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ABSTRACT 
This paper proposes a novel technique for clustering and 
classification of object trajectory-based video motion clips using 
spatiotemporal functional approximations. A Mahalanobis 
classifier is then used for the detection of anomalous trajectories. 
Motion trajectories are considered as time series and modeled 
using the leading Fourier coefficients obtained by a Discrete 
Fourier Transform. Trajectory clustering is then carried out in the 
Fourier coefficient feature space to discover patterns of similar 
object motions. The coefficients of the basis functions are used as 
input feature vectors to a Self-Organising Map which can learn 
similarities between object trajectories in an unsupervised 
manner. Encoding trajectories in this way leads to efficiency 
gains over existing approaches that use discrete point-based flow 
vectors to represent the whole trajectory. Experiments are 
performed on two different datasets – synthetic and pedestrian 
object tracking - to demonstrate the effectiveness of our approach. 
Applications to motion data mining in video surveillance 
databases are envisaged. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Clustering 

General Terms 
Algorithms 

Keywords 
Object trajectory, Event mining, Motion classification, Anomaly 
detection. 

1. INTRODUCTION 
The current ubiquity of video surveillance systems has prompted 
a flurry of research activity aimed at the development of 

sophisticated content-based video data management techniques. 
General purpose tools are now urgently required for visual event 
mining including discovery and grouping of similar motion 
patterns, detection of anomalous behaviour and object motion 
prediction. Such tools are needed for the development of next 
generation 'actionable intelligence' surveillance systems. 

Much of the earlier research focus has been on high-level object 
trajectory representation schemes that are able to produce 
compressed forms of motion data [1-11]. This work presupposes 
the existence of some low-level tracking scheme for reliably 
extracting object-based trajectories[12, 13]. The literature on 
trajectory-based motion understanding and pattern discovery is 
less mature but advances using Learning Vector Quantization 
(LVQ) [14], Self-Organising Maps (SOMs) [15, 16], hidden 
Markov Models (HMMs) [17], and fuzzy neural networks [18] 
have all been reported. Most of these techniques attempt to learn 
high-level motion behaviour patterns from sample trajectories 
using discrete point-based flow vectors as input to a machine 
learning algorithm. For realistic motion sequences, convergence 
of these techniques is slow and the learning phase is usually 
carried out offline due to the high dimensionality of the input data 
space. 

Related work within the data mining community on 
approximation schemes for indexing time series data is highly 
relevant to the parameterisation of object trajectories. However, 
computer vision researchers have been slow to adopt this work. 
For example, Discrete Fourier Transforms (DFT) [19], Discrete 
Wavelet Transforms (DWT) [20], Adaptive Piecewise Constant 
Approximations (APCA) [21], and Chebyshev polynomials [22] 
have successfully been used to conduct similarity search in time 
series databases. 

In this paper, we apply time series modeling of spatiotemporal 
data to the problem of object trajectory classification and show 
how to learn motion patterns by  projecting the high-dimensional 
trajectory data into a low-dimensional manifold represented by a 
suitably chosen coefficient feature space. The coefficients are 
derived using functional approximation. The derived coefficient 
vector is used as an input feature vector to a neural network 
learning algorithm – in this instance a SOM - which can learn 
similarities between object trajectories in an unsupervised 
manner. It is shown that significant improvements in the accuracy 
of trajectory classification and recognition result when learning 
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takes place in the coefficient feature space rather than the original 
trajectory space. 

The remainder of the paper is organized as follow. We review 
some relevant background material in section 2. The system 
architecture and trajectory learning algorithm is presented in 
section 3 within the framework of a self-organising map. In 
section 4, the trajectory classification and anomaly detection 
procedure is discussed and experimental results for synthetic and 
object tracking data are reported in section 5. The paper concludes 
with a discussion and proposals for further work. 

2. BACKGROUND AND RELATED WORK 
Trajectory descriptors are known to be useful candidates for 
compressed representation of video object motion. Previous work 
has sought to represent moving object trajectories through a wide 
variety of direction schemes, polynomial models and other 
function approximations [1-10, 19-22]. The importance of 
selecting the most appropriate trajectory model has received 
relatively scant attention [11]. It is also surprising to find that 
many of these candidate indexing schemes have not yet been 
applied to the problem of motion data mining and trajectory 
classification. Recent work has either used probabilistic models 
such as HMMs [17] or discrete point-based trajectory flow 
vectors [14, 16, 18] as a means of learning patterns of motion 
activity.  

