
Clause Weighting Local Search for SAT

Author

Thornton, John

Published

2006

Journal Title

Journal of Automated Reasoning

DOI

https://doi.org/10.1007/s10817-005-9010-1

Copyright Statement

© 2006 Springer. This is the author-manuscript version of this paper. Reproduced in
accordance with the copyright policy of the publisher. The original publication is available at
www.springerlink.com

Downloaded from

http://hdl.handle.net/10072/13781

Griffith Research Online

https://research-repository.griffith.edu.au

Clause Weighting Local Search for SAT

John Thornton
Institute for Integrated and Intelligent Systems, Griffith University

PMB 50, Gold Coast Mail Centre, 9726, Australia
email: j.thornton@griffith.edu.au

Abstract

This paper investigates the necessary features of an effective clause weighting
local search algorithm for propositional satisfiability testing. Using the recent his-
tory of clause weighting as evidence, we suggest that the best current algorithms
have each discovered the same basic framework, i.e. to increase weights on false
clauses in local minima and then to periodically normalize these weights using a
decay mechanism.

Within this framework, we identify two basic classes of algorithm according to
whether clause weight updates are performedadditivelyor multiplicatively. Using
one of the best recently developed multiplicative algorithms (SAPS) and our own
pure additive weighting scheme (PAWS), an experimental study was constructed
to isolate the effects of multiplicative in comparison to additive weighting, while
controlling other key features of the two approaches, namely the use of pure ver-
sus flat random moves, deterministic versus probabilistic weight smoothing and
multiple versus single inclusion of literals in the local search neighbourhood. In
addition, we examined the effects of adding a threshold feature to multiplicative
weighting that makes it indifferent to similar cost moves.

As a result of this investigation, we show that additive weighting can outper-
form multiplicative weighting on a range of difficult problems, while requiring
considerably less effort in terms of parameter tuning. Our examination of the dif-
ferences between SAPS and PAWS suggests that additive weighting does benefit
from the random flat move and deterministic smoothing heuristics, whereas mul-
tiplicative weighting would benefit from a deterministic/probabilistic smoothing
switch parameter that is set according to the problem instance. We further show
that adding a threshold to multiplicative weighting produces a general deterioration
in performance, contradicting our earlier conjecture that additive weighting has
better performance due to having a larger selection of possible moves. This leads
us to explain differences in performance as being mainly caused by the greater
emphasis of additive weighting on penalizing clauses with relatively less weight.

1 Introduction and Background

Clause weighting algorithms for satisfiability testing have formed an important re-
search area since their first introduction in the early 1990s. Since then various im-
provements have been proposed, resulting in the two best known recent algorithms:

1

the discrete Lagrangian method (DLM) [21] and scaling and probabilistic smoothing
(SAPS) [7]. While these methods differ in important aspects, both use the same under-
lying trap avoiding strategy: increasing weights on unsatisfied clauses in local minima
and then periodically adjusting weights to maintain effective weight differentials dur-
ing the search.

The earliest clause weighting algorithms, such as Breakout [11], repeatedly in-
creased weights on unsatisfied clauses and so allowed unrestricted weight growth dur-
ing the search. Flips were then chosen on the basis of minimizing the combined weight
of the unsatisfied clauses. In 1997, Frank proposed a new weight decay algorithm
that updated weights on unsatisfied clauses using a combination of a multiplicative
decay rate and an additive weight increase. While Frank’s work laid the ground for fu-
ture advances, his decay scheme produced relatively small improvements over earlier
weighting approaches. At this point, clause weighting algorithms proved competitive
on many smaller problems but were unable to match the performance of faster and
simpler heuristics, such as Novelty, on larger problem instances [9]. As a key rea-
son for developing incomplete local search techniques is to solve problems beyond the
reach of complete SAT solvers, the poor scalability of clause weighting was a major
disadvantage.

It was not until the development of DLM that a significant performance gain was
achieved. In its simplest form, DLM follows Breakout’s weight increment scheme,
but additionally decrements clause weights after a fixed number of increases. DLM
also alters the point at which weight is increased by allowingflat moves that leave
the weighted cost of the solution unchanged. These flat moves are in turn controlled
by a tabu list and by a parameter which limits the total number of consecutive flat
moves [21]. In empirical tests DLM proved successful at solving a range of random
and structured SAT problems, and in particular was able to outperform the best non-
weighting algorithms on many larger and more difficult problem instances.

