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Abstract— This paper introduces a new technique for finding latent software bugs called change classification. Change 

classification uses a machine learning classifier to determine whether a new software change is more similar to prior 

buggy changes, or clean changes. In this manner, change classification predicts the existence of bugs in software changes.  

The classifier is trained using features (in the machine learning sense) extracted from the revision history of a software 

project, as stored in its software configuration management repository. The trained classifier can classify changes as 

buggy or clean with 78% accuracy and 65% buggy change recall (on average). Change classification has several desirable 

qualities: (1) the prediction granularity is small (a change to a single file), (2) predictions do not require semantic 

information about the source code, (3) the technique works for a broad array of project types and programming 

languages, and (4) predictions can be made immediately upon completion of a change. Contributions of the paper include 

a description of the change classification approach, techniques for extracting features from source code and change 

histories, a characterization of the performance of change classification across 12 open source projects, and evaluation of 

the predictive power of different groups of features. 

 
Index Terms-- Maintenance, Software metrics, Software fault diagnosis, Configuration management, Classification, 

Association rules, Data mining.  

I. INTRODUCTION 

Consider a software developer working on a long duration software product. Like most 

software developers, she typically makes changes that are clean, not containing a latent bug. At 

times she makes changes that introduce new features, or adapts the software to a changing 

operational environment. Sometimes she makes bug-fix changes that repair a bug. Occasionally 

she makes a bug-introducing change and injects incorrect statements into the source code. Since 

developers typically do not know they are writing incorrect software, there is always the question 

of whether the change they just made has introduced a bug.  

A bug in the source code leads to an unintended state within the executing software, and this 

corrupted state eventually results in an undesired external behavior. This is logged in a bug 

report message in a change tracking system, often many months after the initial injection of the 

bug into the software. By the time a developer receives the bug report, she must spend time to 
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reacquaint themselves with the source code and the recent changes made to it. This is time 

consuming. 

If there were a tool that could accurately predict whether a change was buggy or clean 

immediately after a change was made, it would permit developers to take steps to fix the 

introduced bugs immediately. Several bug finding techniques could be used, including code 

inspections, unit testing, and use of static analysis tools. Since these steps would be taken right 

after a code change was made, the developer would still retain the full mental context of the 

change. This holds promise for reducing the time required to find software bugs, as well as 

reducing the time that bugs stay resident in software before removal. 

This paper presents a new technique, called change classification, for predicting bugs in file-

level software changes (a set of line ranges in a single file changed since the previous revision) 

using machine learning classification algorithms. A key insight behind this work is viewing bug 

prediction in changes as a kind of classification problem, that is, assigning each change made 

into one of two classes: clean changes or buggy changes.  

The change classification technique involves two steps: training and classification. The change 

classification algorithms learn from a training set, i.e., a collection of changes that are known to 

belong to an existing class, that is, the changes are labeled with the known class.  Features are 

extracted from the changes, and the classification algorithm learns which features are most useful 

for discriminating among the various classes. In this context, feature often means some property 

of the change, such as the frequency of words that are present in source code. This is different 

from the typical software engineering notion of feature as a software functionality. 

Unfortunately for software change classification, we do not have a known standard corpus like 

the UCI Repository of machine learning [37] or the Reuters Corpus [23] which is commonly 
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used for evaluation in the text classification domain. Instead, in this paper the file change 

histories of 12 open source projects are extracted from their software configuration management 

systems (SCMs), and then features are mined from each change, creating the corpus used to 

evaluate change classification per project. Each project’s features are used to train an Support 

Vector Machine (SVM) [14] classifier for that project. SVMs are a class of high performance 

machine learning classification algorithms that have good behavior for a range of text 

classification problems. After training an SVM using change data from revision 1 to n, if there is 

a new and unclassified change (i.e., revision n+1), this change can be classified as either buggy 

or clean using the trained classifier model. This act of classification has the effect of predicting 

which changes have bugs.  

This paper makes the following contributions: 

New bug prediction technique: change classification. Use of machine learning classifiers, as 

trained on software evolution data and applied to software changes (instead of entire files, 

functions, or methods), provide a new method for predicting the location of latent software bugs. 

Evaluation of the performance of change classification. The classification accuracy, recall, and 

precision are evaluated for each project. An SVM classifies file changes as buggy or clean with 

78% accuracy on average (ranging by project from 64%-93% as shown in Figure 2) and 65% 

buggy change recall on average (43%-98% as shown in Figure 2). This is on par with the best 

recent work on bug prediction in the research literature [12] [39], with the added benefit that the 

granularity of prediction is smaller: it is localized to the section of text related to a change 

instead of a whole file or function/method. 

Techniques for feature extraction from source code and change histories. In order to extract 

features from a software evolution history, new techniques for feature extraction were developed. 
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These have utility for any researcher performing classification experiments using evolution data. 

Evaluation of the performance of individual features, and groups of features. Since the choice 

of features can affect the performance of classifiers, each feature’s discriminative power for 

performing change classification is compared. This is performed by evaluating which set of 

features yields the best overall classification accuracy and recall, and also by examining the 

relative contributions of individual features. 

The remainder of the paper begins with a comparison to related work (Section II). Following is 

an overview of the approach used to create a corpus, perform change classification, and evaluate 

its performance (Section III). The process used to create the 12 project corpus is described in 

detail (Section IV), followed by a brief overview of the SVM algorithm, and the evaluation 

measures used in this paper. Results from applying change classification to the corpus using all 

features are presented in Section VI, and Section VII gives an evaluation of the relative 

importance of the feature groups, and individual features. Section VIII provides discussion of 

these results, and threats to validity. Section IX concludes the paper. 

II. RELATED WORK 

The goal of change classification is to use a machine learning classifier to predict bugs in 

changes. As a result, related work exists in the area of bug prediction, as well as algorithms for 

source code clustering and for text classification.  

A. Predicting Buggy and High Risk Modules 

There is a rich literature for bug detection and prediction. Existing work falls into one of three 

categories, depending on the goal of the work. The goal of some work is to identify a 

problematic module list by analyzing software quality metrics or a project’s change history [13, 

15, 16, 21, 39-41]. This identifies those modules that are most likely to contain latent bugs, but 
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provides no insight into how many faults may be in each module. Other efforts address this 

problem, predicting the bug density of each module using its software change history [11, 36]. 

Work that computes a problematic module list or that determines a fault density are good for 

determining where to focus quality assurance efforts, but do not provide specific guidance on 

where, exactly, in the source code to find the latent bugs. In contrast, efforts that detect faults by 

analyzing source code using static or dynamic analysis techniques can identify specific kinds of 

bugs in software, though generally with high rates of false positives. Common techniques 

include type checking, deadlock detection, and pattern recognition [8, 26, 48].  

Classification or regression algorithms with features such as complexity metrics, cumulative 

change count, or bug count are widely used to predict risky entities. Similar to our work, 

Gyimothy et al. use machine learning algorithms to predict fault classes in software projects [12]. 

They employ decision trees and neural networks using object-oriented metrics as features to 

predict fault classes of the Mozilla project across several releases (1.0-1.6). Recall and precision 

reported in [12] are about 70%, while our change classification accuracy for the Mozilla project 

is somewhat higher at 77.3% with lower precision at 63.4%. These results reported by Gyimothy 

et al. are strong. However, they predict faults at the class level of granularity (usually entire files), 

while the prediction granularity of change classification is much finer, file level changes, which 

for the projects we analyzed average 20 lines of code (LOC) per change. This is significant, since 

developers need to examine an order of magnitude smaller number of lines of code to find latent 

bugs with the change classification approach. Gyimothy et al. use release-based classes for 

prediction, where a release is an accumulation of many versions, whereas change classification 

applies to the changes between successive individual versions. This allows change classification 

to be used in an ongoing, daily manner, instead of just for releases, which occur on months-long 
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time scales. 