In [25, 26] an agglomerative clustering algorithm is presented, 
based on the Longest Common Subsequence (LCSS) approach, 
for grouping similar motion trajectories. Yacoob [27] and Bashir 
et al. [28, 29] have presented a framework for modeling and 
recognition of human motion based on a trajectory segmentation 
scheme. Classification is performed using Gaussian Mixture 
Model (GMMs) and HMMs with trajectory modeling that relies 
on a PCA-based representation of segmented object trajectories. 
In [30], a semantic event detection technique based on discrete 
HMMs is applied to snooker videos. Various machine learning 
algorithms used for classifying biological motion trajectories are 
compared in [31]. 

The contribution of this paper is to show that a trajectory-
encoding scheme based on an input coefficient feature space can 
be used to learn motion patterns more efficiently than previous 
approaches relying on discrete flow vectors. Clustering, 
classification and the detection of anomalous trajectories can then 
be carried out in the basis function coefficient space with reduced 
computational burden. 

3. LEARNING TRAJECTORY PATTERNS 
USING SELF-ORGANIZING MAPS 
Self-organised maps (SOMs) have been previously used for 
motion activity classification [15, 16] with trajectories encoded as 
point-based flow vectors. However, the use of point-based feature 
vectors results in high dimensionality and reduced system 
efficiency. In this case, unsupervised learning of motion patterns 
takes place offline. To achieve dimensionality reduction, we 
consider object trajectories as motion time series and use a 
coefficient indexing scheme. A performance comparison of 
different motion indexing schemes can be found in [11].  

3.1 Trajectory Representation and Similarity 
Search Metric 
The output of a motion tracking algorithm is usually a set of noisy 
2-D tracker points (xi, yi) representing the object’s motion path 
over a sequence of n frames, where i = 1,…,n. Often the 
representative point is taken to be the centroid or edge mid-point 
of the object’s minimum bounding rectangle. The motion 
trajectory can be considered as two independent 1-dimensional 
time series, <ti, xi> and <ti, yi>, the horizontal and vertical 
components of object displacement against time where t1 < … < 
tn.  

In this paper we use the DFT to map object trajectory time series 
to the frequency domain. The DFT coefficients can be calculated 
using the well known Fast Fourier Transform (FFT). The 
formulae for evaluating the Fourier coefficients can be found in 
[19]. 

The Euclidean distance is used as the basis for comparing the 
similarity of two motion trajectories. Each function 
approximation produces a vector of leading Fourier coefficients 
which can be used to index a 2-dimensional spatiotemporal 
trajectory. Given two trajectories Q and S, we can index these by 

a vector of 2m coefficients { }mqqQ ,....,1=  and 

{ }mssS ,....,1= , where ii sq ,  are T
yixii qqq ],[=  and 

T
yixii sss ],[= (i = 1,..., m). The constant coefficient can be 

removed by shift normalising the data. 

A Euclidean distance function (ED) on the coefficient space can 
be expressed as 

 ∑
=

−=
m

i
ii sqSQED

1

2)(),(  
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An overview of the system architecture used for trajectory 
learning is shown in Fig. 1. 

 
Figure 1. Overview of system architecture for learning object 
trajectories. 

3.2 Network Model 
The network topology chosen for the SOM is a layer of input 
neurons connected directly to a single 1-dimensional output layer. 
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Each input neuron is connected to every output neuron with the 
connection represented by a weight vector. The network topology 
is shown in Fig. 2. A similar network model was proposed in [16] 
for learning vehicle trajectories as a means for accident 
prediction. 

In a SOM network, physically adjacent output nodes encode 
patterns in the trajectory data that are similar and hence, it is 
known as a topology-preserving map. Consequently, similar 
object trajectories are mapped to the same output neuron. The 
number of input neurons is determined by the size of the feature 
vector which in this case relates to the selected number of DFT 
coefficients in the model. The number of output neurons 
represents the number of distinct patterns in the trajectory data 
and is selected manually at present.  

 
Figure 2. SOM network architecture used for trajectory 
learning. 

3.3 Learning Algorithm 
The algorithm used to cluster the trajectories differs slightly from 
the original SOM proposed by Kohonen [23]. The number of 
output neurons is initially set to a value greater than the desired 
number of cluster patterns that we wish to produce. After training 
the network, clusters representing the most similar patterns are 
merged in an agglomerative manner until the cluster count is 
reduced to the target number. The final number of trajectory 
cluster patterns is empirically tuned at present. 

