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ABSTRACT

Motivation: Analyzing short time-courses is a frequent and relevant
problem in molecular biology, as, for example, 90% of gene
expression time-course experiments span at most nine time-points.
The biological or clinical questions addressed are elucidating
gene regulation by identification of co-expressed genes, predicting
response to treatment in clinical, trial-like settings or classifying
novel toxic compounds based on similarity of gene expression time-
courses to those of known toxic compounds. The latter problem is
characterized by irregular and infrequent sample times and a total
lack of prior assumptions about the incoming query, which comes in
stark contrast to clinical settings and requires to implicitly perform a
local, gapped alignment of time series. The current state-of-the-art
method (SCOW) uses a variant of dynamic time warping and models
time series as higher order polynomials (splines).
Results: We suggest to model time-courses monitoring response
to toxins by piecewise constant functions, which are modeled
as left–right Hidden Markov Models. A Bayesian approach to
parameter estimation and inference helps to cope with the short,
but highly multivariate time-courses. We improve prediction accuracy
by 7% and 4%, respectively, when classifying toxicology and stress
response data. We also reduce running times by at least a factor of
140; note that reasonable running times are crucial when classifying
response to toxins. In conclusion, we have demonstrated that
appropriate reduction of model complexity can result in substantial
improvements both in classification performance and running time.
Availability: A Python package implementing the methods
described is freely available under the GPL from
http://bioinformatics.rutgers.edu/Software/MVQueries/.
Contact: hafemeis@molgen.mpg.de; igcf@cin.ufpe.br; schliep@cs
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Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on July 8, 2010; revised on December 26, 2010; accepted
on January 19, 2011

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

1 INTRODUCTION
Time-course experiments reflecting the dynamics of transcription
are among the most intriguing, but at the same time, one of the most
challenging sources of data in molecular biology. Intriguing, because
they offer views of the temporal dynamics of life at the molecular
level. We see, for example, gene expression change over time in the
cell cycle or, on a larger time scale, during development as part of the
normal regulatory process. We also see changes as a response to an
external stimulus leading to a quick response as in the case of plants
exposed to sunlight or a slower response as in disease progression
or an exposure to toxins. These dynamic changes and their intricate
regulatory control mechanisms are of fundamental interest in the
study of biological systems with inference of regulatory mechanisms
as a main goal.

However, these time-course experiments are also very
challenging. One of the reasons is rather simple. Time-
courses data in other disciplines such as finance, astronomy
or climate literally span years at second interval resolution. As a
consequence, it is reasonable to consider the data, for all practical
purposes, continuous. Under weak assumptions, such continuous
representations have their advantages when filling in missing
values through interpolation or obtaining future predictions through
extrapolation. However, in gene expression, time-courses are often
sampled at very low frequencies and at irregular intervals. Indeed
a query in the Gene Expression Omnibus (GEO) database (Edgar
et al., 2002) reveals that 90% of all time-courses have less than
9 time points implying that the name short time-courses (Ernst
et al., 2005) is well deserved. As a consequence, in such cases a
discrete time view and a discrete representation might be more
appropriate. This dichotomy between discrete and continuous
view has implications with respect to imputing missing values,
taking derivatives (or measuring slopes) and choosing appropriate
functional classes for fitting and interpolation. More generally, it
determines how appropriate the use of ‘classical’ tools from time-
courses analysis for each specific biological dataset is. Interpolation
might sometimes overstate the case the data make, see Figure 1.
Simply plotting the time-courses joined by lines might lead to a
false impression of continuous time and a false sense of security in
choosing methods.