Kim et al. proposed BugMem to capture fault patterns in previous fixes and to predict future 

faults using captured fix memories [17]. Mizuno and Kikuno use an email spam filter approach 

to capture patterns in fault-prone software modules [31]. These two approaches are similar to 

change classification in that they learn fault patterns and predict future faults based on them. 

However, they classify static code (such as the current version of a file) while our approach 

classifies file changes.  The patterns they can learn are limited to source code only, whereas 

change classification uses features from all possible sources such as source code, metadata, delta, 

complexity metrics, and change logs.  

Brun and Ernst [5] use two classification algorithms to find hidden code errors. Using Ernst’s 

Daikon dynamic invariant detector, invariant features are extracted from code with known errors 

and with errors removed. They train SVM and decision tree classifiers using the extracted 

features, then classify invariants in the source code as either fault-invariant or non-fault-invariant. 

The fault-invariant information is used to find hidden errors in the source code. Reported 

classification accuracy is 10.6% on average (9% for C and 12.2% for Java), with classification 

precision of 21.6% on average (10% for C and 33.2% for Java), and the best classification 

precision (with top 80 relevant invariants) of 52% on average (45% for C and 59% for Java). The 

classified fault invariants guide developers to find hidden errors. Brun and Ernst’s approach is 

similar to our work in that they try to capture properties of buggy code and use it to train 

machine learning classifiers to make future predictions. However, they used only invariant 

information as features, which leads to lower accuracy and precision. In contrast, change 

classification uses a broader set of features including source code, complexity metrics, and 

change metadata.   
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Hassan and Holt use a caching algorithm to compute the set of fault prone modules, called the 

top-ten list [13]. They use four factors to determine this list: software that was most frequently 

modified, most recently modified, most frequently fixed, and most recently fixed. Kim et al. 

proposed the bug cache algorithm to predict future faults based on previous fault localities [18]. 

Ostrand et al. identified the top 20% of problematic files in a project [39, 40]. Using future fault 

predictors and a negative binomial linear regression model, they predict the fault density of each 

file.  

Khoshgoftaar and Allen have proposed a model to list modules according to software quality 

factors such as future fault density [15, 16, 21]. The inputs to the model are software complexity 

metrics such as LOC, number of unique operators, and cyclomatic complexity. A step-wise multi 

regression is then performed to find weights for each factor [15, 16]. Mockus and Weiss predict 

risky modules in software using a regression algorithm and change measures, such as number of 

systems touched, number of modules touched, number of lines of added code, and number of 

modification requests [33].  

Pan et al. use metrics computed over software slice data in conjunction with machine learning 

algorithms to find bug-prone software files or functions [41]. Their approach tries to find faults 

in the whole code, while our approach focuses on file changes.  

B. Mining Buggy Patterns 

One thread of research attempts to find buggy or clean code patterns in the history of 

development of a software project.  

Williams and Hollingsworth use project histories to improve existing bug finding tools [51]. 

Using a return value without first checking its validity may be a latent bug. In practice, this 

approach leads to many false positives, as typical code has many locations where return values 
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are used without checks. To remove the false positives, Williams and Hollingsworth use project 

histories to determine which kinds of function return values must be checked. For example, if the 

return value of foo was always verified in the previous project history, but was not verified in the 

current source code, it is very suspicious. Livshits and Zimmermann combined software 

repository mining and dynamic analysis to discover common use patterns and code patterns that 

are likely errors in Java applications [25]. Similarly, PR-Miner mines common call sequences 

from a code snapshot, and then marks all non-common call patterns as potential bugs [24].  

These approaches are similar to change classification, since they use project specific patterns 

to determine latent software bugs. However, the mining is limited to specific patterns such as 

return types or call sequences, and hence limits the type of latent bugs that can be identified.  

C. Classification, Clustering, Associating, and Traceability Recovery  

Several research efforts share a similarity with bug classification in that they also extract 

features (terms) from source code, and then feed them into classification or clustering algorithms. 

These efforts have goals other than predicting bugs, including classifying software into broad 

functional categories [19], clustering related software project documents [20, 28], and 

associating source code to other artifacts such as design documents [29].  

Krovtez et al. use terms in the source code (as features) and SVM to classify software projects 

into broad functional categories such as communications, databases, games, and math [19]. Their 

insight is that software projects in the same category will share terms in their source code, 

thereby permitting classification. 

 Research that categorizes or associates source code with other documents (traceability 

recovery) is similar to ours in that it gathers terms from the source code and then uses learning or 

statistical approaches to find associated documents [2, 42]. For example, Maletic et al. [28, 29] 
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extracted all features available in the source code via Latent Semantic Analysis (LSA), then used 

this data to cluster software and create relationships between source code and other related 

software project documents. In a similar vein, Kuhn et al. used partial terms from source code to 

cluster the code to detect abnormal module structures [20]. Antoniol et al. used stochastic 

modeling and Bayesian classification for traceability recovery [2]. Their work differs from our 

work in that they only use features from source code, while our change classification learns from 

project history data, including change deltas, change log text, and authors. Traceability recovery 

focuses on finding associations among source code and other documents, while change 

classification tries to identify each change as buggy or clean. 

Similar in spirit to change classification is work that classifies bug reports or software 

maintenance requests [3, 10]. In their research [3, 10], keywords in bug reports or change 

requests are extracted and used as features train a machine learning classifier. The goal of the 

classification is to place a bug report into a specific category of bug report, or to find the 

developer best suited to fix a bug. This work, along with change classification, highlights the 

potential of using machine learning techniques in software engineering. If an existing concern – 

such as assigning bugs to developers, can be recast as a classification problem, then it is possible 

to leverage the large collection of data stored in bug tracking and software configuration 

management systems. 

D. Text Classification  

Text classification is a well-studied area with a long research history. Using text terms as 

features, researchers have proposed many algorithms to classify text documents [46], such as 

classifying news articles into their corresponding genres. Among existing work on text 

classification, spam filtering [16] is the most similar to ours. Spam filtering is a binary 
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classification problem to identify email as spam or ham (not spam). This paper adapts existing 

text classification algorithms into the domain of source code change classification. Our research 

focuses on generating and selecting features related to buggy source code changes. 

E. Summary 

Change classification differs from previous bug prediction work since it: 

Classifies changes: Previous bug prediction work focuses on finding prediction or regression 

models to identify fault-prone or buggy modules, files, and functions [11, 36, 38]. Change 

classification predicts whether there is a bug in any of the lines that were changed in one file in 

one SCM commit transaction. This can be contrasted with making bug predictions at the module, 

file, or method level. Bug predictions are immediate, since change classification can predict 

buggy changes as soon as a change is made. 

Uses bug-introducing changes: Most bug prediction research uses bug-fix data when making 

predictions or validating their prediction model. Change classification uses bug-introducing 

changes, which contains the exact commit/line changes that injected a bug, who introduced it, 

and the time it occurred. Bug-fix changes indicate only roughly where the bug occurred. Bug-

introducing changes allow us to label changes as buggy or clean with information about the 

source code at the moment a bug was introduced.  

Uses features from source code: When selecting predictors, bug prediction research usually 

does not take advantage of the information directly provided by the source code, and thereby 

miss a valuable source of features. Change classification uses every term in the source code—

every variable, method call, operator, constant, comment text, and more—as features to train our 

change classification models.  

Is independent of programming language: Our change classification approach is 
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programming language independent, since we use a bag-of-words method [45] for generating 

features from source code. The projects we analyzed span many popular current programming 

languages, including C/C++, Java, Perl, Python, Java Script, PHP, and XML.  

