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Abstract

We introduce a method for simultaneously classifying,
segmenting and tracking object instances in a video se-
quence. Our method, named MaskProp, adapts the popu-
lar Mask R-CNN to video by adding a mask propagation
branch that propagates frame-level object instance masks
from each video frame to all the other frames in a video clip.
This allows our system to predict clip-level instance tracks
with respect to the object instances segmented in the mid-
dle frame of the clip. Clip-level instance tracks generated
densely for each frame in the sequence are finally aggre-
gated to produce video-level object instance segmentation
and classification. Our experiments demonstrate that our
clip-level instance segmentation makes our approach robust
to motion blur and object occlusions in video. MaskProp
achieves the best reported accuracy on the YouTube-VIS
dataset, outperforming the ICCV 2019 video instance seg-
mentation challenge winner despite being much simpler and
using orders of magnitude less labeled data (1.3M vs 1B im-
ages and 860K vs 14M bounding boxes). The project page
isat: https://gberta.github.io/maskprop/.

1. Introduction

In this paper, we tackle the recently introduced video in-
stance segmentation problem [42]. This task requires seg-
menting all instances of a predefined set of object classes
in each frame, classifying them, and linking individual in-
stances over the entire sequence.

In recent years, convolutional networks have obtained re-
markable results in still-image object detection [16, 33, 14,

], and segmentation [27, 45, 8, 4]. However, extending
these models to video instance segmentation is challeng-
ing. In order to localize objects precisely, these methods
have to operate at very large spatial resolution. As a result,
detectors based on the popular ResNet-101 or ResNet-152
backbones [17] can rarely fit more than one image per GPU
during training. In the context of video instance segmenta-
tion this is problematic because tracking objects over time
requires analyzing multiple video frames simultaneously.

Figure 1: In this paper, we tackle the problem of video in-
stance segmentation, which requires classifying, segment-
ing, and tracking object instances in a given video sequence.
Our proposed Mask Propagation framework (MaskProp)
provides a simple and effective way for solving this task.

To address this issue, one could reduce the spatial res-
olution of the input and fit more video frames in a GPU.
However, doing so typically leads to a significant drop in
segmentation or detection performance. Alternatively, one
could perform high-resolution instance segmentation on in-
dividual frames and then link segmentations temporally in
a separate post-processing stage. However, performing in-
stance segmentation and tracking in two disjoint steps of-
ten produces suboptimal results, because these two tasks
are closely intertwined. The key challenge then becomes
designing a unified model that can track objects in video
while maintaining strong detection accuracy.

Currently, the best method for video instance segmen-
tation is the ICCV 2019 challenge winner [28]. It tackles
video instance segmentation by dividing it into four prob-
lems: 1) detection, 2) classification, 3) segmentation, and
4) tracking. These four problems are solved independently
using several off-the-shelf components and their respective
solutions are combined and adapted to the video instance
segmentation task. However, despite effective performance,
such an approach is disadvantageous because it requires de-
signing and tuning a separate model (or, in some cases, an
ensemble of models) for each of the four tasks. This ren-
ders the approach costly and cumbersome. On the other
end of the complexity spectrum, MaskTrack R-CNN [42] is
a simple unified approach trained end-to-end but it achieves
significantly lower performance (30.3 vs 44.8 video mAP).

9739



MaskTrack R-CNN [42] ICCV19 Challenge Winner [28] MaskProp
Classification cls head Mask R-CNN [16], ResNeXt-101 32x48d [30] cls head
Localization bbox head Mask R-CNN [16] bbox head
Model Segmentation mask head DeepLabv3 [9], Box2Seg [29] mask head
Tracking tracking head UnOVOST [47], ReID Net [ 18, 31] mask propagation head
Optical Flow - PWC-Net [35] -
ImageNet [34] (1.3M images) v v v
.. COCO [25] (860K bboxes) v v v
Pre-training Datasets Instagram [30] (1B images) ) v )
OpenImages [23] (14M bboxes) - v -
Performance yideo mAP 30.3 448 46.6
video AP@75 32.6 48.9 51.2

Table 1: A table comparing our work to prior video instance segmentation methods [42,
] decomposes video instance segmentation into four different problems, solves each of them independently using

Winner [

]. The ICCV 2019 Challenge

ensembles of different models, and then combines these solutions. In contrast, our approach relies on a single unified model
trained end-to-end. Despite being simpler, and using several orders of magnitude less pretraining data (1.3M vs 1B images
and 860K vs 14M bounding boxes) our model achieves higher accuracy. Furthermore, compared to MaskTrack R-CNN [42],

our work yields a 16.3% gain in mAP (46.6% vs 30.3%).

