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ABSTRACT

Many mobile devices and applications can act in context-
sensitive ways, but rely on explicit human action for context
awareness. It would be preferable if our devices were able to
attain context awareness without human intervention. One
important aspect of user context is environment. We present
a novel method for classifying environment types based on
acoustic signals. This method makes use of linear autoen-
coding neural networks, and is motivated by the observa-
tion that biological coding systems seem to be heavily influ-
enced by the statistics of their environments. We show that
the autoencoder method achieved a lower error rate than a
standard gaussian mixture model on a representative sam-
ple task, and that a linear combination of autoencoders and
GMMs yielded better performance than either alone.

1. INTRODUCTION

Many mobile devices and applications can act in context-
sensitive ways, but rely on explicit human action for con-
text awareness. It would be preferable if our devices were
able to attain context awareness without human interven-
tion. Thus, we are interested in developing systems which
can analyze perceptual data to draw inferences about user
context. One important aspect of user context is environ-
ment. A cellphone that is aware of its user’s environment,
like the Connector system under development in the CHIL
project [1], would be able to switch between notification
modes automatically; for example, switching to silent mode
if the user is in a restaurant or theater, or halting notification
entirely if the user is attending a meeting or lecture.

To perform environment classification, we choose to fo-
cus on the audio signal. We make this choice for several
reasons. The audio signal is relatively low-bandwidth and
has modest processing and storage requirements, and good-
quality audio sensors are cheap and robust. More impor-
tantly, the audio signal is largely unaffected by potentially
spurious changes in aspect, position, or lighting, and the en-
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vironment almost always leaves strong evidence in the au-
dio signal — often strong enough that humans talking on
the telephone can determine whether the caller is in an of-
fice, car, city street, or airport.

We present a novel method for classifying environment
types based on acoustic signals. This method makes use of
linear autoencoding neural networks, and is motivated by
the observation that biological coding systems seem to be
heavily influenced by the statistics of their environments.
We show that the autoencoder method outperforms a stan-
dard gaussian mixture model (GMM) on a representative
sample task, and that a linear combination of autoencoders
and GMMs yields better performance than either alone.

The remainder of this paper is organized as follows. Re-
lated work is discussed in Section 2, the linear autoencoder
model is presented in Section 3, and the evaluation proce-
dure is presented in Section 4. Discussion follows in Sec-
tion 5.

2. RELATED WORK

Clarkson and Pentland studied user context awareness using
audio, video, and other sensory streams [2] [3], [4], [5], [6]
in the context of a system designed to extract personal life
patterns from sensory data. This system employed feature-
level fusion and HMM clustering techniques to learn com-
mon scenarios in everyday life.

Ellis and Lee presented a personal archiving system [7]
that used an unsupervised spectral clustering technique to
analyze environmental audio. Their system achieved 61%
accuracy on a task similar to the one described here.

3. LINEAR AUTOENCODER NETWORKS

As noted above, we were motivated to employ a linear au-
toencoder for this task by the observation that biological
perceptual systems seem to display filter structures that are
similar to those derived from information-theoretic proce-
dures for optimal coding [8], [9], [10], [11] which seek
to maximize statistical independence of filter components.
This fact suggested that a model based on optimal coding
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Fig. 1. A Linear Autoencoder

might be able to perform environment classification. That
is, an optimal coder exposed only to sounds from one spe-
cific environment would display structures characteristic to
that environment. These coders should be able to code and
reconstruct signals from their own environments quite well,
but should fare poorly on signals from other environments.
If this hypothesis is correct, measuring the signal recon-
struction error over a bank of environment-specific optimal
coders could be a reasonable procedure for acoustic envi-
ronment classification.