In another line of research, Schuurmans and Southey ([14]) developed a fully mul-
tiplicative weighting algorithm: smoothed descent and flood (SDF). SDF introduced a
new method for breaking ties between equal cost flips by additionally considering the
number of true literals in satisfied clauses. In situations where no improving moves
are available, SDF multiplicatively increases weights on unsatisfied clauses and then
normalizes (orsmooths) clause weights so that the greatest cost difference between any
two flips remains constant. SDF’s reported flip performance was promising in compar-
ison to DLM, but these results did not look at the more difficult problems for which
DLM was especially suited. In addition, SDF’s time performance did not compare
well, due to the overhead of adjusting weights on all clauses at each local minimum.

In subsequent work, SDF evolved into the exponentiated subgradient algorithm
(ESG) [15], which in turn formed the basis of the scaling and probabilistic smoothing
(SAPS) algorithm [7]. ESG and SAPS dispensed with SDF’s augmented cost function,
and SAPS further improved on the run-time performance of ESG by only smoothing
weights periodically, and only increasing weights on violated clauses in a local mini-
mum (rather than updating all clauses).

The basic idea of using weight penalties, or Lagrangian multipliers, to solve dis-
crete optimization problems was originally developed in the Operations Research (OR)
community [1], and has evolved into the area of subgradient optimization. These ap-

2

proaches have significant similarities to the weighting algorithms developed in the SAT
community. However, as Schuurmanset al.,pointed out [15], the crucial difference is
that OR techniques use linear penalty functions, whereas SAT algorithms use nonlinear
hingepenalty functions that do not explicitly reward features or clauses that remain sat-
isfied. In their analysis of ESG, Schuurmanset al.,further demonstrated that nonlinear
penalty functions have the better performance in the SAT domain.

The important point for the current research is not only that the leading SAT clause
weighting algorithms have converged on the same class of nonlinear hinge penalty
functions, but also that they have converged on the same basic framework of weight
control. One of the crucial steps from ESG to SAPS was the realization that weight
normalization can be split into two phases: firstly penalizing false clauses in local
minima and secondly periodically reducing weights according to a problem specific
parameter. As the number of false clauses at any point during the search is relatively
small compared to the total number of clauses, this splitting of the weight control al-
lows for regular and fast weight increases, while the slower process of weight reduction
occurs more infrequently, leading to significant gains in time performance. With this
change, the weight update scheme of SAPS becomes almost identical in structure to
the weight update scheme of DLM: both increase weight when a local minimum is
identified (although using different identification criteria), and both periodically adjust
weights according to a parameter value that varies for different problems. SAPS dif-
fers from DLM in using this parameter to probabilistically determine when weight is
reduced, whereas DLM deterministically reduces weight after a fixed number of in-
creases. Therefore, the remaining and crucial difference between the weighting mech-
anisms of SAPS and DLM is the use multiplicative as opposed to additive weight up-
dates.

It is of interest to note that a third clause weighting algorithm, GLSSAT [10],
employs a similar weight update scheme, additively increasing weights on the least
weighted unsatisfied clauses and multiplicatively reducing weights whenever the weight
on any one clause exceeds a predefined threshold. However, although GLSSAT per-
formed well in comparison to Walksat, it could not match DLM on larger problems.
Also, an earlier study [19] indicated that the basic approach of increasing weights on
the least weighted false clauses is not as effective as increasing weights on all false
clauses. For these reasons we decided to concentrate on SAPS and DLM, and leave a
GLS type approach for future work.

The main aim of the study is to investigate whether an additive or multiplicative
weight update scheme is better for satisfiability testing. The secondary aim is to dis-
cover whether the various sub-heuristics used in the two approaches provide a useful
contribution to performance. Given that SAPS and DLM both have some claim to be
considered as the state-of-the-art in local search for SAT and that both have separately
hit upon the same underlying weighting structure, it now becomes possible to compare
additive and multiplicative clause weighting without their relative performance being
disguised by differing implementation details. To perform this comparison, we started
with the authors’ original version of SAPS and changed it in small steps until it became
an effective additive clause weighting algorithm. By examining and empirically testing
the effect of each step, we set out to isolate exactly those features that are crucial for
the success of each approach. This resulted in the development of the pure additive

3

weighting scheme (PAWS). As the published results for SAPS have only looked at rel-
atively small problems, we also decided to evaluate SAPS and PAWS on an extended
test set that includes a selection of the more difficult problems for which DLM was de-
veloped. In the remainder of the paper we describe in detail the development of PAWS
from SAPS and DLM, and then present the results and conclusions of our empirical
study.

