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Abstract

Background: Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell
binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule
seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by
clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for
development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway.

Methodology/Principal Findings: Using immunofluorescence and infection studies we show in contrast to published data
that infectious entry of HPV16 occurs in a clathrin- and caveolin-independent manner. Inhibition of clathrin- and caveolin/
raft-dependent endocytic pathways by dominant-negative mutants and siRNA-mediated knockdown, as well as inhibition of
dynamin function, did not impair infection. Rather, we provide evidence for involvement of tetraspanin-enriched
microdomains (TEMs) in HPV16 endocytosis. Following cell attachment, HPV16 particles colocalized with the tetraspanins
CD63 and CD151 on the cell surface. Notably, tetraspanin-specific antibodies and siRNA inhibited HPV16 cell entry and
infection, confirming the importance of TEMs for infectious endocytosis of HPV16.

Conclusions/Significance: Tetraspanins fulfill various roles in the life cycle of a number of important viral pathogens,
including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, their involvement in endocytosis of
viral particles has not been proven. Our data indicate TEMs as a novel clathrin- and caveolin-independent invasion route for
viral pathogens and especially HPV16.
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Introduction

Human papillomaviruses (HPVs) are nonenveloped viruses with

a double-stranded circular DNA genome [1]. The icosahedral

capsid contains 360 copies of the major structural protein L1 and a

so far undefined number of the minor capsid protein L2 [2]. Over

100 different HPV types have been identified. Following infection

of epithelial cells, they mainly cause benign epithelial warts on skin

and mucosa. However, high-risk types, most often HPV16, are the

primary etiologic agents for anogenital malignancies, in particular

cervical cancer [1]. Host cell entry of HPV is initiated by binding

of the virus particle to specifically modified heparan sulfate

proteoglycans (HSPGs) [3,4]. There is evidence that binding to

HSPGs induces a conformational change in both capsid proteins,

which is required for productive infection [5,6]. Following binding,

virus particles are taken up into the cell with slow kinetics. We

have recently obtained first evidence for transfer of the virions to a

secondary non-HSPG receptor molecule after conformational

changes have occurred [7]. In addition to HSPGs, a6 integrin as

well as laminin 5 have been suggested to function as transient

receptors for HPV [8–10]. However, the entry mechanisms and

the molecules involved are still a subject of much scientific debate.

For HPV16, it was reported that entry occurs by clathrin-

mediated endocytosis, whereas HPV31 was shown to use caveolar-

mediated uptake mechanisms [11,12].

In the present study we have readdressed the early mechanisms

of HPV16 invasion into host cells following binding to HSPGs. In

contrast to previous reports, we found no evidence for clathrin-

mediated endocytosis. HPV16 entry and infection was also

independent of caveolae- or lipid raft-mediated uptake mecha-

nisms. Instead, we found a close association of virions with the

tetraspanins CD63 and CD151 on the cell surface. HPV16 entry

and infection of epithelial cells was inhibited using tetraspanin-

specific antibodies or siRNA. All evidence indicates that

tetraspanins are involved in HVP16 host cell entry.

Tetraspanins are an evolutionary conserved family of four

transmembrane domain-containing proteins including at least 32

members in humans [13]. They are widely expressed in many cell
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types and tissues. One important feature of tetraspanins is their

ability to interact laterally with each other and with other

transmembrane proteins to form tetraspanin-enriched microdo-

mains (TEMs), also called tetraspanin webs [14]. Within these

webs tetraspanins control the activities of associated molecules.

They modulate intercellular interactions including adhesion,

migration, and synapse formation and are involved in the

organization of membrane-signaling complexes. In addition, they

are involved in intracellular protein transport as well as in

endocytosis and exocytosis. The molecular basis for the broad

functionality of tetraspanins appears to be the capacity to form

multiple intermolecular interactions with a large but defined set of

transmembrane and intracellular molecules. The molecular

partners for various tetraspanins include proteoglycans, integrins,

growth factor receptors, members of the immunoglobulin

superfamily, complement-regulatory proteins, uroplakins, rhodop-

sin, and others [14]. Although TEMs are enriched in cholesterol

they show a number of differences that distinguish them from

conventional lipid rafts. While lipid rafts are disrupted following

cholesterol depletion, TEMs are resistant. In addition, typical raft

resident proteins, like GPI-anchored proteins and caveolin do not

associate with tetraspanins [15].

Previous reports described various roles for tetraspanins in the life

cycle of different viruses like human T-cell leukemia virus 1, canine

distemper virus, and feline leukemia virus. More recently, the

tetraspanin CD63 has been identified to be associated with sites of

human immunodeficiency virus type 1 (HIV-1) assembly and may be

incorporated into viral membranes [16–18]. Furthermore, the

existence of specific TEMs in the plasma membrane is now well

documented and it has been suggested that these microdomains can

function as exit gateways for HIV-1 [19]. However, whether TEMs

are also involved in endocytosis of viral particles is unclear. The

potential impact of tetraspanins in the process of virus entry is

suggested by the observation that CD63-specific antibodies or

recombinant extracellular domains of specific tetraspanins can

inhibit HIV infection [20,21]. Similarly, CD81 has been implicated

in the entry of HCV into its natural host cells [22].

Results

HPV16 virions on the cell surface and detection of uptake
To study early events of papillomavirus entry into human

epithelial cells we employed HPV16 pseudovirions (PsVs) that

have been widely used to analyze HPV biology and infection. PsVs

were generated by expression of the capsid proteins L1 and L2 in

cells harboring a reporter plasmid (GFP, YFP, or DsRed) that

results in packaging of episomal DNA into L1/L2-capsids to

produce infectious PsVs [23]. These PsVs were then either used in

infection assays, where delivery of reporter plasmids into the

nucleus was measured by expression of the fluorescent protein

48 hours post infection, or in entry assays where their invasion

route was monitored by immunofluorescence deconvolution

microscopy [24] using antibodies detecting the L1 capsid protein.

