manual supervision, hence subsequent works focused on pseudo
relevance feedback, which basically assumes top returned results to be relevant
[Xu and Croft 2000; Mitra et al. 1998; Efthimiadis and Biron 1994; Robertson
et al. 1995].

More recently, studies in query augmentation focused on classification of
queries, assuming such classifications to be beneficial for more focused query
interpretation. Indeed, Kowalczyk et al. [2004] found that using query classes
improved the performance of document retrieval.

Studies in the field pursue different approaches for obtaining additional in-
formation about the queries. Beitzel et al. [2005b] used semi-supervised learn-
ing as well as unlabeled data [Beitzel et al. 2005a, 2007]. Gravano et al. [2003]
classified queries with respect to geographic locality in order to determine
whether their intent is local or global.

The 2005 KDD Cup on Web query classification inspired yet another line
of research, which focused on enriching queries using Web search engines and
directories [Li et al. 2005; Shen et al. 2005, 2006a; Kardkovacs et al. 2005; Vogel
et al. 2005]. The KDD task specification provided a small taxonomy (67 nodes)
along with a set of labeled queries, and posed a challenge to use this training
data to build a query classifier. Several teams used the Web to enrich the queries
and provide more context for classification. The main research questions of this
approach are, (1) how to build a document classifier, (2) how to translate its
classifications into the target taxonomy, and (3) how to determine the query
class based on document classifications.

The winning solution of the KDD Cup [Shen et al. 2005] proposed using an
ensemble of classifiers in conjunction with searching multiple search engines.
To address issue (1), their solution used the Open Directory Project (ODP)
to produce an ODP-based document classifier. The ODP hierarchy was then
mapped into the target taxonomy using word matches at individual nodes. A
document classifier was built for the target taxonomy by using the pages in the
ODP taxonomy that appear in the nodes mapped to the particular target node.
Thus, Web documents were first classified with respect to the ODP hierarchy,
and their classifications were subsequently mapped to the target taxonomy for
query classification.

Our approach differed in that we solved the problem of document classifica-
tions directly in the target taxonomy by using the queries to produce document
classifiers, as described in Section 4. This simplifies the process and removes
the need for mapping between taxonomies. This also streamlines taxonomy
maintenance and development. Using this approach, we were able to achieve
good performance in a very large scale taxonomy. We also evaluated a few alter-
natives for how to combine individual document classifications when actually
classifying the query.

In a follow-up paper Shen et al. [2006b], proposed a framework for query
classification based on bridging between two taxonomies. In this approach, the
problem of not having a document classifier for Web results is solved by using
a training set available for documents with a different taxonomy. For this, an
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intermediate taxonomy with a training set (ODP) is used. Then several schemes
are tried that establish a correspondence between the taxonomies or allow for
mapping of the training set from the intermediate taxonomy to the target taxon-
omy. As opposed to this, we built a document classifier for the target taxonomy
directly, without using documents from an intermediate taxonomy. While we
were not able to directly compare the results due to the use of different tax-
onomies (we used a much larger taxonomy), our precision and recall results are
consistently higher even over the hardest query set.

There have also been a number of studies that studied query classification as
a means for accomplishing other tasks. Beitzel et al. [2004] used query classifi-
cation techniques to analyze a large-scale log of real-life Web queries. Sahami
et al. [2004] explored classification of Web queries onto the nodes of the Open
Directory Project (www.dmoz.org), with the aim of eventually using the query
classification capabilities for improving the accuracy of Web search. Lu et al.
[2006] used machine learning methods to identify navigational queries (where
the users’ information need is to find a URL / home page for the entity described
in the query).

3. DIGRESSION: THE BASICS OF SPONSORED SEARCH

This research has been motivated by the need to match Web search queries to
more relevant ads. Therefore, in this section we provide a brief introduction to
some basic concepts of Web advertising. Sponsored search (or paid search) ad-
vertising is placing textual ads on the result pages of Web search engines, with
ads being driven by the originating query. All major search engines (Google,
Yahoo!, and MSN) support such ads and act simultaneously as a search engine
and an ad agency. Sponsored search is an interplay of three players:

—The advertiser provides the supply of ads. Usually the activity of the adver-
tisers are organized around campaigns, which are defined by a set of ads with
a particular temporal and thematic goal (e.g., sale of digital cameras during
the holiday season). As in traditional advertising, the goal of the advertisers
can be broadly defined as the promotion of products or services.

—The search engine/ad agency is a mediator between the advertiser and the
user, selecting the ads that are put on the search result pages.

—Users visit the search engine to perform queries and interact with the ads.

Sponsored search usually falls into the category of direct marketing (as op-
posed to brand advertising), that is advertising whose aim is a direct response,
where the effect of a campaign is measured by the user reaction. One of the
advantages of online advertising in general, and contextual advertising in par-
ticular is that, compared to the traditional media, it is relatively easy to mea-
sure the user response. Usually the desired immediate reaction is for the user
to follow the link in the ad and visit the advertiser’s Web site and the prevalent
financial model is that the advertiser pays a certain amount for every click on
the advertisement (PPC).

In most networks, the amount paid by the advertiser for each click is de-
termined by an auction process where the advertisers place bids on a search
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phrase, and their position in the tower of ads displayed in conjunction with the
result is determined by their bid. Thus each ad is annotated with one or more
bid phrases. The bid phrase is a concise description of the target ad audience as
determined by the advertiser. In addition to the bid phrase, an ad is also char-
acterized by a title usually displayed in a bold font, and an abstract or creative,
which is the few lines of text, usually fewer than 120 characters.

