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Abstract Most of the research on text categorization has focused on classifying text
documents into a set of categories with no structural relationships among them (flat
classification). However, in many information repositories documents are organized
in a hierarchy of categories to support a thematic search by browsing topics of
interests. The consideration of the hierarchical relationship among categories opens
several additional issues in the development of methods for automated document
classification. Questions concern the representation of documents, the learning
process, the classification process and the evaluation criteria of experimental results.
They are systematically investigated in this paper, whose main contribution is a
general hierarchical text categorization framework where the hierarchy of categories
is involved in all phases of automated document classification, namely feature
selection, learning and classification of a new document. An automated threshold de-
termination method for classification scores is embedded in the proposed framework.
It can be applied to any classifier that returns a degree of membership of a document
to a category. In this work three learning methods are considered for the construction
of document classifiers, namely centroid-based, naïve Bayes and SVM. The proposed
framework has been implemented in the system WebClassIII and has been tested on
three datasets (Yahoo, DMOZ, RCV1) which present a variety of situations in terms
of hierarchical structure. Experimental results are reported and several conclusions
are drawn on the comparison of the flat vs. the hierarchical approach as well as on the
comparison of different hierarchical classifiers. The paper concludes with a review of
related work and a discussion of previous findings vs. our findings.
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1 Introduction

Text classification or text categorization is the process of automatically assigning one
or more predefined categories to text documents. A wide range of supervised learn-
ing algorithms has been applied to this problem, using a training set of categorized
documents to build a classifier that maps arbitrary documents to relevant categories.
Most of the learning methods reported in the literature deal with classifying text into
a set of categories without structural relationships among them (flat classification).
More recently, increasing attention has been given to hierarchical classification

(D’Alessio, Murray, Schiaffino & Kershenbau, 2000; Dumais & Chen, 2000; Koller
& Sahami, 1997; McCallum, Rosenfeld, Mitchell & Ng, 1998; Mladenić, 1998b; Ng,
Goh & Low, 1997; Ruiz & Srinivasan, 2002; Weigend, Wiener, & Pedersen, 1999),
where the pre-defined categories are organized in a hierarchical structure (tree-like
structure). From an information retrieval viewpoint, this hierarchical arrangement is
essential when the number of categories is high, since thematic search is made easier
by browsing topics of interests. Yahoo, Google Directory, Medical Subject Headings
(MeSH) in MEDLINE, Open Directory Project (ODP) and Reuters Corpus Volume
I (RCV1) (Lewis, Yang, Rose & Li, 2004) are examples of search engines and text
databases where documents are arranged in topic hierarchies.

The structural relationship among categories can be taken into account when
devising the classification process. While in flat classification a given document is
assigned to a category on the basis of the output of one or a set of classifiers, in
hierarchical classification the assignment of a document to a category can be done on
the basis of the output of multiple sets of classifiers, which are associated to different
levels of the hierarchy and distribute documents among categories in a top-down
way. The advantage of this hierarchical view of the classification process is that the
problem is partitioned into smaller subproblems, each of which can be effectively
and efficiently managed. Another motivation is given by the observation that both
precision and recall decrease as the number of categories increases (Apté, Damerau
& Weiss, 1994; Yang, 1996), due to the increasing effect of term polysemy for large
corpora.

On the other hand, taking into account the hierarchy opens additional issues in
the development of methods for automated document classification. First, documents
can either be associated to the leaves of the hierarchy or to internal nodes. Second,
the set of features selected to build a classifier can either be category specific or
the same for all categories (corpus-based). Third, the training set associated to
each category may or may not include training documents of subcategories. Fourth,
the classifier may or may not take into account the hierarchical relation between
categories. Fifth, a stopping criterion is required for hierarchical classification of new
documents in non-leaf categories. Sixth, performance evaluation criteria should take
into account the hierarchy when considering classification errors.

All these issues are systematically investigated in this paper, which presents and
evaluates a hierarchical text categorization framework that involves the hierarchy
of categories in all phases of text categorization, namely feature extraction, learning
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and classification of a new document. The framework includes a tree distance-based
thresholding algorithm for the classification of documents in internal categories of
the hierarchy. It can be applied to any classifier that returns a degree of membership
(e.g., distance- or probability-based) of a document to a category. In this work we
consider three of the most widely investigated methods for (flat) text classification,
namely centroid-based, naïve Bayes (NB) and support vector machines (SVM), and
we investigate the performance of these methods on three datasets (Yahoo, DMOZ,
RCV1). These datasets present a variety of situations in terms of hierarchical struc-
ture: documents can be assigned to any node in the hierarchy; some nodes can have
no associated documents and internal nodes can have only one child. The baseline
of the empirical evaluation is the flat classification, so that it is possible to analyze
the actual contribution of the hierarchy in text classification performance. Another
aspect considered in this framework is the construction of feature sets, which can be
performed by merging the dictionaries of all subcategories (hierarchical feature set)
or by taking the union of dictionaries of direct subcategories (proper feature set). The
pros and cons of hierarchical feature sets are discussed and interactions with learning
methods are empirically evaluated.

This paper extends and revises the work by Ceci and Malerba (2003) on hierarchi-
cal text classification. The main extensions are: 1) the consideration of hierarchical
feature sets in feature selection; 2) the improvement of the naïve Bayes algorithm to
avoid problems related to the different document length (Kim, Rim, Yook, & Lim,
2002); 3) the validation of the proposed framework also for a probabilistic SVM-
based classifier; 4) a new automated threshold selection algorithm that operates
according to a bottom-up strategy, thus taking full advantage of the decisions made
at lower levels of the hierarchy; 5) a more extensive experimentation. A restriction
with respect to previous work is that here we use only hierarchical training sets,
which include documents of the subtree rooted in a category (positive examples)
and documents of the sibling subtrees (negative examples). Proper training sets (see
Fig. 1), which include documents of a category (positive examples) and documents
of the sibling categories (negative examples), are not considered for two reasons.
First, in Ceci and Malerba (2003) we have already showed that hierarchical training
sets perform better than proper training sets. Second, when no training document

Fig. 1 a Hierarchical training
set; b proper training set
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is associated to internal categories, as in the case of some datasets considered in
this work, proper training sets cannot be used, since it would be impossible to build
a classifier.

The paper is organized as follows. In the next section, the hierarchical classifi-
cation framework is introduced in general terms, while in Section 3 the procedure
for automated threshold determination is presented in detail. In both sections no
reference to specific feature selection methods or learning algorithms is made: they
are explained in Sections 4 and 5, respectively. To test alternative hierarchical text
classification methods, a new release of the system WebClass (Malerba, Esposito
& Ceci, 2002), named WebClassIII, has been implemented.1 Some experimental
results on three distinct datasets are reported and commented in Section 6. Finally,
in Section 7 some related papers are discussed and the main differences compared
with this work are reported. In the comparison, attention is focused on the method,
the experimental setting and the empirical findings.

2 Hierarchical document classification: the framework

An important design issue of any hierarchical document classification framework is
document representation. One of the frequently used approaches in content-based
flat classification is the bag-of-words text representation, where each document is
represented as a vector of numbers, each number corresponding to the occurrence
of a particular word in the document and no ordering of words or any structure
of text is considered. In the seminal work by Apté et al. (1994) two different
types of representation are proposed: the same feature vector for all documents or
several specialized feature vectors for different categories. The former is obtained by
selecting features from a universal dictionary, built by examining all documents in the
training set, while the latter is obtained by selecting a feature set from several local

dictionaries, built for each category by examining only documents of that category.
The main advantage of using local feature sets is the large reduction of di-

mensionality. This is particularly true in flat classification, where the total number
of categories is typically quite high, and different categories are characterized by
different features. On the other hand, the uniqueness of the feature set permits the
application of several statistical and machine learning algorithms (e.g., nearest neigh-
bour or naïve Bayes classifier) defined for multi-class problems.2 These algorithms
are appropriate for single-class categorization and are theoretically founded on the
assumption that all documents are points of the same (multidimensional) feature
space.

In the context of hierarchical text classification a different, somewhat interme-
diate, solution can be adopted. Documents of both an internal category c and its
subcategories are represented by means of the same feature set, in order to build
a classifier that assigns documents in c to one of its direct subcategories. However,
different internal categories may have different feature sets. In other words, by taking

1WebClassIII is available at the website http://www.di.uniba.it/~malerba/software/webclass/.
2A learning problem for classification into r categories can be formulated in two different ways:
either a binary classifier is induced for each category, or a 1-of-r (or multi-class) classifier is learned
to determine whether a new document belongs to one of the r categories (Sebastiani, 2002).

http://www.di.uniba.it/~malerba/software/webclass/


J Intell Inf Syst (2007) 28:37–78 41

into account the hierarchy, it is possible to define several representations (sets of
features) for each document. Each representation is useful for the classification of
a document at one level of the hierarchy. For instance, documents of the general
topic ‘Math’ can be well represented by general terms like “mathematics,” while
documents concerning specific topics (e.g., geometry) are better represented by
specific terms like “parallelepiped.” In the case of hierarchies representing is–a re-
lations between categories, this multiple representation of documents means having
several abstractions of the same entity (document), each of which is appropriate for
a particular decision problem.

In our hierarchical text categorization framework (see Fig. 2), this multiple repre-
sentation of documents is adopted, and a new document is classified by searching the
hierarchy of categories. The search proceeds top-down from the root to the leaves
according to a greedy strategy. When the document reaches an internal category
c, it is represented on the basis of the feature set associated to c. The classifier of
category c returns a score for each direct subcategory. Then, from the subcategories
whose score is greater than the corresponding threshold the one with the highest
score is chosen. The search proceeds recursively from that subcategory, until no score
is greater than the corresponding threshold or a leaf category is reached. The last
crossed node in the hierarchy is returned as the candidate category for document
classification (single-category classification). If the search stops at the root, then the
document is considered unclassified.

During the classification process the document is represented at decreasing levels
of abstraction, since selected features tend to be more specific for lower level
categories. These different representations of a document make the classification
scores incomparable across different nodes in the hierarchy (e.g., in the case of naïve
Bayes classifiers, posterior probabilities are defined on different probability spaces)
and prevent the correct application of an exhaustive search strategy instead of the
proposed greedy strategy.