A simple model capable of performing optimal coding
under an assumption of data gaussianity is a linear autoen-
coding neural network, or autoencoder [12] [13], an exam-
ple of which is shown in Figure 1. The autoencoder is a
standard feed-forward neural network with a linear trans-
fer function trained on the identity function; that is, the de-
sired output is the same as the input. An example of sev-
eral frames of data passed through a network trained in this
way is shown in Figure 2. In this example, the network
reproduced the gross features of high-dimensional data us-
ing only four hidden units. It has been shown that train-
ing such a network using a sum-of-squares error function
leads the weights in the hidden layer to approximate the
subspace spanned by the N largest principal components of
the data [13]. This implies that the hidden unit activations
are decorrelated, which under the gaussian assumption is
equivalent to statistical independence.

4. EVALUATION

4.1. Data Collection

We evaluated the autoencoding method on a corpus of audio
recordings containing eleven different environments. The
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Fig. 2. Linear Autoencoder Example

environments were chosen to represent a variety of indoor
and outdoor types. Data collection personnel recorded ten-
minute scenes in these environments, with a variety of dif-
ferent locales. The environments we chose to study were
apartment (5 scenes), office corridor (1), elevator (2), lec-
ture (5), meeting room (3), office (4), outdoor (7), outdoor
raining (6), restaurant (2), theater (2), and vehicle (8). The
outdoor class included mainly areas with little or no street-
type noise, and the vehicle class included cars, buses, and
trains. The data collectors were instructed to keep fore-
ground speech to a minimum so that the ambient sound tex-
tures would be the predominant sources of acoustic energy.

Data were collected using a small digital voice recorder
and a Sony ECM-717 stereo microphone. The data were re-
sampled at 16 kHz, 16-bit mono for use in this experiment.
To help ensure the predominance of ambient sound in the
training and test sets, we calculated the mean power of each
recording and selected for further study only those segments
that were quieter than average (this amounts to the inverse
of the event detection procedure described in [2]). After ap-
plying this procedure, the data were divided into a training
set and a test set; 80% of the segments were selected for
training; the remainder for testing. The number of segments
and time per class in the training and test sets are shown in
Figure 3. There were a total of 7299 segments in the train-
ing set, amounting to 218 minutes. The test set contained
1814 segments, amounting to 49 minutes.



Class Training Set Test Set
Segs Total Time Segs Total Time

apt 727 1563.47s 180 414.23s
cor 116 115.93s 28 31.43s
elv 349 558.97s 86 103.47s
lec 1242 1676.06s 310 422.81s
mtg 884 1286.13s 220 340.12s
ofc 661 1573.41s 164 327.69s
out 1076 2527.63s 268 350.64s
rng 634 1664.88s 158 387.85s
rst 253 205.43s 62 54.25s
tht 400 596.58s 100 169.07s
veh 957 1356.73s 238 358.31s

Fig. 3. Data Set Details

4.2. Feature Extraction

From the signal, we extracted 64 MFCCs, plus the spectral
centroid, at a rate of 100 frames per second. The spectral
centroid is computed as c =

∑
i fiai/

∑
i ai (where fi is

the ith frequency and ai is the amplitude at fi) and is in-
tended to serve as an estimate of the perceived “brightness”
of a sound. Both MFCCs and brightness were normalized
to zero mean and unity variance over the entire training set,
and were combined into a single feature vector. This vector
was then compressed to 35 dimensions using PCA, which
preserved 75% of the variance. Finally, the PCA features
were each scaled to unity variance, producing a sphered
dataset.

4.3. Training

We trained linear autoencoders and GMMs for each class.
We used seven different training configurations to test the
effect of varying numbers of parameters. Specifically, we
trained models with 2, 4, 8, 12, 16, 20, and 24 hidden units
or gaussians. Each autoencoder was initialized with random
weights between -0.05 and 0.05 and trained on the whitened
features for 100 iterations using a batch-mode backpropa-
gation algorithm with an adaptive learning rate initialized at
0.05, a momentum term of 0.045, and batch shuffling. Each
GMM was trained on the same features for 20 iterations us-
ing the neural gas algorithm [14] a soft-clustering variant
of the k-means algorithm, with a starting temperature of 0.5
and a cooling rate of 0.01.