In general, clicks bring benefits to the ad agency by providing revenue, and
to the advertiser by bringing traffic to the target Web site. The revenue of the
ad agency, given a query q, can be estimated as:

R =
∑

i=1..k

P (click|q, ai)price(ai, i),

where k is the number of ads displayed on the result page for query p, and
price(ai, i) is the click-price of the current ad ai, at position i. The price in
this model depends on the set of ads presented on the search result page. A
discussion of bidding and placement mechanisms is beyond the scope of this
article [Moran and Hunt 2005].

It is important to note that many searches do not explicitly use phrases that
someone bids on. Consequently, advertisers also buy broad matches, that is,
they pay to place their advertisements on queries that constitute some modifi-
cation of the desired bid phrase. In broad match, several syntactic modifications
can be applied to the query to match it to the bid phrase, for example, dropping
or adding words, synonym substitution, and so forth. These transformations are
based on rules and dictionaries. As advertisers tend to cover high-volume and
high-revenue queries, broad-match queries fall into the tail of the distribution
with respect to both volume and revenue.

4. METHODOLOGY

Our methodology has two main phases. In the first phase, we construct a docu-
ment classifier for classifying search results into the same taxonomy into which
queries are to be classified. In the second phase, we develop a query classifier,
which invokes the document classifier on search results, and uses the latter to
perform query classification.

Figure 1 gives an overview of our proposed query classification architecture.
This architecture has two distinct components:

—The Offline component is invoked once, for all future query classification
tasks. This step is performed at crawling time while building the index of
a search engine. In this phase, every page that is about to be added to the
search engine index is first classified. This way, when we later classify a
query based on its search results (see Section 4.2), the classifications of all
individual search results are already available and need not be computed on
the fly.
Having all indexed pages preclassified offers substantial time savings at run-
time. However, a search engine is already an extremely complex system, so
that extending it to perform Web page classification at crawling time is a dif-
ficult engineering task. Consequently, for the experiments described in this
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Fig. 1. Query classification architecture.

article, we used a simpler architecture that actually classifies search results
on an as-needed basis (see Figure 6 in Section 5). We are currently working
on incorporating classification of all indexed pages into the search engine in-
frastructure, in order to allow fast classification of incoming queries in real
time.

—The Online component performs actual query classification. Given a query,
it sends it to the search engine to obtain a preconfigured number of search
results. Then, classifications of individual search results are merged through
a voting scheme that computes several classifications for the input query.

4.1 Building the Document Classifier

In this work we used a commercial classification taxonomy of approximately
6000 nodes used in a major US search engine (see Section 5.1). Human editors
populated the taxonomy nodes with labeled examples that we used as training
instances to learn a document classifier in the offline phase.

Given a taxonomy of this size, the computational efficiency of classification is
a major issue. Few machine learning algorithms can efficiently handle so many
different classes, each having hundreds of training examples. Suitable candi-
dates include the nearest neighbor and the Naive Bayes classifier [Duda and
Hart 1973], as well as prototype formation methods such as Rocchio [1971] or
centroid-based [Han and Karypis 2000] classifiers. A recent study [Gabrilovich
and Markovitch 2007] showed centroid-based classifiers to be both effective and
efficient for large-scale taxonomies; consequently, we used a centroid classifier
in this work.

Each centroid is defined as a sum of the TF.IDF values of the terms, normal-
ized by the number of documents in the class �c j = 1

|Cj |
∑

�d∈Cj

�d
‖ �d‖ , where �c j is
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the centroid for class Cj , and d iterates over the documents that belong to this
class. Classification is based on the cosine of the angle between the document
and each of the centroids:

Cmax = arg max
Cj ∈C

�c j

‖ �c j ‖ ·
�d j

‖ �d j ‖
= arg max

Cj ∈C

∑
i∈|F | ci· di√∑

i∈|F |(ci)2
√∑

i∈|F |(di)2
, (1)

where F is the set of features. Scores are normalized by the document and class
length to make them comparable. The terms ci and di represent the weight of
the i-th feature in the class centroid and the document, respectively. These
weights are based on the standard “ltc” TF.IDF function (logarithmic term
frequency and inverse document frequency, followed by cosine normalization)
[Salton and Buckley 1988].

4.2 Query Classification by Search

Having developed a document classifier for the query taxonomy, we now turn
to the problem of computing classification(s) for a given query based on the
initial search results it yields. Let us assume that there is a set of documents
D = d1 . . . dm indexed by the search engine. The search engine can then be rep-
resented by a function �f = similarity(q, d ) that quantifies the affinity between
query q and document d .

Query classification is determined by first evaluating conditional probabili-
ties of all possible classes P (Cj |q), and then selecting the alternative with the
highest probability Cmax = arg maxCj ∈C P (Cj |q). Our goal is to estimate the
conditional probability of each possible class using the search results initially
returned by the query. We use the following formula that incorporates classifi-
cations of individual search results:

P (Cj |q) =
∑
d∈D

P (Cj |q, d )· P (d |q) =
∑
d∈D

P (q|Cj , d )
P (q|d )

· P (Cj |d )· P (d |q).