Fig. 2 Classification of a new document. On the basis of the scores returned by the first classifier
(associated to the category science) the document is passed down to math. The scores returned by the
second classifier (associated to the category math), are not high enough to pass down the document
to either trigonometry or geometry. Therefore, the document is classified in the math category
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A special case is represented by categories with a unique direct subcategory. A
probabilistic classifier would assign a unit probability to all documents that reach
a category c with a single subcategory c′, since no alternative to c′ is given. In this
case, the thresholding procedure cannot work properly: if the threshold is less than
one, all documents that reach c would be passed down to c′, thus committing some
errors for those documents that actually belong to c; otherwise, no document would
be passed down to c′, thus committing some errors for those documents that should
be actually classified in a subcategory of c. To avoid this problem, a dummy sibling
category of c′ is introduced during the learning process. The training documents
associated to the dummy subcategory are only those associated to c. The effect is
that documents of c can be considered as negative examples for all subcategories of
c itself. Therefore, the prior probabilities of all direct subcategories of c do not sum
to 1.0, since the possibility that the document belongs to no subcategory should be
taken into account. While the dummy category is used during the learning process, it
plays no role during the classification process, since scores associated to the dummy
category are not considered. The assignment of the document to c is based only on
the thresholds, whose bottom-up automated determination permits the consideration
of the final effect of local decisions taken by the classifier associated to c.

3 Automated threshold determination

As pointed out in the previous section, a classifier (either centroid-based, or naïve
Bayesian or SVM-based) is learned for each internal category c of the hierarchy.
This classifier is used to decide, during the classification of a new document, which
category c′ among the direct subcategories of c is the most appropriate to receive the
document. In general, however, a document should not be necessarily passed down
to a subcategory of c. This makes sense in the case that:

1. The document to be classified deals with a general rather than a specific topic, or
2. The document to be classified belongs to a specific category that is not present in

the hierarchy and it makes more sense to classify the document in the “general
category” rather than in a wrong category.

To support the classification of documents also in the internal categories of the
hierarchy, it is necessary to compute the thresholds that represent the “minimal
score” (returned by the classifier), such that a document can be considered to belong
to a direct subcategory. More formally, let γc→c′ (d) denote the score3 returned by
the classifier associated to the internal category c, when the decision of classifying
the document d in the subcategory c′ is made. Thresholds are used to decide if a
new testing document is characterized by a score that justifies the assignment of such
a document to c′. Formally, a new document d temporary assigned to a category c

will be passed down to a category c′ if γc→c′ (d)> Thc(c
′), where Thc(c

′) represents
the “minimal score” such that a document assigned to c can be considered to belong
to c′.

3As explained in the next sections, γc→c′ (d) = Pc

(

c′|d
)

in the case of the naïve Bayes Classifier

and the SVM probabilistic classifier, and γc→c′ (d) = Simc

(

c′, d
)

in the case of the centroid-based
classifier.
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The algorithm for automated threshold determination is based on a bottom-up
strategy and tries to minimize a measure that is based on a tree distance. Before
describing the algorithm and the used measure, some notations are introduced:

1. Hierarchy(c) is the hierarchy of categories rooted in c;
2. DirectSubCategories(c) is the set of direct subcategories of c in Hierarchy(c);
3. Training(c) is the set of positive examples in the hierarchical training set of

category c;
4. Training(c/c′)= Training(c) − Training(c′) is the set of positive examples in

Training(c) but not in Training(c′) for some c′ ∈ DirectSubCategories(c);
5. γc(c

′) =
⌊

γc→c′(d)|d ∈ Training(c′)
⌋

is the list of values taken by the classifier for
all documents of category c′ (or a subcategory);

6. γc(¬c′) =
⌊

γc→c′(d)|d ∈ Training(c/c′)
⌋

is the list of values taken by the classifier
for each document in c or a subcategory c′′ not in Hierarchy(c′);

7. V = γc(c
′) ∪ γc(¬c′) sorted in ascending order.

The algorithm (see Algorithm 1) is recursive and takes as input the category c and
a set of thresholds already computed for some siblings of c and their descendants
(at the first invocation, c is the root category and thresholdSet is empty). It returns
the union of the input set thresholdSet with the set of thresholds computed for all
descendants of c. In particular, if c′ is a direct subcategory of c, the threshold Thc(c

′)

associated to c′ is determined by examining the sorted list V of classification scores
and by selecting the middle point between two values in V, such that the expected
error is minimized. This error is estimated on the basis of the distance between two
nodes in a tree structure:

Definition 1 (Tree distance)
Let Categories be the set of all categories in a given Hierarchy. The tree dis-

tance δHierarchy is a function δHierarchy : Categories → R that associates two categories
c1, c2 ∈ Categories with a real value such that the following conditions are fulfilled:

I ∀c1, c2 ∈ Categories : 0 = δHierarchy(c1, c1) ≤ δHierarchy(c1, c2) = δHierarchy(c2, c1)

II ∀c1, c2 ∈ Categories : δHierarchy(c1, c2) = 0 =⇒ c1 = c2

III ∀c1, c2, c3, c4 ∈ Categories : δHierarchy(c1, c2) + δHierarchy(c3, c4) ≤
≤ max{δHierarchy(c1, c3) + δHierarchy(c2, c4), δHierarchy(c1, c4) + δHierarchy(c2, c3)}

In a tree distance, the dissimilarity between two categories is reproduced as the
sum of the weights of all edges of the (unique) path connecting the two categories
in the hierarchy (Esposito, Malerba, Tamma & Bock, 2000). When a unit weight is
associated to each edge (as in WebClassIII) the dissimilarity is the length of the path.
Intuitively, the automated thresholding algorithm tries to compute thresholds by
minimizing the distance between the true class of a document and the class returned
by the hierarchical classifier.

The computation proceeds bottom-up, from leaves to the root. In a previous work
(Ceci & Malerba, 2003) a top-down approach was proposed, which suffered from two
limitations:



44 J Intell Inf Syst (2007) 28:37–78

• It is conservative in the sense that it tends to classify documents in higher
categories;

• When a threshold is defined it is impossible to take into account the possibly
wrong decisions made by classifiers at lower levels of the hierarchy.

Algorithm 1 Automated threshold denition algorithm for a category c.

1: find_thresholds(c,thresholdSet)
2: if notleaf (c) then

3: for all c′ ∈ DirectSubCategories(c) do

4: thresholdSet ← f ind_thresholds(c′, thresholdSet); {recursive bottom-up
threshold determination}

5: compute_and_sort(V, c, c′);
6: Thc(c

′) ← 0; bestError ← ∞;
7: for all k = 0, ..., |V| do

8: {choose a possible threshold}
9: if k = 0 then

10: threshold ← V[1] − ε; {ε > 0}
11: else if k = |V| then

12: threshold ← V[k];
13: else

14: threshold ← (V[k] + V[k + 1])/2;
15: end if

16: error ← 0; {compute tree distance-based errors}
17: for all v ∈ γc(c

′) do

18: let d ∈ Training(c′) such that v = γc→c′(d)

19: if v > threshold then

20: error + =δHierarchy(c′)(class(d),classi fy(d,thresholdSet,Hierarchy(c′)))

21: else

22: error+ = δHierarchy(c′)(class(d), c);
23: end if

24: end for

25: for all v ∈ γc(¬c′) do

26: let d ∈ Training(c/c′) such that v = γc→c′(d)

27: if v > threshold then

28: error + =δHierarchy(c)(class(d),classi fy(d,thresholdSet,Hierarchy(c′)))

29: else

30: error+ = 0;
31: end if

32: end for

33: if error < bestError then

34: Thc(c
′) ← threshold; bestError ← error;

35: end if

36: end for

37: thresholdSet ← thresholdSet ∪ {〈c′, Thc(c
′)〉};

38: end for

39: end if

40: return thresholdSet
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Another difference is that in our previous work thresholds were determined
by maximizing the FScore of the hierarchical classification on training documents.
Although this approach gives promising results, it presents the limitation that the
distance between “target” and “assigned” categories in the hierarchy is not consid-
ered when a misclassification error occurs.

The proposed algorithm may not find the set of thresholds that minimize the global
error (globally optimal set), since the threshold associated to c′ is not determined
by taking into account the thresholds associated to all other categories that are not
subcategories of c. In fact, the problem of finding the absolute minimum in R

m

(where m is the number of thresholds, i.e., the number of nodes minus one) for a
given function requires the exploration of the entire search space when no specific
properties of the function (e.g., continuity, differentiability and monotonicity) can be
defined. Since the error function Algorithm 1 minimizes does not show any particular
property that permits to reduce the complexity of the searching problem we are
forced to resort to a heuristic search based on a sequence of local reductions of errors
(one for each branch of the tree). Global optimization by means of evolutionary
algorithms or simulated annealing is postponed for future research.

4 The feature selection process

In this section the feature selection algorithm is briefly overviewed in order to better
understand experimental results. We remark that feature selection is not the main
topic of this paper, since the effect of feature selection in hierarchical categorization
has already been investigated by Mladenić and Grobelnik (2003). In the proposed
framework, the feature set is unique for each internal category and is automatically
determined by means of a set of positive and negative training examples. More
specifically, in WebClassIII, all training documents are initially tokenized, and the
set of tokens (words) is filtered, in order to remove HTML tags, punctuation marks,
numbers and tokens of less than three characters. Only relevant tokens are used
in the feature set. Before selecting relevant features, standard text pre-processing
methods are used to:

1. Remove stopwords, such as articles, adverbs, prepositions and other frequent
words taken from Glimpse,4 a tool used to index files by means of words.

2. Determine equivalent stems (stemming), such as ‘topolog’ in the words ‘topol-
ogy’ and ‘topological,’ by means of Porter’s algorithm for English texts (Porter,
1980).

Although these preprocessing steps reduce the number of extracted tokens, the
feature set can still be large even in the case of small document collections. In many
learning algorithms reduction of the set of features is essential for both complexity
and accuracy. In particular, centroid-based methods compute the distance of a
document from a centroid on the basis of all features used to describe the documents.
If the attribution of a document to a category depends on only a few of the many
available features, then the documents that are truly “close” to the centroid may

4glimpse.cs.arizona.edu.

glimpse.cs.arizona.edu.