III. OVERVIEW OF CHANGE CLASSIFICATION APPROACH 

 

The primary steps involved in performing change classification on a single project are outlined 

below. 

Creating a Corpus: 

1. File level changes are extracted from the revision history of a project, as stored in its 

software configuration management (SCM) repository. (Described further in Section IV.A). 

2. The bug fix changes for each file are identified by examining keywords in SCM change log 

messages, part of the data extracted from the SCM repository in step 1 (Section IV.B).  

3. The bug-introducing and clean changes at the file level are identified by tracing backwards 

in the revision history from bug fix changes, using SCM annotation information (Section 

IV.B). 

4. Features are extracted from all changes, both buggy and clean. Features include all terms in 

the complete source code, the lines modified in each change (delta), and change metadata 

such as author and change time. Complexity metrics, if available, are computed at this step. 

Details on the feature extraction techniques used are presented in Section IV.C.  

At the end of step 4 a project-specific corpus has been created, a set of labeled changes with 

a set of features associated with each change [52].  

Classification: 

5. Using the corpus, a classification model is trained. While many classification techniques 

could be employed, this paper focuses on the use of SVM, outlined in Section V.A. 
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6. Once a classifier has been trained, it is ready to use. New changes can now be fed to the 

classifier, which determines whether a new change is more similar to a buggy change, or a 

clean change. 

Machine learning classifiers have varying performance depending on the characteristics of the 

data set used to train the classifier, and the information available in the text being classified. This 

paper examines the behavior of change classification by assessing its predictive performance on 

12 open source software systems. Since inclusion and omission of different feature sets can 

affect the predictive performance, an examination of the performance of different feature groups 

is also performed. The overall approach for these two evaluations is provided below: 

Evaluation of Change Classification 

1. Classification performance is evaluated using the 10-fold cross-validation method [35] and 

computation of the standard classification evaluation measures of accuracy, recall, precision, 

and F-value. Definitions of these measures are provided in Sections V.B and V.C, and the 

actual measured values are presented in Section VI.A.  

2. Since there are only two outcomes, a prediction approach that randomly guesses whether a 

change is buggy or clean (a dummy classifier) might have better performance than use of a 

machine learning classifier. Recall-precision curves are presented in Section VI.B, along 

with analysis of the performance of change classification relative to the dummy classifier. 

Evaluation of Feature Group Performance: 

1. Subsets of the corpus are created by combining features, then retraining the classifier 

(change classification step 5 above) and recomputing the classification performance 

(evaluation of change classification step 1 above). This permits a comparison of 

classification performance using different feature combinations (Sections VII.A).  

2. Using the chi-square measure which is commonly used for feature selection [54], each 
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feature is ranked to determine how correlated each feature is to the buggy and clean classes. 

This provides insight into which features are the most informative for change classification 

(Section VII.B). 

IV. CREATING THE CORPUS 

A. Change History Extraction 

Kenyon [4] is a system that automates the extraction of source code change histories from 

SCM systems such as CVS and Subversion. Kenyon automatically checks out a user-defined 

range of revisions stored in a project’s SCM repository, reconstructing logical transactions from 

individual file commits for the CVS system [55]. Revisions include files and their change 

information. From checked out revisions, Kenyon extracts change information such as the 

change log, author, change date, source code, change delta, and change metadata. This 

information is then fed into the feature extraction process to convert a file change into a vector of 

features. 

Table 1. Subject programs and Summary of corpus information.  

Project Revisions. Period # of clean 

changes 

# of buggy 

changes 

% of buggy 

changes 

# of features 

Apache HTTP 1.3 (A1) 500-1000 10/1996-01/1997 579 121 17.3 11,445 

Bugzilla (BUG) 500-1000 03/2000-08/2001 149 417 73.7 10,148 

Columba (COL) 500-1000 05/2003-09/2003 1,270 530 29.4 17,411 

Gaim(GAI) 500-1000 08/2000-03/2001 742 451 37.8 9,281 

GForge(GFO) 500-1000 01/2003-03/2004 339 334 49.6 8,996 

Jedit (JED) 500-750 08/2002-03/2003 626 377 37.5 13,879 

Mozilla (MOZ) 500-1000 08/2003-08/2004 395 169 29.9 13,648 

Eclipse(ECL) 500-750 10/2001-11/2001 592 67 10.1 16,192 

Plone(PLO) 500-1000 07/2002-02/2003 457 112 19.6 6,127 

PostgreSQL (POS) 500-1000 11/1996-02/1997 853 273 24.2 23,247 

Scarab (SCA) 500-1000 06/2001-08/2001 358 366 50.5 5,710 

Subversion (SVN) 500-1000 01/2002-03/2002 1,925 288 13.0 14,856 

Total N/A N/A 8,285 3,505 29.7 150,940 

 

One challenge in change classification is ensuring the memory used by the SVM classifier 

does not grow too large. To limit the memory footprint, only a subset of each project’s revisions 

were selected, typically 500 revisions. To try to ensure projects were compared at more-or-less 
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the same level of maturity, file change features were extracted from revisions 500-1000 (or 

revisions 500-750 for big projects). Additionally, there was some initial concern that the change 

patterns in the first part of a project (revisions 1-500) may not be stable ([13] noted similar 

concerns), but later analysis showed this was not the case (in general, project maturity level has 

no substantive impact on prediction results). Table 1 provides an overview of the projects 

examined in this research, the range of revisions extracted, and the real-world duration of each 

range.  

Table 2. Average LOC. 

Project File File change  
Function/

Method 

Function/Method 

change 

Apache HTTP 1.3 (A1) 455.73 15.42 28.32 15.83   

Bugzilla (BU) 375.37 18.30 N/A N/A 

Columba (CO) 143.3 14.94 15.64 10.99 

Gaim(GA) 832 19.64 38.43 11.09 

GForge(GFO) 155.49 17.73 N/A N/A 

JEdit (JED) 325.78 23.64 18.74 7.65 

Mozilla (MOZ) 285 21.20 N/A N/A 

Eclipse(ECL) 230.29 48.26 16.9 13.77 

Plone(PLO) 49.11 9.7 N/A N/A 

PostgreSQL (POS) 282.92 14.28 32.21 25 

Scarab (SCA) 145.98 21.75 16.06 15.21 

Subversion (SVN) 354.31 15.35 33.81 11.923 

Average 302.94 20.02 25.01 13.93 

 

One of the advantages of classifying file changes was discussed earlier: it provides predictions 

at a fine level of granularity (a single change to a single file). For the 12 projects examined in 

this paper, Table 2 shows average values for the number of LOC in a file change, in each file, in 

a function/method change, and in each function/method. On average, the number of LOC per file 

change is 20 while the average LOC per file is 300. For example, if a tool predicts bugs at the 

file level, it is necessary to inspect 300 LOC on average to locate the line(s) containing the bug. 

Since our approach classifies file changes, the prediction is at the file change level, and hence 

only 20 lines on average need to be inspected. 
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B. Identifying Bug-introducing Changes   

The first step toward identifying bug-introducing changes is to find bug-fix changes. Bug-fix 

changes are identified by mining change log messages. Two approaches are used for this step: 

searching for keywords such as "Fixed" or "Bug" [32] and searching for references to bug reports 

like “#42233” [6, 7, 47]. If a keyword or bug report reference is found, the changes in the 

associated commit comprise a bug-fix. Table 3 lists keywords or phrases used to identify bug-fix 

commits. Manual verification of identified bug-fix changes is recommended to ensure the 

selected keywords or phrases are correctly identifying bug-fix changes. For example, if a commit 

log stated, “This is not a bug fix”, its commit should not be identified as a fix. For the systems 

studied in this paper, one of the authors manually verified that the identified fix commits were, 

indeed, fixes.  