Two different approaches were used to differentiate whether

virions were located at the cell surface or had been internalized. First,

we compared non-permeabilized with permeabilized cells employing

a polyclonal anti L1-antiserum (K75) that detects both extra- and

intracellular particles. In order to exclusively analyze virions on the

cell surface, cells were fixed with paraformaldehyde (PFA) leaving

the plasma membrane impermeable for antibodies during labeling

(Figure 1, PFA; Figure S1). Alternatively, cells were fixed and

permeabilized with methanol (Figure 1, MetOH). Following the

behavior of virions on the cell surface over time, we found

pseudovirions at early stages after binding evenly distributed on

the whole exterior of the cell (Figure 1, 10 min, K75, PFA and

MetOH). At this stage, HPV16 is bound to proteoglycans, which act

as primary attachment sites [7]. However, 1 hour after binding,

virions were found to accumulate at more discrete areas at the cell

surface (Figure 1, 1 h, 3 h, K75, PFA). In non-permeabilized cells

the amount of particles on the cell surface decreased over time

resulting in almost complete absence of K75 reactivity 12 hours after

infection (Figure 1, 12 h, K75, PFA). The conclusion that this reflects

entry of virions into the cell is supported by the detection of PsVs

with the polyclonal antiserum in permeabilized cells at late time

points after infection (Figure 1, K75, MetOH, 6 h–12 h).

In a second approach to follow entry of PsVs into the cell, we

assessed the accessibility of a linear L1 epitope (amino acids 329–

339) by monoclonal antibody (mAb) L1-7 [25]. The epitope

recognized by this antibody is located in the interior of the PsV

capsid and is not accessible for L1-7 in intact virions [26].

Therefore, pseudovirions located on the cell surface (non-

permeabilized, PFA-treated cells) were detectable only with the

L1-specific polyclonal antiserum K75 but not with mAb L1-7 at

neither time point (Figure 1, PFA, L1-7; Figure S2, PFA). In

agreement with the slow kinetics of papillomavirus uptake [5,11],

first L1-7 positive signals in permeabilized cells were detectable 3–

4 hours after infection (Figure 1, L1-7, MetOH). The intracellular

L1-7 signal increased over time, reflecting continuous viral entry

(Figure 1, 3 h–12 h, L1-7, MetOH). As described, the amount of

detectable PsVs on the plasma membrane concomitantly de-

creased (Figure 1, K75, PFA). Even 8 hours after infection,

particles that were left on the cell surface were still exclusively

detectable with the polyclonal antiserum (K75), but not with the

L1-7 antibody (Figure S2, PFA). In contrast, both antibodies

detected PsVs in the interior of permeabilized cells (Figure 1, 12 h,

MetOH; Figure S2, PFA+Triton or MetOH), indicating that the

L1-7 epitope is solely accessible in the cellular interior after entry.

Endocytosis of HPV16 leading to productive infection is
clathrin-independent

It has been reported that HPV16 enters target cells by clathrin-

mediated endocytosis [11,12]. This conclusion was mainly based

on experiments using chlorpromazine, an inhibitor of clathrin-

dependent endocytosis, which exerts multiple side effects on cell

function as it targets many receptors, intracellular enzymes, and

alters plasma membrane characteristics [27]. Therefore, we

readdressed the question if entry of HPV16 is mediated by

clathrin-dependent endocytosis employing more specific assays.

First, we tested whether entry of HPV16 pseudovirions into HeLa

cells was affected by the expression of dominant-negative (dn)

Eps15 mutants. Eps15 is a component of clathrin-coated pits

where it interacts with adaptor protein (AP)-2, the major clathrin

adaptor complex, and overexpression of dnEps15 mutants has

been shown to inhibit clathrin-dependent endocytosis [28].

Transferrin, a bona fide cargo of clathrin-coated pits served as

control. We used two different dnEps15 mutants and one control

mutant, which are all fused to GFP. One mutant contains a partial

deletion of the DI-domain (ED95/295), whereas the other mutant

has a large N-terminal deletion leaving only its C-terminal DIII-

domain. To control for unspecific effects by overexpression, the

DIII-mutant with an additional deletion of its AP-2 binding sites

(DIIID2) was used. In line with previous reports, overexpression of

both dn-mutants efficiently blocked clathrin-dependent uptake of

transferrin (Figure 2A, rows 2 and 3) whereas the control construct

GFP- DIIID2 had no effect on transferrin internalization (row 1).

In contrast, entry of HPV16, which was monitored by the

accessibility of L1-7 epitope (see Figure 1), was not influenced by

the dnEps15-mutants (Figure 2A, rows 4–6).

HPV16 Infection via TEMs

PLoS ONE | www.plosone.org 2 October 2008 | Volume 3 | Issue 10 | e3313



To assess whether inhibition of clathrin-mediated endocytosis

affected infection, 293TT and HeLa cells were first transfected with

dn- or control-Eps15 mutants and then incubated with PsVs

carrying a DsRed marker plasmid. Expression of the different Eps15

mutants was detected by GFP fluorescence (Figure S3, left column).

Infected cells expressed DsRed (Figure S3, middle column).

Importantly, a significant portion of cells expressing the dn Eps15

mutant were efficiently infected as indicated by yellow fluorescence

(Figure S3, right column). In order to quantify the efficiency of

HPV16 infection in cells treated with dnEps15-mutants we

measured the number of transfected cells expressing the DsRed-

marker plasmid by FACS analysis. In comparison to control cells

expressing GFP-DIIID2, we found no inhibitory effect on pseudo-

virus infection by dnEps15 GFP-DIII mutant (Figure 2B). In HeLa

cells we even observed a slight increase of infectivity.

The main components of clathrin-coated pits and vesicles are

clathrin triskelions, consisting of three heavy and three light

chains. The clathrin lattice serves as an organizing scaffold for the

proteins that carry out cargo sorting, membrane invagination,

vesicle scission, and uncoating. siRNA-mediated depletion of the

clathrin heavy chain (CHC) has been shown to efficiently block

clathrin-mediated endocytosis [29]. Therefore, we also used

knockdown of CHC (Figure 2C) to analyze whether entry of

HPV16 into HeLa cells is dependent on clathrin-mediated

endocytosis. Cells were either transfected with control siRNA or

CHC-specific siRNA followed by incubation with PsVs or

Figure 1. Differentiation between extra- and intracellular pseudovirions and kinetics of internalization. HeLa cells were exposed to
HPV16 pseudovirions for the indicated time periods. Cells were fixed with paraformaldehyde (non-permeabilized cells, columns 1 and 2) or with
methanol (permeabilized cells, columns 3 and 4). The major capsid protein L1 was detected with either a polyclonal anti-L1 antibody (K75, red) or
with a monoclonal anti-L1 antibody (L1-7, green) reacting with an L1 epitope that is accessible exclusively after viral entry. Bar, 10 mm.
doi:10.1371/journal.pone.0003313.g001

HPV16 Infection via TEMs
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transferrin and analyzed by fluorescence microscopy. As shown in

figure 2C and 2D, siRNA treatment substantially reduced the level

of CHC (Figure 2D, compare left panels in row 1 and 2) leading to

a complete inhibition of clathrin-mediated transferrin uptake

(compare middle panels in row 1 and 2). However, entry of

HPV16 was not affected by the inhibition of clathrin-mediated

endocytosis as shown by analyses using the monoclonal antibody

L1-7 (Figure 2D, row 4). These results were reproduced with the

second CHC-specific siRNA (CHC2, data not shown).