46 J Intell Inf Syst (2007) 28:37–78

well be far apart. Galavotti, Sebastiani and Simi (2000) and Ruiz and Srinivasan
(2002) have independently proved that the Rocchio classifier, which is a particular
centroid-based classifier, benefits from feature selection. It has also been proved that
naïve Bayesian classifiers benefit from irrelevant feature removal (Mladenić, 1998a).
The situation is different in the case of SVM classifiers, which work well with high
dimensional feature spaces and eliminate the need for feature selection (Joachims,
1998b). In this work, where these three different learning methods are considered,
feature selection is always performed for the purpose of having a fair comparison.

Several feature selection measures have been reported in the literature. They can
be classified on the basis of four dependency tuples between a term w and a category
ci (Zheng, Wu & Srihari, 2004):

1. (w, ci): w and ci co-occurs,
2. (w, ¬ci): w occurs without ci;
3. (¬w, ci): ci occurs without w;
4. (¬w, ¬ci): neither w nor ci occur.

The first two tuples concern the presence of a term, while the last two are related
to its absence. The first and the last tuples represent the positive dependency between
w and ci, while the other two represent the negative dependency. Although all
feature selection measures try to capture the intuition that the best terms for ci are
the ones that are distributed most differently in the sets of positive and negative
examples of ci,

5 they consider different dependency tuples. For instance, Correlation
Coefficient (Ng et al., 1997) considers all the four tuples, Mutual Information (Yang
& Pedersen, 1997) considers the first three, while Odds ratio (Mladenić, 1998b) is
based only on the first two. The variety of results reported in the literature does not
allow us to state what dependencies should be involved in the definition of a good
feature selection measure. As observed by Mladenić and Grobelnik (2003) “the most
important characteristics of a good feature scoring measure for text are: favoring
common features and considering domain and algorithm characteristics.”

Following this indication, in this work we focus our interest on the first two
tuples, since the classifiers that will be presented in the next sections increase their
confidence on classification on the basis of present terms rather than absent ones.
Moreover, we adopt a global approach (a set of terms is chosen for classification
under all categories (Sebastiani, 2002)), which seems best suited for multi-class
classifiers. In the design of the feature selection measure reported in this work we
take into account another important factor: the observation unit for all classifiers is
the document, hence the “common features” referred to by Mladenic and Grobelnik,
should not only be “frequent for a category,” but also shared by most of documents of

the same category. A term that occurs frequently in very few documents of a category
can be frequent for the category, but can hardly be considered a common feature.
Surprisingly, a closer look at the feature selection measures reported in the literature
reveals that most of them consider a term (and not a document) as the observation
unit. By looking at the formulas of the most widely investigated feature selection

5A notable exception is the frequency of a term in a document collection, where only positive
examples are considered.
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measure reported in Mladenić and Grobelnik (1999) at Table 1, we find that the
ingredients of various formulas are:

1. P(w), the prior probability that the term w occurs
2. P(ci), the prior probability of the ith class or category
3. P(ci|w), the conditional probability of the ith class value given that w occurs
4. P(w|ci), the conditional probability of w given the ith class value
5. T F(w), the term frequency.

None of them actually refer to the document as the observation unit. For instance,
the absolute frequency of a term in a document, TF(w,d), which is used in the
naïve Bayes classifier (see Section 5.1), is not considered. In the centroid-based
classification, where it is important to select a set of features that increase the
intra-class document similarity and decrease the inter-class document similarity, the

distribution of a term across training documents of the same category is important, but
it does not appear in the list above.

For multi-class problems, as those considered in the framework proposed in this
paper, Malerba et al. (2002) developed a feature selection procedure that does take
into account these observations. In this work, we develop an extension to the case of
hierarchical training sets.

Let c be a category and c′ ∈ DirectSubCategories(c). Let d be a training document
(after the tokenizing, filtering and stemming steps) from c′, w a feature extracted
from d and TFd(w) the relative frequency of w in d. Then, the following statistics can
be computed:

• The maximum value of T Fd(w) on all training documents d of category c′,

T Fc′(w) = maxd∈Training(c′)T Fd(w)

• The document frequency, that is, the percentage of documents of category c′ in
which the feature w occurs,

DFc′(w) =
|{d ∈ Training(c′)| w occurs in d}|

|Training(c′)|

• The category frequency CFc(w), that is, the number of subcategories c′′ ∈
DirectSubCategories(c) such that w occurs in a document d ∈ Training(c′′).

We observe that only documents considered as positive examples of c′ are used to
compute both TFc′(w) and DFc′(w), while the estimation of CFc(w) also takes into
account documents considered as negative examples of c′.

For each category c′, a list of pairs 〈wi, vi〉 is computed, such that wi is a term
extracted from some document d ∈ Training(c′) and

vi = T Fc′(wi) × DF2

c′(wi) ×
1

CFc(wi)

By taking words that maximize the product maxT F × DF2 × ICF, where ICF
stands for “inverse CF,” we reward common words used in documents of category
c′, and we penalize words common to both c′ and its sibling categories. The category
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dictionary of c′, Dictc′ , is the set of the best ndict terms with respect to vi, where ndict

is a user defined parameter.
The measure maxT F × DF2 × ICF returns high scores for features that appear

(possibly frequently) in many relevant documents and in documents of few alterna-
tive categories. In contrast with the correlation coefficient, it does not suffer from
problems of unreliability for low frequency terms, so we are not forced to remove
rare features as done by Ruiz and Srinivasan (2002) in their study on hierarchical text
categorization. Moreover, it is not influenced by the marginal probability of terms as
in the case of mutual information (Yang & Pedersen, 1997), which makes the score
incomparable across terms of widely differing frequency.

The feature set associated to a category c is defined on the basis of the dictionaries
of its subcategories.6 More precisely, the proper feature set FeatSetc is defined as the
union of the dictionaries of all direct subcategories of c (see Fig. 3):

FeatSetc =
⋃

c′∈DirectSubCategories(c)

Dictc′

It contains features that appear frequently in many documents of one of the
subcategories, but that seldom occur in documents of the other subcategories (or-
thogonality of category features). In other words, selected features decrease the
intra-category dissimilarity and increase the inter-category dissimilarity. Therefore,
they are useful for classifying a document (temporarily) assigned to c as belonging
to a subcategory of c itself. It is noteworthy that this approach returns a set of quite
general features (like “math”) for upper level categories, and a set of specific features
(like “topolog”) for lower level categories.

An alternative proposal is the hierarchical feature set, which is defined as the
union of the dictionaries of all subcategories (similar to Mladenić (1998b) where,
in addition, weights are used to give less importance to subcategories that are further
down in the hierarchy):

HierFeatSetc =
⋃

c′∈SubCategories(c)

Dictc′

The rationale behind the hierarchical feature set is that, if classifiers at the top level
do take into account only general terms (such as “math”) typically extracted from
documents of general topics (e.g., Mathematics), they might have some difficulties
correctly routing along the right path those documents belonging to leaf categories
(e.g., Geometry), because of the rarer occurrence of general terms.

Once the set of features has been determined for an internal category c, training
documents in Training(c) can be represented as feature vectors, where each feature
value is the frequency of a word.

6McCallum et al. (1998) use the term hierarchical feature selection to denote the selection of an equal
number of features at each internal node of the tree, using the node’s immediate children as the
classes.
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Fig. 3 Category dictionaries extracted by WebClassIII for all subcategories of “Mathematics” in an
experiment on Yahoo dataset (ndict = 5) and proper feature set selected for “Mathematics”

5 The learning process

In the hierarchical text categorization framework, the definition of the same feature
set to represent documents of a category c and all its subcategories permits the
application of a multi-class learning algorithm to induce a classifier that categorizes
a document (temporarily) assigned to c as belonging to a subcategory c′ of c. In this
work we consider three different learning approaches:

1. Naïve Bayes (Mitchell, 1997) modified in order to correctly handle documents of
different length;

2. A centroid-based method (Han & Karypis, 2000), where each centroid (or class
prototype) is the center of a cluster of documents of the same category;

3. SMO, which is an optimized algorithm for training SVM on very large data sets
(Platt, 1998).

Therefore, the classification of a new document in a category c′ is obtained as
follows:

1. By estimating the Bayesian posterior probability for that category (naïve Bayes).
2. By computing the similarity between the document and the centroid of that

category.
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3. By estimating the posterior probability for that category according to an SVM
probabilistic classifier.

The three learning algorithms are briefly described in the next subsections, while
in the last subsection the learning complexity of the hierarchical text categorization
framework is formally evaluated.

5.1 Naïve Bayes classifier

Let d be a document temporarily assigned to a category c. We intend to classify d into
one of the subcategories of c. The Bayes optimal classification can be achieved by
assigning d to the category c′ ∈ DirectSubCategories(c) that maximizes the posterior
probability Pc(ci|d).

In the literature, several Bayesian models have been proposed for text cate-
gorization. The naïve Bayes classifier is the simplest of these models, in that it
assumes that all the features used to describe the document are independent of
each other, given the context of the class (class conditional feature independence).
Although this assumption is clearly false in text categorization, naïve Bayes classifiers
perform surprisingly well. The explanation is that classification depends only on
the magnitude of the conditional probabilities (e.g., the sign of the difference of
conditional probabilities in the binary case), therefore, even when the approximation
of conditional probability is poor, the classification accuracy remains high (Domingos
& Pazzani, 1997).

In the text categorization literature, two different models based on the naïve Bayes
assumption have been proposed: the multivariate Bernoulli model and the multino-

mial model (McCallum & Nigam, 1998). The former specifies that a document is
represented by a vector of binary attributes indicating which terms occur and do
not occur in the document. The “event” is the document, and both the presence
and the absence of a term contribute to the estimation of the posterior probability,
which is modelled as a multivariate Bernoulli. In the context of hierarchical text
categorization it has been used by Koller and Sahami (1997). The multinomial
model specifies that a document is represented by the set of term occurrences in
the document. In this case the “event” is the term and the number of occurrences of
each term affects the posterior probability, which is based on a multinomial model.
In hierarchical text categorization this model has been used by Mladenić (1998b). A
review of naïve Bayes classifiers and their usage in information retrieval is reported
in Lewis (1998), where the Bernoulli model is named the binary independence model.