Undersampling gives biological reasons to question smooth
interpolations between gene expression levels at sparsely sampled
time-points. Additionally, sampling frequencies often do not allow
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Fig. 1. We show the gene expression time-courses of two genes, on the left
joined by a Bspline of order three and as points on the right. Depicted here
are expression measurements for genes 5 and 13 from the data used by Smith
et al. (2009) after treatment with 250 mg/kg ketoconazole.

to monitor the very processes one attempts to understand. For
example, transcriptional on and/or offset happens often within 1–2 h
or less (Gasch et al., 2000; Hager et al., 2009; Zaslaver et al.,
2004) in particular as a response to stress and treatment signals
(Chechik and Koller, 2009). While this is sometimes accounted
for in the experimental design, see e.g. yeast cell cycle data
due to Spellman et al. (1998), it is not economical nor feasible,
particularly in a clinical setting, to collect samples in minute
intervals over several hours. Missing the transient part of such
gene expression curves—the rapid rise and overshoot (Chechik and
Koller, 2009)—and sampling the steady state instead, does indeed
lead to gene expression curves, which are approximately piecewise
constant (also called step functions) instead of polynomials of higher
degrees.

1.1 Prior work
The particular challenges of short irregularly sampled time-courses
have been addressed with a wide range of robust methods, mostly
rooted in statistics (Ernst et al., 2005). As the review (Bar-
Joseph, 2004) pointed out, methods which did not rely on a
continuous time representation performed better for time-courses
with a reasonable number of time-points, about a dozen or larger.
Querying gene expression datasets to indicate genes with a similar
pattern of temporal co-expression was proposed for interactive
analysis by Schliep et al. (2003, 2004, 2005) and implemented in
the GQL tool (Costa et al., 2005).

1.1.1 Clinical time series A substantial body of recent work
was concerned with classifying response to treatment in clinical,
trial-like settings. The characteristics of such settings are first
the availability of prior knowledge about the disease in question,
which allows to substantially reduce feature space dimension by
discarding irrelevant features; second that samples are drawn at
regular intervals, which sometimes span up to a few years and
third that runtime is not an issue; up to, say 10 days for analysis
are usually well acceptable. Most recent related work based on
splines (Kaminski and Bar-Joseph, 2007) or Hidden Markov Models
(HMMs) (Costa et al., 2009; Lin et al., 2008), for example, was
concerned with the classification of response to interferon-β in
multiple sclerosis patients.

1.1.2 Immediate response to external stimuli The questions
addressed in our study relate to classifying response patterns
to an unknown stimulus. The particulars of the corresponding
classification task are first that no prior information about the

Fig. 2. The multivariate time-course classification problem with discretely
represented time-courses. The task is to locally align a query with the
expression of three genes, which might result from a process for which
the regulatory program is executed at a different speed or phase shifted,
to the most similar treatment in order to transfer toxicity information from
treatment to query. The shaded area marks the optimal classification and
local alignment of the query with Treatment 1.

incoming query time-course is available such that a preselection
of features is not applicable; second and most importantly, that the
query time-course is usually shorter and not in alignment with the
time-courses already available and third that runtime is an issue—
when classifying response to toxins, for example, hours, sometimes
even minutes count. For toxicity assays, a classifier can indicate the
toxicity level of new compounds based on similarities in the gene
expression changes over time (Hayes et al., 2005). For the latter
application, Smith et al. (2009) modified the correlation optimized
warping (COW) method (Nielsen et al., 1998), a variant of dynamic
time warping (DTW) (Sakoe and Chiba, 1978), to allow local
warpings (i.e. local alignments).

The method, which the authors call shorting correlation optimized
warping (SCOW), outperformed COW, a previously proposed model-
based approach using generative splines by the same authors (Smith
et al., 2008) and two further methods, in particular dynamic time
warping on absolute values. Moreover, to most sensibly address
that incoming queries consist of infrequent and irregular samples,
the authors suggested to subsample queries from the existing data
and to construct classifiers from the remaining time-courses.

Other relevant applications more distantly related to the ones
considered here are to find time shifts in stress/chemical treatments
in order to detect relations between genes and transcription
factors (Redestig et al., 2007; Shi et al., 2007).

