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Introduction
In the United States, bladder cancer is the fourth most common malignancy in men, with approximately 

74,000 new cases and 16,000 deaths expected in 2015. Bladder cancer is histologically divided into low-

grade or high-grade tumors that are associated with distinct genomic alterations and differences in progno-

sis (1). Low-grade tumors are almost uniformly noninvasive (Ta) and have a 5-year survival rate of  96%. In 

contrast, high-grade tumors can become muscle-invasive and metastatic and are associated with a 5-year 

survival rate ranging from 70% (muscle-invasive) to 5% (metastatic).

Multiple studies have now identified distinct RNA expression subtypes within both low- and high-grade 

bladder cancer (2–8). Building upon the work of  our colleagues, we and others have recently described 

distinct subtypes of  high-grade muscle-invasive urothelial carcinoma (UC), luminal and basal, that reflect 

attributes of  their corresponding breast cancer subtypes. These  studies highlight the similarities in the 

underlying biology between breast and bladder cancer (2, 8). In addition to the originally reported molec-

ular subtypes of  breast cancer (luminal A, luminal B, her2-enriched, and basal-like), a claudin-low sub-

type of  breast cancer has been more recently identified and is characterized by a stromal phenotype, lack 

of  luminal differentiation marker expression, enrichment for epithelial-to-mesenchymal transition (EMT) 

markers, cancer stem cell–like features, and immune response genes (9).

Clinical trials using immune checkpoint Abs targeting the PD1/PD-L1 axis have recently shown prom-

ise in a portion of  patients with advanced UC, with the premise that activation of  immune checkpoint 

pathways, including PD-L1, results in active immunosuppression (10). Despite the excitement surrounding 

PD1/PD-L1 axis inhibition in treating advanced UC, only approximately 30% of  patients respond. There-

fore, the majority of  patients display intrinsic resistance to PD1/PD-L1 inhibition, and a priori identifica-

tion of  these patients would clearly be beneficial.

We report here the discovery of  a claudin-low subtype of  high-grade, muscle-invasive UC defined by 

biologic characteristics of  the claudin-low subtype of  breast cancer. Claudin-low tumors were uniformly 

enriched for immune gene signatures but simultaneously expressed immune checkpoint molecules, demon-

strating that, despite being immune infiltrated, claudin-low tumors are also actively immunosuppressed. 

Interestingly, the predicted neoantigen burden was not significantly increased in claudin-low tumors. 

We report the discovery of a claudin-low molecular subtype of high-grade bladder cancer that 

shares characteristics with the homonymous subtype of breast cancer. Claudin-low bladder 

tumors were enriched for multiple genetic features including increased rates of RB1, EP300, and 

NCOR1 mutations; increased frequency of EGFR amplification; decreased rates of FGFR3, ELF3, 

and KDM6A mutations; and decreased frequency of PPARG amplification. While claudin-low 

tumors showed the highest expression of immune gene signatures, they also demonstrated gene 

expression patterns consistent with those observed in active immunosuppression. This did not 

appear to be due to di�erences in predicted neoantigen burden, but rather was associated with 

broad upregulation of cytokine and chemokine levels from low PPARG activity, allowing unopposed 

NFKB activity. Taken together, these results define a molecular subtype of bladder cancer with 

distinct molecular features and an immunologic profile that would, in theory, be primed for 

immunotherapeutic response.
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Instead, they highly expressed cytokines and chemokines associated with leukocyte chemotaxis into the 

tumor immune microenvironment as a result of  an imbalance between PPARγ and NF-κB signaling. These 

results highlight the association between molecular subtype and the degree of  immune infiltration and 

immune suppression and suggest that mechanisms other than neoantigen burden can drive the develop-

ment of  immune infiltrated tumors and also that claudin-low tumors are poised to respond to immune 

checkpoint inhibition.

Results
Identification of  a claudin-low subtype in bladder cancer. Previous studies have identified a claudin-low molecu-

lar subtype of  breast cancer (11). Given the previously documented similarities in gene expression patterns 

between breast and bladder cancer (2, 8), we asked whether a claudin-low subtype also exists in bladder 

cancer. To this end, we performed unsupervised hierarchical clustering on 408 high-grade, muscle-invasive 

bladder tumors from the The Cancer Genome Atlas (TCGA) urothelial bladder carcinoma (BLCA) data 

set using gene signatures representative of  biologic characteristics that are known to define breast cancer 

claudin-low tumors such as an enrichment for tumor-initiating cells (TICs) and an EMT (Figure 1A and 

refs. 9, 11). Specifically, we used gene lists of  the tight-junction claudins (CLDN3, CLDN4, and CLDN7) and 

a previously published bladder cancer–derived TIC signature (12). In addition, we derived a bidirectional 

(EMT_UP and EMT_DOWN), bladder cancer–specific, notch-dependent EMT gene signature from the 

publicly available Gene Expression Omnibus (GEO) gene expression data set (GEO GSE60564) (Supple-

mental Table 1; supplemental material available online with this article; doi:10.1172/jci.insight.85902DS1). 

Unsupervised hierarchical clustering with these gene signatures revealed a distinct cluster that had charac-

teristics of  a claudin-low subtype (Figure 1A, highlighted in green).

To ensure that the set of  tumors within the presumed claudin-low cluster were homogeneous and dis-

tinct from adjacent clusters of  tumors, we performed a Gaussian distribution analysis, starting with the 

smallest cluster and iteratively repeated the analysis with the addition of  adjacent clusters using SigClust R 

software (Supplemental Figure 1A and ref. 13). This method identified a conserved node of  48 tumors that 

had consensus enrichment for claudin-low features, and these tumors were therefore defined as claudin-

low. All 48 claudin-low tumors were classified as basal by our BASE47 subtype classifier (Fisher’s exact  

P = 1.18 × 10–16) (8), and when examined for their correlation to the BASE47 basal or luminal centroid, 

they were found to be highly basal (Figure 1B). Further supporting the notion that these tumors exhibit 

features of  claudin-low breast cancer, we applied the previously defined breast cancer–specific claudin-low 

classifier to the TCGA BLCA tumors and found a significant enrichment (Fisher’s exact P = 1.10 × 10–18) 

of  the breast cancer–defined claudin-low tumors within the bladder claudin-low cluster (Supplemental 

Table 2). Given these findings, we propose a 3-subtype classification of  bladder cancer consisting of  basal 

(~40%), luminal (~50%), and claudin-low (~10%) tumors. While basal-like bladder cancer consistently has 

a worse clinical outcome (2, 3, 7, 8), consistent with previous work on breast cancer (9), we did not find 

an observable significant difference in overall survival rates between patients with claudin-low tumors and 

those with basal tumors (Figure 1C).