McCallum and Nigam (1998) have shown that, in a number of different text cat-
egorization problems, the multinomial model is capable of categorizing documents
more accurately than the multivariate Bernoulli model. Eyheramendy, Lewis and
Madigan (2003) have considered three alternatives to the multinomial model, all of
which similarly incorporate term frequencies. The authors have empirically shown
that the multinomial model often outperforms these alternatives. Therefore, in this
work we consider the naïve Bayes classifier based on the multinomial model. This
choice is also coherent with the feature selection process, where only the presence
(and not the absence) of a feature is considered, and the number of occurrences of a
term is an important factor in feature selection.
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In its general formalization the multinomial model accommodates very naturally
with the document length. The posterior probability Pc(ci|d) can be defined as the
sum over posterior probabilities of documents of different length (Joachims, 1997):

Pc(ci|d) =

∞
∑

l=1

Pc(ci|d, l)Pc(l|d) (1)

where Pc(l|d) = 1 for the length ld of document d and is zero otherwise. In other
terms, Pc(ci|d) = Pc(ci|d, ld). By applying Bayes’ theorem to Pc(ci|d) we have:

Pc(ci|d) =
Pc(d|ci, ld)Pc(ci|ld)

∑

c′∈DirectSubCategories(c)

Pc(d|c′, ld)Pc(c′|ld)
(2)

Pc(ci|ld) is the prior probability that a document of length ld is in class ci. By assuming
that the category of a document does not depend on its length, we can write Pc(ci|ld) =
Pc(ci). The prior probability Pc(ci) is estimated as the fraction of training documents
of c assigned to class ci:

Pc(ci) =
|Training(ci)|

∑

c′∈DirectSubCategories(c)

|Training(c′)|
(3)

The estimation of the likelihood Pc(d|ci, ld) is based on the multinomial model:

Pc(d|ci, ld) =
ld!

∏

w∈FeatSetc

T F(w, d)!

∏

w∈FeatSet

Pc(w|ci, ld) (4)

where T F(w, d) denotes the absolute frequency of w in d.
The first term depends only on the document d and multiplies both the numerator

and the denominator of formula (2), hence it can be dropped. The subsequent terms
are the probabilities of observing a term w of the feature set in documents of length ld

and of class ci. Unfortunately, the estimation of this conditional probability is quite
difficult, since we should consider only documents of length ld in the training set.
Therefore, a further simplifying assumption is usually made, that the occurrence of
a term is only dependent on the membership class of a document (Joachims, 1997).
By combining this assumption with the original feature independence assumption we
have:

Pc(d|ci, ld) ∝
∏

w∈FeatSetc

Pc(w|ci)
T F(w,d) (5)

In conclusion, under the assumption that each term in d occurs independently of
other terms, as well as independently of the text length, it is possible to estimate the
posterior probability as follows:

Pc(ci|d) =

Pc(ci)
∏

w∈FeatSetc

Pc(w|ci)
T F(w,d)

∑

c′∈DirectSubCategories(c)

Pc(c′)
∏

w∈FeatSetc

Pc(w|c′)T F(w,d)
(6)

To make our probability estimate of Pc(w|ci) more robust with respect to infre-
quently used terms, we use a smoothing method to modify the estimates that would
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have been obtained by simple event counting. Smoothing, whose main effect is that
of assigning a small, non-null probability to unobserved events, is important in naïve
Bayes classifiers, since probability estimates are multiplied. If only one of them were
zero at the numerator, the posterior probability in Eq. 6 would be zero, regardless of
the values of the other estimates. In this work smoothing is based on Laplace’s law
of succession, that is:

Pc(w|ci) =
1 + PF(w, ci)

|FeatSetc| +
∑

w′∈FeatSetc

PF(w′, ci)
(7)

where PF(w, c) denotes the absolute frequency w in documents of category c. An
alternative to the Laplace estimator is Witten–Bell smoothing, that has been used in
the work by Craven and his colleagues on text categorization (Craven et al., 2000).

The main weakness of this naïve Bayesian classifier is that it presents problems
when one wants to interpret the score for each class as an estimate of uncertainty. If,
for some word w, the value of Pc(w|ci) differs by one order of magnitude between
different classes ci, then the final probabilities will differ by as many orders of
magnitude as there are words in the document. Consequently, scores for the winning
class tend to be close to 1.0, while scores for the losing classes tend toward 0.0. For
instance, Bennett (2000) shows this phenomenon on two classes (Earn and Corn)
of the well-known Reuters 21578 dataset. These extreme values are an artefact of
the independence assumption. Class-conditional word probabilities would be much
more similar across classes if word dependencies were taken into account (Craven
et al., 2000). An additional problem in the above formulation is strictly related to
the probability estimation in formula (5), which regards all documents belonging to
ci as one huge document. In other words, this estimation method does not take into
account the fact that there may be important differences among term occurrences
from documents with different lengths (Kim et al., 2002) and estimation could
be affected by significant length discrepancy among documents belonging to the
same class (Sebastiani, 2002). As observed by Eyheramendy et al. (2003), “directly
incorporating document length into the multinomial model has little effect due to
the extreme probability estimates produced by the naïve Bayes-type models. One
possibility would be to correct for the bias before introducing length.”

In our proposal we adopt a normalization of the value T F(w, d) in formula (6)
in order to avoid these problems. In particular, we normalize T F according to the
following formula:

NormalizedT F(w, d) =
T F (w, d)

‖T F(•, d)‖2

(8)

where

‖T F(•, d)‖2 =

√

∑

w′ in d

T F(w′, d)2.

By substituting T F(w, d) with NormalizedT Fc(w, d) in Eq. 6, we have:

Pc (ci|d) =

Pc (ci) ·
∏

w∈FeatSetc

Pc (w|ci)
NormalizedT F(w,d)

∑

c′∈DirectSubCategories(c)

Pc (c′) ·
∏

w∈FeatSetc

Pc (w|c′)NormalizedT F(w,d)
(9)
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We observe that this normalization does not change the assignment of a document
to a class: it only contributes to smoothing the values of the posterior probabilities
and to making the thresholding algorithm more effective, since choosing a threshold
when probability values are all 0 or 1 would not help in hierarchical text classification.
A similar normalization, but to L1-norm, has been proposed by Shen and Jiang
(2003).

5.2 Centroid-based classifier

Linear classifiers are a family of learning algorithms that learn a feature weight vector
(or prototype)

�ci =
〈

wi1, wi2, . . . , wi|FeatSetc|

〉

for every category ci. In our framework, where a document d temporarily assigned to
a category c has to be possibly assigned to a category ci ∈ DirectSubCategories(c),
the dimensionality of the feature weight vector of ci corresponds to the size of
FeatSetc. The score returned by a linear classifier for a document d and a category ci

is the dot product between the feature vector describing d and �ci (hence the linearity

of the classifier). Generally, the dot product (or equivalently, both the document and
the class vectors) is normalized to the unit as follows:

�d · �ci
∥

∥

∥

�d
∥

∥

∥

2

∥

∥�ci

∥

∥

2

This normalization represents the cosine of the angle spanned by the two vectors
d and �ci. It is a similarity measure (also known as cosine similarity), therefore, the
higher the value, the more similar the document d and the category prototype �ci.

The most well-known linear classifier is an adaptation to text categorization of
Rocchio’s formula, originally proposed for relevance feedback in the context of
information retrieval (Rocchio, 1971). The learning method, denoted as the Rocchio
method, computes the weights of �ci as follows:

wij = β
∑

d∈Training(ci)

d j

|Training(ci)|
− γ

∑

d∈Training(c/ci)

d j

|Training(c/ci)|

where dj denotes the jth component of the document vector, Training(ci) is the set
of positive documents of category ci, and Training(c/ci) in our framework is the set of
negative examples for ci. The control parameters β and γ define the relative impact
of positive and negative examples in the definition of the class prototype. Dumais,
Platt, Heckerman and Sahami (1998), Joachims (1997), Han and Karypis (2000),
Lertnattee and Theeramunkong (2004) set β to 1 and γ to 0, so that the prototype of
a class coincides with the centroid of its positive training examples. In this work we
follow this mainstream and compute the classification score as the cosine similarity
between the document vector and the centroid of a class. The main difference is
that document vectors contain the term frequencies, that is dj = T Fd(wj), while all
mentioned works operate on tfidf representations, that is, the weight associated to
the j-th feature is the product of the term frequency of the term wj in d, T Fd(wj), and
the logarithm of the inverse document frequency, IDF(wj). The document frequency
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is defined as the percentage of documents in the collection where the term wj occurs.7

The tfidf representation embodies the intuition that

• The more often a term occurs in a document, the more it is representative of its
content, and

• The more documents a term occurs in, the less discriminating it is (Sebastiani,
2002).

The second intuition is appropriate for document indexing, that is, the task of
information retrieval for which Salton and Buckley (1988) defined the tfidf repre-
sentation. However, for text categorization tasks, the usage of the IDF factor seems
counterintuitive. In the feature selection phase, the most discriminant features are
selected, such that they correspond to terms that occur frequently in documents of
the same category. The IDF factor would penalize mainly the best discriminative
features, while it would weight more those terms that occur frequently in a single
document. A confirmation of our observation is indirectly given by Debole and
Sebastiani (2003), who suggest replacing the IDF factor with the value taken by the
feature selection measure. Therefore, in this work the weight associated to the jth
feature of a document is based exclusively on the TF factor. In this case, the value
associated to the feature w for the centroid of the category ci is defined as follows:

Pc (w, ci) =

∑

d∈Training(ci)

T Fd (w)

|Training (ci)|
(10)

and the mathematical formulation of the cosine correlation is the following:

Simc (ci, d) =

∑

w∈FeatSetc

Pc (w, ci) × T Fd (w)

√

∑

w∈FeatSetc

Pc (w, ci)
2 ×

∑

w∈FeatSetc

T Fd (w)2

(11)

It is noteworthy that the cosine correlation returns a particularly meaningful
value when vectors are highly dimensional and features define orthogonal directions.
As pointed out in Section 4 our feature selection algorithm guarantees a kind of
orthogonality property, which applies to the group of features extracted from each
category dictionary rather than to the individual features. Therefore, the procedure
adopted for feature selection seems to be coherent with this classifier as well.