Again, the findings obtained by immunofluorescence microsco-

py were confirmed by infection assays in siRNA-treated cells. The

specific knockdown of CHC was controlled by Western blot

analysis (Figure 2C) and infected cells were counted by FACS. As

shown in figure 2E, we found no inhibitory effect on HVP16

infection of 293TT and HeLa cells when CHC was depleted. In

fact, we detected increased infectivity. Altogether, these data

indicated that HVP16 entry into epithelial cells for productive

infection is not mediated by a clathrin-dependent mechanism.

Infection of HPV16 does not occur via lipid rafts or
caveolae

HPV31 has been recently suggested to enter human keratinocytes

via caveolae-dependent endocytosis [12]. Therefore, it was of

interest to determine whether HPV16 also uses caveolae for entry

into HeLa cells. Since the human hepatoma cells (HuH-7) express

only extremely low levels of caveolins and are devoid of

morphologically identifiable caveolae [30], we used these cells as a

tool in entry experiments with HPV16. As shown in figure 3A,

HPV16 PsVs efficiently entered these caveolae-deficient cells. To

block caveolar-mediated endocytosis in HeLa cells, we expressed two

GFP-tagged versions of caveolin-1: a construct with C-terminally

fused GFP (Cav-GFP) that was shown to function as a marker for

caveolae, and an N-terminally tagged version (GFP-Cav) that acts as

dominant negative mutant inhibiting caveolar-mediated endocytosis

[31]. Cholera toxin subunit B (CtxB), which enters cells mainly by a

caveolar-mediated entry route when applied at low concentrations,

was used as a marker [32,33]. We confirmed a strong colocalization

of Cav-GFP and CtxB (Figure 3B, row 1). CtxB endocytosis was

inhibited in cells expressing the dominant negative GFP-Cav mutant

(Figure 3B, row 3). However, HPV16 entry was not prevented under

these conditions, as indicated by intracellular detection of virions

with mAb L1-7 (Figure 3B rows 2 and 4). Cav-GFP and virions did

not colocalize inside the cell. Moreover, no colocalization was found

using the polyclonal L1-antiserum (K75) at any time point after

infection (data not shown). Finally, we tested the dominant negative

GFP-Cav mutant in infection assays and found no influence on

infectivity (Figure 3C). In addition, disruption of lipid rafts and

caveolae by depletion of cholesterol from cellular membranes using

methyl-b-cyclodextrin (MbCD) did not impair infection, rather led

to increased infectivity (data not shown). Furthermore, we depleted

caveolin-1 by siRNA treatment and tested the effect on HPV16

infection. The specific knockdown of caveolin-1 in 293TT and HeLa

cells was controlled by Western blot analysis (Figure 3D, lanes 1 and

2) and infectivity was measured by FACS (Figure 3E). As shown,

HVP16 infection was slightly increased in caveolin-1-depleted cells.

As it is conceivable that HPV16 could switch to another invasion

pathway, we depleted clathrin and caveolin-1 simultaneously

(Figure 3D, lanes 3 and 4). Intriguingly, infection efficiency of

HPV16 PsVs was increased more than 50% when both clathrin and

caveolin-1 mediated entry pathways were blocked. In sum, our data

provided no evidence for the involvement of caveolae in the entry

process of HPV16.

Dynamin-independent entry of HPV16
As it has been shown that the internalization of clathrin-coated

vesicles and the uptake of caveolar microdomains are dependent

on the functionality of the large GTPase dynamin we additionally

analyzed the impact of dynamin for HPV16 entry and infection.

In a first approach we inhibited dynamin function by treatment of

HeLa cells with the inhibitor dynasore [34]. Whereas uptake of

transferrin was efficiently inhibited (Figure 4A, Dynasore, upper

panel), we found effective entry of HPV16 PsVs as indicated by the

reactivity of the monoclonal antibody L1-7 (Figure 4A, Dynasore,

lower panel). The same results were obtained using depletion of

dynamin-2 by specific siRNA treatment (Figure 4A, Dynamin

siRNA). The effectiveness of dynamin-2 depletion in HeLa cells

was controlled by Western blot analysis (Figure 4B). In a third

approach we specifically blocked the functionality of dynamin-2 by

expression of the GPF-tagged dominant negative GTPase-

deficient mutant Dyn2K44A-GFP [35–37]. Again, endocytosis of

transferrin was inhibited in cells expressing the dominant-negative

mutant, whereas transferrin was efficiently taken up in non-

transfected cells (Figure 4A, Dyn2K44A-GFP, upper panel).

However, entry of virions was not affected by expression of

Dyn2K44A (Figure 4B, Dyn2K44A-GFP, lower panel). In order

to test whether this dynamin-independent entry of virions results in

productive infection, we performed infection assays in 293TT and

HeLa cells. As shown in figure 4C, we found no inhibitory effect

on infection efficiency when dynamin-2 was depleted with siRNA,

or when we expressed the dn Dyn2K44A-mutant (Figure 4D).

Rather, in any case we repeatedly observed a slight increase in the

number of infected cells. These data confirmed our observations

that entry and infection of HPV16 occur independently of

clathrin- and caveolin-mediated endocytosis, since both pathways

require the function of the large GTPase dynamin.

Virions associate with tetraspanin-enriched
microdomains during infection

Tetraspanins are concentrated at distinct sites in the plasma

membrane, where they contribute to the formation of TEMs [19].