A 40-gene classifier, bladder claudin-low 40, accurately predicts claudin-low tumors. To define a minimal set of  

genes that could accurately classify claudin-low bladder tumors, we applied prediction analysis of  microar-

rays (PAMs) to the TCGA BLCA tumors and derived a 40-gene signature, bladder claudin-low 40 (BCL40) 

(Supplemental Table 3), which accurately classifies bladder tumors into claudin-low and non–claudin-low 

subtypes, with a training error rate of  0.23 and 0.13, respectively. When combined with the previously vali-

dated bladder cancer analysis of  subtypes by gene expression (BASE47) predictor (8), this provides a 3-class 

predictor that can accurately classify bladder tumors as claudin-low, basal, or luminal.

In order to validate the predictor, we compiled a 130-tumor metadata set from 2 previously compiled 

published data sets (GEO GSE48277; ref. 2). The BASE47 and BCL40 predictors identified 36 claudin-low 

tumors (~30%), 27 basal tumors (~20%), and 67 luminal tumors (~50%). We found that these subtypes 

were phenotypically similar to the initially derived subtypes in our discovery set of  TCGA bladder tumors 

as measured by expression of  the EMT, TIC, and claudin gene signatures (Supplemental Figure 1, B–E). 

Furthermore, we ran a transcriptome-wide correlation analysis between the basal, luminal, and claudin-low 

tumors identified in the discovery (TCGA BLCA) and validation data sets (GEO GSE48277) and found a 

strong correlation in gene expression between the subtypes identified in the discovery and validation data 

sets (basal [Pearson’s R = 0.459, P < 2.2 × 10–16], claudin-low [Pearson’s R = 0.805, P < 2.2 × 10–16], and 
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luminal [Pearson’s R = 0.809, P < 2.2 × 10–16]) (data not shown). This further confirmed that the subtypes 

identified across separate data sets had consistent genome-wide RNA expression profiles.

Comparison with MD Anderson and TCGA UC intrinsic molecular subtype classifications. We next examined 

whether our claudin-low subtype merely recapitulated any of  the existing molecular subtypes of  UC pub-

lished by MD Anderson or TCGA. A comparison of  our claudin-low, basal, and luminal predictions on 

the 408 provisional TCGA BLCA tumors with the MD Anderson oneNN classification system (p53-like, 

basal, and luminal) (2) re-demonstrated the high concordance of  luminal subtype designations (14) as well 

Figure 1. Identification of a claudin-low subtype in bladder cancer. (A) Unsupervised clustering of TCGA muscle-invasive UC samples. Samples were 

clustered on the basis of expression of tight-junction claudins, a bidirectional EMT signature, and a TIC signature. The tumors identified as claudin-low are 

highlighted in green on the dendogram. n = 408. (B) Waterfall plot showing correlation with the basal and luminal centroids as defined by BASE47 classifi-

cation; claudin-low tumors are highlighted in green. Claudin-low tumors were significantly enriched in the BASE47 basal subtype (Fisher’s exact test  

P = 1.18 × 10–16) and were highly correlated with the basal centroid (Pearson’s correlation P = 9.33 × 10–15). n = 408. (C) Kaplan-Meier plot showing overall sur-

vival of bladder cancer by molecular subtype. Significance was determined by log-rank testing with a Bonferroni correction. n = 408. (D and E) Bar graphs 

showing the classification of TCGA UC tumors by TCGA mRNA cluster subtype (x axis) and our subtype classifications (y axis) by count and percentage.  

n = 129. EMT, epithelial-to-mesenchymal transition; TCGA, The Cancer Genome Atlas; TIC, tumor-initiating cell; UC, urothelial carcinoma.

http://dx.doi.org/10.1172/jci.insight.85902
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Figure 2. Genomic characterization of bladder cancer subtypes. (A) Oncoprint of genomic copy number alterations and mutations by bladder cancer 

subtype for genes previously identified as significantly mutated or copy number altered in more than 5% of bladder tumors. n = 408. (B) Bar plots of genes 

that were identified to have a significant (P < 0.05) di�erence in either gene mutation or copy number alteration (CNA) between the claudin-low and basal 

and/or luminal subtypes. *P < 0.05, **P < 0.01, and ***P < 0.001, by Fisher’s exact test.

http://dx.doi.org/10.1172/jci.insight.85902
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as the notion that claudin-low tumors arise primarily from basal tumors (Supplemental Figure 2, A and B). 

We further compared our claudin-low, basal, and luminal predictions on the 129 published TCGA BLCA 

tumors with TCGA 4-subtype classification (clusters I, II, III, and IV) (6). Our claudin-low tumors were 

primarily found in TCGA clusters III and IV (Figure 1, D and E). These comparisons further strengthen 

the notion that claudin-low tumors do not merely recapitulate a previously described molecular subtype of  

bladder cancer.

The claudin-low subtype displays unique, intrinsic genomic alterations and gene expression patterns. We next 

examined the association between molecular subtype and genomic events within significantly mutated or 

copy number–altered genes identified as being altered at a greater than 5% frequency within TCGA BLCA 

data set (6). A comparison of  claudin-low and basal subtypes revealed that claudin-low tumors had sig-

nificantly increased rates of  RB1, EP300, and NCOR1 mutations, an increased percentage of  tumors with 

EGFR amplification, as well as decreased rates of  mutations in FGFR3 and ELF3 (Figure 2, A and B). Rel-

ative to the luminal subtype, claudin-low tumors revealed a significantly higher rate of  mutation of  TP53, 

RB1, and EP300 and an increased percentage of  tumors with EGFR amplification. Conversely, luminal 

tumors (compared with claudin-low tumors) had a significantly higher rate of  PPARG amplification and 

mutation of  KDM6A, ELF3, and FGFR3. These results are in keeping with the notion that genomic altera-

tions and their subsequent effects on signal transduction and transcription may be partially responsible for 

differences in gene expression subtypes.