2 Clause Weighting Algorithms for SAT

Clause weighting local search algorithms for SAT follow the basic procedure of re-
peatedly flipping single literals that produce the greatest reduction in the sum of false
clause weights. Typically, all literals are randomly initialized, and all clauses are given
a fixed initial weight. The search then continues until no further cost reduction is pos-
sible, at which point the weight on all unsatisfied clauses is increased, and the search
is resumed, punctuated with periodic weight reductions.

Clause weighting algorithms differ primarily in the schemes used to control the
clause weights, and in the definition of the points where weight should be adjusted.
Multiplicative methods, such as SAPS, generally adjust weights when no further im-
proving moves are available in the local neighbourhood. This can either be when all
possible flips lead to a worse cost, or when no flip will improve cost, but some flips
will lead to equal cost solutions. As multiplicative real-valued weights have much
finer granularity, the presence of equal cost flips is much more unlikely than for an
additive approach, where weight is adjusted in integer units. This means that additive
approaches frequently have the choice between adjusting weight when no improving
move is available, or taking an equal cost (flat) move.

Following the DLM literature [16], we consider alocal minimumto be a point or
a connected area of equal cost moves where no further cost improvement is possible
(i.e. the area issurroundedby cost increasing moves, and no combination of equal
cost moves can ever escape). In this model, aplateau is a connected area of equal
cost moves that eventually lead to one or more cost improving moves. An additive
weighting algorithm, like DLM, will continually encounter situations where both equal
cost and cost increasing moves are available, but is unable to distinguish between a
plateau (where it is worth continuing the search) and a local minimum (where weight
should be increased in order to escape).

Considerable effort has gone into developing strategies to help guide additive weight-
ing over potential plateau areas. While this is described as plateau searching, it should
be noted that such techniques search plateaus and local minima indifferently. It should
also be noted that the SAPS’ authors have developed a different terminology to describe
local search landscapes (see [6]).

2.1 DLM and SAPS

DLM has been described as “ad hoc” [15] and criticized for requiring a large number
of parameters to obtain optimum performance. However, DLM has evolved through
several versions, the last of which was developed specifically to solve the larger towers

4

of Hanoi and parity learning problems from the DIMACS benchmarks [21]. As already
discussed, the basic structure of DLM is similar to SAPS, except for the heuristic used
to control the taking of flat moves. In addition, although the last version of DLM had
27 parameters, in practice only three of these require adjustment in the SAT domain.

Of particular interest is that DLM uses a single parameter to control the weight-
ing process (corresponding toMaxinc in Figure 2), which determines when weights
are to be reduced. In contrast, SAPS requires two further parameters (α and ρ) to
determine the amount that weights are multiplicatively scaled or smoothed (in DLM,
clause weight increases and decreases are implemented by adding or subtracting one).
The other two DLM parameters (θ1 andθ2) are used to control the flat move heuristic:
Using the terms from Figure 1, ifbest < 0, DLM will randomly select and flip any
xi ∈ L. Otherwise, ifbest = 0, and the number of immediately preceding consecutive
flat moves is< θ1 andLt 6= ∅, then DLM will randomly select and flip anyxi ∈ Lt,
whereLt contains all flat move literals that have not been flipped in the lastθ2 moves.
Otherwise, clause weights are additively updated, as per Figure 2.

Although SAPS implements a fairly “pure” weighting algorithm, there are a few
implementation details that distinguish it from DLM (see Figure 1). The first is thewp
parameter which probabilistically controls whether a random flip is taken when no cost
improving move is available. This acts as an alternative to DLM’s flat move heuristic.
The second is that the set of local neighborhood moves for SAPS contains a single
copy of each literal that canmakea false clause (i.e. turn it from false to true). In
DLM, the neighborhood consists of all literals in all false clauses. This means that if a
literal appears in more than one false clause, it will appear more than once in the local
neighborhood, thereby increasing the probability that it will be selected. Finally, as
noted earlier, SAPS usesprobabilisticsmoothing when adjusting clause weights, i.e. if
Psmooth is set to 5% then there is a 1 in 20 chance that weight will be adjusted after
an increase. In contrast, DLM’s third parameter fixes the exact number of increases
before weight is decreased, and so represents adeterministicweight reduction scheme.