To address the shortcomings of these prior methods we
introduce MaskProp, a simple mask propagation framework
for simultaneously classifying, segmenting and tracking ob-
ject instances in video. Our method adapts the popular
Mask R-CNN [16] to video by adding a branch that prop-
agates frame-level instance masks from each video frame
to other frames within a temporal neighborhood (which we
refer to as a clip). This allows our method to compute clip-
level instance tracks centered at each individual frame of the
video. These densely estimated clip-level tracks are then
aggregated to form accurate and coherent object instance
sequences for the entire video, regardless of its length. This
renders our approach capable of handling challenging cases
of occlusions, disocclusions, and motion blur. Our method
achieves the best reported accuracy on the YouTube-VIS
dataset [42], outperforming the ICCV 2019 challenge win-
ner [28] despite being much simpler and using significantly
less labeled data (1000x fewer images and 10x fewer bound-
ing boxes). In Table 1, we compare our approach vs these
prior methods in terms of accuracy and other characteristics.

2. Related Work

Instance Segmentation in Images. Compared to instance
segmentation in images [1 1, 16, 44, 1, 2, 22, 26], the prob-
lem considered in this paper requires not only to segment
object instances in individual frames, but also to determine
instance correspondences across multiple frames. We lever-
age the Mask R-CNN model [16] for still-image instance
segmentation and adapt it to track object instances in video.
Object Detection in Video. Object detection in video re-
quires classifying and localizing objects in every frame of
a given video. Most modern video object detection sys-
tems [46, 5, 40, 13] implement some form of spatiotem-
poral feature alignment for improving object detection ac-
curacy in individual video frames. However, these systems
are typically not designed for tracking object instances. In

contrast, our mask propagation produces clip-level instance
segmentations rather than frame-level bounding boxes.

Video Object Segmentation. The task of video object
segmentation requires segmenting foreground objects in a
class-agnostic fashion [43, 21, 36, 38], often by leveraging
ground truth masks available for the first frame during in-
ference [0, 32, 10, 19, 37]. Instead, video instance segmen-
tation requires finding all instances of a predefined set of
object classes in each frame, classifying them and linking
them over the entire sequence.

Video Instance Segmentation. The recently introduced
video instance segmentation task [42] requires classifying,
segmenting and tracking object instances in videos. This
is the task considered in this work. There are only a few
video instance segmentation methods we can compare our
approach to. The MaskTrack R-CNN [42] presents a uni-
fied model for video instance segmentation. It augments the
original Mask R-CNN [16] with a tracking branch that es-
tablishes associations among object instances segmented in
separate frames. Furthermore, we include the ICCV 2019
video instance segmentation challenge winner [28] in our
comparison. This approach divides video instance segmen-
tation into four separate subproblems: classification, de-
tection, segmentation, and tracking. A separate model (or
an ensemble of models) is used to solve each of these sub-
problems, and these solutions are then combined to produce
video instance segmentation results. For brevity, from now
on we refer to it as EnsembleVIS to indicate that it is an en-
semble approach designed for video instance segmentation.

Our MaskProp framework provides advantages over
both of these methods [42, 28]. Similarly to MaskTrack
R-CNN [42], our method is a unified and simple approach.
However, our mask propagation branch is much more effec-
tive than the tracking branch of MaskTrack R-CNN, achiev-
ing much higher accuracy relative to this baseline. Fur-
thermore, compared to EnsembleVIS [28], our method 1)
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Figure 2: An illustration of our MaskProp system, which takes as input a video clip centered around frame ¢, and outputs
a clip-level instance track. Our mask propagation framework can be summarized in three high-level steps: 1) An instance-
specific feature map at time ¢ is computed by masking the frame features at time ¢ with the given instance segmentation
for frame ¢ (one for each instance detected in frame ¢). 2) Next, we use our mask propagation mechanism to temporally
propagate instance-specific features from frame ¢ to all the other frames in the clip. 3) Lastly, our model predicts instance-
specific segmentations in every frame of the clip by implicitly matching the propagated instance features with the frame-level
features computed at each time step. This last step yields clip-level instance tracks centered around frame .

is much simpler, 2) uses significantly less labeled data, and
3) produces higher accuracy on YouTube-VIS [42].