To further understand the gene expression patterns that differentiate claudin-low tumors, we per-

formed 2-class significance analysis of  microarrays (SAMs), comparing each subtype against all of  the 

other tumors (e.g., claudin-low vs. basal plus luminal). We detected a significant number of  differentially 

expressed genes (FDR = 0.05) (Supplemental Figure 3A and Supplemental Table 4) by this comparison as 

well as by a direct comparison of  each subtype with another (e.g., claudin-low vs. basal) (Figure 3A and 

Supplemental Table 5). Ingenuity Pathway Analysis (IPA) revealed that, compared with both basal and 

luminal tumors, claudin-low tumors had significant enrichment in the upstream regulators IFNG, TNF, 

and TGFB1, which are well-known proinflammatory cytokines (IFN-γ and TNF-α) and pro-EMT (TGF-β) 
growth factors (Supplemental Table 6). Additionally, claudin-low tumors had higher levels of  IL4 and IL13 

signaling relative to signaling levels in basal and luminal tumors, respectively. Further IPA analysis demon-

strated enrichment of  other immune-associated pathways in claudin-low tumors (Supplemental Figure 3B). 

These observations are in keeping with the EMT phenotype, which is a defining characteristic of  claudin-

low tumors, but are also strongly suggest that these tumors are heavily immune infiltrated.

Claudin-low tumors are enriched in immune gene signature expression. To better characterize the immune 

cell populations present within claudin-low tumors, we used previously defined gene signatures indicative 

of  specific cellular immune populations (15) and examined their expression by molecular subtype. All 

examined signatures appeared to be and were statistically enriched in the claudin-low subtype when each 

signature was collapsed into a single value per tumor (z score) (Figure 3B and Supplemental Figure 4). To 

assess the level of  immunosuppression, we examined the expression of  a panel of  immune checkpoint mol-

ecules (immunosuppression score) derived from the literature and found that they were uniformly highly 

expressed in claudin-low tumors compared with expression levels in both basal and luminal tumors, respec-

tively (Figure 3, C and D).

Bladder cancer as a whole expressed moderate levels of  PD-L1 and our immunosuppression score rel-

ative to the spectrum of  12 tumors in TCGA Pan-Cancer analysis (Supplemental Figure 5, A and B, and 

ref. 16). When broken down by subtype, however, claudin-low tumors in particular had very high levels of   

PD-L1 expression (Figure 3E) and high expression of  the immunosuppression score (Figure 3F). In aggre-

gate, these findings indicate that claudin-low tumors consistently harbor a high level of  immune infiltra-

tion that is matched by a high level of  active immune suppression. Basal tumors, in contrast, have a more 

heterogeneous phenotype, while luminal tumors appear to have a paucity of  immune cells or immune 

checkpoint expression. In keeping with this notion, there was a strong correlation between the immune 

signatures and the immunosuppression signature (Supplemental Figure 5C) across all tumors.

The presence of  an immune infiltrate has been shown to be prognostic in other cancers (17). In mus-

cle-invasive bladder cancer, specifically, the presence of  CD8+ tumor-infiltrating lymphocytes (TILs) (18) 

and a low ratio of  FOXP3 to CD4 or CD8 expression on TILs (19) have been associated with improved 

disease-free and overall survival rates. In keeping with the work by Sharma et al. (18), Cox proportional 

hazards (Cox PH) modeling for each immune gene signature across all tumors in TCGA BLCA data set 
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Figure 3. Immune characterization of bladder cancer subtypes. (A) Volcano plot of log
2
 fold change of median gene expression and –log

10
 P value of 

gene expression across bladder tumor subtypes. Dashed line across the plots corresponds to a significance threshold of P = 0.05. n = 408. Significance 

was calculated using Student’s t test with a Bonferroni correction. (B) Heatmaps of supervised clustering of bladder tumor subtypes across previously 

identified immune signatures. n = 408. (C) Heatmap of supervised clustering of bladder tumor subtypes across an immune suppression gene signature. 

n = 408. (D) Box plot of immune suppression gene signature z score across bladder tumor subtypes. n = 408. (E) Box plot of PD-L1 gene expression across 

the Pan-Cancer tumor types. n = 3,602. (F) Box plot of immune suppression gene signature z scores across the Pan-Cancer tumor types. n = 3,602. The box 

plots denote the interquartile range (IQR), with the box representing Q1 to Q3, the line denoting Q2, and the whiskers extending an additional 1.5 times 

the IQR beyond Q1 and Q3. The dots represent data points. BLCA, bladder urothelial carcinoma; BRCA, breast cancer; COAD, colon adenocarcinoma; GBM, 

glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukemia; LUAD, 

lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus 

endometrial carcinoma; LUM, luminal; TCGA, The Cancer Genome Atlas; PanCan, Pan-Cancer.

http://dx.doi.org/10.1172/jci.insight.85902
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showed that only the CD8_T_Cell signature was prognostic (Cox PH = 0.846, P = 0.047) (Figure 4A), fur-

ther supporting the unique importance of  CD8+ TILs. When Cox PH modeling was performed within each 

subtype, none of  the signatures were prognostic within the claudin-low and luminal subtypes. However, 

within the basal subtype, numerous signatures were prognostic, including the Ig signature, macrophage sig-

nature, T cell signature, CD8+ T cell signature, and immunosuppression signature (Figure 4B). We believe 

these findings are consistent with immune gene signatures being consistently upregulated in the claudin-

low subtype and downregulated in the luminal subtype, respectively, while the basal subtype has a more 

heterogeneous range of  gene signature expression, allowing for a more dynamic range across which these 

subtypes can be prognostic. Supporting this, the basal subtype had the largest SD of  immune signature 

expression across all signatures (basal vs. claudin: P = 0.007; basal vs. luminal: P = 0.097, Bonferroni- 

corrected Student’s t test).