We conclude by highlighting another difference with respect to related papers
by Joachims (1997), Han and Karypis (2000) and Lertnattee and Theeramunkong
(2004), where all features are used in their experiments.8 In this work, features are
preliminarily filtered and only those deemed most discriminant actually contribute
to the classification. This seems to improve the accuracy of Rocchio classifiers (Ruiz

7The document frequency used in the tfidf representation should not be confused with DFc′ (w)

defined in Section 4, which depends on the category c′.
8Joachims (1997) actually filters out all features that occur less then three times in the training
documents.
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& Srinivasan, 2002), which can achieve quite competitive performance if properly
trained (Schapire, Singer & Singhal, 1998).

5.3 SVM-probabilistic classifier

Recently, a new learning technique has emerged and become quite popular in text
categorization because of its good performance and its theoretical foundations in
the computational learning theory: support vector machines (SVMs), proposed by
Vapnik (1995). Given a set of positive and negative examples {(�x1,y1), (�x2,y2), . . . ,
(�xN ,yN)}, where �xi ∈ R

m (�xi is a document vector) and yi ∈{-1,+1}, an SVM identifies
the hyperplane in R

m that linearly separates positive and negative examples with the
maximum margin (optimal separating hyperplane). In general, the hyperplane can be
constructed as the linear combination of all training examples, however, only some
examples, called support vectors, do actually contribute to the optimal separating
hyperplane. The coefficients of the linear combination are determined by solving a
large-scale quadratic programming (QP) problem, for which efficient algorithms that
find the global optimum exist.

The linear separability appears to be a strong limitation, however, as experimen-
tally observed by Joachims (1998b), most text categorization problems are linearly
separable. In any case, SVMs can be generalized to non-linearly separable training
data by mapping the data into another feature space F via a non-linear map:

� : R
m → F

and then performing the above linear algorithm in F. Yang and Liu (1999) reported
that they have tested the linear and non-linear models offered by the SVMlight system
(Joachims, 1998a), and obtained “a slightly better result with the linear SVM than
with the non-linear models.” Therefore, in our experiments we will use only linear
models.

SVMs are based on the Structural Risk Minimization principle: a function that
can classify training data accurately and which belongs to a set of functions with the
lowest capacity (particularly in the VC-dimension) (Vapnik, 1995) will generalize
best, regardless of the dimensionality of the feature space m. Therefore, SVMs can
generalize well even in large feature space, such as those used in text categorization.
In the case of the separating hyperplane, minimizing the VC-dimension corresponds
to maximizing the margin.

The SVM embedded in WebClassIII is a modified version of the Sequential
Minimal Optimization classifier (SMO) (Platt, 1998). The method developed by
Platt is very fast and is based on the idea of breaking a large QP problem down
into a series of smaller QP problems that can be solved analytically. The same
system has been used by Dumais et al. (1998) in an empirical comparison of five
different learning algorithms for text categorization. Since SVMs are defined for
two-classes problems, we modified Platt’s original method to learn a one–of–r (i.e.,
multi-class) classifier for each internal node of the hierarchy. More precisely, a
binary classifier is learned for each couple of classes and afterwards, the probability
Pc(ci|d) is computed by means of a probabilistic pair-wise coupling classification
(Hastie & Tibshirani, 1998). Once again, the decision taken by the classifier for each
training document is associated with a (probabilistic) score, which is processed by the
automated thresholding algorithm, as explained in Section 3.
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5.4 Learning complexity

In the hierarchical text categorization framework, the original learning problem is
partitioned into smaller subproblems, each of which can be efficiently managed. This
leads to an efficiency gain, with respect to the flat classifier, that depends on the
number of classes associated to each learned classifier.

More formally, let

• f(number of classes, number of training documents, number of features) be the
learning complexity of a generic classification algorithm,

• r be the total number of classes
• n be the number of training documents
• a be the number of features
• d be the depth of the hierarchy
• k be the number of children of a generic internal node (for simplicity, in this

analysis we suppose that k is constant).

Then the complexity of a flat classifier is: f (r, n, a).
The complexity of the hierarchical framework is:

• f (k, n, a) for the first level;
• k · f (k, n/k, a) for the second level, in the worst case that all documents are

classified in lower categories9

• k2 · f (k, n/k2, a) for the third level.

By generalizing, the complexity of the hierarchical framework is:

d
∑

i=1

ki f
(

k,
n

ki
, a

)

.

In the case of both naïve Bayes and centroid-based classifiers, the complexity of
the learning phase is linear in the number of training documents, in the number
of features and in the number of classes (Han & Karypis, 2000; Mitchell, 1997). In
such a case the time complexity of a flat classifier is O(n·a·r), while in the case of a
hierarchical framework, it is:

O

(

d
∑

i=1

ki ·
(( n

ki
· k · a

)

)

= O

(

d
∑

i=1

(n · k · a)

)

= O(d · n · k · a)

Both are linear in the number of training examples and in the number of features.
The difference is that the complexity of a flat classifier is linear in the number of
classes, while the complexity of the hierarchical framework is linear in the product of
the number of children of each node and the depth of the tree. In the extreme case of
k = 1, the two approaches have the same complexity O(n·a·r). The main difference
occurs in the case of a balanced hierarchy where d=logkr and the complexity becomes
O(n · a · logkr).

In the case of the SVM classifier, the complexity is linear in the number of training
documents, features and classes (Platt, 1998). However, the SMO has been modified

9We assume the uniform distribution of documents among direct subcategories.
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to deal with multi-class problems and to estimate the probability Pc(ci|d). This proba-
bility is computed by means of a probabilistic pair-wise coupling classification (Hastie
& Tibshirani, 1998). This modification makes the algorithm linear in the number of
examples and cubic in the number of classes. Therefore, the time complexity of a flat
classifier is O(n·a·r3), while in the case of the hierarchical framework it is:

O

(

d
∑

i=1

ki ·
( n

ki
· k3 · a

)

)

= O

(

d
∑

i=1

(

n · k3 · a
)

)

= O
(

d · n · k3 · a
)

This time, also in the extreme case of k = 1, the hierarchical classifier is compu-
tationally more efficient than the flat classifier and the complexity is O(n·a·r). In
the case of a balanced hierarchy where d=logkr, the complexity of the hierarchical
framework is O(n · a · logkr).

This analysis can be refined by taking into account that the value of a (i.e., number
of features) may change level by level. More precisely:

a = ndict · r in the flat classifier,
a = ndict · k in the hierarchical framework with a proper feature set,
a < ndict · r in the hierarchical framework with a hierarchical feature set.

In fact, in the case of a hierarchical framework with a hierarchical feature set, the
number of features depends on the level of the hierarchy to which the classifier is
associated. For the first level a = ndict · r, in the second level a = ndict · (r − k), in the
third level a = ndict· (r − k − k2) and so on.

6 Experiments

In this section we seek answers to the following questions with empirical evidence:

• Does the hierarchical classifier built with the proposed framework improve the
performance when compared to a flat classifier?

• Does the proposed framework minimize the (tree) distance between the correct
class and the returned one when the document is not correctly classified?

• Does the proposed framework actually improve the computational efficiency of
the learning algorithms?

• What feature selection strategy is the most promising for hierarchical
categorization?

• Which classifier has the best performance within the proposed framework?

Before describing the results, we illustrate the three corpora used for this study
and the performance evaluation measures considered.

6.1 Datasets

The three corpora chosen for this study are the recently published benchmark dataset
Reuters Corpus Volume I (RCV1) (Lewis et al., 2004) and two collections of HTML
documents (WebClass is specifically designed to classify HTML pages) referenced
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either in the Yahoo! Search Directory10 or in a web directory developed in the Open
Directory Project (ODP).11 The three corpora differ considerably in the training set
size, in the hierarchical structure of categories, as well as in the procedure adopted
for the classification of documents. For the sake of completeness, a brief description
of the document collections is reported in the following.

6.1.1 Reuters Corpus Volume 1

Reuters Corpus Volume I (RCV1) is a benchmark dataset widely used in text
categorization and in document retrieval. It consists of over 800,000 newswire stories,
collected by the Reuters news and information agency. The stories have been
manually coded using three orthogonal category sets. Therefore, category codes from
three sets (Topics, Industries, and Regions) are assigned to stories:

• Topic codes capture the major subject of a story.
• Industry codes are assigned on the basis of the types of business discussed in the

story.
• Region codes include both geographic locations and economic/political

groupings.

In our study, similar to other authors (Zhang, Jin, Yang & Hauptmann, 2003), we
use topic codes for categorization.

The main characteristic that makes RCV1 particularly suitable in our study is
the adopted coding policy. In particular, topics are organized hierarchically. The
hierarchy of topics consists of a set of 104 categories organized in a four-level
hierarchy.

We pre-processed documents as proposed by Lewis et al. and, in addition, we
considered only documents associated to a single category. This selection is due to
the fact that in this study we are interested in investigating single category assign-
ment (feature selection method, learning algorithms, categorization framework and
performance evaluation functions are all based on the assumption that a document
can be assigned to one category at the most). The removal of documents associated
with multiple classes has also been adopted by other authors on different datasets in
the evaluation of single-label corpora (Schapire & Singer, 2000).

We separate the training set and the testing set using the same split adopted by
Lewis et al. In particular, documents published from August 20, 1996 to August 31,
1996 (document IDs 2286 to 26150) are included in the training set, while documents
published from September 1, 1996 to August 19, 1997 (document IDs 26151 to
810596) are considered for testing. The result is a split of the 804,414 documents
into 23,149 training documents and 781,265 test documents. After multiple-label
document removal, we have 150,765 documents, (4,517 training documents and
146,248 testing documents).

10http://dir.yahoo.com/.
11www.dmoz.org.

http://dir.yahoo.com
www.dmoz.org
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6.1.2 Yahoo dataset

The second data set used in this experimental study is obtained from the doc-
uments referenced in the Yahoo! Search Directory.12 We extracted all 907 ac-
tual Web documents referenced at the top three levels of the Web directory
http://dir.yahoo.com/Science. Empty documents and documents containing only
scripts were removed.

There are six categories at the first level, 27 categories at the second level and
35 categories at the third level. A document assigned to the root of the hierarchy is
considered “rejected,” since its content is not related to any of the 68 subcategories.