To detect surface localized TEMs, PFA-fixation was employed

without permeabilizing the plasma membrane. As described by

Nydegger and colleagues, the tetraspanin CD63 was found to be

Figure 2. Dominant-negative inhibitors of clathrin-mediated endocytosis and knockdown of clathrin by siRNA do not influence
infectious endocytosis of HPV16. (A) HeLa cells were transfected with GFP-tagged dominant-negative inhibitors of clathrin-mediated
endocytosis or a control (GFP-DIIID2). 24 hours after transfection cells were exposed to AlexaFluor 546 labeled transferrin or to HPV16 pseudovirions
for 10 hours and then fixed with methanol. L1 was detected with L1-7. Bar, 20 mm. (B) 293TT (dark gray) and HeLa cells (light gray) were transfected
with GFP-tagged dominant-negative inhibitor of clathrin-mediated endocytosis (DIII) or a control (GFP-DIIID2) for 24 hours and then infected with
HPV 16 PsVs. Data is shown as mean of infected cells within the GFP-positive cell population (n = 4, +/2SD); infection rate of the control (GFP-DIIID2)
was set to 100%. (C) siRNA mediated knockdown of clathrin in HeLa and 293TT cells by two different clathrin heavy chain (CHC) siRNAs was controlled
48 hours after transfection by Western blotting. (D) siRNA transfected HeLa cells were exposed to pseudovirions for 10 hours and/or AlexaFluor 546
labeled transferrin. Cells were fixed with methanol, immunostained with L1-7 or clathrin antibody and analyzed by immunofluorescence microscopy.
All exposures were taken with identical settings. Bar, 20 mm. (E) Infection assay was performed in clathrin or control siRNA transfected cells (n = 4, +/
2SD); infection rate of the control was set to 100%.
doi:10.1371/journal.pone.0003313.g002
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associated with discrete microdomains that were distributed over

the cell surface (Figure S4, top section) or concentrated at the cell

borders (Figure S4, middle section), depending on the focusing

plane. When cells were permeabilized with methanol, surface

staining got lost but perinuclear CD63-positive endosomes were

detected (Figure S4, MetOH). We employed co-staining of virions

and CD63 to follow the association of PsVs with CD63-positive

TEMs over time. Using paraformaldehyde-fixed non-permeabilized

Figure 3. Infection of HPV16 does not occur via lipid rafts or caveolae. (A) HuH7 liver cells were incubated with HPV16 pseudovirions for
6 hours and fixed with methanol. Cells were immunostained with monoclonal anti-L1 antibody (L1-7, red) and with polyclonal anti caveolin-1
antibody (green). Insert display the enlarged section that is shown on the right. (B) HeLa cells were transfected with Caveolin-GFP or dominant-
negative GFP-Caveolin as indicated and treated with 0.5 mg/ml AlexaFluor 594 labeled Cholera toxin B (CtxB) for 30 min or exposed to HPV16
pseudovirions for 10 hours. Cells were fixed with methanol and immunostained with L1-7 antibody as indicated. Bars in A and B, 20 mm. (C) 293TT
(dark gray) and HeLa (light gray) cells expressing caveolin constructs as indicated for 24 hours were exposed to HPV16 pseudovirions and the number
of infected cells was measured by FACS 48 hours post infection. Data of four individual experiments are represented as mean+/2SD. Infection rate of
the control Caveolin-GFP was set to 100%. (D) 293TT or HeLa cells were transfected with caveolin-1 (Cav, lane 2) or a mixture of caveolin-1 and
clathrin heavy chain (CHC) specific siRNAs (Cav+CHC, lane 4), or control siRNA (lanes 1 and 3). 48 hours after transfection, cells were lysed and probed
for Caveolin and CHC by Western blotting or infected with HPV16 PsVs (E). Infectivity was quantified by FACS (n = 4, +/2SD); infection rate of the
control was set to 100%.
doi:10.1371/journal.pone.0003313.g003

HPV16 Infection via TEMs
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cells we found virions evenly distributed on the cell surface and only

marginal colocalization with plasma membrane CD63 was observed

(Figure 5A, 10 min). However, colocalization gradually increased

over time (2 h, 4 h). We found that virus particles started to

colocalize with internal CD63 at the cell periphery already 3 hours

after infection. PsVs appeared to be transported to CD63-positive

endosomes near the nucleus (Figure 5B, 6 h and 10 h).

Next we analyzed the association of virions with another member

of the tetraspanin family. The tetraspanin CD151 is highly abundant

in the basolateral surface of basal keratinocytes [38]. Since

papillomaviruses are believed to enter basal keratinocytes via the

basolateral surface [39], we sought to determine whether CD151

was also located in TEMs on the plasma membrane and whether it

played a role in HPV16 PsV entry. We first analyzed its surface

distribution in HeLa cells and found strong colocalization with the

TEM-marker CD63 (Figure 6A). When we studied the localization

of pseudovirions relative to CD151, we again found almost no

colocalization on the plasma membrane at early stages of infection

(Figure 6B, 10 min). Quantitative analysis revealed that 10 minutes

after addition of pseudovirions only 463% of particles per cell were

colocalized with CD151. However, as seen with CD63, we detected

increasing colocalization of HPV16 particles with CD151 on the cell

surface as the infection process proceeded. Measurement of

colocalization revealed that after one hour 961%, after two hours

2064%, and after four hours 3664% of PsVs were associated with

CD151 positive TEMs on the cell surface. The association with

CD151 was also sustained in intracellular endosomes near the

nucleus later in infection (Figure 6C).

Figure 4. Dynamin-independent entry and infection of HPV16 PsVs. (A) HeLa cells were either mock treated (control), treated with 80 mM
dynasore for 30 min, transfected with dynamin2 specific siRNA for 48 hours (Dynamin siRNA), or transfected with GFP-tagged dynamin2 K44A
mutant for 24 hours (Dyn2 K44A-GFP). Thereafter, cells were incubated with AlexaFluor546 labeled transferrin or infected with HPV16 pseudovirions
for 6 hours (dynasore: 4 hours). Cells were fixed and permeabilized with methanol. Immunostaining was performed with the indicated L1-specific
antibody (L1-7, red). Cells were examined by immunofluorescence microscopy. Bar, 20 mm. (B) siRNA mediated knockdown of dynamin2 (Dyn2) in
HeLa and 293TT cells was controlled 48 hours after transfection by Western blotting. (C, D) Infection assay was performed in dynamin2 or control
siRNA transfected as well as in dn dynamin2 mutant (Dyn2 K44A) or control transfected 293TT (dark gray) and HeLa (light gray) cells. Infectivity was
quantified by FACS (n = 4, +/2SD); infection rate of the control was set to 100%.
doi:10.1371/journal.pone.0003313.g004

HPV16 Infection via TEMs
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Figure 5. Virions associate with CD63 positive microdomains on the cell surface and in intracellular vesicles. (A) PsVs on the cell
surface. HeLa cells were exposed to HPV16 pseudovirions for the indicated time periods, and fixed with paraformaldehyde. Cells were immunostained
with polyclonal anti-L1 antibody (K75, red) and a monoclonal anti-CD63 antibody (H5C6). Inserts display enlarged sections that are shown in the right
column and DNA staining in blue (A and B). (B) Treatment of HeLa cells with HPV16 pseudovirions as in A. Cells were fixed with methanol,
immunostained with a polyclonal anti-L1 antibody (K75, red) and a monoclonal anti-CD63 antibody (sc-5275) recognizing only internal CD63 under
these conditions, and analyzed as in A. Bars, 20 mm.
doi:10.1371/journal.pone.0003313.g005

HPV16 Infection via TEMs
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Figure 6. Virions associate with CD151 positive microdomains on the cell surface and in intracellular vesicles. (A) HeLa cells were fixed
with paraformaldehyde and the cell surface was immunostained with a monoclonal anti-CD63 antibody and polyclonal anti-CD151 antibody. (B) HeLa
cells were exposed to HPV16 pseudovirions for the indicated time periods, and fixed with paraformaldehyde. The cell surface was immunostained

HPV16 Infection via TEMs

PLoS ONE | www.plosone.org 9 October 2008 | Volume 3 | Issue 10 | e3313



To substantiate these results we analyzed the association of

virions with plasma membrane CD151 by electron microscopy.