Let B be the input feature vector representing the set of trajectory 
basis function coefficients, and W the weight vector associated to 
each output neuron. The learning algorithm comprises the 
following steps: 

1. Determine the winning output node k (indexed by c) such that 
the Euclidean distance between the current input vector B and 
the weight vector Wk is a minimum amongst all output 
neurons, given by the condition 

ktWBc kk ∀−= )(minarg  (2) 
 

2. Train the network by updating the weights. A subset of the 
weights constituting a neighbourhood centred around node c 

are updated using  

))()(,()()()1( tWBckttWtW kkk −+=+ ηα  (3) 

where η(k, c) = exp(−|rk−rc|2 / 2σt
2) is a neighbourhood 

function that has a value of 1 when k = c and falls off with 
distance |rk − rc| between output nodes k and c, σt  is a width 
parameter that is gradually decreased and t is the training cycle 
index. 

3. Decrease the learning rate α(t) linearly over time. 

4. After a pre-determined number of training cycles, decrease the 
neighbourhood size. 

5. At the end of the training phase, merge the most similar cluster 
pairs until the desired number of groupings is achieved. 
Assuming Wa and Wb are the weight vectors associated with 
output neurons representing the most similar clusters, and m, n 
are the number of sample trajectories mapped to these neurons 
respectively, a new weight value Wab for the merged cluster 
can be calculated as 

nm
nWmW

W ba
ab +

+
=  

 
(4) 

4. TRAJECTORY CLASSIFICATION AND 
ANOMALY DETECTION 
The SOM algorithm can be used to learn a set of motion patterns 
for the trajectory training dataset. The resulting labelled classes 
can then be used to classify new unseen trajectory data as normal 
(i.e. belonging to one of the existing labelled classes) or abnormal 
(distant from one of the existing classes). We use a simple k-NN 
classifier with the optimum value of k chosen by leave-one-out 
analysis. Classification results are presented in the following 
section using hand-labelled trajectories as ground truth. 
Visualisation of the clusters in the coefficient feature space shows 
that it is a reasonable assumption to represent class conditional 
probability density functions as multivariate normal. Anomalous 
trajectories can be detected through analysis of the covariance 
structure of a pattern at each output node. Hotelling’s T2 test is 
used to determine if the Mahalanobis distance of a sample 
trajectory to its nearest class centre makes it an outlier and thus 
abnormal. The test is now described in more detail. 

Assume that sample x belongs to pattern class Γi , where #{Γi} 
denotes the number of sample vectors x assigned to class Γi and i 
= 1,..,K. The class mean is denoted by μi and the covariance 
estimate ∑i is thus 

∑ ∑ Γ∈
−Γ−−=

i x i
T

ii
i

xx )1}{/(#))(( μμ   
(5) 

where μi and ∑i are calculated during training. The T2 statistic 
based on the Mahalanobis distance can be calculated as 

∑−
−−

+
=
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1 i

T
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where n = #{Γi} and μi is the class mean to which the sample 
vector is closest. A hypothesis test can be conducted to determine 
whether x is ‘too far’ from µi and hence anomalous [32]. Given 
that p is the size of the input feature vector in the coefficient 
space, we have that  
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where Fp,n-p is a random variable with an F-distribution and p, n-p 
degrees of freedom. Fp,n-p(α) is the upper (100α) th percentile of 
the Fp,n-p distribution.  

5. EXPERIMENTAL RESULTS 
We now present some results to demonstrate the effectiveness of 
the proposed clustering, classification and anomaly detection 

..........

Input layer 

Output layer 

47



techniques that are performed in the basis function coefficient 
feature space. The experiments have been performed on two 
different datasets – synthetic and pedestrian object tracking data. 

The synthetic dataset is known as the Cylinder-Bell-Funnel data 
and has been widely used to benchmark time series data mining 
algorithms [33]. Examples from each of the 3 classes are shown in 
Fig. 3. We performed two tests on this dataset. In the first 
experiment, we compared the classification error using the 
Euclidean distance similarity measure on the original data points 
and then on the Fourier coefficient feature vector obtained using 8 
DFT coefficients. Each time series was of fixed length consisting 
of 100 points. The classification accuracy was determined by 1-
NN leave-one-out cross-validation. For each class, we generated 
nc = 50 and nc = 120 instances and averaged the classification 
error over 50 runs. The results are presented in Table 1. These 
illustrate that improved classification accuracy is obtained using 
DFT-coefficient indexing of time series instead of discrete point 
vectors. The classification errors resulting from unsupervised 
learning using K-means clustering are also shown for comparison. 
In the case of unsupervised learning, we assume no a priori 
knowledge of class labels. 