Specific T cell receptor and B cell receptor gene segment expression levels are prognostic in bladder cancer subtypes. 

An antigen-driven T cell and/or B cell response would be expected to drive clonal expansion of  T cells 

and/or B cells, resulting in decreased diversity of  T cell receptor (TCR) and/or B cell receptor (BCR) 

repertoires. In addition, if  a clonally expanded immune response was active intratumorally, this should be 

reflected in associations of  specific TCR and/or BCR gene segment expression with improved survival. 

For example, decreased TCR diversity has been associated with response to immune checkpoint inhibition 

in melanoma (20) and has been shown to be prognostic in bladder cancer (21). To evaluate this concept in 

TCGA bladder samples, we fit Cox PH models to test the association of  expression of  each TCR or BCR 

gene segment with survival and calculated the number of  prognostic gene segments by subtype. To estab-

lish null distributions for the number of  gene segments expected in each subtype, we used the bootstrap 

Figure 4. Immune gene signatures have prognostic value across bladder cancer subtypes. (A) Forest plot of Cox PH 

ratios of the immune gene signatures across all tumors, with a 95% CI indicated around the values. n = 408. (B) Forest 

plot of Cox PH ratios of the immune gene signatures within defined tumor subtypes, with a 95% CI indicated around the 

values. n = 408. *P < 0.05, prognostically significant signatures by Cox PH modeling. Cox PH, Cox proportional hazard.

http://dx.doi.org/10.1172/jci.insight.85902
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Figure 5. BCR and TCR segment expression is prognostic. (A) Number of TCR gene segments by subtype in which increased expression was sig-

nificantly associated with improved survival by Cox PH model fit. Null distributions (gray bars) with 95% CIs were generated for each by bootstrap 

resampling of non-TCR genes and calculation of the number of significant P values that were similarly associated with prolonged survival. n = 292. (B) 

Number of BCR gene segments by subtype in which increased expression was significantly associated with improved survival by Cox PH model fit. Null 

distributions (gray bars) with 95% CIs were generated for each by bootstrap resampling of non-TCR genes and calculation of the number of significant 

P values that were similarly associated with prolonged survival. n = 292. (C) Specific TCR gene segments in which increased expression was signifi-

cantly associated with improved survival by Cox PH model fit for all tumors (gray boxes), basal tumors (red boxes), claudin-low tumors (green boxes), 

and luminal tumors (blue boxes). (D) Specific BCR gene segments in which increased expression was significantly associated with improved survival 

by Cox PH model fit for all tumors (gray boxes), basal tumors (red boxes), claudin-low tumors (green boxes), and luminal tumors (blue boxes). (E) Log 

base 10 number of reads supporting any BCR V(D)J rearrangement are shown by subtype. n = 181. Mann-Whitney U–Wilcoxon test with an FDR multiple 

testing correction was used to determine significance. (F) Repertoire diversity by subtype. The box plots in E and F denote the interquartile range 

(IQR), with the box representing Q1 to Q3, the line denoting Q2, and the whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots 

represent data points. n = 150. Mann-Whitney U–Wilcoxon test with an FDR multiple testing correction was used to determine significance. BCR, B cell 

receptor; Cox PH, Cox proportional hazard; TCR, T cell receptor.

http://dx.doi.org/10.1172/jci.insight.85902
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resampling method previously published by our group (15). For both TCR gene segments (Figure 5A) and 

BCR gene segments (Figure 5B), a significantly higher number of  gene segments than expected by chance 

were prognostic in the basal subtype, but not in the claudin-low or luminal subtype. Figure 5, C and D show 

the specific gene segments that were prognostic in each subtype. Prognostic segments were found in mul-

tiple TCR and BCR families, with a small number of  gene segments discovered in multiple subtypes (i.e., 

TRBV11-2). This suggests that adaptive immune responses important in endogenous antitumor immunity 

are not uniform in TCR and BCR usage between the subtypes.

Despite the presumed importance of  assessing T cell and B cell clonality in tumor immunology, at pres-

ent, this can only be done by direct TCR or BCR sequencing. Our group has developed a bioinformatics 

method (VDJician) to accurately and efficiently reconstruct rearranged BCR V(D)J sequence repertoires from 

short-read RNA-sequencing data. We applied this to TCGA bladder data to evaluate whether overall BCR 

expression (Figure 5E) and/or repertoire diversity (Figure 5F) varied by subtype. BCR expression was higher 

and repertoire diversity lower (indicative of  clonal expansion) in the claudin-low subtype relative to that 

observed in the luminal subtype, which is consistent with the presence of  a selective antigen-directed response 

in claudin-low tumors. These results, in conjunction with our previous findings, indicate that claudin-low 

tumors are immune infiltrated and have an active immune response within the tumor microenvironment.

Figure 6. Predicted neoantigen burden by bladder cancer subtype. (A) Stacked bar plot showing the number of predicted neoantigens in each bladder 

tumor with a predicted IC
50

 of less than 50 nm (red bars) and less than 150 nm (yellow bars). Numbers of predicted neoantigens are shown in the left  

y axis. Blue line and right y axis show the number of missense mutations per tumor. n = 289. (B) Scatter plot of somatic missense mutations (log
2
) versus 

predicted neoantigen burden (log
2
) across TCGA data set. Significance and correlation were determined using Spearman’s rank test. n = 289. (C) Box plot 

showing the number of predicted neoantigens with an IC
50

 of less than 50 nm by tumor molecular subtype. Subtypes were not significantly di�erent  

(P > 0.05). Significance was determined by 1-way ANOVA. n = 289. The box plots denote the interquartile range (IQR), with the box representing Q1 to Q3, 

the line denoting Q2, and the whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots represent data points. (D) Kaplan-Meier plot 

showing survival of bladder cancer patients with high (greater than median value, blue line) versus low (less than median value, red line) predicted num-

bers of neoantigens. Vertical hash marks indicate censored data. Significance was determined by log-rank test. n = 289. TCGA, The Cancer Genome Atlas.