HeLa cells were grown on a film base and infected with HPV16

PsVs for 4 hours. To detect CD151 at the plasma membrane we

performed preembedding immunogold labeling of non-permeabi-

lized formaldehyde fixed cells. The monolayer of cells on the film

base was embedded in epoxy resin and cut into ultrathin sections

allowing the preservation of virions in the context of their

microenvironment. As shown in figure 6D HPV16 PsVs

colocalized with CD151 on the plasma membrane (I–III).

Association with CD151 was also maintained during membrane

invagination (IV). We did never observe virions in clathrin-coated

pits. Altogether, these results supported the notion that HPV16

associates with tetraspanin proteins on the plasma membrane and

implicated that TEMs might act as entry platforms for clathrin-

and caveolin-independent entry of HPV16.

Antibodies and siRNA specific for different tetraspanins
can block HPV16-infection

As we had detected HPV16 virions associated with TEMs on

the plasma membrane, we asked whether tetraspanins are

functionally involved in entry and infection. Accordingly, we first

tested if pretreatment of 293TT and HeLa cells with tetraspanin-

specific antibodies might inhibit infection. Three antibodies

specifically recognizing the extracellular domains of CD63,

CD151, and CD81 were used. As shown in figure 7A, anti-

CD81 had some inhibitory effect on HPV16 infection in 293TT

(25619%) and HeLa (1866%) cells. Antibodies against CD63 had

a strong inhibitory effect in 293TT cells (42613% inhibition) but

showed no reduction of infection in HeLa cells. The strongest

reduction of infection in both cell lines was found with anti-

CD151. These antibodies reduced infectivity to about 4763% in

293TT and 7261% in HeLa cells.

Since antibody-inhibition studies suggested that the tetraspanin

CD151 is primarily involved in HPV16 infection, siRNA treatment

was used to reduce the amount of cell surface-exposed CD151.

Efficiency of siRNA-mediated knockdown of CD151 on the cell

surface was controlled by FACS analysis. As shown in figure 7B,

siRNA #1 reduced cell surface expression of CD151 to 29% in

293TT and 26% in HeLa cells (mean intensity). siRNA #2

treatment had a similar efficiency with reduction of CD151

expression on the cell surface to 22% in 293TT and 23% in HeLa

cells, as compared to control treated cells. Importantly, with CD151-

specific knockdown, infectivity was markedly reduced in both cell

lines. CD151-specific siRNAs reduced infectivity to 3162% (siRNA

#1) or 4162% (siRNA #2) in 293TT and 4268% (siRNA #1) or

38610% (siRNA #2) in HeLa cells (Figure 7C).

We additionally analyzed the importance of CD151 for entry of

HPV16 PsVs in HeLa cells using immunofluorescence studies.

Again, cells were treated with control or CD151 specific antibodies

prior to infection. Strikingly, antibody treatment had no effect on

endosomal uptake of transferrin (Figure 8A, upper panels),

whereas entry of virions was clearly inhibited (lower panels).

Similarly, the effect of CD151 depletion by siRNA treatment on

PsV entry was investigated. CD151 knockdown led to an almost

complete loss of the tetraspanin-specific signal (Figure 8B, first

column). However, uptake of transferrin was not affected

(Figure 8B, second column). In contrast, entry of virions was

completely blocked in CD151 depleted cells (Figure 8C). We

hypothesized that depletion of CD151 might block viral entry at

the plasma membrane. Therefore we analyzed HPV16 localiza-

tion in CD151 siRNA-treated cells. As shown in Figure 8C (and

Figure 1), 12 hours after infection we no longer detected viral

particles on the cell surface in untreated cells reflecting complete

uptake of PsVs (Figure 8C, control siRNA, L1(K75). Notably, in

CD151-depleted cells uptake of PsVs was inhibited and PsVs

remained on the cell surface (Figure 8C, CD151 siRNA, L1(K75)).

Altogether, these results suggested that tetraspanins on the plasma

membrane of epithelial cells are important for a clathrin- and

caveolin-independent entry process of HPV16.

Discussion

For many viruses, endocytic entry into their host cells occurs in

a series of tightly controlled, consecutive steps involving binding to

the cell surface, lateral diffusion, signaling, and internalization.

Viral uptake often takes place via clathrin- or caveolar/raft-

mediated endocytosis. In the case of HPV16 it was reported that

entry is mediated by clathrin-dependent endocytosis [12,40]. This

conclusion was based on the inhibition of infection by the drug

chlorpromazine. As it is known that chlorpromazine exerts

multiple effects on treated cells [27] we thought to investigate

HPV16 entry using alternative, more specific approaches. In order

to clarify the involvement of defined cellular endocytosis

mechanisms we specifically inhibited clathrin- and caveolin-

mediated pathways by two independent methods. First, we used

the expression of dominant-negative mutants to block endogenous

protein functions and second, we specifically depleted key

functional molecules within these pathways by siRNA. Thereby,

we were able to control possible side effects of each approach.

Since it has recently been shown that papillomaviruses could be

internalized without inducing productive infection [7], we also

used two different methods to monitor HPV16 invasion. In each

case we investigated uptake of viral particles in immunofluores-

cence studies and quantified infectivity of HPV16 PsVs. This

strategy allowed us to correlate endocytosis with infection that is

important for differentiation between productive and non-

productive uptake of viral particles.

Using this setup of experiments, we first asked whether HPV16

entry and infection is dependent on clathrin-mediated endocytosis.