 
(a)   (b) 

 
(c) 

Figure 3. Examples of the synthetic dataset of which 
there are 3 classes: (a) bell, (b) cylinder, and (c) funnel. 

In the second experiment, we tested the anomaly detection 
procedure using the Fourier coefficient representation. In this case 
it was not possible to use the point sequence as the covariance 
matrices for each class were near-singular and hence non-
invertible. We generated a set of 100 instances (i.e. coefficient 
vectors) from each class and tested each instance in the class 
against all the other classes seperately to determine the average 
number of detected anomalies. The mean and covariances of each 
class were generated from a sample size of 100 instances of each 
class and maintained constant for each run. The reported results 
were averaged over 50 repetitions. We would expect that few 
instances drawn from class X would be recorded as anomalous 
when tested against the same class, whereas nearly all instances 
would be detected as anomalous when tested against a different 
class Y. The results demonstrating this fact are shown in Table 2. 

The diagonal entries in the table show instances of class X tested 
against X and the off-diagonal entries instances of class X tested 
against Y. It should be noted that instances of Funnel class are less 
likely to be detected as anomalous when tested against Cylinder 
class (but not vice versa). It can be seem from Fig. 3 that there is 
some overlap between instances from these classes. The results of 
both experiments for the synthetic dataset were promising and 
encouraged us to try out real motion trajectory data. 

We now evaluate the performance of the SOM machine learning 
algorithm using the CAVIAR visual tracking database [24]. The 
database consisted of hand annotated video sequences of moving 
and stationary people and are intended to provide a test-bed for 
benchmarking vision understanding algorithms. The dataset 
consisting of 222 independent object trajectories is shown in Fig. 
4. 

 

Table 1. Classification error based on Euclidean 
distance similarity measure using 1-NN leave-one-out 
cross-validation. 

Model % Error 

Point sequence         (nc = 50) 3.2 

DFT coefficients      (nc = 50) 2.0 

Point sequence         (nc = 120) 2.5 

DFT coefficients      (nc = 120) 0.8 

Unsupervis. DFT     (nc = 100) 21.2 

Unsupervis. Point    (nc = 100) 35.4 

 

Table 2. Percentage of instance vectors detected as 
anomalous. If the classes were completely separable the 
diagonal table entries would be zero and the off-
diagonal entries would be 100. 

Sample\Test 
class 

Cylinder Bell Funnel 

Cylinder 0.8 90.1 7.3 

Bell 99.0 1.5 98.8 

Funnel 98.9 100.0 0.3 

 

The trajectories are represented using Fourier coefficient feature 
vectors with 8 coefficients for each spatial coordinate. We 
initially train a SOM network with 50 output neurons and then 
reduce these to 9 using the agglomerative clustering method 
described in section 3.3. In the SOM learning algorithm the 
neighbourhood size σt is decreased linearly after every Q training 
cycles, where Q is fixed at the start of training. The learning rate 
α(t) is reduced linearly over time until it reaches a set minimum 
value and then remains constant over the fine tuning stage until 
maximum number of iterations is achieved. The weight vectors 
are randomly initialized to lie within the expected range of the 
input feature vectors. This type of initialization improves the 
stability of the training network during the learning phase. 
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Sample trajectories from the test set are then classified using the 
classification technique described in section 4. The resulting 
trajectory cluster patterns are shown in Fig. 5. Visual inspection 
confirms that qualitatively similar motion trajectories have been 
clustered together quite successfully. Motions across the shopping 
mall corridor from left-to-right and right-to-left are grouped into 
separate clusters as expected. Although the proposed time series 
representation is velocity dependent, spatial similarities in object 
trajectories can still be identified in the cluster patterns. In this 
case we have chosen a motion representation that is view 
dependent and this would necessitate training the system on each 
camera separately. A method that deals with small PTZ motions 
of the camera can be developed based on techniques described in 
[7]. 

Sample trajectories are identified as abnormal when eq. (7) is 
satisfied (P < 0.01). These are shown highlighted in colour in the 
bottom right hand plot in  Fig. 5. 

In order to visualise the effects of trajectory clustering in the 
transformed feature space, we perform Principal Component 
Analysis (PCA) on the DFT coefficient vectors. The first 3 PCs 
account for 94% of the total variability. Fig. 6 shows the 
trajectories plotted in the PCA subspace of DFT coefficients. 
Each point represents an instance trajectory and these are 
colour/marker coded to highlight the separate cluster groups each 
trajectory is allocated to. These plots show a good degree of 
cluster separation in the low-dimensional PCA subspace. 