1.2 Our approach
We propose the use of stochastic piecewise constant functions
for modeling genome-wide expression time-courses, which reflect
responses to toxic compounds. As explained in Figure 2, the
classification task is to assign an unclassified time-course (‘Query’)
to a time-course which reflects a response to a known toxin
(‘Treatment’). Since Queries and Treatment can be different in terms
of sampling times and frequencies, the technical challenge is to
determine a local, gapped alignment between the Query and the
Treatment time-course.
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Fig. 3. A left–right HMM with two states (top) which can be viewed as a
stochastic piecewise constant function (bottom). In the lHMM, per-state mean
and variance determine expression value and the self-transition probability
segment length. This is equivalent to a piecewise constant function (bottom),
where observations fluctuate according to a Gaussian N(µm,σm) and with
expected length dm. The left to right transitions represented by dashed arrows
allow the classification to be based on local alignments. For example, the
lHMM, which has been trained with the red time-course (red circles), will give
a high likelihood to a query sequence (green crosses), where observations
only fit the latter upregulation expression pattern.

The main contributions of our work are the following:

• We propose the use of stochastic piecewise constant functions,
which can be viewed as HMMs with left–right topology
(see Fig. 3 for an example). The most substantial differences
between this and our prior works (Costa et al., 2009; Schliep
et al., 2003, 2005) is to account for the high dimensionality
of the data per time-point (>1000) and the shortness as
well as irregularity of the time-courses <9. We do this
by Bayesian estimation of parameters and an efficient log-
scale implementation. To allow local alignments including
gaps, thereby addressing that query time-courses have been
sampled irregularly, we estimate probabilities associated with
left-to-right transitions by means of Bayesian regularization.

• As a result, we improve the mean classification accuracy
obtained by the previous method [SCOW (Smith et al., 2009)] by
more than 7% (EDGE data) and 4% (Arabidopsis data) while
being at least 140 times faster than SCOW (0.27 versus 38.5 h
on the EDGE data. Clearly, both accuracy and running time
are relevant in particular when classifying response to toxins
(EDGE) since this translates to choosing the right remedy both
accurately and timely.

• We provide a novel way for assigning times to states and
observations based on assigning time-courses to HMMs with
left–right topology.

• We also demonstrate that modeling time-courses with one-
piece constant functions (or one-nearest neighbor) still leads
to a small, but significant (p=1.1·10−3) improvement in

classification accuracy over SCOW on EDGE data and no
significant difference on Arabidopsis data, while it is over
20 000 times faster to compute.

2 METHODS

2.1 Notation
In the following, let

• i∈{1,...,N} denote the treatments/queries,

• t ∈{1,...,T} denote the time points,

• g∈{1,...,G} be a running index for the genes,

• Oi,g ∈R
T : expression time-course of gene g of treatment/query i.

• Oi,t ∈R
G: expression of all genes at time t of treatment/query i.

• Oi,g,t ∈R: expression value of gene g of treatment/query i at time t.

• Oi ∈R
T×G: collection of all expression values for treatment/query i for

all genes g across all time-points t.

• �: Parameterization describing a HMM.

2.2 Modeling gene expression time-courses with
left–right HMMs

2.2.1 Left–right HMMs definition An HMM gives rise to a stochastic
process by acting on a Markov chain of M states from which real values
are emitted as described by emission probability density functions (pdf)
attached to the states [e.g. Durbin et al. (1998); Rabiner (1989)]. Since the
sequence of states is not observed, states are referred to as hidden. Here
we use HMMs with left–right topologies, that is the Markov chains can be
sequentially ordered and are exclusively visited in that order. More formally,
let A= (aml)1≤m,l≤M be the transition probability matrix of the Markov chain,
where aml is the probability of going from state m to state l. A left–right HMM
is defined by aml =0 for m> l. As is well known, duration times for the single
states m follow a geometric distribution where the expected duration time dm

is computed as dm =1/(1−amm) where amm is the self-transition probability
for state m. The last state M is also referred to as ‘End’ state and, in our case,
does not emit values. The initial probability distribution �= (π1,...,πm) over
the states which reflects from which state the generation procedure is started
will be modeled as a special ‘Start’ state. We refer to left–right HMMs as
lHMMs in the following. For example, a lHMM with two emitting states, the
first state with a mean emission of zero and the second one with a mean
emission of one, models time-courses displaying an upregulation expression
pattern (Fig. 3).