http://dx.doi.org/10.1172/jci.insight.85902
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Predicted neoantigen burden does not vary significantly by bladder cancer subtype but is selectively associated with 

survival in basal tumors. Neoantigens are altered peptides derived from tumor-intrinsic mutant proteins that 

are presented by MHC molecules and can drive robust antitumor T cell responses (22). This is in contrast 

to self-antigens that may be overexpressed in tumors but have been subjected to central immune tolerance 

(23). Neoantigens derived from tumor-specific genomic aberrations can be predicted using whole-exome 

sequencing of  paired tumor and matched normal samples, and expression is confirmed by incorporation of  

RNA expression data. The predicted neoantigen number has been positively associated with favorable clini-

cal outcomes in multiple tumor types (24) as well as with response to immune checkpoint inhibition in mel-

anoma (25, 26) and non–small-cell lung cancer (27). These results suggest an important protective role for 

the endogenous repertoire of  T cells able to target tumor cells. In order to determine whether neoantigen 

burden varied by bladder tumor subtype, we implemented an informatics pipeline based on the approach 

published by Rajasagi et al. (28) and applied this to  TCGA bladder data (Figure 6). There was a noisy 

but clear correlation between predicted neoantigen burden and the number of  somatic mutations (Figure 

6A: left y axis and right y axis, respectively) (Spearman’s R = 0.79, P < 2 × 10–16, Figure 6B). Interestingly, 

claudin-low tumors, despite having a high level of  immune infiltration and active immunosuppression, did 

not have a significantly different level of  predicted neoantigens compared with that of  basal or luminal 

subtypes (Figure 6C).

To assess the association between predicted neoantigen burden and subtype, we performed Cox PH 

analysis with the predicted neoantigen count as the potential explanatory variable. In the basal but not 

claudin-low or luminal subtypes, an increased number of  predicted neoantigens was associated with pro-

longed survival (P = 0.025). For all bladder tumors taken together, the association was significant as well  

(P = 0.005). Figure 6D shows survival curves for all bladder tumors divided by the median predicted neoan-

tigen count into high versus low neoantigen burden. Analyzed in this way as well, high neoantigen burden 

was associated with prolonged overall survival. Therefore, while there is a high correlation between bladder 

cancer molecular subtype and immune signature expression, this does not appear to be explained by the 

predicted neoantigen number.

Claudin-low tumors express high levels of  cytokines and chemokines normally repressed by PPARG. Given that 

predicted neoantigen burden was relatively similar across molecular subtypes, we explored the possibility 

that claudin-low tumors harbor an immune infiltrate because of  increased production of  proinflammatory 

cytokines and chemokines. To this end, we examined the relative expression of  a panel of  cytokines and 

chemokines (Supplemental Table 7) and their receptors among bladder subtypes and found that the major-

ity of  them were significantly upregulated in claudin-low tumors relative to expression levels in both basal 

and luminal tumors (Figure 7, A and B). We noted that NF-κB target genes in particular were significantly 

upregulated in the claudin-low subtype compared with expression in both the basal and luminal subtypes 

(Fisher’s exact P value = 1.885 × 10–8, data not shown).

A defining transcriptional program of  urothelial differentiation and of  luminal bladder tumors is activa-

tion of  peroxisome proliferator-activated receptor γ (PPARG) signaling (29). Consistent with this, we noted 

that PPARG was significantly amplified in luminal relative to claudin-low tumors (Figure 2B). Because 

PPARG is known to directly inhibit NF-κB signaling (30), we hypothesized that heightened PPARG activ-

ity might play a role in restraining the proinflammatory effects of  NF-κB. Using a publicly available gene 

expression data set (GEO GSE48124), we noted that the expression changes induced by treatment with 

rosiglitazone, a PPARγ agonist, in UMUC7 and UMUC9 bladder cancer cells predicted suppression of  the 

upstream regulator NFKB1 as well as a number of  genes known to be activated by NF-κB (STAT5A, IL6, 

TNF, CCL5) (Supplemental Table 8). Furthermore, rosiglitazone-treated UMUC7 and UMUC9 cells had 

downregulation in gene signatures of  NF-κB activation as assessed by gene set enrichment analysis (GSEA) 

(Figure 7C). Interestingly, we saw that rosiglitazone treatment resulted in significant downregulation of  

immune checkpoint molecules (such as PDL1, PDL2, IL12, and PGSL2) found in our immunosuppression 

signature (Figure 7D). In aggregate, these data support the notion that downregulation of  PPARγ activity 

results in unopposed NF-κB signaling, which contributes to the proinflammatory milieu of  claudin-low 

tumors as well as to their high level of  active immune suppression.

Finally, in keeping with recent work demonstrating that EMT is associated with immune checkpoint 

molecule expression (31, 32), we observed a strong correlation between our bladder cancer–derived EMT 

signatures and multiple immune signatures including our immunosuppression score: R = 0.462 [EMT 

(Up)] and R = –0.471 [EMT (Down)]; P < 2.2 × 10–16 (both “Up” and “Down”) (Figure 7E). Further-
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Figure 7. Cytokine and 

chemokine regulation across 

bladder cancer subtypes. 

(A and B) Volcano plots of 

log
2
 fold change of median 

gene expression and –log
10

 P 

value of gene expression for 

cytokines and chemokines 

across claudin-low/basal 

and claudin-low/luminal 

subtypes. Dashed lines across 

plots correspond to P = 0.05. 

Significance was calculated 

using Student’s t test with 

a Bonferroni correction. n = 

408. (C) GSEA enrichment 

plots indicating that NF-κB 

signatures were decreased in 

rosiglitazone-treated UMUC7 

and UMUC9 bladder cancer 

cell lines. Significance was 

determined using GSEA soft-

ware. (D) Box plots showing 

that immunosuppression 

gene signature expression was 

significantly decreased across 

UMUC7 and UMUC9 cell lines 

after rosiglitazone treatment. 

Significance was determined 

using Student’s t test. n = 6. 

(E) Correlation plot of immuno-

suppression and EMT gene 

signature expression. n = 408. 