Table 3. Keywords and reference identifiers to find fix commits. * bug id reference is a 7-digit number. 

Project Keywords or phrases 

Apache HTTP 1.3 (A1) Patch, fix, bug 

Bugzilla (BUG) Fix, bug, * bug id reference number 

Columba (COL) [bug], [bugfix] 

Gaim (GAI) Patch, fix, bug 

GForge (GFO) Patch, fix, bug 

Jedit (JED) Patch, fix, bug 

Mozilla (MOZ) * bug id reference number 

Eclipse JDT (ECL) * bug id reference number 

Plone (PLO) Patch, fix, bug 

PostgreSQL (POS) Patch, fix, bug 

Scarab (SCA) Patch, fix, bug, issue number 

Subversion (SVN) Fixed issue number  

 

One potential issue for identifying bug-fixes using bug tracking system identifiers is the 

common use of bug tracking systems to record both bug reports and new feature additions. This 

causes new feature changes to be identified as bug-fix changes. Among the systems studied in 

this paper, Bugzilla and Scarab both use bug tracking systems to record new feature additions, 

and as result the percentage of buggy changes found in these systems is higher than for other 
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projects (Bugzilla, 73.7%, and Scarab, 50.5%). For these two systems, what this paper terms a 

“buggy” change should be interpreted as a “buggy or new feature” change. Similarly, for these 

two systems, predictions of buggy changes should be interpreted as predictions of “buggy or new 

feature” changes. 

Once a commit has been determined to contain a fix, it is possible to work backwards in the 

revision history to determine the initial bug introducing change. The bug-introducing change 

identification algorithm proposed by Śliwerski, Zimmermann, and Zeller (SZZ algorithm) is 

used in this paper [47]. After identifying bug fixes, SZZ uses a diff tool to determine what 

changed in the bug-fixes. The diff tool returns a list of regions that differ in the two files; each 

region is called a “hunk”. It observes each hunk in the bug-fix and assumes that the deleted or 

modified source code in each hunk is the location of a bug.  

Revision 1 (by kim, bug-introducing) Revision 2 (by ejw) 

1 kim 
1 kim 
1 kim 
1 kim 
1 kim 

1: public void bar() {  
2:   // print report 
3:   if (report == null) {  
4:      println(report);  
5:   } 

2 ejw 
1 kim 
1 kim 
2 ejw 
1 kim 

1: public void foo() {  
2:   // print report 
3:   if (report == null){ 
4:      println(report.str); 
5:   } 

 

Revision 3 (by kai, bug-fix) 

2 ejw 
1 kim 
3 kai 
1 kim 
1 kim 

1: public void foo() {  
2:   // print report 
3:   if (report != null) { 
4:      println(report);  
5:   } 

 
Figure 1. Example bug-fix and source code changes. A null-value checking bug is injected in revision 1, and fixed in revision 

3.   

 

Finally, SZZ tracks down the origins of the deleted or modified source code in the hunks using 

the built-in annotate functionality of SCM systems. The annotate feature computes, for each line 

in the source code, the most recent revision in which the line was changed, and the developer 

who made the change. The discovered origins are identified as bug-introducing changes. 

Figure 1 shows an example of the history of development of a single function over three 
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revisions: 

• Revision 1 shows the initial creation of function bar, and the injection of a bug into the 

software, the line ‘if (report == null) {‘ which should be ‘!=’ instead. The leftmost column 

of each revision shows the output of the SCM annotate command, identifying the most 

recent revision for each line and the developer who made the revision. Since this is the first 

revision, all lines were first modified at revision 1 by the initial developer ‘kim.’ The 

second column of numbers in revision 1 lists line numbers within that revision.  

• In the second revision, two changes were made. The function bar was renamed to foo, and 

println has argument ‘report.str’ instead of ‘report.’ As a result, the annotate output shows 

lines 1 and 4 as having been most recently modified in revision 2 by ‘ejw.’ 

• Revision 3 shows a change, the actual bug-fix, changing line 3 from ‘==’ to ‘!=’.  

The SZZ algorithm then identifies the bug-introducing change associated with the bug-fix in 

revision 3. It starts by computing the delta between revisions 3 and 2, yielding line 3. SZZ then 

uses SCM annotate data to determine the initial origin of line 3 at revision 2. This is revision 1, 

the bug-introducing change. 

One assumption of the presentation so far is that a bug is repaired in a single bug-fix change; 

what happens when a bug is repaired across multiple commits? There are two cases. In the first 

case, a bug repair is split across multiple commits, with each commit modifying a separate 

section of code (code sections are disjoint). Each separate change is tracked back to its initial 

bug-introducing change, which is then used to train the SVM classifier. In the second case, a bug 

fix occurs incrementally over multiple commits, with some later fixes modifying earlier ones (fix 

code partially overlaps). The first patch in an overlapping code section would be traced back to 

the original bug-introducing change. Later modifications would not be traced back to the original 
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bug-introducing change; instead they would be traced back to an intermediate modification, 

which is identified as bug-introducing. This is appropriate, since the intermediate modification 

did not correctly fix the bug, and hence is simultaneously a bug-fix, and buggy. In this case, the 

classifier is being trained with the attributes of the buggy intermediate commit, a valid bug-

introducing change. 

C. Feature Extraction 

To classify software changes using machine learning algorithms, we need to train a 

classification model must be trained using features of buggy and clean changes. In this section, 

we discuss techniques for extracting features from a software project change history. 

A file change involves two source code revisions (an old revision and a new revision) and a 

change delta that records the added code (added delta) and deleted code (deleted delta) between 

the two revisions. A file change has associated metadata, including the change log, author, and 

commit date. By mining change histories, we can derive features such as co-change counts to 

indicate how many files are changed together in a commit, the number of authors of a file, and 

previous change count of a file. Every term in the source code, change delta, and change log 

texts are used as features. We detail our feature extraction method below.  

1) Feature Extraction from Change Metadata 

We gather 8 features from change metadata: author, commit hour (0, 1, 2, … 23), commit day 

(Sunday, Monday, …, Saturday), cumulative change count, cumulative bug count, length of 

change log, changed LOC (added delta LOC + deleted delta LOC), and new revision source code 

LOC. In other research, cumulative bug and change counts are commonly used as bug predictors 

[11, 33, 38, 40, 47, 48, 56]. 
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2) Complexity Metrics as Features 

Software complexity metrics are commonly used to measure software quality and predict 

defects in software modules [12, 15, 30]. Modules with higher complexity measures tend to 

correlate with greater fault incidence. We compute a range of traditional complexity metrics of 

source code using the Understand C/C++ and Java tools [44]. As a result, we extract 61 

complexity metrics (every complexity metric these tools compute) for each file including LOC, 

lines of comments, cyclomatic complexity, and max nesting. Since we have two source code 

files involved in each change (old and new revision files), we compute and use as features the 

difference in value, a complexity metric delta for each complexity metric between these two 

revisions. 

3) Feature Extraction from Change Log Messages, Source Code, and File names 

Change log messages are similar to email or news articles in that they are human readable texts. 

Each word in a change log message carries meaning. Feature engineering from texts is a well 

studied area, with the bag-of-words, latent semantic analysis (LSA), and vector models being 

widely used approaches for text classification [43, 45]. Among them, the bag-of-words (BOW) 

approach, which converts a stream of characters (the text) into a bag of words (index terms), is 

simple and performs fairly well in practice [45, 46]. We use BOW to generate features from 

change log messages.   

We extract all words except for special characters, and convert all words to lowercase. The 

existence (binary) of a word in a document is used as a feature. Although stemming (removing 

stems) and stopping (removing very frequent words) are used by researchers in the text 

classification community to reduce the number of features, we did not perform these steps to 

simplify our experiments. Additionally, use of stemming on variable, method, or function names 
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is generally inappropriate, since this changes the name. 