We assume that P (q|Cj , d ) ≈ P (q|d ), that is, the probability of a query
given a document can be determined without knowing the class of the query.
This is the case for the majority of queries that are unambiguous. Counter
examples are queries like ‘jaguar’ (animal and car brand) or ‘apple’ (fruit and
computer manufacturer), but such ambiguous queries cannot be classified by
definition, and usually consist of common words. In this work we concentrate
on rare queries, that tend to contain rare words, be longer, and match fewer
documents; consequently in our setting the assumption mostly holds. Using
this assumption, we can write:

P (Cj |q) =
∑
d∈D

P (Cj |d )· P (d |q). (2)

The conditional probability of a classification for a given document P (Cj |d )
is estimated using the output of the document classifier (Section 4.1). P (d |q)
is harder to compute, and in what follows we consider alternative ways for
modeling it.
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One simple way to compute P (d |q) is to define P (d |q) = 1 if d appears in
the top K search results for q, and P (d |q) = 0 otherwise; this is reminiscent of
the standard relevance feedback approach. Using this definition, we obtain the
following simple voting formula P (Cj |q) = ∑

d∈DK (q) P (Cj |d ), where DK (q) is a
set of top K search results for q. Here, we first classify each of the top search
results, and then use their classes to determine one or several best classes for
the query. We call this method voting because query classes are effectively voted
for by the classes of the search results, based on the strength of the classes in
each document.

This method essentially eliminates all information about the document order
in the ranked list of search results, hence it is an interesting research question
whether taking the ranks into account would ultimately lead to a more accurate
estimation of P (Cj |q). This question is addressed in the next sections.

4.3 Classification-Based Relevance Model

In this section we develop a document relevance model based on document
and query classes alone (without considering other features of documents and
queries, such as individual words). Given a ranked list of documents from the
search engine, we then optimize P (Cj |q) so that the output of this restricted
relevance model is similar to that produced by the search engine.

Given a document d , and query q, we denote by R(d , q), the relevance of
d to q. This value indicates how relevant document d is to query q, and can
be used to rank documents for a given query. We now define RC(d , q), which
approximates R(d , q) using a taxonomy of classes:

R(d , q) ≈ RC(d , q) =
∑

Cj ∈C

w(Cj )s(Cj , d )s(Cj , q). (3)

The right-hand side expresses how we use the classification scheme C to rank
documents, where s(c, d ) is a scoring function that specifies the likelihood of d
belonging to class c, and s(c, q) is a scoring function that specifies the likelihood
of q being in class c. The value w(c), is a weighting term for class c, indicating
the importance of class c in the relevance formula.

This relevance function is an adaptation of the traditional word-based re-
trieval approach to class-based features. To observe this, consider what would
happen if Cj referred to word occurrence: s(Cj , d ) would stand for some function
of the word count of Cj in d , s(Cj , q)—the word count of Cj in q, and w(Cj )—the
IDF term weighting for the corresponding word. This way, the method given by
(3) becomes the standard TF.IDF retrieval rule.

If we take s(Cj , d ) = P (Cj |d ), s(Cj , q) = P (Cj |q), and w(Cj ) = 1/P (Cj ), and
assume that q and d are independently generated given a hidden concept C,
then:

RC(d , q) =
∑

Cj ∈C

P (Cj |d )P (Cj |q)
P (Cj )

=
∑

Cj ∈C

P (Cj |d )P (q|Cj )
P (q)
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=
∑

Cj ∈C

P (q|Cj )P (d |Cj )P (Cj )
P (d )P (q)

.

Assuming the query represents the essence of the class for the purpose of doc-
ument ranking, we get P (d |Cj ) = P (d |q). Upon this substitution, the previous
equation transforms into:

RC(d , q) =
∑

Cj ∈C

P (q|Cj )P (Cj )P (d |q)
P (d )P (q)

= P (d |q)
P (d )P (q)

∑
Cj ∈C

P (q|Cj )P (Cj )

= P (d |q)
P (d )P (q)

P (q)

= P (q|d )
P (q)

.

That is, documents are ranked according to P (q|d ). This relevance model
has been employed in various statistical language modeling techniques for in-
formation retrieval. The intuition can be described as follows. We assume that
a user searches for document d by constructing query q: the user first picks a
concept Cj , according to the weights P (Cj |d ), and then constructs a query q,
with probability P (q|Cj ), based on the concept Cj . For this query generation
process, the documents can be ranked based on the likelihood of the observed
query to be generated from each document.

It should be mentioned that in our case, each query and document can have
multiple categories. For simplicity, we denote by Cj , a random variable indicat-
ing whether q belongs to category Cj . We use P (Cj |q) to denote the probability
of q belonging to category Cj . Here the sum

∑
Cj ∈C P (Cj |q) may not equal to

one because the categories are not mutually exclusive, hence a query may be
labeled with more than one category. We then consider the following ranking
formula:

RC(d , q) =
∑

Cj ∈C

P (Cj |d )P (Cj |q). (4)

As before, we assume the estimation of P (Cj |d ) is based on an existing text-
categorization system (Section 4.1).

In order to obtain estimates of the unknown parameters P (Cj |q), we use
Web search results, and assume that the ranking formula (4) gives good rank-
ing for search. That is, we assume that top results ranked by a good Web search
engine should also be ranked highly by this formula. Therefore, given query q,
and top K result pages d1(q), . . . , dK (q) from a major search engine, we fit pa-
rameters P (Cj |q) so that RC(di(q), q) has high scores for i = 1, . . . , K . It should
be mentioned that using this method we can only compute relative strength of
P (Cj |q), but not the scale, because scale does not affect the ranking. Moreover,
it is possible that the estimated parameters may be of the form g (P (Cj |q)) for
some monotone function g (·) of the actually conditional probability g (P (Cj |q)).
Although this may change the meaning of the unknown parameters that we
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estimate, it does not affect the quality of using the formula to rank documents.
Nor does it affect query classification with appropriately chosen thresholds. In
what follows, we consider two methods to compute the classification informa-
tion P (Cj |q).