2.2.2 Emission pdfs We use a mixture of two multivariate Gaussians
as emission pdfs. Their first component is a multivariate Gaussian with
diagonal covariance matrix modeling multivariate expression values, where
the different dimensions correspond to the different genes. The second
component models observation due to noise as suggested by Fraley and
Raftery (1998). More formally, the pdf P

k
m for emitting a (multivariate)

expression value Oi,t ∈R
G from state m of lHMM �k is

P
k
m(·) = (1−φnoi)·N(·| �µk

m,�k
m)+φnoi ·N(·| �µnoi,�noi) ,

where N(·| �µ,�) are G-dimensional Gaussians as parameterized by a
G-dimensional mean �µ and a G×G covariance matrix � and φnoi is the
proportion of noise observations. In our experiments, �µnoi ∈R

G is a vector
containing the average expression values of the genes across all treatments
and time-points and �noi ∈R

G×G has diagonal entries set to a high value,
e.g. σgg =2.00, and all other entries are set to zero. In the experiments, we
set φnoi =0.05. All parameters from the noise component are fixed during
parameter estimation.

More formally, each left–right HMM has parameterization

�k = (Ak,Bk,�k) with emission pdf parameterizations

Bk = (�µk
1,..., �µk

M ,�k
1,...,�

k
M , �µnoi,�noi,φnoi)
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Note that only �µk
1,..., �µk

M ,�k
1,...,�

k
M vary among different HMMs �k in the

following.

2.2.3 Stochastic piecewise constant functions Considering only
univariate time-courses for simplicity, we can interpret the temporal
behavior modeled by an lHMM in the following way: each state represents
a particular level of expression of a gene specified by µm, where a certain
level of error (encoded by σ2

m) is allowed, and the time-course has an
expected length of dm of staying at this particular expression level. This
can be interpreted as a ‘bounding box’ specifying the expected expression
of the time-course as depicted in Figure 3 (bottom). Another view helping
to understand why our models perform so well is that of regression with
stochastic piecewise constant functions. The per-state mean values and
the expected state durations define location and length of segments of a
piecewise constant function. If variances are homogeneous, that is identical
in all states, then the probability of observations under our model are the
inverse of the regression errors. Heterogeneous variances correspond to
a time-specific weighting of regression errors in that model. While not
exploited in this article, there is one very important aspect of temporal
asynchronicity built into the models. If one estimates one lHMM from
multiple observations, then the actual segment lengths, the length of the
constant pieces, are the state durations of the state path in the lHMM and are
chosen per observation and will differ between different observations, to
account for phase shift and distinct frequencies.

2.2.4 Classification with left–right HMMs For performing classification,
we train one left–right HMM �i for each treatment response time-course.
For a new incoming query time-courses O, classification is performed by
finding the lHMM with maximum likelihood, or

argmaxiP(O|�i)

where P(O|�i) is the HMM likelihood function as computed with the
forward–backward algorithm (Baum et al., 1970).

The estimation of the lHMM, which is based on the Baum–Welch
algorithm (Baum et al., 1970), has to be performed on a single short time-
courses. Therefore, we need to perform regularization of the parameters to
avoid overfitting. We use maximum likelihood estimates (MLEs) for µi

m.
The covariance matrix �i

m is diagonal and diagonal entries σjj are equal
to max(σ̂jj,σmin), where σ̂jj is the MLE and σmin =2. For the transition
matrix and initial state probabilities, we assume the parameters come from
a Dirichlet distribution.

More formally, let Oi be the observation sequence and X ={X1,...,XT }
be the sequence of states visits of observation Oi such that Xt ∈
{1,...,M} . The Baum–Welch algorithm is based on estimating the forward
ft(m)=P(Oi,0,...,Oi,t,Xt =m) and backward bt(m)=P(Oi,t+1,...,Oi,T |Xt =
m) variables [see (Durbin et al., 1998) for estimates]. We use a Dirichlet
distribution

�i ∼Dir(·|απ) resp. (ai
11,...,a

i
ml,...,a

i
MM )∼Dir(·|αa)

as prior for the initial transition probabilities, respectively, for transition
probabilities ai

ml,m≤ l where αa and απ are the hyper-parameters. Hence,
the MAP estimates of these parameters are as follows:

âi
ml =

aml
∑T−1

t=0 αt (m)Pi
m(Oi,t )βt+1(l)

P(Oi |�i)
+αa −1

∑T−1
l=0 αt (m)βt+1(l)

P(Oi |�i)
+M ∗(αa −1)

and

π̂i
m =

α0(m)β0(m)
P(Oi |�i)

+απ −1
∑M

l=1

(
α0(l)β0(l)
P(Oi |�i)

)
+M ∗(απ −1)

.