The dataset is analyzed by means of a five-fold cross-validation, that is, the dataset
is first divided into five folds of near-equal size, and then, for every fold, the learner is
trained on the remaining folds and tested on it. The system performance is evaluated
by averaging some performance measures (see below) on the five cross-validation
folds.

6.1.3 Dmoz dataset

The third data set used in this experimental study is obtained from the documents
referenced by the Open Directory Project (ODP).13 We extracted all actual Web
documents referenced at the top five levels of the Web directory rooted in the branch
Health\Conditions_and_Diseases\. Empty documents and documents containing
only scripts were removed.

The dataset contains 5,612 documents in 221 categories organized in a five level
hierarchy as follows:

• In the first level there are 21 categories and 340 documents.
• In the second level there are 81 categories and 1,514 documents.
• In the third level there are 85 categories and 2,604 documents.
• In the fourth level there are 32 categories and 1,099 documents.
• In the fifth level there are two categories and 55 documents.

The dataset is analyzed by means of a five-fold cross-validation. The system
performance is evaluated by averaging performance measures on the five cross-
validation folds.

Both Yahoo and Dmoz datasets were used in order to evaluate the performances
of the system in the presence of “noisy” documents and in the presence of documents
with no clearly predefined structure. This is not the case of the corpus RCV1, whose
documents respect a well-defined XML structure.

6.2 Evaluation measures

Performances of the system have been evaluated on the basis of several measures.
The first measure is the standard accuracy defined in machine learning to evaluate

12Documents were downloaded on the 15th of July 2003. The dataset is electronically available at
http://www.di.uniba.it/%7ececi/micFiles/yahoo_science_docs.zip.
13Documents were extracted in April 2004. The dataset is electronically available at
http://www.di.uniba.it/%7ececi/micFiles/dmoz_health_conditions_and_diseases_docs.zip.

http://dir.yahoo.com/Science
http://www.di.uniba.it/%7ececi/micFiles/yahoo_science_docs.zip
http://www.di.uniba.it/%7ececi/micFiles/dmoz_ health_conditions_and_diseases_docs.zip
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the performances of 1-of-r classifiers. It represents the number of testing docu-
ments correctly classified over all testing documents. It is noteworthy that in the
1-of-r classifiers context, this “narrowly” defined accuracy is indeed equivalent to
the standard recall and is not equivalent to the standard definition of accuracy in text
categorization literature that is given for classifiers based on binary decisions. In this
case it is the proportion of correct assignments among the binary decisions over all
category/document pairs. The standard text categorization accuracy measure is well-
defined for documents with multiple categories; the narrowly defined accuracy is not
(Yang & Liu, 1999). In our analysis, we use the narrowly defined accuracy because,
as observed by Sebastiani (2002), in single-label text categorization, precision and
recall are not independent of each other and in this case either precision or recall
(machine learning accuracy) can be used as a measure of effectiveness.

Furthermore, we define other four additional evaluation measures, in order to
provide a more detailed evaluation of results. Intuitively, if a text categorization
method misclassifies documents into categories similar to the correct categories, it is
considered better than another method that misclassifies the documents into totally
unrelated categories. The four evaluation measures we consider are:

1. The misclassification error, which computes the percentage of documents mis-
classified into a category not related to the correct category in the hierarchy.

2. The generalization error, which computes the percentage of documents misclas-
sified into a supercategory of the correct category;

3. The specialization error, which computes the percentage of documents misclassi-
fied into a subcategory of the correct one;

4. The unknown ratio, that measures the percentage of rejected documents.

The sum of the accuracy, the generalization error, the specialization error, the
misclassification error and the unknown ratio equals one.

6.3 Flat vs hierarchical classifiers

The first question we investigate is the effectiveness of the hierarchical categorization
framework with respect to flat classification. For a fair comparison, the thresholding
algorithm has been used both for hierarchical and flat classification. In this way, both
algorithms are able to “reject” documents.

For evaluation purposes, several feature sets (proper or hierarchical) of different
size have been extracted for each internal category in order to investigate the effect
of this factor on the system performance. The feature set size ranges from 5 to 60
features per category in the case of RCV1 and Yahoo dataset, while it ranges from 5
to 40 in the case of Dmoz dataset. Collected statistics concern the three classifiers.

Figure 4 shows the accuracy of different classifiers for the three datasets.14

Among flat classifiers, SVM performs the best across the three datasets. It is also
noteworthy that in all datasets the SVM or centroid-based classifiers, built according
to the flat approach, are more accurate than the corresponding two hierarchical

14Experimental results for flat SVM are available only up to 20 features per category, since the
high computational complexity of the method prevented the generation of about 10

7 classifiers with
more than 4,500 features in reasonable time (see Section 5.4 for considerations on computational
complexity).
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Fig. 4 Accuracy for the three datasets: flat vs hierarchical with hierarchical feature set vs hierarchical
with proper feature set

classifiers, built on proper or hierarchical feature sets. The situation is different for
NB classifiers, which do benefit of the hierarchical framework in all three datasets.
This is particularly evident for NB classifiers built from hierarchical feature sets.

The variance in performance of the three methods can be explained by the effect
of the number of categories in the naïve Bayesian classifier. In the flat approach,
where the classifier has to discriminate between the whole set of categories, prior
probabilities are very small and the numerator in Eq. 9, that is, the score computed
by the NB classifier, is consequently small. In this situation is difficult to determine
appropriate thresholds and the rate of unclassified documents remains high because
of the conservative thresholds found by the thresholding algorithm. The high number
of categories, which is a problem for the flat NB classifier, does not affect centroid-
based classifiers and SVMs, since they are not based on the computation of a prior
probability. On the contrary, the hierarchical approach seems to cause problems in
distance-based classifiers (centroids and SVMs), since training documents of high-
level categories form partially overlapping clouds of points in the multi-dimensional
space and the selection of appropriate thresholds becomes hard. The method that
most of all suffers from this problem for high-level categories is the centroid-based,
since boundaries for r categories is based on as many centroids, while SVMs can use
s ≫ r support vectors. Therefore, our second conclusion is that there is an interaction,

in terms of accuracy, between the hierarchical framework and the type of classifier.
It is noteworthy that the flat classifiers and the hierarchical classifiers with hier-

archical feature sets are positively correlated, that is, they both increase or decrease
with the number of features. This can be explained by the observation that, for high
level categories, where the majority of errors tend to concentrate, the hierarchical
classifiers with hierarchical feature sets are trained with approximately the same set
of features of flat classifiers. Therefore, if the increase in the number of features
negatively affects the accuracy of the flat classifiers, the same result is observed
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Fig. 5 Distribution of errors for Reuters dataset (ndict=60)

for hierarchical classifiers. For opposite reasons, the trend of flat classifiers is less
correlated to that of hierarchical classifiers with proper feature sets.

From a closer analysis of the percentage of errors (reject, misclassification,
generalization and specialization) performed by the various classifiers (see Figs. 5, 6
and 7), we observe that the flat classifiers commit more rejection and misclassification
errors (in percentage) than the corresponding hierarchical classifiers. Therefore, with
reference to the second question, we conclude that, even though SVM or centroid-

Fig. 6 Distribution of errors for Yahoo dataset (ndict=60)
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Fig. 7 Distribution of errors for Dmoz dataset (ndict=20)

based flat classifiers are more accurate than the corresponding hierarchical classifiers,

they tend to commit “more serious” errors.
This difference in error type is particularly significant for NB classifiers. Figure 8

shows the distribution of misclassification, specialization and generalization errors
with respect to the (tree) distance of the wrong category from the correct one.
The represented statistics refer to the Dmoz dataset, which is the most complex
in terms of number of categories and depth of the hierarchy. In general, errors
are distributed quite “close” to the correct category, also thanks to the automated
threshold definition algorithm that minimizes the sum of tree distances between
the correct and the predicted categories. Nevertheless, results are better for the
hierarchical classifier, since the distribution is more skewed towards low distance
values.

To answer the question on the actual improvement of the computational efficiency
of the learning algorithms, we collected statistics on the running time (see Fig. 9).

Fig. 8 Distribution of errors.
Percentage of misclassification,
specialization and
generalization errors classified
at distance 1, 2 and 3 from the
correct class. Statistics for
larger distances are not shown.
Results are obtained on the
Dmoz dataset, with Naïve
Bayes classifier, feature set
size = 20

0%

10%

20%

30%

40%

50%

60%

1 2 3

Flat

Hierarchical with proper feature set
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Fig. 9 Learning running times on the RCV1 dataset. Results are expressed in seconds varying the
number of selected features. Results show the comparison between the flat technique, hierarchical
with a proper feature set and hierarchical with a hierarchical feature set. WebClassIII has been
executed on a Pentium 4 PC 1.4 GHz running a Windows 2000 operating system

Results are substantially in favor of the hierarchical framework. The difference is
particularly evident in the case of the SVM classifier. This confirms the analysis of
complexity reported in Section 5.4.

The results also show the better performances of the hierarchical framework
with a proper feature set, with respect to the hierarchical framework with a hier-
archical feature set. This also confirms the formal analysis of complexity reported
in Section 5.4 and, in particular, the role of the number of features, which grows
proportionally to the total number of classes in the case of a hierarchical feature set.

6.4 Comparing hierarchical classifiers

In the previous section we answered questions on the pros and cons of hierarchical
classifiers when compared to flat classifiers. In this section, we investigate aspects
specifically related to the hierarchical classifiers, namely, which is the best strategy
for feature selection and what is the best classifier to use in combination with the
hierarchical categorization framework.

From the results shown in Fig. 4 we observe that while the accuracy of hierarchical
classifiers built on proper feature sets remains constant or increases with the addition
of new features, the inverse trend is shown in the case of hierarchical feature sets.
This is caused by the fact that the size of feature sets may remarkably increase for
high-level categories up to loosing the property of ‘orthogonality.’ This phenomenon
is particularly evident in the case of the centroid-based classifiers. As regards SMVs
and NB, the hierarchical approach performs better than the proper approach for
smaller feature sets, while there is an asymptotic convergence for larger feature sets.
This can be explained by the fact that, with a limited number of features, the lower
categories are not represented and it is necessary to use a hierarchical feature set. By
increasing the number of features, the deeper categories are better represented and
the benefits of a hierarchical approach vanish.
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For the comparison of hierarchical classifiers, we limit our study to proper feature
sets. Once again, several feature sets of different sizes have been extracted for
each internal category, in order to study the effect of this factor on the classifier
performance. Sizes range from 5 to 60 features per category in the case of the RCV1
and the Yahoo dataset, while it ranges from 5 to 40 in the case of Dmoz dataset.
Collected statistics concern centroid-based, NB and SVM classifiers.