3. Video Instance Segmentation

Problem Definition. Let us denote with V' € REX3*HxW
an input video consisting of L RGB frames of spatial size
H x W . The aim of our system is to segment and temporally
link all object instances that are visible for at least one frame
in V and that belong to a predefined set of categories C =
{1, ..., K'} . To achieve this goal, our model outputs a video-
level instance mask track M? € RL*H*W yith a category
label ¢! € {1,..., K} and a confidence score s° € [0, 1] for
each object instance ¢ detected in the video.

Evaluation Metric. Video instance segmentation is evalu-
ated according to the metrics of average precision (AP) and
average recall (AR). Unlike in the image domain, these met-
rics are evaluated over the video sequence. Thus, to eval-
uate spatiotemporal consistency of the predicted mask se-
quences, the video Intersection over Union (IoU) between
a predicted object instance 7 and a ground truth object in-
stance j is computed as:

S IMi() N A ()]
IoU(i,j) = ST (1) U N (1) (1)

where M7 (t) is the ground-truth segmentation of object j
in frame ¢. To achieve a large IoU, a model must not only
accurately classify and segment object instances at a frame-
level, but also reliably track them over the video sequence.

As in the COCO benchmark for image segmenta-
tion [25], the metrics of AP and AR are computed separately
for each object category, and then averaged over ten IoU
thresholds from 50% to 95% at increments of 5%. Lastly,
the resulting AP and AR metrics are averaged over the cat-
egory set, which yields the final evaluation metric.

4. Mask Propagation

MaskProp takes a video V' of arbitrary length L as in-
put and outputs video-level instance segmentation tracks
M, category labels ¢’ and confidence scores s* for all
objects ¢ detected in the video. In order to achieve this
goal, our method first builds clip-level object instance tracks
M pyiqp € RETHUXIXHXW for each individual clip
Vi_puir € RETHIXIXHXW of Jength (2T + 1) in the
video, i.e., for t = 1,2,..., L (clips at the beginning and
the end of the video will include fewer frames).

We want to use clips that are long enough to allow us
to jointly solve instance segmentation and tracking while
handling challenging cases of occlusion and motion blur.
At the same time, the clip should be short enough to allow
us to fit it at high spatial resolution in the memory of a GPU.

The resulting clip-level instance masks M; ., , pro-
duced densely for all overlapping clips t = 1,...,L are
then aggregated to produce video-level instance masks M?.

Our approach for clip-level instance segmentation is de-
scribed in subsections 4.1 and 4.2. We also illustrate it in
Figure 2. The subsequent clip-level instance mask aggrega-
tion method is presented in subsection 4.3.
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Figure 3: We adapt Mask R-CNN [16] to video by adding
a mask propagation branch, for tracking object segmenta-
tion instances in video. Given a video clip centered around
frame ¢, our system outputs a clip-level instance segmenta-
tion track as well as a classification score and a bounding
box for each object instanced detected in frame ¢. For com-
pactness, in this figure, we illustrate our system processing a
pair of frames but typically the propagation is applied from
the middle frame to all the other frames in the clip.

4.1. Video Mask R-CNN

Our video instance segmentation system is based on the
Mask R-CNN [16] model, which we adapt to video by
adding a mask propagation branch (See Figure 3). We train
our system with a multi-task loss L; = L§* + L% +
Liyvask 4 [PTP where t denotes a time-step of a center
frame. We use identical loss terms Lg§'s, Lbor  [mask aq
in Mask R-CNN. The mask propagation loss is defined as:

Ny t+T _ o
Ly =% > 1=sloU(M{_qy p(t"), M{_p, p(t) @)
i t/=t—T
where M/ _ ., +(t') € [0,1] is the segmentation at time
t’~ for an instance ¢ predicted from a clip centered at ¢ and
M} ., +T~(L" ) is the corresponding ground truth mask at
time t'. NV is the number of ground truth object instances
in frame ¢, and sIoU is defined as:

- >, A(p)B(p)
sloU(A, B) = ZpA(p) + B(p) — A(p)B(p) @

where the summations in numerator and denominator are
performed over every pixel location p. The loss above is a
soft IoU loss, which we observed to work slightly better
than the standard cross entropy loss for our task.