Overall, there is little difference between DLM and SAPS in terms of parameter
tuning. While SAPS has four parameters (α, ρ, wp andPsmooth) and a basic version
of DLM has three, in practice at least one of the SAPS parameters can be treated as
a constant and the others adjusted to suit (in this studywp is set at 1%). For both
algorithms the process of parameter tuning is time consuming, as optimal performance
is highly dependent on the correct settings. This compares poorly with simpler non-
weighting algorithms, such as Walksat [4], which generally only require the tuning of
a single noise parameter. To address this, a version of SAPS called Reactive SAPS
(RSAPS) was developed [7] that automatically adjusts thePsmooth parameter during
the search. However we found this algorithm did not perform as well as a properly
tuned SAPS on our problem set, so we did not consider it further.

Hence, the main design criticism that can be levelled at DLM is that it relies on
a somewhatad hocflat move heuristic, whereas SAPS can search purely on the basis
of weight guidance (while taking the occasional random flip). From this it could be
argued that multiplicative weighting is superior to additive weighting because it avoids
the need for a flat move heuristic, i.e. by making finer weight distinctions between
moves, the search space for a multiplicative method will contain far fewer and smaller
plateau areas. However, this assumes that the overall performance of SAPS is at least

5

procedure SAPS
begin

generate random starting point
for each clauseci do: set clause weightwi ← 1
while solution not found and not timed outdo

best ←∞
for each literalxi appearing in at least one false clausedo

∆w ← change in summed weight of false clauses caused by flippingxi

if ∆w < best then L ← xi andbest ← ∆w
else if∆w = best then L ← L ∪ xi

end for
if best < −0.1 then randomly flipxi ∈ L
else ifprobability≤ wp then randomly flip any literal
else

for each false clausefi do: wi ← wi × α
if probability≤ Psmooth then

µw ← mean of current clause weights
for each clausecj do: wj ← wj × ρ + (1− ρ)× µw

end if
end if

end while
end

Figure 1: Scaling and probabilistic smoothing (SAPS)

as good as DLM’s and that the effectiveness of additive weighting depends on plateau
searching, both issues we shall address later in the paper.

3 The Pure Additive Weighting Scheme (PAWS)

SAPS has demonstrated that effective local search guidance can be given by a reason-
ably simple manipulation of clause weights. It has also outperformed DLM on a range
of SATLIB benchmark problems, both in terms of time and median number of flips
[7]. From this work several questions arise: firstly how does SAPS perform on the
larger DIMACS benchmark problems for which DLM was developed? Secondly, the
SAPS code is based on a very efficient implementation of Walksat,1 so to what extent
is the superior time performance of SAPS based on the details of this implementation?
Thirdly, does the success of SAPS depend on multiplicative weighting? i.e. can we
obtain the same quality of guidance using additive weighting, avoiding the use of the
multiplicative update parametersα andρ? And finally, does additive weighting require
a plateau searching strategy, with the associated tabu list length and flat move parame-
ters, to compensate for the coarser grained nature of the additive weight updates?

To answer three these questions we developed a pure additive weighting scheme

1http://www.cs.washington.edu/homes/kautz/walksat/walksat-dist.tar.Z.uu

6

procedure PAWS
begin

generate random starting point
for each clauseci do: set clause weightwi ← 1
while solution not found and not timed outdo

best ←∞
for each literalxij in each false clausefi do

∆w ← change in summed weight of false clauses caused by flippingxi

if ∆w < best then L ← xij andbest ← ∆w
else if∆w = best then L ← L ∪ xij

end for
if best < 0 then randomly flipxij ∈ L
else ifbest = 0 and probability≤ Pflat then flip xij ∈ L
else

for each false clausefi do: wi ← wi + 1
if # times clause weights increased %Maxinc = 0 then

for each clausecj |wj > 1 do: wj ← wj − 1
end if

end if
end while

end

Figure 2: The pure additive weighting scheme (PAWS)

(PAWS),2 which we embedded directly into the SAPS source code3 (so the same effi-
ciencies were obtained), and tested PAWS on both the SATLIB benchmarks used for
SAPS and a selection of the DIMACS benchmarks used for DLM.