We choose απ =αa =1.1. Thus, we enforce small probabilities for all
transitions πm and aml with m≤ l. This regularization is important for the
support of local, gapped alignments, as it gives a small probability to all
transitions regardless of the data support.

2.2.5 Locally aligning time-courses and estimating times In order to make
a query time-course comparable with an existing time-course, we need to
align the two. That is, we need to map each observation in the query to a
specific time-point in the treatment time-course.

Let �i be the HMM with the highest likelihood for a given query. We can
then infer the time mapping from the Viterbi path of the query and the training
data with �i. The Viterbi path (Rabiner, 1989) is the most likely sequence of
hidden states given the observation and, in this setting, can be interpreted as
the sequence of the constant pieces defined by the HMM states which best
describes the data. As our training data comes with time- point information,
we can assign time to each state by evaluating which observations visit
this state in the Viterbi path. We record the times and obtain collection of
time-points assigned to each state, spanning a time interval. We expand the
parameterization of a HMM �k by Sk , where Sk

m is the time interval of
the training observations which visit state m in their Viterbi path. Consider
the example in Figure 3. The seven training observations result in a Viterbi
path of {1,1,1,1,2,2,2}. This assigns the times 2, 4, 6, 9 h to state 1, which
yields S1 =[2,9] and 12, 14, 18 h to state 2, translating to S2 =[12,18]. After
classification, query observations are aligned to time-points based on the
query Viterbi path with �i and the corresponding time interval in Si. We
assume that if several query time-points are generated in the same state,
they will be assigned equal slices of that state’s time interval. That is, all
query observations visiting the same state m are assigned time-points equally
distributed in Si

m. Using our previous example with the query in Figure 3,
all query observations visit state 2, S2 is [12,18] and thus the observations
will be assigned the times 12, 15 and 18 h.

2.3 Constant functions: one-nearest-neighbor classifier
K-nearest neighbor classifiers (Cover and Hart, 1967) are a widely used
simple classification method from machine learning and a baseline for
method comparison. The main idea is to classify an unlabeled object based on
the most common label among its k nearest labeled neighbors. We use k =1,
or a one-nearest-neighbor classifier, which Cover and Hart (1967) found to
outperform k-NN classifiers for larger k under natural assumptions on the
underlying sample space and in an asymptotical sense.

For a query i and multiple treatments j1,...,jk , we have observation
matrices Oi, respectively, Oj measuring expression values per gene and per
time-point with multiple observation for replicates. For both queries and
treatments, we compute a genewise, vector-valued average over the time-
points (and replicates), which we denote as �q and �m(j), respectively. The
classification consists of computing Euclidean distances between the vector
�q and all vectors �m(j) and assigning the treatment of minimal distance to the
query.

The Euclidean distance between the query mean vector �q and the treatment
mean vector �m can also be viewed as a regression error for fitting the
query with the constant vector-valued regression function �f (t)= �m. The
1NN rule—assign the class label from the closest treatment mean vector—is
consequently interpreted as assigning the class label for the treatment with
the minimal regression error.

2.4 Datasets
We use the same dataset used in Smith and Craven (2008); Smith et al.
(2008, 2009) from the EDGE toxicology database (Hayes et al., 2005).
Moreover, we analyze Arabidopsis stress response data (Kilian et al., 2007).
The EDGE toxicology contains measurements of gene expression values
in mice after treatment with different toxins at several dosage levels. The
dataset consists of 216 unique observations of expression levels of 1600
genes spanning 11 treatments. Each observation is associated with a treatment
and a time-point, where the times range from 2 h up to 192 h and a treatment
might have replicates for one or more time-points. The number of observed
times for a treatment ranges from 3 to 9 with an average of 5. The Arabidopsis
dataset (Kilian et al., 2007) contains 18 time-courses measured over 9 stress
conditions and 2 distinct tissues. The data spans over 20 000 genes over 8
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time points in duplicates (0.25, 0.5, 1, 3, 4, 6, 12 and 24 h). To reduce the
number of genes a 2-fold-change filter was applied, which resulted in 2075
genes. An overview of the datasets is given in the Supplementary Material.