We use every term in the source code as features, including operators, numbers, keywords, and 

comments. To generate features from source code, we use a modified version of BOW, called 

BOW+, that extracts operators in addition to all terms extracted by BOW, since we believe 

operators such as “!=”, “++”, and “&&“ are important terms in source code. We perform 

BOW+ extraction on added delta, deleted delta, and new revision source code. This means that 

every variable, method name, function name, keyword, comment word and operator—everything 

in the source code separated by whitespace or a semicolon—is used as a feature. 

We also convert the directory and file name into features, since they encode both module 

information and some behavioral semantics of the source code. For example, the file (from the 

Columba project), ‘ReceiveOptionPanel.java’ in the directory, 

‘src/mail/core/org/columba/mail/gui/config/account/’ reveals that the file receives some options 

using a panel interface, and the directory name shows the source code is related to ‘account’, 

‘configure’, and ‘graphical user interface’. Some researchers perform bug predictions at the 

module granularity by assuming that bug occurrences in files in the same module are correlated 

[11, 13, 48].  

We use the BOW approach by removing all special characters such as slashes, then extracting 

words in the directory and file names. Directory and file names often use Camelcase, 

concatenating words then identifying word breaks with capitals [50]. For example, 

‘ReceiveOptionPanel.java’ combines ‘receive’, ‘option’, and ‘panel’. To extract such words 

correctly, we use a case change in a directory or file name as a word separator. We call this 

method BOW++.  Table 4 summarizes features generated and used in this paper. 
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Table 4. Feature groups.  Feature group description, extraction method, and example features. 

Feature Group Description 
Extraction 

method 
Example Features 

Added Delta (A) Terms in the added delta source code BOW+ if, while, for, == 
Deleted Delta (D) Terms in the deleted delta source code BOW+ true, 0, <, ++, int  
Directory/File Name (F) Terms in the directory/file names BOW++ src, module, java  
Change Log (L) Terms in the change log BOW fix, added, new 
New Revision Source Code (N) Terms in the new revision source code file BOW+ if, ||, !=, do, while, string, false  
Metadata (M) Change metadata such as time and author Direct author: hunkim, commit hour: 12  
Complexity Metrics (C) Software complexity metrics of each source code Understand 

tools [44] 
LOC: 34, Cyclomatic: 10 

4) Feature Extraction Summary 

Using the feature engineering technique described previously, features are generated from all 

file changes in the analyzed range of revisions. Each file change is represented as an instance, a 

set of features. Using the bug-introducing change identification algorithm, we label each instance 

as clean or buggy. Table 1 summarizes the corpus information. Consider the Apache 1.3 HTTP 

server project. For this project, the corpus includes changes in revisions 500-1000, a total of 700 

changes, of which 579 are clean and 121 buggy. From the 700 changes, 11,445 features were 

extracted. 

V. SUPPORT VECTOR MACHINES AND EVALUATION TECHNIQUES 

 

Among many classification algorithms, Support Vector Machine (SVM) [14] is used to 

implement and evaluate the change classification approach for bug prediction because it is a high 

performance algorithm that is currently used across a wide range of text classification 

applications. Several good quality implementations of SVM are readily available; the Weka 

Toolkit [52] implementation is used in this study. Below, we provide an overview description of 

SVM, and then describe the measures used in our evaluation of SVM for change classification. 

There is a substantial literature on SVM; the interested reader is encouraged to pursue [14] or [49] 

for an in-depth description. 
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A. Overview of Support Vector Machines  

SVMs were originally designed for binary classification, where the class label can take only 

two different values. An SVM is a discriminative model that directly models the decision 

boundary between classes. An SVM tries to find the maximum margin hyperplane, a linear 

decision boundary with the maximum margin between it and the training examples in class 1 and 

training examples in class 2 [49]. This hyperplane gives the greatest separation between the two 

classes.  

B. 10-Fold Cross Validation 

Among the labeled instances in a corpus, it is necessary to decide which subset is used as a 

training set or a test set, since this affects classification accuracy. The10-fold cross-validation 

technique [35, 52] is used to handle this problem in our experiment.  

C. Measuring Accuracy, Precision, Recall, and F-Value 

There are four possible outcomes from using a classifier on a single change: classifying a 

buggy change as buggy (b�b), classifying a buggy change as clean (b�c), classifying a clean 

change as clean (c�c), and classifying a clean change as buggy (c�b). With a known good set 

of data (the test set fold that was pulled aside and not used for training), it is then possible to 

compute the total number of buggy changes correctly classified as buggy ( bbn
→

), buggy changes 

incorrectly classified as clean (
cbn

→
), clean changes correctly classified as clean ( ccn

→
), and 

clean changes incorrectly classified as buggy ( bcn
→

).  

Note that the known good dataset is derived by tracing bug fix changes back to bug-

introducing changes. The set of bug-introducing (buggy) changes represents those bugs in the 

code that had sufficiently observable impacts to warrant their repair. The set of bug-introducing 

changes is presumably smaller that the set of all changes that introduce a bug into the code. The 
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comprehensive set of all bugs injected into the code during its development lifetime is unknown 

for the projects examined in this paper. It would require substantial time and effort by a large 

team of experienced software engineers to develop a comprehensive approximation of the total 

set of real bugs. 

Accuracy, recall, precision, and F value measures are widely used to evaluate classification 

results [46, 53]. These measures are used to evaluate our file change classifiers, as follows [1, 34, 

53]:   Accuracy = 
nb →b + nc →c

nb →b + nb →c + nc →c + nc →b

  

That is, the number of correctly classified changes over the total number of changes. This is a 

good overall measure of the predictive performance of change classification. Since there are 

typically more clean changes than buggy changes, this measure could potentially yield a high 

value if clean changes are being predicted better than buggy changes. Precision and recall 

measures provide insight into this. 

Buggy change precision, P(b) = 
bcbb

bb

nn

n

→→

→

+
  

This represents the number of correct classifications of the type ( bbn
→

) over the total number 

of classifications that resulted in a bug outcome. Or, put another way, if the change classifier 

predicts a change is buggy, what fraction of these changes really contains a bug? 

Buggy change recall, R(b) = 
cbbb

bb

nn

n

→→

→

+
  

This represents the number of correct classifications of the type ( bbn
→

) over the total number 

of changes that were actually bugs. That is, of all the changes that are buggy, what fraction does 

the change classifier predict? 
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Buggy change F1-value = 
)()(

)(*)(*2

bRbP

bRbP

+

  

This is a composite measure of buggy change precision and recall. 

Similarly, clean change recall, precision, and F-value can be computed: 

Clean change precision, P(c) = 
cbcc

cc

nn

n

→→

→

+
  

If the change classifier predicts a change is clean, what fraction of these changes really is clean? 

Clean change recall, R(c) = 
bccc

cc

nn

n

→→

→

+
  

Of all the changes that are clean, what fraction does the change classifier predict? 

Clean change F1-value = 
)()(

)(*)(*2

cRcP

cRcP

+

  

This is a composite measure of clean change precision and recall.  

VI. EVALUATION OF CHANGE CLASSIFICATION 

This section evaluates change classification in two ways. The first section presents the typical 

machine learning classifier assessment metrics of accuracy, recall, precision, and F values. These 

results were computed using the complete set of features extracted for each project. The second 

section explores whether change classification performs better than just randomly guessing. 

A. Accuracy, Precision, and Recall 

Figure 2 shows accuracy, buggy change recall, and buggy change precision of the 12 projects 

using all features listed in Table 1.  
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Figure 2. Change classification accuracy, buggy change recall, and buggy change precision of 12 projects 

using SVM and all features. 