4.4 The Voting Method

First, we show how our classification-based relevance model can be used to
derive the simple voting mechanism presented at the end of Section 4.2.

We would like to compute P (Cj |q) so that RC(di(q), q) is high for i =
1, . . . , K and RC(d , q) are low for a random document d . Assume that the
vector [P (Cj |d )]Cj ∈C is random for an average document, then the condition
that

∑
Cj ∈C P (Cj |q)2 is small implies that RC(d , q) is also small, averaged

over d . Thus, a natural method is to maximize
∑K

i=1 wi RC(di(q), q) subject to∑
Cj ∈C P (Cj |q)2 being small, where wi are weights associated with each rank i:

max
[P (·|q)]

[
1
K

K∑
i=1

wi

∑
Cj ∈C

P (Cj |di(q))P (Cj |q) − λ
∑

Cj ∈C

P (Cj |q)2

]
,

where we assume
∑K

i=1 wi = 1, and λ > 0 is a tuning regularization parameter.
The optimal solution is

P (Cj |q) = 1
2λ

K∑
i=1

wi P (Cj |di(q)). (5)

Since both P (Cj |di(q)) and P (Cj |q) belong to [0, 1], we may just take λ = 0.5
to align the scale. In our experiment, we will simply take uniform weights
wi = 1/K .

4.5 Generalized Voting

Although the voting method in (5) is simple and effective (as we will see in
experiments), the choice of the weights wi, is rather simple. However, it is
reasonable to assume that higher ranked documents di (with small i), that are
more relevant to the query q, should be given a higher weight than lower ranked
documents that are less relevant to the query q. That is, in order to optimize
(5), we should assign different wi values for different rank positions i.

Following this argument, a more complex strategy is to let w depend both on
d and on q. We may consider the following generalized linear model:

η(P (Cj |q)) =
∑

d

w(d , q)g (P (Cj |d )), (6)

where g (x) is a certain transformation of x; η(x) is a monotone increasing func-
tion of x, often referred to as the link function in the statistical literature.

In this general formulation, w(d , q) may depend on factors other than the
rank of d in the search engine results for q. For example, it may be a function of
r(d , q), where r(d , q) is the relevance score returned by the underlying search
engine.
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In order to apply (6), it is necessary to know the weight w(d , q), and the
transformation g (P (Cj |d )). These parameters can be learned using machine
learning techniques, if we are provided with a training set of hand-labeled
category/query pairs (Cj , q), with binary label y , which indicates whether
query q belongs to category Cj . In the experimental section, we apply this
idea to a simple model. Specifically, we discretize the quality score r(d , q),
of a query/document pair into {high, medium, low}, represented by integers
{1, 2, 3} respectively. We then learn the three weights w1, w2, and w3, corre-
sponding to these three quality grades. We do not learn the transformation
g (·), and simply set it to be the identity. Moreover, we choose the link function
η(x) = ln(x/(1 − x)), which maps probability in range (0, 1) into the full real
line (−∞, ∞). In statistics, this link function corresponds to logistic regression.
Formula (6) then becomes:

ln
P (Cj |q)

1 − P (Cj |q)
=

∑
d

wr(d ,q) P (Cj |d ). (7)

In order to estimate the model parameter w, we need a set of labeled training
data S = {(q, Cj , y)}, where the label y = 1 if q belongs to Cj , and y = −1
otherwise. We can use the following logistic regression method to estimate w =
[w1, w2, w3] in (7):

[w1, w2, w3] = arg min
w

∑
(q,Cj , y)∈S

ln
(
1 + e− ∑

d wr(d ,q) P (Cj |d ) y
)

. (8)

4.6 Discriminative Classification

Although the method described in Section 4.5 can be used to estimate param-
eters in a general weighting formula such as (6), it requires a set of hand-
labeled training data, where significant human effort is needed to obtain label
y (whether a query belongs to a certain category or not). This section describes
another method, which does not require any human-labeled training data. The
method is a variation of the voting method in Section 4.4, but with a discrimi-
native classification model.

In this method, we assume, similar to (4), that the search engine relevance
function can be approximated by:

RC(di(q), q) =
∑

Cj ∈C

P (Cj |q)P (Cj |di(q)) = w · xi(q),

where xi(q) = [P (Cj |di(q))]Cj ∈C is the feature vector that is known, and w =
[P (Cj |q)]Cj ∈C is the weight vector that needs to be estimated.

We assume that RC(d , q) is a good approximation to the search engine rel-
evance function, which means that it approximately preserves the order (or
preference) of search engine results. That is, we would like to impose the con-
dition that if i < j , then RC(di(q), q) > Rc(di(q), q) (document di(q), has a
higher relevance than document d j (q)). Conceptually this is a very reasonable
assumption; however, it may not hold precisely in practice. Although it would
be nice to verify to what degree this assumption holds, our data does not provide
enough information to do so. Therefore, the only verification in this article is to
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see whether algorithms derived from this assumption give good results, which
we study using experiments. In this sense, its main purpose is rather similar to
other statistical assumptions, such as the conditional independence assumption
in naive Bayes classification, or the bag-of-word assumption in text modeling—
even though it is clear such assumptions do not hold precisely in practice, they
are still useful because they lead to interesting algorithms.