Additionally, to further investigate respective strengths and weaknesses of
the methods, we use simulated data. We choose relevant smooth functions,
note that the functional choices do not reflect underlying assumptions of
any method used in the comparison, but rather reflect prototypical biological
behavior: we modeled cell cycle signals by the (periodic) sine function and
upregulation by the (monotonically increasing) sigmoid function. We further
opted for the impulse model proposed by Chechik and Koller (2009), refer to
the Supplementary Material for details. Additionally, we add mirror images
(mirroring along the x-axis) of the functions and add a constant function.
We obtain a total of 13 functions and sample data from these functions at
regular intervals. Every such sampled observation spans 1000 genes, and
we add independent noise from a normal distribution to each datum. We
repeat this procedure three times such that we obtain three repetitions for
each function/time-point.

2.5 Experimental design
As the EDGE toxicology and Arabidopsis datasets have no independent
measurements of time-courses to serve as queries, we use the same procedure
proposed in Smith et al. (2009). For a particular compound treatment, we
generate a query (test data) time-course by (i) randomly selecting its number
of time-points, (ii) randomly choosing which time points to represent and
(iii) randomly picking observations at these time points. All remaining
observations together with all other treatments’ observations constitute the
training data. The classification is performed by building a model for each
time-course in the training data, then aligning the query to all models and
returning the one with highest similarity. Classification is correct if the most
similar model derived from the same treatment as the query.

Ten such train/test datasets for each treatment (110 total for EDGE and 180
for Arabidopsis) are used to evaluate performance. We repeat this procedure
100 times (EDGE) and 30 times (Arabidopsis). The first 50/15 performance
tests are used to choose an adequate number of states for lHMM. We varied
this one free parameter from 2 to 9 and selected the model with highest
classification accuracy: 4 states for SCOW and 6 states for Arabidopsis (see
Supplementary Material for all accuracies). We set the number of states to
be equal to the time-course size, whenever its size is smaller than the pre-
defined number of states. The latter 50/15 performance tests are applied to
SCOW, 1NN and lHMM and results of the test classifications are shown in
Figure 4.

For the simulated data, we generate 10 train/test datasets for each
function and use the same model parameters as with the EDGE data. Mean
classification accuracies are shown in Figure 5.

2.6 Implementations
SCOW is implemented in the Curve Analysis Tool. For our experiments, we
used the parameters with which Smith et al. (2009) obtained the best results:
the number of segments was set to three, and σs =σa =10. Splines of order
two were used to interpolate the time-courses and queries and to reconstruct
pseudo-observations for every 4 h. Note that Smith et al. (2009) did not
segment the datasets for parameter selection, therefore this selection can
include a positive bias favoring SCOW.

Our methods are implemented in Python http://www.python.org using
the NumPy http://numpy.scipy.org/ package, using transition matrices and
state density parameters as the core data structures. All computations are
performed with log-probabilities to avoid numerical problems.

All experiments were done on a Linux machine using a single CPU core
with 2.8 GHz. The running times in minutes for 50 EDGE experiments,
consisting of 110 alignments/classifications each or 5500 alignments total,
are as follows: 0.11 1NN, 16.2 lHMM, 2308 SCOW. Running times in minutes
for the Arabidopsis experiments were as follows: 0.06 1NN, 18 lHMM and

Fig. 4. Accuracy for classifying queries to treatments using the different
methods on EDGE (left) and Arabidopsis (right).

Fig. 5. Accuracies of the methods for the simulated dataset. Each method is
tested with data consisting of 6 and 24 time-points (tps).