To investigate the effectiveness of clustering in the basis function 
coefficient feature space compared to clustering in the original 
trajectory point space, we compared the classification accuracy 
achieved with each approach. The class labels of the motion 
trajectory patterns were learnt using the SOM and K-means 
unsupervised techniques on the CAVIAR dataset. The dataset S 
was then randomly partitioned into training and test sets of equal 
sizes for cross-validation. We used a 1-NN classifier to classify 
all instance trajectories from the test set and generated the overall 
classification accuracy. To avoid bias, we repeated the random 
partitioning 500 times and aggregated the classification errors by 
averaging over all the test sets. The results summarised in Table 3 
demonstrate the superiority of learning trajectory patterns in the 
coefficient space. The classification accuracy obtained using 
coefficient feature space learning is higher than that of discrete 
point vector encoding for both SOM and K-means algorithms. 

In the next experiment we compare the performance of all 4 
methods in trajectory classification and prediction. From the 
original set S, we defined a set of partial trajectories SP by sub-
sampling a set of points from the original trajectories from 10% of 
the original length up to 100% in steps of 10. The classification 
was performed based on the input vectors consisting of DFT 
coefficients or discrete point-based flow (PBF) vectors. This is 
repeated for the SOM and K-means defined set of codebook 
vectors. The Mahalanobis distance is calculated between the input 
vector x representing the partial trajectory and cluster mean µi 
associated with ith output neuron. The input sample is classified 
to class i if it satisfies 
 

⎥⎦
⎤

⎢⎣
⎡ −−+ ∑∑ −1

)()())log(det(minarg i
T

iii xx μμ
 

 (8) 

 
Figure 4. Background scene containing database of 222 
hand-labelled object trajectories. 

 

 

 

 

 
Figure 5. Clustering of motion trajectories in CAVIAR 
dataset using SOM with DFT-based coefficient input 
feature vectors. The figure at bottom right shows the 
anomalous traectories detected using Hotelling's test 
with P < 0.01. 
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where Σi is the class covariance estimate and is calculated using 
eq.(5). A partial trajectory is said to be misclassified if it is not 
assigned to the original class based on the full trajectory set S. As 
evidenced from Fig. 7, the classifier derived from SOM in the 
coefficient feature space once again outperforms K-means. 

It is clear that DFT-parameterized models prove more effective 
than point-based flow vectors in the trajectory prediction and 
classification task. These results give further impetus to the 
development of alternative dimensionality reduction techniques 
for learning and prediction of motion trajectory patterns. 
 

 
Figure 6. Clustering visualised in the PCA subspace of DFT 
coefficient vectors. The plots represent PC1 vs PC2 (left), PC1 
vs PC3 (right). Error ellipses (1-sigma contours) for the 
covariance matrix are shown for each cluster pattern. This 
data corresponds to that of Fig. 5. 

 

Table 3. Comparison of mean overall classification accuracy 
for 2 different clustering techniques (SOM and K-means) and 
2 different trajectory encodings (coefficient subspace and 
discrete PBF vectors). #classes : #trajectories = 9 : 111. 

Method type % Accuracy 

SOM: coefficient subspace 91.9 

SOM: PBF vectors 79.9 

K-Means: coefficient subspace 88.8 

K-Means: PBF vectors 85.6 

 

6. DISCUSSION AND CONCLUSION 
This paper presents a neural network learning algorithm for 
classifying spatiotemporal object trajectories. Global features of 
motion trajectories are represented by Fourier approximations and 
this is apparent in the cluster visualizations. Using the coefficients 
of basis functions as input feature vectors to a neural network 
learning algorithm offers an efficient alternative to the use of 
discrete point-based flow vectors for trajectory classification and 
anomaly detection. 

A drawback of this approach is for representation of highly 
complex trajectories which are inherently unsuited to a global 
Fourier approximation. One possibility is to use a trajectory 
segmentation or multiscale approach and augment the feature 
vector with additional entries relating to object shape or colour. A 
more comprehensive performance evaluation is now required 
using real video sequences where occlusions and target 

misdetections will result in fragmented noisy trajectories. The 
robustness of the classification technique requires thorough 
investigation under these circumstances. We would also like to 
compare other dimensionality reduction and machine learning 
techniques for trajectory classification, e.g. ICA, HMMs and 
semi-supervised learning.  
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Figure 7. Comparison of mean overall classification accuracy 
in trajectory prediction using 2 different clustering techniques 
(SOM and K-means) and 2 different trajectory encodings 
(coefficient subspace and discrete PBF vectors). #classes : 
#trajectories = 9 : 111 
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