Significance and correlation 

were calculated using a Spear-

man’s rank test. (F) Box plots 

showing that EMT gene signa-

ture expression was decreased 

across UMUC7 and UMUC9 

cell lines after rosiglitazone 

treatment. Significance was 

determined using Student’s t 

test. n = 6. The box plots in D 

and F denote the interquar-

tile range (IQR), with the box 

representing Q1 to Q3, the line 

denoting Q2, and the whiskers 

extending an additional 1.5 

times the IQR beyond Q1 and 

Q3. The dots represent data 

points. ES, enrichment score; 

EMT, epithelial-to-mesenchy-

mal transition; GSEA, gene set 

enrichment analysis.
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more, given the important role of  PPARγ in terminal urothelial differentiation (30), we hypothesized that 

it may be a critical regulator of  epithelial-mesenchymal balance in urothelial cancers. Indeed, we found 

that PPARγ activation (by rosiglitazone) in UMUC7 and UMUC9 cells decreased levels of  our EMT (Up) 

signature (Figure 7F).

Discussion
Herein, we characterize the claudin-low, molecular subtype of  high-grade UC. Claudin-low bladder tumors 

are defined by high levels of  EMT, enrichment for TIC signatures, and low expression levels of  tight-junc-

tion claudins. In addition, claudin-low tumors are enriched in specific genomic alterations (e.g., mutations 

in EP300 and NCOR1 as well as amplification in EGFR) and have a distinct transcriptional profile. Further-

more, we found that claudin-low tumors are highly enriched in all immune gene signatures examined, but 

also express high levels of  immune checkpoint molecules. In contrast to melanoma and non–small-cell lung 

cancer, the predicted neoantigen burden did not appear to correlate with immune infiltration in bladder 

cancer. Instead, claudin-low tumors appeared to downregulate PPARγ signaling, resulting in unopposed 

NF-κB activity and contributing to a proinflammatory milieu (Figure 8).

In our study, as in previous studies, expression of  the various immune gene signatures was highly 

correlated, including high correlations between gene signatures associated with specific cellular subpopu-

lations (CD8+ T cells, B cell lineage, Th1-polarizing macrophages) and the immunosuppression gene sig-

nature. This supports the claim that tumors growing in the presence of  immune cell influx must adaptively 

suppress the antitumor response in order to survive. Immune gene signature expression levels, the prognos-

tic value of  immune gene signatures, and TCR and BCR gene segment expression divide the bladder cancer 

subtypes into 3 groups: (a) low infiltrate with nonsignificant prognostic value (luminal); (b) heterogeneous 

infiltrate with significant prognostic value (basal); and (c) high infiltrate with nonsignificant prognostic 

value (claudin-low). We hypothesize that the lack of  prognostic benefit in claudin-low and luminal tumors 

is driven by different mechanisms. Luminal tumors were sparsely infiltrated and showed low expression 

levels of  molecules associated with immunosuppression (Supplemental Table 9). In contrast, claudin-low 

tumors showed a substantial but ineffective infiltrate in the context of  high expression levels of  immuno-

suppression markers. Immune features may fail to be prognostic in luminal tumors because no infiltrate is 

present, whereas they fail in claudin-low tumors because, despite a dense infiltrate, the level of  immuno-

suppression overwhelms active antitumor immunity. Basal tumors have the highest degree of  variability in 

immune gene signature expression, and in this model, some basal tumors will have generated an immune 

response that is competing more effectively (though ultimately insufficiently to clear tumor) with tumor-

driven immune suppression. While additional studies are required to test this hypothesis, our data suggest 

that claudin-low tumors as a whole, as well as a subset of  basal tumors, are poised for response to immune 

checkpoint blockade.

The different molecular aberrations that characterize the bladder cancer subtypes may yield differential 

exposure of  antigens to the immune system, resulting in skewing of  the tumor-infiltrating TCR and/or 

BCR repertoires in predictable ways should the antigens be public (i.e., shared between multiple patients). 

Though our study was not designed to formally test this, we report here a high degree of  variability, in which 

adaptive immune gene segments were prognostic among the bladder cancer subtypes, an effect that would 

Figure 8. Model of immune infiltration 

across bladder cancer subtype. Proposed 

model of immune response regulation 

through PPARγ and NF-κB signaling. 
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be expected if  TCR/BCR repertoire features associated with tumor targeting were to vary by tumor subtype. 

Interestingly, in the basal subtype, multiple TCR gene segments associated with γδ T cells were found to be 

significantly prognostic (P < 0.05 by Cox PH). As this specific subset of  T cells is involved in adaptive immu-

nity at mucosal surfaces and able to respond to mycobacteria, γδ T cells may be involved in antitumor immu-

nity and an attractive target for the development of  biomarkers of  response to bladder cancer immunother-

apy, including bacille Calmette-Guérin (BCG), which is commonly given for nonmuscle invasive disease.

We report here the VDJician algorithm that performs de novo assembly of  repertoires of  fully rear-

ranged BCR VDJ sequences. When analyzed, the claudin-low subtype showed the highest expression levels 

but the lowest repertoire diversity compared with basal and luminal subtypes. This is consistent with the 

presence of  an antigen-driven response in the claudin-low tumors, leading to clonal expansion of  anti-

gen-reactive B cell–lineage cells. Plasma cells are known to express high levels of  BCR mRNA, and these 

results would also be consistent with a restricted plasma cell infiltrate. In addition, as plasma cells represent 

a terminal differentiation in the B cell lineage in response to antigenic stimulation, their presence would 

also be expected in an antigen-driven response. Future experiments will be necessary to confirm these find-

ings and attempt to map immunogenic epitopes in claudin-low tumors.

