A NOTE ON THE MATRIX EXPONENTIAL*

EDUARDO LIZ ${ }^{\dagger}$

Abstract

This note is devoted to simplifying one method to calculate the exponential of a matrix presented by I.E. Leonard in [SIAM Rev., 38 (1996), pp. 507-512].

Key words. matrix exponential, linear differential equation
AMS subject classification. 34A30
PII. S0036144596320752

1. Introduction. In [1] one method to calculate the exponential of a matrix is presented with the goal of minimizing the mathematical prerequisites. Such a method follows from Theorem 2 in [1], and it requires to solve, for an $n \times n$ matrix, n initial value problems for an nth order linear differential equation with constant coefficients.

In this note we present a result which is deduced easily from the above mentioned theorem and makes the practical method to calculate the exponential of a matrix simpler. We give an example to illustrate our result.
2. Main result. For the sake of completeness, we enunciate here the key result of [1, Theorem 2, p. 509].

THEOREM 2.1. Let A be a constant $n \times n$ matrix with characteristic polynomial

$$
p(\lambda)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0} .
$$

Then

$$
e^{A t}=x_{1}(t) I+x_{2}(t) A+\cdots+x_{n}(t) A^{n-1}
$$

where, for each $k=1,2, \ldots, n, x_{k}$ is the solution to the nth order scalar differential equation

$$
\begin{equation*}
x^{(n)}+c_{n-1} x^{(n-1)}+\cdots+c_{1} x^{\prime}+c_{0} x=0 \tag{1}
\end{equation*}
$$

satisfying the following initial conditions:

$$
\begin{equation*}
x_{k}^{(k-1)}(0)=1, x_{k}^{(i)}(0)=0 \quad \text { for } i \neq k-1,0 \leq i \leq n-1 \tag{2}
\end{equation*}
$$

Before enunciating our result, we recall that the homogeneous differential equation (1) always has a fundamental system of exactly n solutions

$$
S=\left\{\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t)\right\}
$$

that is, S is a basis for the linear space of all the solutions of (1).

[^0]Moreover, the matrix

$$
B_{t}=\left(\begin{array}{cccc}
\varphi_{1}(t) & \varphi_{1}^{\prime}(t) & \cdots & \varphi_{1}^{(n-1)}(t) \tag{3}\\
\varphi_{2}(t) & \varphi_{2}^{\prime}(t) & \cdots & \varphi_{2}^{(n-1)}(t) \\
\vdots & \vdots & \cdots & \vdots \\
\varphi_{n}(t) & \varphi_{n}^{\prime}(t) & \cdots & \varphi_{n}^{(n-1)}(t)
\end{array}\right)
$$

is invertible for every $t \in \mathbf{R}$.
We also recall that the characteristic equation of (1) is the algebraic equation

$$
\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}=0
$$

Taking into account these preliminaries, we may prove the following result.
THEOREM 2.2. Let A be a constant $n \times n$ matrix with characteristic polynomial $p(\lambda)$. Then

$$
e^{A t}=x_{1}(t) I+x_{2}(t) A+\cdots+x_{n}(t) A^{n-1}
$$

where

$$
\left(\begin{array}{c}
x_{1}(t) \tag{4}\\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)=B_{0}^{-1}\left(\begin{array}{c}
\varphi_{1}(t) \\
\varphi_{2}(t) \\
\vdots \\
\varphi_{n}(t)
\end{array}\right)
$$

B_{0} being the matrix defined in (3) (for $t=0$) and $S=\left\{\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t)\right\}$ being a fundamental system of solutions for the homogeneous linear differential equation whose characteristic equation is the characteristic equation of $A, p(\lambda)=0$.

Proof. Let $p(\lambda)=\lambda^{n}+c_{n-1}, \lambda^{n-1}+\cdots+c_{1}, \lambda+c_{0}$ be the characteristic polynomial of A, and let us consider the nth order differential equation (1), whose characteristic equation is $p(\lambda)=0$.

In view of Theorem 2.1,

$$
e^{A t}=x_{1}(t) I+x_{2}(t) A+\cdots+x_{n}(t) A^{n-1}
$$

where $x_{k}(t)$ is the solution of (1) with initial conditions (2) for each $k=1,2, \ldots, n$.
Now, let us observe that the set $T=\left\{x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right\}$ is also a fundamental set of solutions for (1) since the Wronskian $W\left(x_{1}(t), \ldots x_{n}(t)\right)$ takes the value 1 at $t=0$. Moreover, by using the uniqueness of solution for the initial value problem (1)-(2), we obtain that, for each $k=1,2, \ldots, n$,

$$
\varphi_{k}(t)=\varphi_{k}(0) x_{1}(t)+\varphi_{k}^{\prime}(0) x_{2}(t)+\cdots+\varphi_{k}^{(n-1)}(0) x_{n}(t)
$$

that is,

$$
\left(\begin{array}{c}
\varphi_{1}(t) \\
\varphi_{2}(t) \\
\vdots \\
\varphi_{n}(t)
\end{array}\right)=B_{0}\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)
$$

Since B_{0} is invertible, we obtain the equality (4) and the proof is complete.
3. Example. Let us consider the 3×3 real matrix

$$
A=\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The characteristic polynomial of A is $p(\lambda)=\left(\lambda^{2}+1\right)(\lambda-1)$, and hence a fundamental system for the differential equation whose characteristic equation is $p(\lambda)=0$ is given by

$$
S=\left\{\cos t, \sin t, e^{t}\right\}
$$

The matrices B_{0} and its inverse are

$$
B_{0}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad B_{0}^{-1}=\frac{1}{2}\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 0 \\
-1 & -1 & 1
\end{array}\right) .
$$

Therefore,

$$
\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=B_{0}^{-1}\left(\begin{array}{c}
\cos t \\
\sin t \\
e^{t}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
\cos t-\sin t+e^{t} \\
2 \sin t \\
-\cos t-\sin t+e^{t}
\end{array}\right)
$$

Finally, taking into account that

$$
A^{2}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

we obtain

$$
\begin{aligned}
e^{A t} & =x_{1}(t) I+x_{2}(t) A+x_{3}(t) A^{2} \\
& =\left(\begin{array}{ccc}
x_{1}(t)-x_{3}(t) & x_{2}(t) & 0 \\
-x_{2}(t) & x_{1}(t)-x_{3}(t) & 0 \\
0 & 0 & x_{1}(t)+x_{2}(t)+x_{3}(t)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos t & \sin t & 0 \\
-\sin t & \cos t & 0 \\
0 & 0 & e^{t}
\end{array}\right) \\
& \text { REFERENCE }
\end{aligned}
$$

[1] I. E. Leonard, The matrix exponential, SIAM Rev., 38 (1996), pp. 507-512.

[^0]: *Received by the editors December 6, 1996; accepted for publication April 7, 1997.
 http://www.siam.org/journals/sirev/40-3/32075.html
 ${ }^{\dagger}$ Departamento de Matemática Aplicada, E.T.S.I. Telecomunicación, Campus Marcosende, Universidad de Vigo, 36280 Vigo, Spain (eliz@dma.uvigo.es).