4.2. Mask Propagation Branch

Overview. Our main technical contribution is the design of
a mask propagation branch, that allows our method to track
object instances. Given a video clip V;_r.,4+7 centered

at frame ¢, our system outputs clip-level instance masks
M;_ ., for each predicted object instance ¢ in frame ¢.
Our mask propagation branch can be described in three
high-level steps: 1) instance-specific feature computation,
2) temporal propagation of instance features, and 3) propa-
gated instance segmentation. We will now describe each of
these steps in more detail. We introduce our mask propaga-
tion with the example of propagating object instance masks
from frame ¢ to frame ¢ + 6 where § € [-T : T].

Computing Instance Specific Features. @ The mask
branch of our model predicts frame-level instance masks
M} e RV H W from single frame inputs. We then
use these frame-level instance masks to compute instance-
specific features for frame ¢. Specifically, for each object in-
stance i, we compute an element-wise product between M}
and the feature tensor from the backbone network f;. This
then yields a set of new feature tensors fi € RE*H *xW’,
where ¢ = 1, .., Ny, and IV, is the number of object instances
detected in frame ¢. In other words, for each object instance
i, we are zeroing out the feature values in f; that correspond
to pixels not belonging to that object instance.

Temporally Propagating Instance Features. Given
frame-level features f;, fio5 € RE*H "W’ and instance-
specific feature tensor f{, our method generates a propa-
gated instance feature tensor g; ,, 5. Intuitively, g; , | 5 rep-
resents the features predicted by our model for object in-
stance ¢ in frame ¢ + ¢ from an instance-specific feature ten-
sor fi. The tensor g;t s Is generated by warping features
f¢ using the alignment computed from frame-level features
ft and fi1s. We implement the propagation mechanism via
a deformable convolution [12], which has previously been
used for aligning features computed from separate frames
of a video [5, 3]. Specifically, we compute the element-
wise difference of tensors fy, fi+s and feed it through a
simple residual block [17], which predicts motion offsets
Ot.t+5 € R H'XW'  Thege offsets contain (z,y) sam-
pling locations for each entry of a & x k deformable convo-
lution kernel [12]. The propagation step takes as inputs 1)
the offsets o, ¢+ and 2) the instance feature tensor fti, and
then applies deformable convolution to output the propa-
gated instance feature tensor g;t 5 for each instance i . We
use subscript ¢, ¢ + J to denote the propagated instance fea-
ture because, although g is obtained by propagating the fea-
ture tensor f;, the offset computation uses both frame ¢ and
frame ¢ + §. We stress that no explicit ground truth align-
ment is available between frames. The deformable convolu-
tional kernels are supervised implicitly by optimizing Eq. 2.
Segmenting Propagated Instances. Lastly, we use our
propagated feature map gi’t s for predicting a correspond-
ing object instance mask in frame ¢ 4+ §. To do this we
first, construct a new feature tensor ¢ , s = g; ;5 + frrs-

The addition effectively overimposes the tensor g; , , 5 pre-
dicted from time ¢ for object instance ¢ in frame ¢ + ¢, with
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Figure 4: An illustration of the 3 steps implemented by our mask propagation branch: 1) For every detected instance in frame
t, we compute an instance-specific feature tensor via element-wise multiplication between tensor ¢ and the given frame-level
instance mask at frame ¢ . 2) Next, the element-wise difference of the feature tensors associated with frames ¢ and ¢ + ¢ is
used to predict motion offsets between frames ¢ and ¢ + §. The resulting offsets are used to propagate the instance-specific
tensors from time ¢ to time ¢ + § via deformable convolution. The propagated tensors represent instance-specific features

predicted for time ¢ + J using the tensors computed at time ¢.

Lastly, we add the propagated instance feature tensors to the

tensor effectively computed at ¢ + §. A convolutional layer applied to these tensors predicts instance masks in frame ¢ + 4.
The pixels that do not belong to any object instances are zeroed out using an instance-agnostic attention map.

the tensor f; s effectively computed from the frame at time
t 4 6. If the object instance prediction is consistent with the
feature computation, the feature tensors will be aligned and
thus, they will reinforce each other in the predicted region.