Figures 10, 11 and 12 show the performances of different classifiers for each
document collection and for different sizes of the proper feature sets. For the RCV1
and the Dmoz datasets, which are characterized by a complex hierarchy (both in the
number of categories and in the depth of the tree structure), the best results in terms
of accuracy are obtained by the SVM classifier, while for the Yahoo dataset, the naïve
Bayes classifier performs best for sufficiently large feature sets. The centroid-based

Fig. 10 Classifier comparison on the RCV1 collection. Features are extracted using proper feature
sets
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Fig. 11 Classifier comparison on the Yahoo collection. Features are extracted using proper feature
sets

classifier shows the worst performance, particularly when the size of the feature set
increases.

Looking at the errors committed in detail, it is interesting to note that:

• NB and SVM show the same trend, which is different from the trend of centroids.
For example, while for SVM and NB the specialization error is low and the
generalization error tends to be quite high, the situation is reversed for centroids.

• Increasing the number of the features, the percentage of misclassifications for

NB and SVM increases, while the percentage of “rejected” documents (unknown

error) decreases. This behavior is reversed for centroids.

The different behaviour can be explained by the fact that the thresholding
algorithm tends to be generally conservative (i.e., high thresholds and few documents
passed down) for SVM and NB, while in the case of centroids the thresholds become
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Fig. 12 Classifier comparison on the Dmoz dataset. Features are extracted using a proper feature
set

more selective only for larger feature sets. Indeed, the scores γc→c′(d) computed by
centroid-based classifiers are unevenly distributed at the extremes of the unit interval
when only a few features determine the result of the classification. In this situation
of binary-like classification, the thresholding algorithm cannot work properly. On
the contrary, the scores are less extreme in large feature spaces and the thresholding
algorithm can work properly by reducing the high number of misclassifications, at
the cost of increasing the rejection rate.

Comparing NB and SVM it is noticeable that SVM has a higher misclassification
rate, while NB has a higher rejection rate. This means that even when they do not
perform best, NB classifiers can be a valid alternative to SVM in those application
contexts where a “commission error” is considered more serious than an “omission
error.”
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7 Related work in hierarchical text categorization

In the literature, several approaches have been proposed that face the problem of
hierarchical document categorization. They differ in terms of several aspects that
principally involve the document representation and the learning strategy. As for
the document representation, each document can be described by several sets of
features, each of which is useful for the classification of the document at one level of
the hierarchy. In this way, general terms and specific terms are not forced to coexist
in the same feature set.

As for the learning process, it is possible to consider the hierarchy of categories
either in the formulation of the learning algorithm or in the definition of the
training sets. For instance, Blockeel, Bruynooghe, Dzeroski, Ramon and Struyf
(2002) defined a specific decision tree induction algorithm for the case of hierarchical
multi-category classification. Training sets can be specialized for each internal node
of the hierarchy by considering only documents of the sub-hierarchy rooted in the
internal node (hierarchical training set). This is an alternative to using all documents
for each learning problem like in flat classification.

Some of these aspects have been considered in related works. In particular, in
the seminal work by Koller and Sahami (1997) the hierarchy of categories is used
in every processing step. For the feature extraction step a category dictionary is
built for each node in the hierarchy. Feature extraction is based on an information
theoretic criterion that eliminates both irrelevant and redundant features. For the
learning step, two Bayesian classifiers are compared, namely the naïve Bayes and
KDB (Sahami, 1996). A distinct 1-of-r classifier is built for each internal node (i.e.,
split) of the hierarchy. In the classification step, which proceeds top-down, it is used
to decide to which subtree the new document should be sent. There is no possibility
of recovering errors performed by the classifiers associated to the higher levels in the
hierarchy. Two limitations of this study are the possibility of associating documents
only to the leaves of the hierarchy and the effectiveness of the learning methods only
for relatively small vocabularies (<100 features).

McCallum et al. (1998) proposed a method based on the naïve Bayes learner. A
unique feature set is defined for all documents by taking the union of all category
vocabularies. Features for a given category are selected by means of mutual infor-
mation at each internal node of the tree, using the node’s immediate children as
classes. Because of the uniqueness of the feature set, Bayesian classifiers associated
at internal nodes are homogeneous, and, as formalized by Mitchell (1998), the
hierarchical organization of homogeneous classifiers is equivalent to a single flat
classifier. In other words, the hierarchical structure would have no practical impact
on the classification process. This explains why, in the learning step, McCallum
et al. use a statistical technique known as shrinkage to smooth parameter estimates
for lower-level categories with parameter estimates for their ancestors in the category
hierarchy. For the classification step, the authors compare two techniques: exploring
all possible paths in the hierarchy and greedily selecting the most probable one/two
branches as done by Koller and Sahami (1997). Results show that greedy selection is
not only more error prone but also more computational efficient. As in the previous
work, all documents can be assigned only to the leaves of the hierarchy.

Mladenić (1998b) used the hierarchical structure to decompose a problem into
a set of subproblems, corresponding to categories (nodes in the hierarchy). For
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each subproblem, a naïve Bayes classifier is built from a set of positive examples,
which is constructed from examples in the corresponding category node and all ex-
amples of its subtrees and a set of negative examples corresponding to all remaining
documents. The set of features selected for each category can be different. The
classification applies to all the classifiers (nodes) in parallel, using some pruning of
unpromising nodes. In particular, a document is passed down to a category only if
the posterior probability for that category is higher than a user-defined threshold.
Contrary to the previous work, a document can be assigned to any node of the
hierarchy.

In the work by D’Alessio et al. (2000) documents are associated only to leaf
categories of the hierarchy. Two sets of features are associated to each category, one
is positive (features extracted from documents of the category), while the other is
negative (features extracted from documents of sibling categories in the hierarchy).
In addition to contributing to feature extraction, the training set is also used to
estimate feature weights and a set of thresholds, one for each category. Classification
in a given category is based on a weighted sum of feature occurrences that should
be greater than the category threshold. Both single and multiple classifications are
possible for each testing document. The classification of a document proceeds top-
down either through a single path (one-of-r classification) or through multiple-paths
(binary classification). An innovative contribution of this work is the possibility of
restructuring an initial hierarchy or building a new one from scratch.

Dumais and Chen (2000) use the hierarchical structure for two purposes. First, it
is for training several SVMs, one for each intermediate node. The sets of positive
and negative examples are constructed from documents of categories at the same
level, and different feature sets are built, one for each category.15 Second, it is for
classifying documents by combining scores from SVMs at different levels. Several
combination rules are compared, some requiring a category threshold to be exceeded
to pass a test document down to descendant categories. Multiple classification of
a document is allowed for leaf categories, while the assignment of a document to
intermediate categories is not considered. An empirical comparison based on a large
heterogeneous collection of pages from LookSmart’s web directory showed small
advantages in accuracy for hierarchical models with respect to flat models.

In the system CLASSI by Ng et al. (1997), the hierarchical classification of
documents is obtained by combining several linear classifiers according to a tree
structure (hierarchical classifier). The tree structure corresponds to the hierarchy of
categories, which means that a linear classifier is associated to each category. The
output of the classifier defines a degree of membership of a document to a category.
In the classification phase, the hierarchical classifier receives a document and checks
whether it belongs to any of the first level nodes. If the tested document activates
any of the first level nodes, then the descendant categories of that node are tested
recursively. Multiple classifications of documents are allowed, while the classification
of documents in non-leaf categories seems not to be supported. Weights of each
linear classifier are determined by means of the perceptron learning algorithm. The

15Note that differently from D’Alessio et al. (2000), where each category is associated with two sets
of features, positive and negative, here positive and negative examples are used to select a unique
feature set for each category.
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training set of each linear classifier includes all positive documents of the associated
category (i.e., no hierarchical training set) and some selected documents of other
categories. Two peculiarities of this work are the use of WordNet (Miller, 1990) to
replace each word with its morphological root form and the use of the correlation
coefficient to select the best subset of words. However, F1-scorevalues reported on
the Reuters dataset are well below those reported by (Yang, 1999) on the same
dataset.

In the work by Ruiz and Srinivasan (2002) a variant of the Hierarchical Mixture
of Experts (HME) model is used. A tree of backpropagation neural networks is
used. Neural networks are of two types: experts and gates. The former take the
feature-vector representation of a document as input and are trained to recognize
whether the document belongs to a specific category. There are as many experts at
the leaves of this tree-structured classifier as categories (leaves and non-leaves) in
the hierarchy. Gating networks are the internal nodes of the tree-structured classifier
and map the non-leaf categories of the hierarchy. They have two kinds of input:
the feature-vector representation of a document and the output of the expert/gating
networks below in the tree. Their role is that of restricting the number of experts to
be activated for a given document. Indeed, the classification of a document proceeds
top-down in the tree of neural networks, starting from the gate at the root towards
the experts at the leaves. Multiple classification is supported. The gates are trained
to recognize whether any of the categories of their descendants is present or not
in the document. The experts are trained to recognize the presence or absence
of particular categories. Therefore, the set of positive examples for an expert in-
cludes documents of the uniquely associated category while the set of positive
examples for a gate includes all training documents of the set of associated categories.
Some form of filtering is used for negative examples, since unbalanced data sets
may affect the learning capability of backpropagation neural networks. Different
feature sets are selected for each expert and gating network. The proposed method
is tested on some MEDLINE records. Only categories with positive examples are
selected, since this method cannot work when intermediate categories have no
positive examples.