PAWS takes a middle line between SAPS and DLM, firstly by doing away with
DLM’s plateau searching heuristic (and the associatedθ1 andθ2 parameters) and re-
placing it with a random flip heuristic. Now, whenever PAWS encounters a situation
where the best available move does not change the overall cost, it will either take this
move with probabilityPflat or it will increase weight. In contrast, DLM would always
take the equal cost move unless it was on the tabu list (controlled byθ2) or unless the
maximum number of consecutive flat moves had already been taken (controlled byθ1).
PAWS retains DLM’s preference for taking flat moves when no improving moves are
available, by only selecting random moves from the domain of available flat moves.
In contrast, when SAPS takes a random move (controlled bywp), it picks from the
domain of all possible moves, regardless of cost. Finally, PAWS retains DLM’s deter-
ministic weight reduction scheme and the multiple inclusion of literals that appear in
more than one false clause (whereas SAPS reduces weight probabilistically according
to Psmooth and only includes unique literals in its candidate move list).

Figure 2 shows the complete PAWS procedure which is now controlled by two

2PAWS is a simplification and improvement over our earlier MAX-AGE algorithm, which was shown to
be competitive with DLM on a range of larger SAT problems [18].

3http://www.cs.ubc.ca/ davet/dls4sat/software/saps-1.0.tar.gz

7

parameters:Pflat which decides whether a randomly selected flat move will be taken
(corresponding towp in SAPS), andMaxinc which determines at which point weight
will be decreased (corresponding toPsmooth in SAPS). As withwp in SAPS, we found
thatPflat can be treated as a constant, and for all subsequent experiments it was set
at 15%. Hence PAWS only requires the tuning of a single parameter,Maxinc, which
we found to have roughly the same settings and sensitivity as the equivalent parameter
in DLM. On all our test problems the optimum value ofMaxinc was relatively easy
to find, generally showing a similar concave shaped relationship with local search cost
as that observed for Walksat’s noise parameter in [4] (for example see Figure 4). The
requirement to only tune a single parameter with a fairly stable relationship to cost
gives PAWS a significant practical advantage over DLM and SAPS, which typically
need considerably more effort to set up for a particular set of problems (see Section 4.4
for a further discussion of parameter tuning).

3.1 Differences between SAPS and PAWS

While PAWS comes close to being an additive version of SAPS, as discussed earlier, it
differs in three aspects:

1. Multiple Inclusion (m): PAWS allows optimal cost flips that appear inn false
clauses to also appearn times in its move listL (rather than exactly once).

2. Random Flat (r): PAWS probabilistically takes a random flat move when no
improving move is available (rather than allowing cost increasing moves).

3. Deterministic Smoothing (d): PAWS deterministically reduces weights afterMaxinc

number of increases (rather than reducing weights with probabilityPsmooth).

In order to distinguish the essential from the inessential features of the two approaches,
we developed four SAPS variants based on the inclusion of the above heuristics:

1. SAPS+m: includes the multiple inclusion heuristic from PAWS.

2. SAPS+r: replaces the pure random move selection of SAPS with a random flat
move selection. Hence SAPS+r will only (probabilistically) take a move in a
local minimum if there is at least one move available that does not increase the
weighted solution cost.4

3. SAPS+d: replaces the probabilistic smoothing of SAPS with a deterministic
weight reduction scheme that smooths weights after a fixed number of weight
increases.

4. SAPS+a: uses all three heuristics at once, i.e. multiple inclusion, random flat
moves and deterministic smoothing. Hence SAPS+a is equivalent to PAWS ex-
cept for the use of multiplicative weighting.

4In the original SAPS source code, the authors used a0.1 threshold to distinguish an improving move
from a zero cost move (see Figure 1). We therefore reused this value to define a flat move for SAPS+r as any
move causing a weighted cost change within the range of±0.1.

8

We then developed four variants of PAWS that use the alternative SAPS heuristics:

1. PAWS-m: discards the multiple inclusion heuristic, and only considers distinct
literals in move listL.

2. PAWS-r: discards the random flat move heuristic, and probabilistically selects a
move in a local minimum without consideration of cost.