Finally, the resulting feature tensors qﬁi)t 5 are fed into
a 1 x 1 convolution layer that outputs instance masks for
each object instance ¢ in frame ¢ + . The masks are nor-
malized with the softmax nonlinearity across all N; in-
stances. To zero-out pixels that do not belong to any object
instance, we use a single 3 X 3 convolution that computes
an instance-agnostic attention map A;, s from feature ten-
sor fi1s. We then multiply A, s with each of our predicted
instance masks. A detailed illustration of our mask propa-
gation branch is presented in Figure 4.

4.3. Video-Level Segmentation Instances

Given a video of length L, our goal is to produce video-
level segmentation instances M € RIXHXW — Con-
ceptually, this requires linking clip-level instance tracks
M;_p., pand M}, .., wheni and j represent the same
object instance, i.e., when the instances are matching. We
achieve this by assigning a video-level instance ID to each
of our predicted clip-level instance tracks. Matching in-
stance tracks are assigned the same video-level instance ID.
Matching Clip-Level Instance Tracks. Consider a pair of
clip-level instance tracks Mti_T:t 4T and Mt],_T:t, T that
are centered around frames ¢ and ¢’ respectively. They over-
lap in time if |t — ¢'| < 2T + 1. Let us denote their over-
lapping time interval as N; . Given two overlapping in-

stance tracks, we can check if they match by comparing
their predicted instance masks in the overlapping frames.
If the masks of the two instance tracks align well, then they
are likely to encode the same object instance. Otherwise,
each track represents a different object instance. We com-
pute a matching score mi{, between two clip-level instance
tracks using our previously defined soft IoU metric as:

1 ; ~ : -
=— 3 sIoU(M;{_p.q o (t), M}, 1y (D) @)
|mt,t’|t~em
t,t!

Video-Level Instance ID Assignment. We denote with )
the set of video-level instance IDs. The set ) is built incre-
mentally by matching clip-level instance tracks M} .,
in order from time ¢ = 1 to time ¢t = L. Initially, we set
Y ={1,2,..., N1} where N is the number of object in-
stances detected at time ¢ = 1 (i.e., in the first clip of the
video). Let y; € Y denote the video-level instance ID as-
signed to clip-level instance track M;_., ;. As we move
forward in time ¢ > 1, the video-level instance ID y; is as-
signed by matching clip-level instance M;_ ., , 1 to all pre-
viously processed instance tracks M}, .., ;- that overlap
with this clip, i.e., such that N, ¢ # (. For each video-level
instance ID y € ) already in the ID set, we compute a score
q;(y) capturing how well M;_ ., , - matches the tracks that
have been already assigned video-level ID y:

N,/ ] i\
_ Ztls‘t' Ny 70 Zj:tl l{yi’ = y} : m;,g’
o N,/ ]
Et’s.t. Ny 40 70 Zj:tl l{yi, = y}

4 (y) )
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Figure 5: An illustration of instance-specific features propagated from frame ¢ to other frames in the given video clip. Here,
we visualize propagated activations from one randomly selected feature channel. The activations in the two rows correspond
to two different object instances detected at time ¢. Our visualizations suggest that MaskProp reliably propagates features
that are specific to each instance even when instances appear next to each other, and despite the changes in shape, pose and

the nuisances effects of deformation and occlusion.

where l{y{, = y} is an indicator function that is equal
to 1 when yg, = y, and 0 otherwise. Ny is the number
of detected instances at time ¢’, and mi’_z/ is the previously
defined matching score between instance tracks M;_ .., T
and M, 1./, . The score g;(y) is effectively an average
of the soft IoU computed between instance track M{_p., 1,
and all its overlapping instance tracks that have been as-
signed video-level instance ID y.

Let ¢* = maxyey ¢} (y) be the maximum score obtained
by considering all possible video-level instance IDs y € ).
If ¢* is greater than a certain threshold, the current in-
stance track MZ_T:t oT is assigned the video-level instance
ID y* = arg max, ¢y, ¢;(y). Otherwise, the clip-level track
does not match any of the current video-level instances. In
such case we create a new video-level instance ID and as-
sign it to the the clip-level track while also expanding the
set V,ie,yi =|V|+1andY = YU {|Y| +1}.

Finally, for each video-level instance ID y € ), we
generate the final sequence of segmentation instance masks
MY € REXHXW qq:

MY(t) = MLT:HT(t) if y% =Y
0 otherwise .

4.4. Implementation Details

Backbone Network. As our backbone we use a Spa-
tiotemporal Sampling Network [5] based on a Deformable
ResNeXt-101-64x4d [12, 41] with a feature pyramid net-
work (FPN) [24] attached on top of it.