A hierarchical classifier combining several neural networks is also proposed by
Weigend et al. (1999). Neural networks at internal nodes are “meta-topic classifier,”
while those at the leaves are “individual classifiers.” The method has been devised
and tested only on two-level hierarchies, although the extension to more than
two levels should be straightforward. The dimensionality reduction of the original
feature space is obtained by means of two statistical techniques: Latent Semantic
Indexing, to transform the original feature set into a new set of features that are
a linear combination of the original features, and χ2 statistics to select the most
discriminant features. Moreover, selected feature sets can either be specific for each
category or unique for all categories. The former gave a better performance on the
Reuters dataset, thus empirically confirming Mitchell’s finding (Mitchell, 1998) also
for classifiers based on neural networks.

A summary of the referenced papers is reported in Table 1. We are aware that
the list of related works summarized in the table is not exhaustive, although it is
representative of the most well-known contributions. For the sake of completeness,
we report a brief note on three additional works. Sun and Lim (2001) have proposed
the use of category-similarity measures and distance-based measures to consider the
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degree of misclassification in measuring the classification performance. Experiments
were performed on the Reuters-22173 collection with SVMlight Version 3.50 imple-
mented by Joachims (1998a). Chuang, Tiyyagura, Yang and Giuffrida (2000) have
tested a Rocchio-based classifier on a collection of approximately 200 documents
on professional baseball and basketball news. Finally, Tikk and Biro (2003) tested a
centroid-based classifier on the WIPO-alpha16 English patent database that consists
of about 75,000 XML documents distributed over 5,000 categories in four levels.
Unfortunately, studies on the WIPO-alpha collection are not publicly available
because of the strongly business sensitive nature of the research. As future work,
we plan to extend our experimental results to this dataset as well.

7.1 Comparison with related work: The method

Our work differs from previous studies in several respects. First, documents can
be associated to both internal and leaf nodes of the hierarchy. Surprisingly, this
aspect is explicitly considered and tested only in (Mladenić, 1998b) and (Ruiz
& Srinivasan, 2002). However, unlike Mladenić’s work, we consider actual Web
documents referenced in the Yahoo! ontology, and not only the items which briefly
describe them in the Yahoo! Web directories. Other special conditions that are
considered in this work are: 1) no document for some internal nodes; 2) some internal
nodes have only one child.

A second difference is in the feature selection process for each internal category.
In WebClassIII it is based on an upgrade of the technique implemented and
tested by Malerba et al. (2002), named maxT F × DF2 × ICF. Unlike other feature
selection methods proposed in the literature on hierarchical document categorization
(Mladenić & Grobelnik, 2003), maxT F × DF2 × ICF answers the demand for terms
that are shared by most of the documents of the same category and possibly no
document of other categories. Moreover, it considers the document (and not a term)
as an observation unit.

A third difference is that we do not propose a specific method, but we investigate
a framework for hierarchical text categorization that can be applied to any classifier
that returns a degree of membership (e.g., distance or probability based) of a
document to a category. We applied the framework to three classifiers, two of which
present some variants with respect to the original methods reported in the literature.

The fourth difference is in the development of a technique for the automated
selection of thresholds for the degree of membership returned by the classifier. The
thresholds are used to determine whether a document has to be passed down to one
of the child categories during the top-down classification process.

Finally, we define new measures for the evaluation of the system performances in
order to capture some aspects related to the “semantic” closeness of the predicted
category to the actual one.

We conclude by observing that the main contribution of this work is the systematic
investigation of the usage of information provided by the category hierarchy in

16World Intellectual Property Organization, Geneva, Switzerland, 2002 - http://www.wipo.int/.

http://www.wipo.int/
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all aspects of text categorization, such as definition of training sets, feature sets,
classifiers, threshold-based document classification and evaluation measures.

7.2 Comparison with related work: experimental results

Previous studies on hierarchical text categorization have already contributed to
clarifying some aspects that have not been explored in this work. Koller and Sahami
(1997) experimentally showed that there is a substantial improvement in accuracy
when feature selection is aggressively employed versus the case where all domain
features are used. This improvement has been observed both in the hierarchical
case and in the flat case for Bayesian classifiers. McCallum et al. (1998) show that
aggressive feature selection is not necessary if shrinkage is used to smooth parameter
estimates. Shrinkage helps especially when training data are sparse, which is the case
when small sets of documents are assigned to leaf categories. Mladenić (1998b) com-
pared six feature selection techniques for automatic document categorization, based
on text hierarchies and her conclusions were in favor of Odds ratio when combined
with a naive Bayes classifier. D’Alessio et al. (2000) investigated the possibility of
restructuring a pre-existing hierarchy, and concluded that the usage of a hierarchy,
either modified or built from scratch, can significantly improve both the speed and
effectiveness of the categorization process. Dumais and Chen (2000) explored two
ways to combine probabilities returned by the classifiers for the first and second
level of a two-level hierarchy. The multiplicative approach assigns the document
to a leaf if the product of both probabilities exceeds a given threshold, which is
unique for all categories. The Boolean approach assigns the document to a leaf if
the threshold is exceeded at every level. No difference between the two approaches
was observed in terms of F1 measure, hence leading to the recommendation for the
Boolean approach which is the most efficient. Ruiz and Srinivasan (2002) reported
good results for the (flat) Rocchio classifier when both training data and features are
selected, and categories have a medium/high number (≥ 15) of training examples.
Results reported by Weigend et al. (1999), who observed that the largest gains in
average precision for the hierarchical classifier concern “rare” (i.e., with few training
examples) categories, are also consistent with Ruiz and Srinivasan’s findings. The
main difference between the two findings is that in the work by Ruiz and Srinivasan,
rare categories can occur at any node in the hierarchy, while in the work by Weigend
et al. they are always leaf categories.

As to the real advantages of the hierarchical vs. flat approach, no conclusive
result has been reported for predictive accuracy. Koller and Sahami (1997) observed
that the hierarchical approach appears to provide few benefits when attention is
restricted to simple classifiers, such as naïve Bayes. Dumais and Chen (2000) reported
minor improvements for hierarchical models over flat models. Similarly, Ruiz and
Srinivasan (2002) do not show a clear superiority of the HME with respect to
Rocchio. On the contrary, McCallum et al. (1998) demonstrate that shrinkage with
a class hierarchy significantly reduces the classification error, Ng et al. (1997) report
accuracy improvements of the hierarchical method with respect to the flat method,
and Weigend et al. (1999) attribute a statistically significant overall improvement of
5% for averaged precision to the hierarchical approach. This confirms our experi-
mental observation that there is an interaction, in terms of accuracy, between the
hierarchical framework and the type of classifier.
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All related works examined here show the clear computational advantage of
the hierarchical approach. We have confirmed this conclusion both analytically
and experimentally. This work, however, presents additional empirical findings not
reported elsewhere. They are summarized in the following points:

1. Among flat classifiers, SVM performs the best across the three datasets.
2. Even though SVM or centroid-based flat classifiers are more accurate than the

corresponding hierarchical classifiers, they tend to commit “more serious” errors
(“severity” is based on a tree-distance measure).

3. As the number of features increases, the classifier trained with a proper feature
set asymptotically tends to the performances of the classifier trained with a
hierarchical feature set.

4. Errors committed by NB and SMV show the same trend, which is different from
the trend of centroids.

5. Increasing the number of the features, the percentage of misclassifications for
NB and SVM increases, while the percentage of “rejected” documents (unknown
error) decreases. This behavior is reversed for centroids.

All these results, which extend those reported in a previous work (Ceci & Malerba,
2003), are obtained by extensive experimentation on three datasets with category
hierarchies of different complexity.

8 Conclusions and future work

Most of the research on text categorization has focused on classifying text documents
into a set of categories with no structural relationships among them. However, in this
case it is difficult to browse or search documents in a large number of categories.
Hierarchies are often used to make large collections of document categories more
manageable, since they permit the application of the well-known principle of divide-
and-conquer. The hierarchical structure is employed in many Internet directories
(e.g., Yahoo and Google Directory) and in text databases (e.g., MEDLINE and
patent databases), as well as in other document management tools (e.g., Netscape
Bookmark). Therefore, whether and how to exploit the additional information on
the hierarchical structure among categories in text categorization is an important
issue that demands systematic investigation.

Our research adds to a growing body of work exploring how hierarchical struc-
tures can be used to improve the efficiency and efficacy of text classification. We have
presented and evaluated a hierarchical text categorization framework that involves
the hierarchy of categories in all phases of text categorization, namely feature
extraction, learning, and classification of a new document. Our conclusion is that
for large collections of documents organized in complex hierarchies, the hierarchical
approach can offer two main advantages: efficiency gain and reduction of severity
of classification errors. The former is particularly important when the hierarchy of
categories is subject to changes, since in the flat approach changes affect all classifiers,
while in the hierarchical approach they are all localized. The latter advantage is
quite important if a trained user cannot supervise decisions taken by the document
classifier.
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Although we observed good results for the flat SVM across all three datasets used
in our experimental validation of the framework, in the hierarchical approach the
naive Bayes classifiers, built with proper feature sets, seem to be a valid alternative
to SVM, especially in those application contexts where a “commission error” is
considered more serious than an “omission error.”

In this work we have not investigated the possibility of restructuring the original
category hierarchy. Vinokourov and Girolami (2002) proposed a probabilistic mix-
ture model for the hierarchic partition organization of a collection of documents.
Sona, Veeramachanemi, Avesani and Polettini (2004) address the problem of doc-
ument clustering where documents are assigned both to the leaves and to internal
nodes. An alternative to building the hierarchy from scratch is restructuring a given
hierarchy on the basis of some training examples. It can be realized by means of
a greedy procedure that adds or removes categories until no further improvements
can be made. Hierarchy restructuring can substantially improve the accuracy of the
hierarchical approach, which can eventually give better performance than the flat
approach.

Another limitation of this work is the consideration of a single-category assign-
ment rather than the more general case of a multi-category assignment. However,
the multi-category assignment occurs either when the hierarchy appears to be
ill-structured with respect to documents collected over time, or when the same
documents can be actually classified along several dimensions. In the former case,
the single-category assignment can be kept if the hierarchy is restructured. In
the latter case, it would be better to consider a multi-dimensional framework, as
that investigated by Theeramunkong and Lertnattee (2002). In the future, we
intend to extend this work by considering the integration of both the multi-
dimensional and the hierarchical frameworks, in order to support WebClass users
with OLAP-like roll-up, drill-down and pivoting operations in an information re-
trieval context.
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