We can now treat the problem of estimating w = [P (Cj |q)] as a preference
learning problem, which requires the weight vector w to preserve the preference
relationship: i < j implies w · xi > w · x j . A more specific and simpler method,
which we employ in this article, is to treat the problem of estimating w =
[P (Cj |q)] as a classification problem. For each q, we label di(q) for i = 1, . . . , K
as positive data, and the remaining documents as negative data. That is, we
assign label yi(q) = 1 for di(q) when i ≤ K , and label yi(q) = −1 for di(q)
when i > K . This is equivalent to enforcing the preference relationship w · xi >

w · x j if i ≤ K and j > K . Note that although we have labels yi(q), they are
automatically obtained from search engine results without any human effort.
This is an advantage over the method in Section 4.5.

In this classification formulation, the values P (Cj |d ) (Cj ∈ C) are the fea-
tures for the linear classifier, and w = [P (Cj |q)] is the weight vector, which can
be estimated using any linear classification method. In this article, we consider
estimating w using logistic regression [Santner and Duffy 1989] as follows:

P (·|q) = arg min
w

∑
i

ln
(
1 + e−w·xi (q) yi (q)

)
.

That is, the desired probability estimate P (Cj |q) for each Cj ∈ C is a coefficient
of this logistic regression solution.

5. EVALUATION

In this section, we evaluate our methodology that uses Web search results for
improving query classification.

5.1 Taxonomy

Our choice of taxonomy was guided by a Web advertising application. Since
we want the classes to be useful for matching ads to queries, the taxonomy
needs to be elaborate enough to facilitate ample classification specificity. For
example, classifying all medical queries into one node will likely result in poor
ad matching, as both “sore foot” and “flu” queries will end up in the same
node. The ads appropriate for these two queries are, however, very different. To
avoid such situations, the taxonomy needs to provide sufficient discrimination
between common commercial topics. Therefore in this article, we employ an
elaborate taxonomy of approximately 6000 nodes, arranged in a hierarchy with
median depth 5 and maximum depth 9.

The taxonomy has been populated with labeled training examples that were
bid phrases of actual ads. Ideally, it is preferable to have labeled training
documents from the same distribution from which documents to be classified
are drawn. Since our method classifies Web search results, labeled training
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Fig. 2. Taxonomy statistics: number of categories per level.

examples should ideally also be Web pages. It is, however, prohibitively expen-
sive to manually label a large enough set of Web pages at the resolution we
need (to populate a taxonomy of 6,000 nodes). It is substantially cheaper to
label short bid phrases rather than long documents. Using labeled bid phrases
of ads is also particularly suitable for our application, since our research is
motivated by the need to match queries to more relevant ads.

The taxonomy has been populated by human editors using keyword sug-
gestion tools similar to the ones used by ad networks to suggest keywords to
advertisers. After initial seeding with a few queries, using the provided tools,
a human editor can add several hundred queries to a given node, which were
used as a training set. A small fraction of queries have been assigned to more
than one category.2 Nevertheless, it has been a significant effort to develop a
taxonomy of a magnitude of several person-years. A similar-in-spirit process for
building enterprise taxonomies via queries has been presented in Gates et al.
[2005]. However, the details and tools are completely different. Figures 2 and
3 show pertinent statistics about the structure of the taxonomy, and Figures 4
and 5 show statistics about the labeled examples used to train the classifier
described in Section 4.1.

5.2 Data Sets

We used two representative sets of 1000 queries. Both sets contain queries
that cannot be directly matched to advertisements, that is, none of the queries
contains a bid phrase (this means we eliminated practically all popular
queries).

2Some queries were assigned to more than one category because they had several equally im-
portant facets. For example, a query about antivirus software for Linux could be simultaneously
assigned to categories “Computing/Computer Security/Malicious Software Prevention and Elimi-
nation/Virus Utilities/Anti Virus Utilities - Linux” and “Computing/Computer Software/Software
Utilities/Security Software/Firewalls/Firewalls - Linux”. Here, the former classification empha-
sizes the security application, and the latter—the fact that the application is implemented in
software rather than in hardware.
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Fig. 3. Taxonomy statistics: fanout of non-leaf nodes.

Fig. 4. Taxonomy statistics: number of training examples (queries) per node.

The first set of queries can be matched to at least one ad using broad match
as previously described. Queries in the second set cannot be matched even by
broad match, therefore the search engine used in our study does not currently
display any advertising for them. In a sense, these are even rarer queries and
further away from common queries. As a measure of query rarity, we estimated
their frequency in a month’s worth of query logs for a major US search engine;
the median frequency was 1 for queries in Set 1 and 0 for queries in Set 2.
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Fig. 5. Taxonomy statistics: number of training examples (queries) per level.

The queries in the two sets differ in their classification difficulty. In fact,
queries in Set 2 are difficult to interpret even for human evaluators. Queries in
Set 1 have on average 3.50 words, with the longest one having 11 words; queries
in Set 2 have on average 4.39 words, with the longest query having 81 words.
Recent studies estimate the average length of Web queries to be just under
3 words,3 which is lower than in our test sets. As another measure of query
difficulty, we measured the fraction of queries that contain quotation marks,
as the latter assist query interpretation by meaningfully grouping the words.
Only 8% of queries in Set 1 and 14% in Set 2 contained quotation marks.

The queries in the two test sets, Set 1 and Set 2, are different from the set of
labeled examples used to train the classifier, as described in Section 4.1, for two
reasons. First, in order to have a test set that is disjoint from the training set.
Second, in this study we are primarily interested in classifying rare queries,
while the taxonomy has been populated with sufficiently frequent queries.