10800 SCOW. That is, 1NN achieves a speedup exceeding 20 000 and lHMM
a speedup exceeding 140 over SCOW.

3 DISCUSSION

3.1 Results on biological data
The results for the EDGE and Arabidopsis data are given in a
condensed form as box plots in Figure 4 (see Supplementary
Material for stratified accuracy by treatment for EDGE). Figures
comparing the alignment accuracies are in the Supplementary
Material. Note that both 1NN and lHMM do not consider query
times in their computation. Consequently, the classification accuracy
for those two methods is invariant under distortions as suggested
and performed by Smith et al. (2009). For the EDGE data, their
additional clustering of alignments only improves results for queries
with more than three time-points, less than 43% of all queries, and
by less than 10% in simulations with five equal-sized clusters with
different warpings. As Table 4 from Supplementary Material shows,
on such queries lHMM has an over 19% higher accuracy than SCOW.
Given the running time requirements of SCOW, we refrained from

950

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/7/946/230169 by guest on 20 August 2022



[13:05 17/3/2011 Bioinformatics-btr037.tex] Page: 951 946–952

Classifying short time-courses

using either distortions, which would not influence our results as
actual query times are not used as input or clustering of alignments.
Note that the lHMM is robust to distortions in the unclustered case,
because only the relative order of query observations is taken into
account rather than relying on absolute time values.

SCOW : mean classification accuracy of SCOW is 78.8% (SD 2.5) on
EDGE and 89.8% (SD 1.7) on Arabidopsis. Adding the requirements
of an average time error in the alignment smaller than 24 and 12 h,
mean accuracy declines to 69.4 and 59.6% (SD 3.4 and 3.0) on
EDGE and 86.1 and 80.7% on Arabidopsis (see Supplementary
Material). These results are slightly lower than what Smith et al.
(2009) report. Our explanation is that we perform 50 repetitions of
the experiment and report average results. It is interesting to see that
SCOW performs very well for 7 of the 11 treatments of EDGE, even
reaching 100% accuracy for six treatments, but at the same time
makes between 22% and at most 40% correct decisions for three
other treatments. This may indicate a lack of robustness or lack in
generalization with respect to the treatments the queries are chosen
from.

One nearest neighbor: mean classification accuracy is 81.7%
(SD 2.5) on EDGE data and 90.3% (SD 1.8) on Arabidopsis data.
This is a significant improvement over SCOW (p=1.1·10−3 with
McNemar’s χ2 test) on EDGE data, while there is no significant
difference on Arabidopsis data.

That the method development of Smith et al. (2009) leads to a
classification performance worse or equivalent than that of a one-
nearest-neighbor classifier, often the base case for classification
performance on the genewise averaged expression levels has the
following implications. First, it indicates clearly that absolute gene
expression values do matter. This has been previously reported
in the biological literature (Ellis et al., 2008; Pegg, 2008) in a
comparable setting to the data used here. Second, for such short
time-courses alignments seem to be of little informative value. Note
that on one hand a dynamic time warping algorithm on absolute
levels is reported to perform worse than SCOW; on the other hand,
unconstrained optimization of correlation also results in spurious
results (Smith et al., 2009). An analogy might be found in the
uncertainty in alignment scores for short biological sequences;
profile HMMs in contrast perform better for short sequences. Of
course our findings do not invalidate the method development per se,
but rather indicate that biological problems with such low numbers
of time-points, cf. Supplementary Material, should be tackled with
a different approach.

lHMM: mean classification accuracy is 85.9% (SD 2.8) for lHMM
with four states on EDGE and 94.0% (SD 1.3) for lHMM with six
states for Arabidopsis. This is a significant improvement over 1NN;
p=1.1·10−15 (EDGE) and p=1.1·10−10 (Arabidopsis) and over
SCOW; p=1.0·10−17 (EDGE) and p=2.5·10−15 (Arabidopsis)
(McNemar’s χ2 test).