In melanoma and a subset of  solid tumors, neoantigen burden correlates with expression of  perforin 

and granzyme A (a measure of  cytolytic activity) (26, 33) and tumors with these attributes appear to be 

more responsive to CTLA4 checkpoint blockade. In bladder cancers examined in that study, there was a 

trend toward increased cytolytic activity, with increased predicted neoantigen burden (P = 0.096, data not 

shown) (33). In contrast, we did not see significant correlations between neoantigen burden and predicted 

features such as T cell or CD8+ T cell gene signatures, immunosuppression score, or molecular subtype, 

suggesting that alternate etiologies exist to explain the proinflammatory state of  claudin-low and basal 

tumors relative to that of  luminal tumors. In this regard, we observed significant upregulation of  cytokines 

and chemokines in claudin-low tumors and hypothesize that this cytokine milieu is favorable to a proin-

flammatory state and immune cell influx. We propose that PPARγ activity, through its ability to repress 

NF-κB, is inversely correlated with this proinflammatory milieu and, therefore, that luminal tumors, which 

are enriched in PPARG amplification and activation of  PPARG gene signatures, have very little inflamma-

tion. Conversely, we found that claudin-low tumors, which have relatively low levels of  PPARG pathway 

activation, have high levels of  immune infiltration. Therefore, in contrast to the inflamed tumors found in 

melanoma and non–small-cell lung cancer, which appear driven by neoantigen expression, inflamed blad-

der cancers have a proinflammatory state induced by an enhanced cytokine/chemokine milieu. It will be 

important to determine whether altering the balance between PPARγ and NF-κB activity can be used to 

alter the immune milieu toward a more favorable response to immune therapy and whether other transcrip-

tional programs can be harnessed as well.

Finally, while immune checkpoint inhibition holds great promise, the response rates of  various solid 

tumors remain approximately 20% to 30%, suggesting that many patients will not derive benefit. Our 

BASE47 and BCL40 gene classifiers, which can accurately subtype high-grade bladder tumors, may serve 

to identify useful predictive biomarkers of  response (i.e., claudin-low) or lack of  response (i.e., luminal) 

to PD1 axis inhibition. Moreover, our studies further validate the notion of  subtype-specific therapy in 

bladder cancer (i.e., basal = chemotherapy; claudin-low = immune checkpoint blockade) and advance the 

possibility that claudin-low breast tumors may have similar immune features.

Methods
TCGA data set manipulation. TCGA Bladder Urothelial Carcinoma RNA Expression data set was downloaded 

from the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org) on August, 27, 2015. RNA expres-

sion was downloaded in a normalized RSEM file. Expression values were log
2
 transformed, and genes with 

less than 80% expression across all samples were filtered out. Missing values were imputed using the K-near-

est neighbor imputation method. Tumor-adjacent normal samples were removed, and gene expression values 

were median centered across each gene. TCGA Pan-Cancer data set was downloaded from the Synapse web-

site (https://www.synapse.org) from data set syn 2468297 (16). Genes with less than 80% expression across 

all samples were filtered out. Missing values were imputed using K-nearest neighbor imputation.

Gene signatures. Bladder TIC, EMT, and tight-junction claudin gene signatures were used in the classi-

fication of  a claudin-low subtype. The TIC signature was derived by Chan et al. (12). The set of  claudins 

used was identified by Prat et al. (9). The EMT signature is a bidirectional signature derived on the GEO 
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(GEO GSE60564) data set of  Notch2 overexpression in a urinary bladder RT4V6 cell line. The data set 

was mean collapsed onto genes. Genes were filtered for a significant difference (Student’s t test, P < 0.05) 

between the control and Notch2-overexpressed (EMT-induced) cell lines and also for their presence in 

TCGA bladder UC data set. Genes were then ranked on the basis of  median difference between the 2 

groups. The top 50 genes with the most increased expression in the EMT-induced cells and the top 50 

genes with the most decreased expression in the EMT-induced cells were used to create the bladder cancer–

specific EMT_UP and EMT_DOWN signatures, respectively. Immune gene signatures used to describe 

immune cell processes were derived by Iglesia et al. (15). Z scores were calculated for each claudin, basal, 

and luminal subtype and box plots made of  the distributions. Gene signature z scores were obtained by 

calculating the z score of  each gene within a signature across all samples and taking the median of  all gene 

z scores within a gene signature as the z score of  the gene signature.

Identification of  a claudin-low class. Bladder basal and luminal predictions and centroid distances were made 

using the BASE47 PAM Classifier derived by Damrauer et al. (8). Breast cancer claudin predictions were 

made using the Distance-Weighted Discrimination (DWD) Claudin Classifier provided by Prat et al. (9).

Data were clustered on the TIC/EMT (Up and Down)/claudin gene sets using average linkage cluster-

ing with a centered correlation similarity metric on the Cluster 3.0 platform. Each gene set was individually 

clustered across genes using average linkage clustering. Gene sets were collapsed down to z scores, and a 

conservative node with high TIC/high EMT UP/low EMT DOWN/low claudin gene set was selected. 

SigClust was run on the node, expanding out to the entire gene set for each increasing node. Differences in 

gene expression subtypes were determined using SAMs run on R, with an FDR of  0.05. A PAM predictor 

(BCL40) was derived on the 408 tumor TCGA data set for a claudin/other subtype classifier. A threshold 

of  6.4 was selected, giving a 40-gene predictor with an overall error rate of  0.14

A validation data set of  130 muscle-invasive UC samples was compiled from 73-sample and 57-sample 

data sets from GEO (GEO GSE48277] (2). Each data set was mean collapsed onto genes. The data set was 

combined and batch effect adjusted using parametric empirical Bayesian adjustments through the ComBat 

function in the sva R package and was then median centered. Genome-wide correlations and significance 

were calculated using a Pearson’s correlation test.

Clinical, mutation, and copy number alteration analysis. Mutation, copy number, and clinical data were down-

loaded as mutation packager calls through the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.

org) on September 3, 2015. Survival status and overall survival were determined on the basis of  the data pro-

vided. Oncoprint figures were produced using the downloaded TCGA mutation and copy number alteration 

(CNA) data. Genes were selected on the basis of  previously being identified as having significant mutations or 

CNAs within the gene (6). Significance in CNA and mutation across subtypes was determined using Fisher’s 

exact test. Cox PH ratios and CIs were derived using the survival package on the R platform.

Pathway analysis. Cellular pathway analysis across subtypes was performed using QIAGEN’s IPA 

(www.qiagen.com/ingenuity). Comparison across subtypes was done using the gene list with an FDR of  

0.00 as determined by SAM analysis across subtypes.

Gene signature expression analysis. Supervised clustering of  samples was performed across all tumor sam-

ples by claudin, basal, and luminal subtypes. Genes within each signature were clustered using average 

linkage on Cluster 3.0. Significance across gene signature z scores was calculated using Student’s t test. 