5.3 Methodology and Evaluation Metrics

The two sets of queries were classified into the target taxonomy using the tech-
niques presented in Section 4. Based on the confidence values assigned, the top
3 classes for each query were presented to human evaluators. These evalua-
tors were trained editorial staff who possessed knowledge about the taxonomy.
The editors considered every query-class pair, and rated them on the scale 1
to 4, with 1 meaning the classification is highly relevant and 4 meaning it is
irrelevant for the query. About 2.4% of queries in Set 1 and 5.4% of queries in
Set 2 were judged to be unclassifiable (e.g., random strings of characters), and

3http://www.rankstat.com/html/en/seo-news1-most-people-use-2-word-phrases-in-search-engines.
html
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Fig. 6. Query classification architecture (prototype).

were consequently excluded from evaluation. To compute evaluation metrics,
we treated classifications with ratings 1 and 2 to be correct, and those with
ratings 3 and 4 to be incorrect. For each query, the human judges assessed the
quality of up to three top-scoring classes assigned according to Equation (1),
which were produced by four different instantiations of the classifier (the four
instantiations differ by the parameters discussed in the next section). This pro-
cess required collecting up to 2,000 × 3 × 4 = 24,000 judgments. After excluding
the unclassifiable queries as well as duplicate classifications produced by the
different algorithms, we obtained 21,260 judgments for query-class pairs. Three
human judges participated in the experiment, however, each query-class pair
was judged by a single person owing to cost considerations. It should be noted
that the judges were highly trained, and their inter-editor agreement measured
on similar tasks in the past was over 70%.

We used standard evaluation metrics: precision, recall, and micro-F1. Preci-
sion is the proportion of actual positive class members returned by the classifier
among all the predicted positive class members returned. Recall is the propor-
tion of predicted positive members among all actual positive class members in
the result set.4 Since we aim to maximize both precision and recall, a combined
measure of the two is useful to evaluate the overall performance of the classi-
fier. The F1 measure is the harmonic mean of precision P and recall R, defined
as F1 = 2 ∗ P ∗ R/(P + R). To compute micro-averaged F1, both precision and
recall are computed for the entire test collection (rather than individually for
different categories, as would be the case for macro-averaging). In what follows,
we plot precision-recall graphs for all the experiments. For comparison with
other published studies, we also report precision and F1 values corresponding
to complete recall (R = 1).

As explained in Section 4, query classification would be most efficient if all the
pages in the search index have been preclassified. To achieve this aim, however,
it would be necessary to significantly extend the crawling infrastructure of the
search engine to perform Web page classification at crawling time. Since this
mechanism was not available at the time of our study, we instead opted to build
our prototype, which classifies search results for each query on the fly. Figure 6
outlines the prototype infrastructure we used in our work.

4When computing recall, we treat the set of all correct classes among these three judged ones for
each query as corresponding to full recall. Therefore, the recall in the figures can actually reach
1.0 (= 100% recall).
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Fig. 7. The effect of external knowledge (merged Set 1 and Set 2).

5.4 Results

We compared our method to a baseline query classifier that does not use any
external knowledge. Our baseline classifier expanded queries using standard
query expansion techniques, grouped their terms using a phrase recognizer,
boosted certain phrases in the query based on their statistical properties, and
performed classification using the nearest-neighbor approach. The same train-
ing data was used for the baseline as for the proposed method. This baseline
classifier is actually a production version of the query classifier running in a
major US search engine.

In our experiments, we varied values of pertinent parameters that charac-
terize the exact way of using search results. In what follows, we start with the
general assessment of the effect of using Web search results supplied by two
different major US search engines (henceforth denoted as A and B). In what
follows, Figure 7 shows the results using both search engines, while the other
figures show the results using only engine B. We then proceed to exploring more
refined techniques, such as using only search summaries versus actually crawl-
ing the returned URLs. We also experimented with using different numbers of
search results per query, as well as with varying the number of classifications
considered for each search result.

5.4.1 The Effect of External Knowledge. Queries by themselves are very
short and difficult to classify. We use top search engine results in the form of
either summaries or full text pages of the top hits for collecting background
knowledge for queries. We employed two major US search engines, and used
their results in two ways, either only summaries or the full text of crawled
result pages. Figure 7 and Table I show that such extra knowledge considerably
improves classification accuracy.
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Table I. The Effect of Using External Knowledge (Precision and F1
are Computed at Full Recall)

Engine Context Precision F1 Precision F1
Set 1 Set 1 Set 2 Set 2

A full-page 0.72 0.84 0.509 0.721
B full-page 0.706 0.827 0.497 0.665

A summary 0.586 0.744 0.396 0.572
B summary 0.645 0.788 0.467 0.638

Baseline 0.534 0.696 0.365 0.536

Table II. Aggregation: Bundling vs. Individual Voting (Precision and
F1 are Computed at Full Recall)

Setting Context Precision F1 Precision F1
Set 1 Set 1 Set 2 Set 2

Bundled full-page 0.678 0.811 0.492 0.662
Bundled summary 0.665 0.801 0.478 0.648
Voting full-page 0.706 0.828 0.497 0.665
Voting summary 0.645 0.788 0.467 0.638

baseline 0.534 0.696 0.365 0.536

5.4.2 Aggregation Techniques. There are two major ways to use search
results as additional knowledge. First, individual results can be classified sep-
arately, with subsequent voting among individual classifications. Alternatively,
individual search results can be bundled together as one metadocument and
classified as such, using the document classifier. Table II and Figures 8 and 9
present the results of these two approaches for classifying search results in-
dividually versus concatenating them together into a single metadocument.
When full-text pages are used, the technique using individual classifications of
search results evidently outperforms the bundling approach by a wide margin.
However, in the case of summaries, bundling together is found to be consistently
better than individual classification. This is because summaries by themselves
are too short to be classified correctly individually, but when bundled together
they are much more stable. In query Set 2, the difference between the tech-
niques is even more pronounced. As can be seen in Figure 9, for full pages,
individual voting outperforms bundled aggregation by as much as 25%, while
in the case of summaries, bundling is better by about 10%.