 

Detailed recall, precision, and F1 values are reported in Table 5. Buggy change recall ranges 

between 43% and 86%, and buggy change precision ranges between 44% and 85%. The change 

classification approach can predict bugs with 64% to 92% accuracy at the file change level of 

granularity. With a file-level change having on average, 20 LOC, this is the most specific 

prediction granularity in the literature. Overall, the combined prediction accuracy and granularity 

of change classification exceed the state of the art reported in the bug prediction literature. 

Table 5. Change classification accuracy, recall, precision, and F1 values of 12 open source projects. SVM 

classification algorithm with all features are used. 

Project Accuracy Buggy change r

ecall 

Buggy change 

precision 

Buggy 

change F1 

Clean change r

ecall 

Clean change  p

recision 

Clean 

change F1 

A1 0.85 0.5 0.56 0.53 0.92 0.9 0.91 

BUG 0.78 0.86 0.85 0.86 0.56 0.6 0.58 

COL 0.76 0.58 0.59 0.59 0.83 0.83 0.83 

GAI 0.71 0.63 0.62 0.62 0.76 0.77 0.77 

GFO 0.64 0.6 0.60 0.6 0.67 0.67 0.67 

JED 0.65 0.53 0.54 0.53 0.73 0.72 0.72 

MOZ 0.77 0.57 0.63 0.6 0.86 0.83 0.84 

ECL 0.92 0.61 0.61 0.61 0.96 0.96 0.96 

PLO 0.8 0.48 0.49 0.48 0.89 0.87 0.87 

POS 0.73 0.43 0.44 0.43 0.82 0.82 0.82 

SCA 0.79 0.78 0.8 0.79 0.8 0.78 0.79 

SVN 0.9 0.59 0.6 0.6 0.94 0.94 0.94 

 

B. Comparing SVM with a Dummy Predictor 

There are tradeoffs between precision and recall, and it is often possible to improve recall by 

reducing precision and vice versa. Most machine learning classifiers use a threshold value to 
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classify instances. For example, SVM uses the distance between each instance and the 

hyperplane to measure the weights of each instance. If an instance's weight is greater than the 

threshold value, the instance belongs to class 1, otherwise it belongs to class 2. By lowering or 

raising the threshold, it is possible to change recall and precision. Usually by lowering recall, 

precision can be increased. For example, buggy change recall can easily go up to 100% by 

predicting all changes as buggy, but the precision will be very low.  

A recall-precision curve shows the trade-off between recall and precision. Figure 3 gives the 

SVM classifier recall-precision curves of three selected projects, Bugzilla, Mozilla, and Scarab 

(in solid lines). The curve for the Bugzilla project shows that the precision grows up to about 95% 

(with 20% recall). For Mozilla and Scarab, the precision can reach 85-90% by lowering the 

recall to 20%.   

 

Figure 3. Buggy change recall-precision curves of selected 3 projects, Bugzilla, Mozilla, and Scarab using SVM. 

Dummy classifier recall-precision curves are shown as dotted lines while the solid lines represent SVM classifier 

recall-precision curves. 
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How is SVM recall-precision better than other approaches, such as randomly guessing changes 

(a dummy classifier) as buggy or clean? Since there are only two classes, the dummy classifier 

may work well. For example, 73.7% of Bugzilla changes are buggy. By predicting all changes as 

buggy, buggy recall would be 100% and precision would be 73.7%. Is this better than the results 

when using SVM? The recall-precision curves of the dummy (dotted lines) and SVM (solid lines) 

classifiers of three selected projects are compared in Figure 3. Precision for the Bugzilla dummy 

classifier is stuck at 73.7%, while SVM precision grows up to 95% (with 20% recall). Similarly 

for other projects, SVM can improve buggy change precision by 20% - 35%. 

C. Correlation between Percentage of Bug Introducing Changes and Classification Accuracy  

One observation that can be made from Table 1 is that the percentage of changes that are 

buggy varies substantially among projects, ranging from 10.1% of changes for Eclipse to 73.7% 

for Bugzilla. One explanation for this variance is the varying use of change log messages among 

projects. Bugzilla and Scarab, being change tracking tool projects, have a higher overall use of 

change tracking. It is likely that for those projects, the class of buggy changes also encompasses 

other kinds of modifications. For these projects, change classification can be viewed as 

successfully predicting the kinds of changes that result in change tracking tool entries.   

Table 6. Correlation between the percentages of buggy changes and change classification performance. 

 Buggy % vs. accuracy Buggy % vs.  buggy 

change recall 

Buggy % vs.  buggy 

change precision 

Correlation -0.56 0.77 0.64 

  

One question that arises is whether the percentage of buggy changes for a project affects 

change classification performance such as accuracy, recall, and precision? A Pearson correlation 

was computed between the percentage of buggy changes, and the measures of accuracy, recall, 

and precision for the 12 projects analyzed in this paper. Table 6 lists the correlation values. A 
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correlation value of 1 indicates tight correlation, while 0 indicates no correlation. The values 

show a weak negative correlation for accuracy, and weak, but not significant correlations for 

buggy recall and precision. 

VII. EVALUATION OF FEATURES AND FEATURE GROUPS 

A. Change Classification Using Selected Feature Groups 

This section evaluates the accuracy of different feature group combinations for performing 

change classification. First, a classification model is trained using features from one feature 

group, and then its accuracy and recall are measured. Following, a classification model is trained 

using all feature groups except the one feature group, with accuracy and recall measured for this 

case as well. In addition, an evaluation is made focusing on the combination of features extracted 

solely from the source code (added delta, new revision source code, and deleted delta). 

Table 7. Feature groups.  The number of features in each feature group is shown for all analyzed projects. 

Feature Group 
Number of features of projects 

A1 BUG COL GAI GFO JED MOZ ECL PLO POS SCA SVN 

Added Delta (A) 2024 2506 3811 2094 1895 2939 3079 2558 1540 3532 1290 2663 
Deleted Delta (D) 1610 1839 3227 1956 1832 2352 2176 2200 1073 2995 836 2117 
Directory/File Name (F) 93 66 559 39 242 377 105 456 221 472 106 195 
Change Log (L) 1257 1124 869 1094 3970 431 959 53 2835 1161 650 2474 
New Revision Source Code (N) 6330 4604 8814 3967 4481 7649 7320 10794 2671 14956 2697 7276 
Metadata (M) 8 8 8 8 8 8 8 8 8 8 8 8 
Complexity Metrics (C) 122 0 122 122 0 122 0 122 0 122 0 122 

*Total 11445 10148 17411 9281 8996 13879 13648 16192 6127 23247 5710 14856 

 

Extracted features are organized into groups based on their source. For example, features 

extracted just from the change log messages are part of the Change Log (L) feature group. Table 

7 provides a summary of feature groups and the number of features in each group. Software 

complexity metrics were computed only for C/C++ and Java source code, since tools were not 

available for computing these metrics for Java Script, Perl, PHP, and Python.  

 Figure 4 shows the change classification accuracy for the Mozilla and Eclipse projects using 

various feature group combinations. The abbreviations for each feature group are shown in Table 
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7. An abbreviation means only the feature group is used for classification. For example, ‘D’ 

means only features from the Deleted Delta group were used. The ‘~’ mark indicates the 

corresponding feature group is excluded. For example, ‘~D’ means all features were used except 

for D (Deleted delta). The feature group “AND” is the combination of all source code feature 

groups (A, N, and D). The accuracy trend of the two projects is different, but they share some 

properties. For example, the accuracy using only one feature group is lower than using multiple 

feature groups.  