Cytokines and chemokines were identified using a RegEx search to capture all members of  the molecular 

families (Supplemental Table 7). Volcano plots were produced using Bonferroni-adjusted Student’s t test 

P values, and fold change was calculated using normalized RSEM expression values. NF-κB gene signa-

tures were accessed through Molecular Signatures Database (MSigDB) or compiled by the Broad Institute. 

GSEA software was used to produce enrichment plots (http://www.broad.mit.edu/gsea/) (34). UMUC7 

and UMUC9 cell line data were accessed through GEO data sets GSE48124 and GSE47993, respectively. 

Expression values were mean collapsed onto genes. Gene signatures were compiled on the basis of  existing 

gene lists. Significance was calculated by collapsing gene signatures into z scores as described above, and 

2-tailed Student’s t tests were performed across gene signatures.

TCR and BCR gene segment expression analysis. Expression levels of  353 BCR gene segments and 240 

TCR gene segments were determined for TCGA bladder tumor samples with available TCGA mRNA- 

sequencing data and survival data using bedtools (version 2.17.0). Gene expression values were normalized 

to the upper quartile of  total reads within a sample as previously described (35). Survival analyses were 

performed using a Cox PH model to derive P values and coefficients for each gene segment using the Cox 
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PH function in the survival package in R. The number of  gene segments that were significantly associated 

with improved survival (P < 0.05 and coefficient <0) was calculated for each bladder tumor subtype. Null 

distributions describing the expected number of  prognostic gene segments for each subtype were estimated 

with 95% CIs according to the bootstrap method previously published by our group (15).

Fisher’s exact test was used to compare the number of  BCR segments and TCR segments significantly 

associated with improved survival among all subtypes.

Analysis of  rearranged BCR repertoires using VDJician. The VDJician software accepts mRNA-sequencing 

data mapped to the genome as input and builds a deBruijn graph of  read pairs that map to IgH loci or have 

similarity with germline IgH alleles as well as all unmapped reads. The graph is traversed exhaustively, 

resulting in a set of  putative contigs. Anchor sequences near the 3′ end of  V segments and the 5′ end of  J 

segments are identified in an up-front indexing step. If  a contig contains a sequence within a configurable 

distance of  a V anchor and a J anchor, the anchors are a reasonable distance apart, and conserved amino 

acids that typically bind a CDR3 segment are present (cysteine and tryptophan for IgH), the contig is con-

sidered a candidate. The original set of  reads is mapped to candidate contigs, which are then further filtered 

on the basis of  coverage and read pair information. VDJician outputs a final set of  contigs along with 

alignments of  the original reads mapped to these contigs. This output was passed to RSEM for transcript 

quantification. The total BCR count was calculated by summing the read count values for all predicted 

BCR sequences for each sample. Evenness was calculated by dividing the Shannon-Wiener diversity index 

by the number of  BCR sequences for each sample (example expression in R): -sum( (read count/sum(read 

count)) * log(read count/sum(read count)) ) )/log(number of  BCR sequences). P values were determined 

using a Mann-Whitney U–Wilcoxon test.

Neoantigen prediction. The bladder cancer data set used for neoantigen prediction consisted of  289 sam-

ples with available TCGA mRNA-sequencing data, exome-sequencing data, and tumor-specific mutation 

annotation data (6). Neoantigens were predicted using a bioinformatics pipeline similar to that developed 

by Rajasagi et al. (28). Tumor-specific single nucleotide variant annotation data were downloaded from the 

Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org). Pysam was used to determine RNA- 

sequencing read coverage of  missense mutations, and bedtools (version 2.17.0) was used to determine the 

exome-sequencing read coverage of  missense mutations. Nine- and ten-mer peptides derived from 3 ORFs 

with all possible combinations of  missense mutations that overlap the genomic location of  peptide in the 

ENCODE reference transcript set were considered in the peptide generation pipeline. DNA sequences 

corresponding to peptides were retrieved and translated in silico into protein sequences. The expression 

levels of  each peptide generated were determined by the lowest missense mutation RNA-sequencing read 

coverage. PHLAT was used to identify the HLA class I (HLA-A, HLA-B, HLA-C) type of  each tumor 

sample (36). Binding affinity to MHC molecules expressed by the tumor for all possible 9- and 10-mer pep-

tides generated from missense mutations was predicted using NetMHCpan (version 2.8). Binding affinity 

of  peptides to null alleles, alternatively expressed alleles, and alleles not supported by NetMHCpan were 

not predicted. Peptides were then filtered by their binding affinities (IC50 nM) to each class I allele in the 

tumor sample’s HLA type and RNA expression level of  the predicted source transcript(s). Peptides with 

an IC
50

 value of  less than 150 nM for at least 1 class I allele and RNA read support of  at least 2 reads were 

considered predicted neoantigens.

Statistics. A P value of  less than 0.05 was considered significant across all analyses performed. SigClust 

statistical analysis software was used to determine significance in Figure 1A and Supplemental Figure 1A. 

A Fisher’s exact test was used in Figure 1B; Figure 2, A and B; and Supplemental Table 2. A Pearson’s 

correlation was performed in Figure 1B. A log-rank test of  survival difference was performed in Figure 

1C (Bonferroni-corrected) and Figure 6B. A Bonferroni-corrected 2-tailed Student’s t test was performed 

in Figure 3A; Figure 7, A, B, D, and F; Supplemental Figure 1, B–E; and Supplemental Figure 4. Cox PH 

modeling was performed in Figure 4, A and B, and Figure 5, A–D. A Mann-Whitney U–Wilcoxon test with 

an FDR multiple testing correction was performed in Figure 5, E and F. A Spearman’s rank correlation 

was used in Figure 6B, Figure 7E, and Supplemental Figure 5C. A 1-way ANOVA was used in Figure 6C. 

GSEA significance testing was used in Figure 7C. SAM significance testing was performed in Supplemen-

tal Figure 3A and Supplemental Tables 4 and 5. IPA significance testing was used in Supplemental Figure 

3B and Supplemental Tables 6 and 8.

Study approval. No experiments included in the manuscript used animal or human subjects and, as 

such, did not require IRB approval.
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