We used dn mutants of eps15 that have been shown to block AP-2

function and clathrin-coated pit assembly [28]. Although AP-2 is

the key adaptor complex regulating clathrin-mediated endocytosis,

there might exist AP-2 independent clathrin-mediated uptake

pathways [41]. Therefore, we also employed clathrin-heavy chain

knockdown. Both approaches led to the same conclusion:

productive endocytosis of HPV16 occurs clathrin-independent.

One well-defined clathrin-independent pathway is endocytosis

mediated by caveolae. Several studies showed that HPV31, in

contrast to HPV16 and HPV58, might use caveolin-dependent

uptake for infection, implying that different HPV types use

different entry mechanisms [12,40]. Our data, using dominant

negative mutants and siRNA-mediated depletion of caveolin-1,

supported the results that have thus far been published indicating

with polyclonal anti-L1 antibody (K75, red) and a monoclonal anti-CD151 antibody (sc-5275). Inserts display enlarged sections that are shown in the
right column. (C) HeLa cells were exposed to HPV16 pseudovirions for 7 hours. Cells were fixed and permeabilized with methanol. Intracellular PsVs
were immunostained with monoclonal anti-L1 antibody (L1-7, red) and CD151 with a polyclonal anti-CD151 antibody (sc-33123, green). Bars, 20 mm.
(D) HeLa cells were infected with pseudovirions for 4 hours and then fixed with paraformaldehyde. Cell surface CD151 was immunolabeled with
10 nm gold particles. Pseudovirions and CD151 were visualized by electron microscopy. Bar, 200 nm.
doi:10.1371/journal.pone.0003313.g006
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that HPV16 entry does not involve caveolae. Furthermore, the

observation that MßCD did not inhibit infection suggested that

lipid rafts are also not involved. Our results are in line with the notion

that different papillomavirus types may use different entry routes and

point to the possibility that HPV16 uses a novel pathway to enter

cells for infection. Of note, simultaneous inhibition of clathrin- and

caveolin-mediated endocytosis by siRNA led to an increase of

infectivity. This phenomenon might be due to cross-regulation of

different endocytic pathways. A change in the activity of a particular

endocytic mechanism could be compensated by alterations in other

pathways. It has been shown for example that inhibition of receptor-

mediated endocytosis resulted in up-regulation of clathrin-indepen-

dent fluid-phase endocytosis [42]. Therefore, increased infectivity of

HPV16 in cells with inhibited clathrin- and caveolin pathways

additionally argues for usage of an alternative endocytic mechanism.

This conclusion is supported by our observation that entry of HPV16

is also independent of the GTP-binding protein dynamin. Dynamin

was initially thought to function mainly in internalization of clathrin-

coated vesicles [35,37] but is now also known to control clathrin-

independent uptake of caveolae [43] and other poorly described

pathways [44]. Again, we detected increased infectivity of HPV16

when dynamin was depleted or its function was blocked.

In recent years there is increasing evidence for additional and

alternative clathrin-, caveolin-, and dynamin-independent entry

pathways [44,45]. They are poorly characterized and it is not

known whether specific microdomains of the plasma membrane

are involved in these novel entry routes. In our study we observed

that virions become associated with several tetraspanins including

Figure 7. Tetraspanin specific antibodies and siRNA can block HPV16 infection. (A) 293TT and HeLa cells were preincubated with control
antibody (rabbit IgG) or with tetraspanin specific antibodies as indicated. One hour later infection assay was performed (n = 4, +/2SD); infection rate of the
control was set to 100%. (B) Flow cytometry analysis of the siRNA mediated knockdown of cell surface exposed tetraspanin CD151 in 293TT (upper panel)
and HeLa (lower panel) cells. Dotted line represents control staining without primary antibody. (C) 293TT and HeLa cells were transfected with siRNA as
indicated for 48 hours and than infection assay was performed (n = 4, +/2SD); infection rate of the control siRNA was set to 100%.
doi:10.1371/journal.pone.0003313.g007
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CD63 and CD151 on the cell surface during the invasion process.

One important feature of the tetraspanin proteins is their capacity

to laterally interact among each other leading to the formation of

TEMs. Accordingly, we detected strong colocalization of CD63

and CD151 in the plasma membrane of HeLa cells. The number

of virions that were found to be associated with tetraspanin

microdomains on the cell surface increased, as the infection

process progressed. Importantly, inhibition of HPV16 entry and

infection by tetraspanin-specific antibodies and siRNA suggested

that TEMs could act as platforms for clathrin-, caveolin-, and

dynamin-independent virion entry.

There is increasing evidence that TEMs may be involved in the

infection process of various viruses. The tetraspanin CD81 has

been identified as interaction partner of the HCV envelope

glycoprotein E2 [46] and anti-CD81 mAbs, as well as a

recombinant, soluble form of the large extracellular domain of

CD81 inhibited the entry of HCV into hepatoma cell lines

[47,48]. Similarly, it has been suggested that the tetraspanin CD63

plays a role in the entry process of HIV-1 as it has recently been

reported that HIV-1 infection was inhibited by anti-CD63

antibodies and also by recombinant soluble forms of the large

extracellular domain of human tetraspanins [20,21]. We were able

to inhibit HPV16 infection by treatment of the cells with

antibodies or siRNAs against CD63 and CD151. Their capacity

to interact with other membrane components and to assemble into

microdomains on the plasma membrane enables these molecules

to serve as recipients of cargoes from primary receptors, like

HSPGs. Binding of cargo to these functional platforms may then

trigger endocytic uptake processes.

Which mechanisms are used for endocytosis of tetraspanins

from the plasma membrane is not clear. A recent study found that

syntenin-1, a component of TEMs, binds to the cytoplasmic tail of

CD63 and could mediate a slow, clathrin-independent endocytosis

of CD63 [49]. In addition, it was reported that CD151 is

internalized via a dynamin-independent but actin-dependent

endocytic pathway [50]. HPV16 might act as an important tool

to clarify mechanisms and factors involved in uptake of

tetraspanins and TEM-associated proteins.