4.4. Results

For each test segment, we calculated both autoencoder and
GMM scores. In each case, the hypothesis was taken to be
the class of the model producing the optimum score. The
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Fig. 4. Test Set Error Curve

error curves for this experiment are shown in Figure 4. The
16-unit autoencoder achieved a 22.1% error rate, while the
24-gaussian GMM achieved a 22.43% error rate. In gen-
eral, the autoencoders outperformed GMMs with the same
number of parameters for models with fewer than 20 com-
ponents.

After running this experiment, we examined the con-
fusion matrices of the best autoencoders and GMMs. We
discovered that there were some systematic errors that were
unique to one classifier or the other. The per-class precision
and recall is shown in Figure 5. Several large differences
present themselves; the restaurant recall and precision and
the corridor and theater precision are notable.

Given this mismatch, we postulated that a hybrid model
using both autoencoders and GMMs might outperform ei-
ther model alone. To test this hypothesis, we carried out an-
other test in which we simply added weighted autoencoder
and GMM scores together. The results of this test are shown
in Figure 6, with the 2- and 4-component models omitted.
The lowest error for the hybrid system shown was 19.95%,
achieved with 16 hidden units/gaussians and a score weight-
ing of 3-2 in favor of the autoencoders. A trivially bet-
ter performance of 19.78% was achieved by combining 16-
unit autoencoders with 24-gaussian GMMs with equal score
weighting. The best hybrid model thus performed 2.32%
absolute better than the best autoencoder model, and 2.64%
absolute better than the best GMM.

We conducted no studies on this dataset to determine
how well humans perform at this task. However, in a smaller
pilot study consisting of only one recording each from six
different classes (office, cafeteria, car, lecture, city street,
CMU campus), we found that untrained human listeners
achieved error rates between 20% and 30%.



Class Autoencoder GMM
Precision Recall Precision Recall

apt 87.97 89.44 81.00 90.00
cor 74.19 82.14 92.59 89.28
elv 68.90 95.34 65.34 96.51
lec 80.88 77.45 77.88 78.38
mtg 86.40 80.90 96.56 75.45
ofc 93.86 93.29 96.27 94.51
out 78.01 55.59 86.14 53.35
rng 69.69 87.34 75.27 86.70
rst 43.47 64.51 32.58 93.54
tht 71.99 90.00 93.40 84.99
veh 76.05 68.06 75.37 63.02

Fig. 5. Precision and Recall per Class

GMM Hidden Units / Number of Gaussians
Weight 8 12 16 20 24

0.1 22.15 22.26 21.60 23.31 22.65
0.2 21.82 21.71 21.11 22.54 21.88
0.3 21.38 21.00 20.00 22.04 21.49
0.4 21.05 20.50 19.95 21.38 21.49
0.5 20.72 20.39 20.22 21.27 21.33
0.6 20.66 20.39 20.28 21.16 21.38
0.7 21.00 21.22 20.61 21.38 21.44
0.8 21.38 21.60 21.33 21.60 21.99
0.9 22.81 22.59 21.88 22.10 22.26

Fig. 6. Error Rates for Autoencoder/GMM Hybrid

5. DISCUSSION

We demonstrated that linear autoencoder networks outper-
formed GMMs on an environment classification task, vali-
dating the hypothesis that procedures based on optimal cod-
ing are effective for this task. Further, we demonstrated that
the errors made by autoencoder networks and GMMs were
sufficiently different that a simple linear combination of the
two models yielded reduced error rates.

In future work, we will attempt to improve system ac-
curacy, coverage, and utility. We will build a corpus better
suited to the CHIL Connector task, and include a wider va-
riety of specific locales from the US and Europe. Further,
we intend to make a more systematic study of human per-
formance on the environment classification task in order to
provide a gold standard against which to measure machine
performance.
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