Adding the criteria that the average error in the alignment is not
more than 24 and 12 h, respectively, on EDGE data, mean accuracy
decreases to 73.1 and 55.5% (SD 3.8 and 3.2 ) and to 85.6 and
69.8% on Arabidopsis data. While only the 12 h accuracy value is
lower for lHMM than SCOW, the mean values of the temporal error
give an incomplete picture (see Supplementary Material). In fact,
lHMM aligns 386 queries more than SCOW without any temporal
alignment error on EDGE data. Indeed, temporal errors are rarer,

but if errors are made, they can be larger, which leads to the
slightly worse performance in alignments for the range from 10 to
24 h for which SCOW performs better (see Supplementary Material).
Moreover, while alignment is important it is only a secondary goal
to the fundamental application problem of correct classification of
the compounds.

3.2 Results on simulated data
Our hypothesis was that the inferior performance of SCOW was
due to that time-courses are extremely short. In fact, COW (Nielsen
et al., 1998), the method that SCOW is based on, was developed for
chromatographic time-course data with 3300 time-points translating
to more than 1100 as many time-points as the average query of
length 2.84 for the EDGE data. One observes an improvement as
the number of time-points increases. However, SCOW also shows a
larger susceptibility to noise, see Figure 5. Indeed the accuracy of
SCOW is higher for a less frequently subsampled time-course.

4 CONCLUSION
Short time-courses are the predominant form of temporal gene
expression information. However, their analysis poses particular
challenges as short usually translates to infrequent samples, often
drawn at irregular time intervals. The inherent noise is another
central concern.

Here, we focused on toxicity assays and responses to stress. The
challenge was to classify incoming short time-courses reflecting
a response to toxins/stress in changes in gene expression over
time by assigning them to existing, labeled time-courses. Incoming
queries possibly have been sampled at intervals which cannot be
straightforwardly aligned with the labeled time-course. In contrast
to prior approaches, we opted to have a ‘discrete’ view on the
problem, by modeling these time-courses as stochastic piecewise
constant functions, implemented as HMM with a left–right topology.
Building on an established statistical framework, we estimate
parameters with a Bayesian approach and use maximum likelihood
for classification.

On the EDGE experiments, we outperform the best known prior
approach, SCOW, with an increase in accuracy exceeding 7% overall,
an increase of over 19% over SCOW for queries with three or more
time-points; clustered alignments only have an advantage of about
10% over SCOW for such queries. On the Arabidopsis experiments,
the increase in accuracy was 4%. At the same time, our method
is at least 140 times faster to compute. We additionally show that
a one-nearest neighbor classifier on the genewise time averages of
the expression time-courses outperforms or matches SCOW while
it is 20 000 times faster to compute. One reason for our superior
performance is likely the coarse time resolution of queries; indeed
the method of correlation optimized warpings (Nielsen et al., 1998),
on which SCOW is built, was developed for 1100 as many time-points
as the average query of length 2.84 we are dealing with. The time-
courses of the transcriptional response rather reflect sequences of
steady states while missing the very dynamics behind them. Another
reason is that SCOW relies on continuous, polynomial time-course
representations and interpolation. In particular, the results of 1NN
also indicate that correlation might not be the right objective function
to optimize; indeed Smith et al. (2009) spend some effort on trying
to avoid alignments of high correlation but with large difference
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in value. What remains somewhat inconclusive is the inconsistent
performance of SCOW on the various treatments and its apparent
inability to make good use of more frequently sampled data in the
presence of noise, as the results on simulated data show.

Another issue, and a more general criticism is that DTW can
be rephrased in the language of HMM and roughly translates to
a pair HMM with continuous emissions (see the Supplementary
Materials for a more detailed discussion). Just like profile HMMs
are superior in detecting remote homolog proteins due to their
position-dependent gap and substitution parameters, the HMMs with
left–right topology offer equivalent flexibility for continuous-valued
sequences. Combining these insights with the stochastic piecewise
constant functions is, in terms of model complexity, simpler than
splines that yield the usual explanations for why our method is more
accurate, robust and less prone to overfitting.

In future applications, we are planning to explore approaches
which put emphasis on optimal discrimination. Feature selection
and/or a Bayesian significance analysis will also be addressed. Last
but not least, given the maturing state of the field, a collection
of benchmark biological and simulated time-course datasets and a
comparison of the wide range of methods would be both achievable
and very worthwhile.
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