Antibodies or siRNA targeting CD151 exerted the strongest

inhibitory effect on HPV16 infection. CD151 is highly expressed

in epithelial cells of the basal layer that are the target cells of HVP

infection. Characteristically, CD151 is present on cells juxtaposed

with basement membranes and is localized predominantly on the

cell surface in contact with this membrane [51]. Furthermore, it is

a component of hemidesmosomes, which mediate attachment of

epithelial cells [38]. These observations together with the data

Figure 8. Inhibition of HPV16 pseudovirus entry in HeLa cells. (A) HeLa cells were treated with control and CD151 specific antibody as
indicated. Entry of AlexaFluor conjugated transferrin (upper panels) or HPV16 PsVs (lower panels) was analyzed. Cells were fixed with MetOH and
stained with monoclonal L1 (L1-7) antibody. (B) HeLa cells were transfected with control (upper panels) or CD151 siRNA (lower panels). Entry of
AlexaFluor conjugated transferrin was analyzed. (C, D) HeLa cells were treated with siRNA and infected with HPV16 PsVs for 12 hours. Cells were
either fixed and permeabilized with methanol and PsV uptake was analyzed by immunostaining with monoclonal L1 (L1-7, red) and polyclonal anti-
CD151 antibodies (green) (C), or cells were fixed with paraformaldehyde and surface staining was performed with polyclonal L1 antibody (K75, red)
and monoclonal anti-CD151 (green) antibody as indicated (D). Bars 20 mm.
doi:10.1371/journal.pone.0003313.g008
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presented in our study suggest that TEMs that are enriched in

CD151 may indeed serve as entry platforms for HPV16 in vivo.

Regarding the inhibitory mechanisms of the antibodies, we have

preliminary data showing that treatment of the cells with

tetraspanin-specific antibodies results in increased uptake of

TEM proteins. Thereby, entry platforms of HPV16 may be

depleted on the cell surface. Similarly, knockdown of tetraspanins

by specific siRNAs may result in reorganization of TEM platforms

that are no longer functional for virus entry. Regarding this aspect,

we found that depletion of CD63 does not affect the amount of

CD151 on the cell surface and vice versa (data not shown). This

would support the notion that a specific TEM-organization is

essential for mediating HPV16 uptake.

In previous studies, a6-integrin was proposed as a candidate

receptor for HPV16 [9,10]. We also detected reduction of

infection with an antibody against a6-integrin (data not shown).

It should be noted that CD151 is a prime interaction partner for

integrin a6b4 in keratinocytes [38]. Therefore, it is conceivable

that surface level depletion of CD151 by siRNA might induce a

simultaneous decrease of its interaction partner a6b4, a possible

important target for HPV16 invasion. However, we and others

found that knock down of CD151 in human cells does not

influence the surface level of partner integrins but disrupted their

association with TEMs (data not shown) [52]. This implies that

a6-integrin does not act inherently as the receptor for HPV16. It

rather suggests that the specific environment of TEMs is a key

feature for efficient infection of HPV16.

In summary, our data indicate that, following binding of

HPV16 to the cell surface, virions specifically associate with

microdomains containing the tetraspanins CD63 and CD151. We

propose that this is important for the formation of specialized

platforms for their uptake. This is based on the observation that

tetraspanin-specific antibodies and siRNA inhibited HPV16

uptake and infection. Importantly, endocytosis of virions occurs

by a process that is independent of clathrin- and caveolin-

mediated mechanisms. Investigations into the signaling processes

that are possibly triggered by binding of virions to tetraspanin

microdomains are obviously called for. Delineation of these events

will enhance our understanding of the mechanisms underlying

infection by HPV16 and those agents that may utilize a TEM-

specific entry route. These possibly include HIV and HCV.

Materials and Methods

Cell lines and pseudovirions
The human embryonic kidney cell line 293TT was obtained

from Chris Buck [23]. The human cervix carcinoma cell line

HeLa was purchased from the German Resource Centre for

Biological Material (DSMZ). All cell lines were grown at 37uC in

DMEM supplemented with 10% FCS, 1% Glutamax I, 1%

modified Eagle medium nonessential amino acids and antibiotics.

HPV16 pseudovirions were prepared as previously described

[23,53]. Briefly, expression plasmids carrying codon-optimized

HPV16 L1 and L2 cDNA [54] were co-transfected with a marker

plasmid coding for GFP2-NLS, EYFP or DsRed1 into 293TT

cells. 48 hours post-transfection, the cells were processed to lysis

and nuclease digestion. The pseudovirions were purified from the

cell lysates by Optiprep gradient centrifugation [23].

Antibodies
The HPV16 L1-specific antibodies mAb L1-7 (mouse monoclo-

nal) and K75 (rabbit polyclonal) have been described previously

[25,55]. Mouse monoclonal antibodies anti-clathrin heavy chain

(CHC, clone 23), and anti-CD63 (H5C6) were obtained from BD

Biosciences and the mouse anti-a-Tubulin antibody was from Sigma

(B-5-1-2). Monoclonal mouse anti-CD151 (clone 11G5a) and anti-

CD63 (sc-5275) were obtained from Serotec and Santa Cruz

Biotechnologies, respectively. Rabbit anti-Caveolin1 (ab18199) was

purchased from Abcam. Rabbit polyclonal anti-CD81 (sc-9158) and

CD151 (sc-33123) antibodies, as well as goat anti-Dynamin-2 (sc-

6400) antibody were obtained from Santa Cruz Biotechnologies.

Plasmids
The Eps15 mutants: DIIID2 (control), DIII and EH29 (ED95/

295) all subcloned in pEGFP-C2 were kind gifts from Alexandre

Benmerah (Université Paris, Paris, France) [28] and the plasmids

for GFP tagged Caveolin1 (GFP-Cav, Cav-GFP) were provided by

Hüseyin Sirma (Heinrich-Pette-Institut, Hamburg, Germany).

The GFP tagged dynamin-2 mutant K44A (Dyn2K44A-GFP)

was kindly provided by Sandra Schmid (The Scripps Research

Institute). Codon-optimized HPV16 L1 and L2 expression

plasmids were obtained from Martin Müller [54]. The GFP2-

NLS marker plasmid has been described previously [56]. The

marker plasmid pEYFP-C1 and pDsRed1-C1 were purchased

from CLONTECH.

siRNA Experiments
The clathrin heavy chain targeting siRNAs CHC 1 (AAC-

CUGCGGUCUGGAGUCAAC?TT) [57] and CHC 2

(Hs_CLTC_10HP) were purchased from Sigma and Qiagen,

respectively. The CD151 #1 (CAUGUGGCACCGUUUGC-

CU?TT) [58] and CD151 #2 (GCAGGUCUUUGGCAUGA

TT) [59] specific siRNAs were obtained from Sigma. The

caveolin-1 siRNA (Hs_CAV1_6), dynamin-2 siRNA (GW VAL

siRNA Hs_DNM2_8, SI2654687), and the nonsilencing control

siRNA (AllStars Neg. Control siRNA) were obtained from Qiagen.

HeLa or 293TT cells were transfected with 30 nM of siRNA using

Lipofectamine RNAiMAX according to manufacturer’s cell line

optimized instructions. Subsequent experiments were done

48 hours after siRNA transfection. Knockdown efficiencies were

quantified at protein level by Western blot or flow cytometry.