Detection Network. For detection, we use a Hybrid Task
Cascade Network [7] with a 3 stage cascade.

Mask Propagation Branch. The residual block in the
mask propagation branch consists of two 3 X 3 convolu-
tions with 128 output channels each. The instance feature

propagation is applied to the FPN feature map with the sec-
ond largest spatial resolution. To propagate instance fea-
tures from one frame to another, we predict 9 (x, y) offsets
for every pixel, which are then used as input to a 3 x 3 de-
formable convolutional layer with 256 channels. To capture
motion at different scales, we use three levels of dilated de-
formable convolutions with dilation rates 3, 6, 12 as in [3].
High-Resolution Mask Refinement. Predicting masks
from Rol features typically leads to low resolution predic-
tions. We address this issue via a high-resolution mask re-
finement step. Given the center of a detected bounding box,
we crop a 384 x 384 patch around the object, preserving
the original aspect ratio. We then feed the RGB patch and
the predicted low-resolution mask through 3 residual blocks
each with 128 channels to obtain a high-resolution mask.
Scoring Video-Level Sequences. Each video-level se-
quence contains a list of classification scores and predicted
object labels. To assign a confidence score to each video-
level sequence, we average classification scores associated
with that sequence (separately for each object category).
Training and Inference. We include these details in our
supplementary material.

5. Experimental Results

In this section, we evaluate MaskProp for video instance
segmentation on YouTube-VIS [42], which contains 2, 238
training, 302 validation, and 343 test videos. Each video
is annotated with per-pixel segmentation, category, and in-
stance labels. The dataset contains 40 object categories.
Since the evaluation on the test set is currently closed, we
perform our evaluations on the validation set.

5.1. Quantitative Results

Video instance segmentation is a very recent task [42],
and thus, there are only a few established baselines that we
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Method Pre-training Data mAP AP@75 AR@1 AR@10
DeepSORTi [39] Imagenet [34], COCO [25] 26.1 26.1 27.8 31.3
FEELVOSH [37] Imagenet [34], COCO [25] 26.9 29.7 29.9 334

OSMN# [43] Imagenet [34], COCO [25] 27.5 290.1 28.6 33.1
MaskTrack R-CNN¥ [42] Imagenet [34], COCO [25] 30.3 32.6 31.0 35.5
MaskTrack R-CNN* Imagenet [34], COCO [25] 36.9 40.2 34.3 42.9
EnsembleVIS [28] Imagenet [34], COCO [25], Instagram [30], Openlmages [23] 44.8 48.9 427 51.7
MaskProp Imagenet [34], COCO [25] 46.6 51.2 44.0 52.6

Table 2: The results of video instance segmentation on the YouTube-VIS [

] validation dataset. We evaluate the performance

of each method according to mean average precision (mAP), average precision at 75% IoU threshold (AP@75), and average
recall given top 1 (AR@1) and top 10 (AR@10) detections. The baselines denoted with ¥ were implemented by the authors

in [

], whereas the methods marked with * were implemented by us, and use the same backbone and detection networks as

our approach. Despite its simplicity, our MaskProp outperforms all prior video instance segmentation methods. Furthermore,

we note that compared to EnsembleVIS [
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Figure 6: We plot video mAP as a function of an instance
track clip length (denoted as 27"+ 1 in the paper). Based on
these results, we observe that optimal video instance seg-
mentation performance is achieved when we propagate in-
stance masks to 7" = 6 previous and subsequent frames.

can compare our work to. We include in our comparison
MaskTrack R-CNN [42], and the EnsembleVIS method,
which won the ICCV 2019 video instance segmentation
challenge [28]. Additionally, to make the comparison with
MaskTrack R-CNN more fair, we reimplement it using the
same backbone and detection networks as our MaskProp
(see MaskTrack R-CNN* in Table 2).

We present our quantitative results in Table 2, where we
assess each method according to 1) mean video average pre-
cision (mAP), 2) video average precision at IoU threshold
of 75%, and 3) average recall given 1 and 10 highest scored
instances per video. From these results, we observe that
our MaskProp outperforms all the other baselines accord-
ing to all four evaluation metrics, thus achieving state-of-
the-art results in video instance segmentation on YouTube-
VIS. It can be noted that we outperform EnsembleVIS [28]
by 1.8% mAP even though our approach is much simpler
and uses orders of magnitude less labeled data for pre-
training. Furthermore, compared to the MaskTrack R-CNN,
our method achieves a 16.3% improvement in mAP. We
also note that our implementation of MaskTrack [42] signif-
icantly improves upon the original work, but it is still 9.7%

], our approach uses orders of magnitude less labeled data for pre-training.