 

Figure 4. Feature group combination accuracy for Eclipse and Mozilla using SVM. Complexity metrics (C) 

are not available for Mozilla, so ~C and C are omitted. 

 

The average accuracy of 12 open source projects using various feature combinations is shown 

in Figure 5. Using a feature combination of only source code (A, N, and D combined) leads to a 

relatively high accuracy, while using only one feature group from the source code, such as A, N, 

or D individually, does not lead to high accuracy. Using only ‘L’ (change log features) leads to 

the worst accuracy.  
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Figure 5. Average feature group combination accuracy across the 12 analyzed projects using SVM 

 

After analyzing the combinations of feature groups, the feature combination that yields the best 

accuracy and best recall for each project are identified, as shown in Table 8. The results indicate 

that there is no feature combination that works best across projects, and that frequently the 

feature group providing the best accuracy is not the same as the feature group providing the best 

buggy recall. A practical implication of this data is that each project has the opportunity to 

engage in a project-specific feature selection process that can optimize for either accuracy or 

recall, but often not both simultaneously. 

Table 8. Feature group combination yielding the best classification accuracy and buggy change recall using 

SVM. The feature group listed in parentheses yields the best accuracy/buggy change recall. 

Projects A1 BUG COL GAI GFO JED MOZ ECL PLO POS SCA SVN 

Best accuracy 0.86 

(~F) 

0.79 

(~M) 

0.77 

(~M) 

0.72 

(~D) 

0.65 

(~L) 

0.68 

(~C) 

0.77 

(ALL) 

0.93 

(~N) 

0.81 

(~D) 

0.76 

(C) 

0.81 

(~F) 

0.9 

(ALL) 

Best buggy 

change recall 

0.57 

(ALL) 

0.98 

(M) 

0.61 

(~M) 

0.63 

(ALL) 

0.62 

(~L) 

0.57 

(~C) 

0.57 

(ALL) 

0.63 

(~F) 

0.51 

(~D) 

0.43 

(ALL) 

0.8 

(~D) 

0.6 

(~M) 

B. Important Individual Features  

While the feature group importance provides some insight into the relative importance of 

groups of features, it does not say anything about individual features. Which features are the 

most important within a given project?   
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Using the chi-squared measure, all features are ranked individually. Additionally, the 

distribution of each feature in buggy and clean changes is computed to decide whether the 

corresponding feature contributes more to buggy or clean change classification. The top 5 ranked 

individual features in each feature group are determined, and presented in Table 9. Each box lists 

the top 5 ranked features within a feature group, for a given project. Each individual feature is 

listed, along with its overall numerical rank among the total set of features available for that 

project. The + and – before the rank indicate whether the feature is contributing to the buggy (+) 

or clean (-) change class.  

Table 9. Top five ranked individual features in each feature group. Numbers in parentheses indicate the overall 

rank (computed using a Chi-square measure) of a feature’s importance among all features. A ‘+’ sign indicates the 

feature contributes to buggy changes, and a ‘–’ sign indicates the feature contributes to clean changes. The △ mark 

beside a complexity metric indicates it is a delta metric. 

 Bugzilla Eclipse Plone 

Complexity 

metrics 
N/A 

SumEssential(-117), 

△CountLineBlank(+228), 

CountStmtDecl(-417), 

CountLineComment(-419), 

CountLineCodeDecl(-420) 

N/A 

Change 

Log 

fix(+345), comments  

(-351), correcting(-414), 

patch(+480), ability(- 492) 

fix(+386), for(+398), 18(+961), 

3249(+962),  

1(- 1795) 

action(+396), beautified(+576), 

catch(+577), categories(+578), 

global(+579) 

Metadata 

changed loc(+1), loc(+2), bug 

count(+3), time(-9), change 

count(+43) 

time(+74), changed loc(+88), bug 

count(+104), days(-137), change log 

length(-142) 

changed loc(+21), bug count(+140), 

loc(+274), time(-456), author(+676) 

New 

Source 

order(+4), b(+7), bit(+8), 

ok(+10), used(+11) 

flowinfo(+1), analysecode(+2), 

flowcontext(+3), slow(+4), 

iabstractsynt(+6) 

globals(-2), security(+3), not(+4), 

accesscontrol(+5), aq(+6) 

Added 

Delta 

if(+5), my(+6), value(+15), 

not(+22), sendsql(+26) 

codestream(+12), 

recordpositionsfrom(+8), 

belongsto(+24), complete(+25), 

jobfamily(+26) 

self(+1), def(+26), %(+40), 

raise(+46), log(+50) 

Deleted 

Delta 

name(+153), value(+281), 

my(+300), fetchsqldata(+326), 

sendsql(+349) 

codestream(+14), public(+15), 

recordpositionsfrom(+19), return(+21), 

this(+22) 

self(+14), %(+47), log(+55), def(+107), 

else(+143) 

Directory/

File name 

relation(-219), set(-220), 

move(-375), createattachment(-

490), export(-491) 

ast(+5), compiler(+47), 

statement(+108), core 

(- 116), model(-214) 

tool(+10), scripts(-154), edit(-340), 

form(-411), folder(+470) 

 

For example, in the Bugzilla project in the Added Delta feature group, the keyword “if” is 

listed as the top feature within the group, and is the 5
th

 most important individual feature overall. 

Compared to traditional bug prediction research that tends to use software metrics to determine 
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bugs in software, the most important individual features presented above seem to have limited 

utility for constructing causal models of what causes a bug. A general, cross-project causal 

model of bug injection just cannot explain why “if” is a strong feature for Bugzilla, while “self” 

is a strong feature for Plone. One explanation is that these are statistically correlated features 

computed for each project, and hence there should not be any expectation of a deeper model. The 

individual important features are deeply project-specific, indicating that no cross-project 

classification model can be developed. It is just not possible to train a classifier using these 

feature types on one project, then apply it to another project, and obtain any kind of reasonable 

accuracy, precision, or recall. 

One interesting question is whether the committing developer is predictive for bugginess. 

Based on this data, the short answer is “no”, not for change classification. In Table 9 above, only 

one project, Plone, lists author as a top 5 feature within the metadata feature group, and it is 

ranked low, at 676. One explanation is that even bug-prone developers tend to make more clean 

changes than buggy changes. If, hypothetically, a developer made 85% clean changes and 15% 

buggy changes, they might be perceived by their peers to be a bug-prone developer, while the 

change classifier would view this same developer as a strong feature for predicting clean changes. 

An intriguing potential extension of change classification would be to train one change classifier 

for each developer on a project, and then perform developer-specific bug prediction. Developers 

are expected to have developer-specific patterns in their bug introducing changes, and this might 

improve the performance of change classification. This remains future work.  
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VIII. DISCUSSION 

This section discusses possible applications of change classification, and provides additional 

interpretation of the results. This section ends with some discussion on the limitations of our 

experiments.  

A. Potential Applications of Change Classification 

Right now, the buggy change classifier operates in a lab environment. However, it could 

potentially be put into use in various ways: 

• A commit checker: The classifier identifies buggy changes during commits of changes to 

a SCM system, and notifies developers of the results. The bug prediction in the commit 

checker is immediate, and makes it easy for developers to inspect the change just made.  

• Potential bug indicator during source code editing: We have shown that features from 

source code (A, N, D) have discriminative power (see Figure 5). That is, just using features 

from source code, it is possible to perform accurate bug classification. This implies that a 

bug classifier can be embedded in a source code editor. During the source code editing 

process, the classifier could monitor source code changes. As soon as the cumulative set of 

changes made during an editing session leads the classifier to make a bug prediction, the 

editor can notify the developer. A proof of concept implementation of this idea using the 

Eclipse IDE is reported in [27]. 