Transferrin and Cholera toxin uptake
HeLa cells were incubated with 35 mg/ml human transferrin

labeled with AlexaFluor546 (Molecular Probes) or 0.5 mg/ml

Cholera toxin subunit B (CtxB) labeled with AlexaFluor594

(Molecular Probes) for 50 min or 30 min, respectively. Remaining

transferrin on the cell surface was removed by treatment with acid-

wash solution (260 mM citric acid, 125 mM Na2HPO4) for 1 min.

Labeled cells were finally washed twice with cold PBS, fixed in

methanol and processed for immunofluorescence.

Pseudovirus infection assay
293TT or HeLa cells grown in 24-well or 96-well plates were

infected with approx. 100 p/cell HPV16 pseudovirions from

OptiPrep gradients. After 48–72 hours incubation at 37uC, infection

events reflected by fluorescent cells (expressing the marker plasmid)

were determined by surveying the whole well in a fluorescence

microscope and/or by flow cytometry (min. 56104 cells acquired).

Antibody infection inhibition assays were done by preincubating

cells with 30 mg/ml of the indicated antibodies for 1 hour prior to

infection.

Immunofluorescence
HeLa cells were grown on coverslips. After transfection and/or

infection (approx. 100 p/cell), cells were fixed with methanol

(220uC, 5 min) or 2% paraformaldehyde (PFA)/PBS (4uC,
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10 min). For dynasore inhibition cells were pretreated for

30 minutes at 37uC with 80 mm dynasore in DMEM or 0,8%

DMSO only (control). Dynasore was added during the whole

infection process. Fixed cells were washed three times with 1%

BSA/PBS and blocked 10 min in 1% BSA/PBS. Coverslips were

incubated for 1 h at 37uC with the indicated antibodies. After

washing with BSA/PBS, coverslips were again blocked for 10 min

with 1% BSA/PBS and subsequently incubated at 37uC with

Alexa-conjugated specific secondary antibodies (Invitrogen) for

45 min. DNA was stained with Hoechst 33342 (Sigma) and is

shown in blue. Coverslips were washed with BSA/PBS and PBS

and mounted onto slides using Fluoprep mounting medium

(bioMérieux). Images were acquired using a Zeiss Axiovert 200 M

microscope equipped with a Plan-Apochromat 1006 (1.4 NA) and

a Zeiss Axiocam digital camera. Axiovision software 4.6 was used

for merging pictures. Images were deconvoluted using the software

supplied by Zeiss (Axiovision 4.6). Tiffs were assembled into

figures using Photoshop CS2 (Adobe). Quantification of coloca-

lization was done using the colocalization module of Axiovision

4.6 (Zeiss). PsVs on the surface of a given cell were counted and

the colocalizing fraction was determined. For each time point, five

individual cells were analyzed.

Electron microscopy
HeLa cells were grown on a 50 mm thick, gas-permeable

lumoxTM film in a 96 well lumoxTM plate (greiner bio-one). Cells

were exposed to HPV16 PsVs (approx. 500 p/cell) for 4 hours and

fixed with 2.5% paraformaldehyde for 15 min at room temperature.

Cells were washed three times with PBS, 1% BSA and blocked for

30 minutes at room temperature with PBS, 1% BSA. Cells were

immunostained with mouse anti-CD151 monoclonal antibody

(clone 11G5a, Serotec) followed by 10 nm gold-conjugated goat

anti-mouse secondary antibody (British Biocell). Infected control

cells were labeled with 10 nm gold conjugated anti-mouse secondary

antibody only. Monolayer of cells was postfixed with 2.5%

glutaraldehyde in PBS for 45 minutes at room temperature and

embedded in Epon 812 according to standard protocols directly on

the film base. 70 nm ultrathin sections were cut, stained with 1%

lead citrate and 2% uranyl acetate and finally analyzed in Zeiss EM

902 electron microscope, equipped with TRS digital camera.

Supporting Information

Figure S1 Cells fixed with paraformaldehyde (PFA) do not show

intracellular labeling. HeLa cells were either fixed with 2% PFA or

Methanol (MetOH) and immunostained with a mouse anti-a-

tubulin antibody and an AlexaFluor-conjugated secondary

antibody. PFA-fixation resulted in non-permeabilized cells show-

ing no intracellular staining. Bar, 20 mm.

Found at: doi:10.1371/journal.pone.0003313.s001 (0.13 MB

PDF)

Figure S2 Detection of extra- and intracellular pseudovirions.

HeLa cells were incubated with HPV16 PsVs for 8 hours. Cells

were fixed with 2% PFA and the plasma membrane was either left

intact (non-permeabilized) or permeabilized with 0,2% Triton X-

100 (PFA+Triton) or methanol (MetOH). For immunofluores-

cence co-staining of the PsVs a rabbit polyclonal antiserum (K75)

together with the mouse monoclonal L1-7 antibody and Alexa-

Fluor-conjugated secondary antibodies were used. The L1-7

antibody only detects K75-positive particles in intracellular

compartments. Bar, 20 mm.

Found at: doi:10.1371/journal.pone.0003313.s002 (0.18 MB

PDF)

Figure S3 Clathrin independent entry and infection of HPV16.

293TT cells were transfected with GFP-tagged dominant-negative

Eps15-mutant (GFP-DIII), inhibitor of clathrin-mediated endocy-

tosis, or a control (GFP-DIIIdelta2) for 24 hours and then

incubated with PsVs. 48 hours post infection cells were analyzed

by immunofluorescence microscopy. Infected cells show expres-

sion of the DsRed marker plasmid. Bar in C, 100 mm.

Found at: doi:10.1371/journal.pone.0003313.s003 (0.56 MB

PDF)

Figure S4 Selective detection of CD63 on the cell surface and in

intracellular compartments. HeLa cells were fixed with 2%

paraformaldehyde (PFA) to leave the plasma membrane intact

or fixed and permeabilized with methanol (MetOH) and stained

with anti-CD63 antibody (green). Images were captured in Z series

using deconvolution fluorescence microscopy. Top section or

middle sections are shown as indicated. Depending on the focusing

plane, in PFA fixed cells CD63 was detected on the whole cell

surface (top section) or at the cell borders (middle section). In

MetOH fixed cells surface staining of CD63 was lost and only

intracellular compartments were detected. Bars 20 mm.

Found at: doi:10.1371/journal.pone.0003313.s004 (0.49 MB

PDF)
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