Method mAP AP@75
FlowNet2 Propagation 31.4 33.6
MaskTrack R-CNN* 36.9 40.2
MaskProp 46.6 51.2

Table 3: Here, we study the effectiveness of our mask prop-
agation branch. If we replace it with the FlowNet2 propaga-
tion scheme, where masks are propagated using the optical
flow predicted by a FlowNet2 network [20], the accuracy
drops from 46.6 mAP to 31.4 mAP. Similarly, if we replace
our mask propagation branch with the tracking branch from
MaskTrack R-CNN, the accuracy drops to 36.9 mAP. Note
that all of these baselines are implemented using the same
backbone and detection networks.

worse in mAP compared to our model.

5.2. Ablation Experiments

Mask Propagation Branch. To investigate the effective-
ness of our mask propagation branch, we compare our
method with a FlowNet2 [20] propagation baseline. For
this baseline, we use exactly the same setup as for our
MaskProp, except that instance masks are propagated us-
ing the optical flow predicted by a FlowNet2 network [20]
rather than our proposed mask propagation scheme. For a
more complete comparison, we also include the MaskTrack
R-CNN* from Table 2, which uses the originally proposed
tracking branch [42], but is implemented using the same
backbone and detection networks as our MaskProp.

These baselines allow us to directly compare the effec-
tiveness of our mask propagation scheme versus the propa-
gation mechanisms employed by FlowNet2 and MaskTrack
R-CNN [42] methods. The results in Table 3 show that
MaskProp outperforms these baselines by a large margin.
Instance Track Clip Length. Due to occlusions, object in-
stances in video may not be visible in some frames. If there
are occlusions separated by 27”7 + 2 time-steps, we can use
T > T’ to predict longer clip-level instance tracks. In Fig-
ure 6, we study video instance segmentation performance as
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Figure 7: We compare our video instance segmentation results with MaskTrack R-CNN [42] predictions. Different object
instances are encoded with different colors. The first row for each video shows the original frames. The second row illustrates
the mask predictions of MaskTrack R-CNN and the third row those obtained with our MaskProp. Compared to MaskTrack R-
CNN, our MaskProp tracks object instances more robustly even when they are occluded or overlap with each other. Additional
video instance segmentations produced by our method are included in our supplementary video'.

a function of instance track clip length (denoted as 27" + 1
in the paper). Our results indicate that the best accuracy is
achieved when we use a clip length of 13, meaning that we
propagate instances to 6 previous and 6 subsequent frames.
High-Resolution Mask Refinement. We also study the im-
pact of our high-resolution mask refinement, described in
Subsection 4.4. We report that removing this refinement
causes a drop of 1.9% in video instance segmentation mAP.

5.3. Qualitative Results

In Figure 7, we compare our predicted clip-level instance
tracks (last row of predictions for each clip) with the Mask-
Track R-CNN predictions (first row of predictions). We
use different colors to represent different object instances.
Our qualitative results suggest that our MaskProp produces
more robust and temporally coherent instance tracks than
MaskTrack R-CNN. Such differences in performance are
especially noticeable when a video contains large object
motion, occlusions, or overlapping objects.

https://gberta.github.io/maskprop/

In Figure 5, we also visualize instance-specific features
that are propagated from frame ¢ to other frames in the
given video clip for two different object instances detected
in frame ¢. Here, we show activations from a randomly se-
lected feature channel. Based on these results, we observe
that our MaskProp reliably propagates features that are spe-
cific to each instance despite motion blur, object deforma-
tions and large variations in object appearance.

6. Conclusion

In this work, we introduced MaskProp, a novel architec-
ture for video instance segmentation. Our method is con-
ceptually simple, it does not require large amounts of la-
beled data for pre-training, and it produces state-of-the-art
results on YouTube-VIS dataset. In future, we plan to ex-
tend MaskProp to scenarios where only bounding box an-
notations are available. We are also interested in applying
our method to problems such as pose tracking.
Acknowledgements: We thank Christoph Feichtenhofer,
Du Tran, and Tae-Hyun Oh for helpful discussions.
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