5.4.3 Full Page Text versus Summary. To summarize the two preceding
sections, background knowledge for each query is obtained by using either the
full-page text or only the summaries of the top search results. Full page text
was found to be more useful in conjunction with voted classification, while sum-
maries were found to be useful when bundled together. The best results overall
were obtained with full-page results classified individually, with subsequent
voting used to determine the final query classification. This observation differs
from findings by Shen et al. [2006b], who found summaries to be more useful.
We attribute this distinction to the fact that the queries we used in this study
are tail ones, which are rare and difficult to classify.
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Fig. 8. Voting vs. bundling (Set 1).

Fig. 9. Voting vs. bundling (Set 2).

5.4.4 Varying the Number of Classes per Search Result. We also varied
the number of classifications per search result: each result was permitted
to have either one, three, or five classes. Figure 10 shows the correspond-
ing precision-recall graphs for both full-page and summary-only settings. As
can be readily seen, all three variants produce very similar results. However,
the precision-recall curve for the one-class experiment has higher fluctuations.
Using three classes per search result yields a more stable curve, while with
five classes per result the precision-recall curve is very smooth. Thus, as we
increase the number of classes per result, we observe higher stability in query
classification. This happens because as we increase the number of classes, the
influence of each individual vote towards a particular class is reduced and
smoothed out over the aggregation.
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Fig. 10. Varying the number of classes per page (Set 1).

Fig. 11. Varying the number of results per query (Set 2).

5.4.5 Varying the Number of Search Results Obtained. We also experi-
mented with different numbers of search results per query. Figure 11 and
Table III present the results of this experiment. In line with our intuition, we
observed that classification accuracy steadily rises as we increase the number
of search results used, from 10 to 40, with a slight drop as we continue to use
even more results (50). This is because using too few search results provides too
little external knowledge, while using too many results introduces extra noise.

Using paired t-test, we assessed the statistical significance of the improve-
ments due to our methodology versus the baseline. We found the results to be
highly significant (p < 0.0005), thus confirming the value of external knowl-
edge for query classification.

5.5 Voting versus Alternative Methods

As explained in Section 4.2, one may use several methods to classify queries
from search engine results based on our relevance model. As we have seen, the
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Table III. Varying the Number of Search
Results

Number of Results Precision F1
baseline 0.534 0.696

10 0.706 0.827
20 0.751 0.857
30 0.796 0.886
40 0.807 0.893
50 0.798 0.887

voting method works quite well. In this section, we compare the performance
of voting among the top-ten search results to the following two methods:

—GV: Generalized voting method described in Section 4.5. We discretize the
quality score r(d , q) of a query/document pair (returned by a search engine)
into {high, medium, low}. We then learn the three corresponding weights
on a set of training queries using (8), and test the performance on holdout
queries.

—DC: Discriminative classification learning of query-classification based on
logistic regression, described in Section 4.6.

GV requires a training/testing split. Neither voting nor DC requires such a
split; however, for consistency, we randomly draw 50-50 training/testing splits
for ten times, and report the mean performance ± standard deviation on the
test-split for all methods. For this experiment, instead of precision and recall, we
use DCG-k, popular in search engine evaluation. The DCG (discounted cumu-
lative gain) metric, described in Jarvelin and Kekalainen [2000], is a ranking
measure where the system is asked to rank a set of candidates (in our case,
judged categories for each query), and computes for each query q:

DCGk(q) =
k∑

i=1

g (Ci(q))/ log2(i + 1),

where Ci(q) is the i-th category for query q ranked by the system, and g (Ci)
is the grade of Ci: we assign grades of 10, 5, 1, 0 to the 4-point judgment scale
described earlier to compute DCG. The decaying choice of log2(i + 1) is conven-
tional, which does not have particular importance. The overall DCG of a system
is the DCG averaged over queries. We use this metric instead of precision/recall
in this experiment because it can directly handle multigrade outputs. Therefore
as a single metric, it is convenient for comparing different methods. Note that
the precision/recall curves used in the earlier sections yield some additional
insights not immediately apparent from the DCG numbers.

Results from our experiments are given in Table IV, where DCG-1 and
DCG-5 are reported with mean ± standard deviation. Figure 12 shows DCG-k
for k = 1, . . . , 10, where we only report the mean values over the ten random
splits. The oracle method is the best ranking of categories for each query after
seeing human judgments. It cannot be achieved by any realistic algorithm, but
is included here as an absolute upper bound on DCG performance. The simple
voting method performs very well in our experiments. The more complicated
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Table IV. Voting and Alternative Methods

Set 1
Method DCG-1 DCG-5
Oracle 7.58 ± 0.12 14.56 ± 0.19
Voting 5.33 ± 0.16 11.82 ± 0.21

DC 5.51 ± 0.10 12.28 ± 0.19
GV 5.40 ± 0.13 12.16 ± 0.19

Set 2
Method DCG-1 DCG-5
Oracle 5.83 ± 0.10 10.21 ± 0.08
Voting 3.56 ± 0.14 7.94 ± 0.20

DC 3.74 ± 0.10 8.33 ± 0.12
GV 3.68 ± 0.06 8.21 ± 0.13

Fig. 12. DCG-k for k = 1, . . . , 10.

methods may lead to moderate performance gain (especially DC, which uses
discriminative training in Section 4.6). However, both methods are computa-
tionally more costly, and the potential gain is minor enough to be neglected.
This means that as a simple method, voting is quite effective.