• Impact on the software development process: Results from the change classifier could 

be integrated into the software development process. After committing a change, a 

developer receives feedback from the classifier. If the classifier indicates it was a buggy 

change, this could trigger an automatic code inspection on the change by multiple 

engineers. After the inspection, the developer commits a modified change and receives 
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more feedback. If this approach is effective in finding bugs right away, it could 

significantly reduce the number of latent bugs in a software system. 

B. Issues of Change Classification 

A software project that records its changes in an SCM system, has approximately 100 or more 

SCM commits, and has some record of which commits fix bugs, may have the change 

classification technique used on it.  

Several issues arise when extracting features from an existing project. First, an examination of 

change log messages is required to determine how best to determine the bug fix changes. The 

best set of keywords depends on how each project has used their SCM log messages in the past. 

For projects that consistently use a change tracking system, data may need to be extracted from 

this system as well. 

Another concern is ensuring the memory capacity of the machine performing classification is 

not exceeded, as this leads to excessive swapping to disk, and reduced performance. Two 

techniques can be used to reduce memory usage. The range of revisions used to train the 

classifier can be reduced; this was the case in the current paper with the Eclipse and JEdit 

projects. The project can also be subdivided into smaller modules, such as considering only a 

specific subdirectory within a large project. A single, moderately high-end workstation computer 

should be sufficient for performing change classification work, and hence hardware costs for 

implementing the technique are modest. 

An SVM classifier generally works well using all feature groups available for a project. If time 

is available, a given project can consider performing a feature group sensitivity analysis, of the 

type described in Section VII. This permits the use of the most accurate feature groups for the 

current project, usually resulting in a small gain in performance. Another consideration is 
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whether an existing complexity metric computation tool is available. Change classification can 

provide accurate results without the use of complexity metrics as a feature, however, complexity 

metrics are sometimes the most accurate single class of feature. 

In an ongoing project, the SVM classifier will need to be periodically retrained to 

accommodate data from new project changes. If a project is small enough, training an SVM 

could be performed nightly, at the end of the workday. On larger projects, the SVM could be 

retrained weekly.  

All in all, we expect that change classification will assist developers in identifying those 

changes that are most likely to contain bugs—and thus increase quality, reduce effort, or both.  

C. Minimum Change Numbers for Classifier Training 

The results presented in this paper use changes in 500 (or 250 revisions) to train and evaluate 

an SVM classifier. This raises the question of how many revisions or changes are required to 

train an SVM classifier to yield reasonable classification performance. To answer this question, 

subsets of changes are used to train and evaluate an SVM classifier with all features. To begin, 

only the first 10 changes are used to train and evaluate a classifier. Next, the first 20 changes are 

used. In the same way, the number of changes is increased by 10 and then used to train and 

evaluate an SVM classifier. 
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Figure 6. Number of changes used to train and evaluate an SVM classifier and their corresponding accuracy of selected 

projects: Apache, Bugzilla, GForge, Mozilla, and SVN. 

 

Figure 6 shows accuracies of selected projects by using various numbers of changes. Two 

conclusions can be drawn from this. First, after approximately 100 changes predictive accuracy 

is generally close to steady-state values. There is still some churn in accuracy from changes 100 

to 200, but the accuracy does not have dramatic swings (for example, no +/- 20% deviations) 

after this point. Accuracies settle down to steady-state values after 200 changes for most projects. 

It thus appears that change classification using an SVM classifier is usable as a bug prediction 

technique once a project has logged 100 changes, though with some variability in predictive 

accuracy for the next 100 changes until accuracy values ready steady-state. Due to this, if change 

classification is to be used on a new software project, it is probably best adopted towards the 

middle or end of the initial coding phase, once sufficient changes have been logged and initial 

testing efforts have begun to reveal project bugs. Any project that has already had at least one 

release would typically be able to adopt change classification at any time. 
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D. Threats to Validity 

There are five major threats to the validity of this study. 

Systems examined might not be representative. 12 systems are examined, more than any 

other work reported in the literature. In spite of this, it is still possible that we accidentally chose 

systems that have better (or worse) than average bug classification accuracy. Since we 

intentionally only chose systems that had some degree of linkage between change tracking 

systems and the text in the change log (so we could determine fix inducing changes), we have a 

project selection bias. This is most evident in the data from Bugzilla and Scarab, where the fact 

that they are change tracking systems led to a higher than normal ratio of buggy to clean changes.  

Systems are all open source. The systems examined in this paper all use an open source 

development methodology, and hence might not be representative of all development contexts. It 

is possible that the stronger deadline pressure, different personnel turnover patterns, and different 

development processes used in commercial development could lead to different buggy change 

patterns.  

Bug fix data is incomplete. Even though we selected projects that have change logs with good 

quality, we still are only able to extract a subset of the total number of bugs (typically only 40%-

60% of those reported in the bug tracking system). Since the quality of change logs varies across 

projects, it is possible that the output of the classification algorithm will include false positive 

and false negatives. It is currently unclear what impact lower quality change logs has on the 

classification results. 

Bug introducing data is incomplete. The SZZ algorithm used to identify bug-introducing 

changes has limitations: it cannot find bug introducing changes for bug fixes that only involve 

the deletion of source code. It also cannot identify bug-introducing changes caused by a change 

made to a file different from the one being analyzed. It is also possible to miss bug-introducing 
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changes when a file changes its name, since the algorithm does not track such name changes.  

Requires initial change data to train a classification model. As discussed in Section C, the 

change classification technique requires about 100 changes to train a project specific 

classification model before predictive accuracy achieves a “usable” level of accuracy.  

Use of bug tracking systems for tracking new functionalities. In two of the systems 

examined, Bugzilla and Scarab, the projects used bug tracking systems to also track new 

functionality additions to the project. For these projects, the meaning of a bug tracking identifier 

in the change log message either means a bug was fixed, or a new functionality added. This 

substantially increases the number of changes flagged as bug fixes. For these systems, the 

interpretation of a positive classification output is a change that is either buggy or a new 

functionality. When using this algorithm, care needs to be taken to understand the meaning of 

changes identified as bugs, and, wherever possible, to ensure that only truly buggy changes are 

flagged as being buggy.  

IX. CONCLUSION AND OPEN ISSUES 
 

If a developer knows that a change she just made contains a bug, she can use this information 

to take steps to identify and fix the potential bug in the change before it leads to a bug report. 

This paper has introduced a new bug prediction technique that works at fine granularity, an 

individual file level change, and has accuracy comparable to the best existing bug prediction 

techniques in the literature (78%, on average). Features gathered only from source code have 

strong discriminative power, suggesting the possibility of embedding the classification algorithm 

into integrated development environments for bug prediction during editing sessions. Developers 

can benefit from focused and prompt prediction of buggy changes, receiving this prediction 

either while they are editing source code or right after a change submission. 
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This work is the first to classify file changes as buggy or clean using the combination of 

change information features and source code terms. Additionally, this work provides an 

evaluation of the relative contributions of various feature groups for change classification.  

Although these experimental results are encouraging, there are still several open issues in this 

work, including: 

� Exploring on-line machine learning algorithms to learn and update a classification model 

as the project progresses and using it to predict future changes.  

� Generating more features from change information and exploring various ways to 

extract features, such as latent semantic analysis [22]. 

� Deep analysis on the individual features to identify common bug-prone code patterns or 

causality of bugs. 

� Applying or modifying existing machine learning algorithms to achieve better prediction 

accuracy, precision, and recall [9]. 

� Finally, use in ongoing software projects to see how developers exploit bug 

classification information to perform bug reducing interventions in their software.  

Overall, we expect that future approaches will see software history not only as a series of 

revisions and changes, but also as a series of successes and failures—and as a source for 

continuous awareness and improvement. Change classification is a first step in this direction. 
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