We can observe that GV, which uses a quality score returned by a search
engine to adjust importance weights of returned pages for a query, does not
yield appreciable improvement. This implies that putting equal weights (vot-
ing) performs similarly as putting higher weights to higher quality documents
and lower weights to lower quality documents (GV), at least for the top search
results. It may be possible to improve this method by including other page-
features that can differentiate top-ranked search results. However, the effec-
tiveness will require further investigation, which we did not test. We may also
observe that the performance on Set 2 is lower than that on Set 1, which means
queries in Set 2 are harder than those in Set 1.
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5.6 Failure Analysis

We scrutinized the cases when external knowledge did not improve query clas-
sification, and identified three main causes for such lack of improvement.
(1) Queries containing random strings, such as telephone numbers—these
queries do not yield coherent search results, and so the latter cannot help clas-
sification (around 5% of queries were of this kind). (2) Queries that yield no
search results at all; there were 8% such queries in Set 1 and 15% in Set 2.
(3) Queries corresponding to recent events, for which the search engine did not
yet have ample coverage (around 5% of queries). One notable example of such
queries are entire names of news articles—if the exact article has not yet been
indexed by the search engine, search results are likely to be of little use.

6. CONCLUSIONS

Query classification is an important information retrieval task. Accurate clas-
sification of search queries can potentially be useful in a number of higher-level
tasks such as Web search and ad matching. Since search queries are usually
short, by themselves they usually carry insufficient information for adequate
classification accuracy. To address this problem, we proposed a methodology for
using search results as a source of external knowledge. To this end, we send the
query to a search engine, and assume that a plurality of the highest-ranking
search results are relevant to the query. Classifying these results then allows
us to classify the original query with substantially higher accuracy.

The results of our empirical evaluation definitively confirmed that using the
Web as a repository of world knowledge contributes valuable information about
the query, and aids in its correct classification. Notably, our method exhibits sig-
nificantly higher accuracy than methods described in prior studies.5 Compared
to earlier studies, our approach does not require any auxiliary taxonomy, and
we produce a query classifier directly for the target taxonomy. Furthermore, the
taxonomy used in this study is approximately two orders of magnitude larger
than that used in prior works.

We also experimented with different values of parameters that characterize
our method. When using search results, one can either use only summaries of
the results provided by the search engine, or actually crawl the results pages
for even deeper knowledge. Overall, query classification performance was best
when using the full crawled pages (Table I). These results are consistent with
prior studies [Gabrilovich and Markovitch 2007], which found that using full
crawled pages is superior for document classification than using only brief sum-
maries. Our findings, however, are different from those reported by Shen et al.
[2006a], who found summaries to yield better results. We attribute our obser-
vations to using a more elaborate voting scheme among the classifications of
individual search results, as well as to using a more difficult set of rare queries.

We also found that the best results were obtained by using full crawled pages
and performing voting among their individual classifications. For a classifier

5Since the field of query classification does not yet have established and agreed-upon benchmarks,
direct comparison of results is admittedly tricky.
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that is external to the search engine, retrieving full pages may be prohibitively
costly, in which case one might prefer to use summaries to gain computational
efficiency. On the other hand, for the owners of a search engine, full page clas-
sification is much more efficient, since it is easy to preprocess all indexed pages
by classifying them once onto the fixed taxonomy. Then, page classifications
can be obtained as part of the metadata associated with each search result, and
query classification can be nearly instantaneous.

When using summaries it appears that better results are obtained by first
concatenating individual summaries into a metadocument, and then using its
classification as a whole. We believe the reason for this observation is that
summaries are short and inherently noisier, hence their aggregation helps to
correctly identify the main theme. Consistent with our intuition, using too few
search results yields useful but insufficient knowledge, and using too many
search results leads to inclusion of marginally relevant Web pages. The best
results were obtained when using 40 top search hits.

In this work, we first classify search results, and then use their classifications
directly to classify the original query. Alternatively, one can use the classifica-
tions of search results as features in order to learn a second-level classifier.
In Section 5.5, we reported some preliminary experiments in this direction,
and found that learning such a secondary classifier did not yield considerable
advantages. We plan to further investigate this direction in our future work.

It is also essential to note that implementing our methodology incurs little
overhead. If the search engine classifies crawled pages during indexing, then
at query time we only need to fetch these classifications and do the voting.

Our methodology for using search results can be particularly beneficial for
rare queries, for which little per-query learning can be done. In the present
study we proved that such scarceness of information could be addressed by
leveraging the knowledge found on the Web. In our recent work [Broder et al.
2009, 2008] we used the methodology developed in this article to match Web
search queries with more relevant ads. To date, such matching has mostly been
performed using the bag of words, and we showed that using classification-
based features allows us to perform more fine-grained matching and serve more
relevant ads.

In our further research we plan to make use of session information in order to
leverage knowledge about previous queries to better classify subsequent ones.
We are also studying the effect of query classification in new domains such as
folksonomies, where the context for query classification consists of tags assigned
by the users to cataloged objects.
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