3. PAWS-d: uses probabilistic rather than deterministic weight reduction.

4. PAWS-a: uses all three of the above heuristics at once. Hence PAWS-a is equiv-
alent to SAPS except for the use of additive weighting.

Finally, in our earlier work [17], we observed that the average length of move listL
for PAWS tends to be longer than for SAPS. The explanation for this difference is that
multipliers create finer distinctions between clause weights: as multiplicative weights
are real-valued, the previous history of clause weighting will be retained in small differ-
ences, even after smoothing. Hence, in longer term searches, we would expect clause
weights to become more and more distinguished, making it increasingly unlikely that
any two flips will evaluate to the same cost. Conversely, additive weighting changes
clause weights by simply adding or subtracting one, and most weights are returned to
a base weight of one at some point in the search. Hence longer term residual weight is
eliminated and the likelihood that different flips will evaluate to the same cost remains
relatively high, meaning additive weighting will generally have a greater number of
possible best cost moves to select from.

This led us to conjecture that differences in performance between SAPS and PAWS
may be explained by differences in the number of moves available during the search.
To test this, we developed a fifth variant of SAPS (SAPS+t) that includes athreshold
of indifferencebetween moves. This threshold is compared to an averaged flip cost,
calculated by dividing the weighted cost change of a flip (∆wxi in Figure 1) by the
current average clause weight. A flip is then included in listL if its cost change is
within a threshold value of the best cost change available at that point in the search.
This alters the SAPS move selection heuristic from Figure 1 as follows:

for each literalxi in each false clausedo
∆wxi ← (change in summed weight of false clauses caused by flippingxi)/(average clause weight)
if ∆wxi ≤ best + threshold then

if ∆wxi < best then
best ← ∆wxi

remove allxj from L where∆wxj − best > threshold
end if
L ← L ∪ xi

end if
end for

In the following empirical study the threshold heuristic is added to the SAPS+a
variant to make SAPS+t. Hence, SAPS+t is almost the same as PAWS, remaining

9

indifferent to finer move distinctions, but retaining a multiplicative clause weight or-
dering. In this way we can test our earlier conjecture that a longerL has a positive
impact on performance, all else being equal [17].

4 Empirical Study

4.1 Problem Set

In order to examine the relative performance of additive and multiplicative weighting,
and the influences of the various SAPS and PAWS heuristics, we designed an experi-
mental study using29 benchmark problems that cover various dimensions of problem
size, difficulty and structure.

Firstly, we took the problem set reported in the original study on SAPS [7], con-
sisting of the median and hardest problems from several SATLIB problem classes.
Secondly, to test performance on larger problem instances, we included the SATLIB
ais12, logistics.d and bw-large.d blocks world problems, the two most difficult DI-
MACS graph coloring problems (g125.17 and g250.29) and the median and hardest
DIMACS 16-bit parity learning problems (par16). We then generated three sets of ran-
dom 3-SAT problems from the accepted hard region, each containing 20 instances, the
first with 400 variables, the second with 800 variables and the last with 1600 variables.
To these we added the f400, f800 and f1600 DIMACS problems and selected the me-
dian and hardest problem from each set. Finally, we generated a range of random binary
CSPs, again from the accepted hard region, and transformed them into SAT problems
using the multivalued encoding described in [13]. These problems were divided into 4
sets of five problems each, according to the number of variables (v), the domain size
(d), and the constraint density (c) in the original CSP, giving the 30v10d40c (bin30-40),
30v10d80c (bin30-80), 50v15d40c (bin50-40) and 50v15d80c (bin50-80) problem sets
from each of which the hardest problem was selected.5

4.2 Complete versus Local Search

One of the key motivations for the development of local search techniques for SAT is to
solve problems beyond the reach of existing complete solvers. Complete solvers, even
if slower on particular instances, have the advantage of unambiguously reporting if an
instance is unsatisfiable. Hence, local search for SAT is most applicable to problems
that are too difficult for complete search to solve in a reasonable time frame. This
means the scalability of local search is important, and that evaluations on problems
that can easily be solved by a complete solver are less decisive. To clarify this issue
we additionally tested our problem set using the well-known complete solvers, Satz
(version 214) [8] and zChaff (version 2004.11.15) [12].

5Note that for all the larger randomly generated problems satisfiability was determined using our own lo-
cal search algorithms with a cut-off of100 million flips. Hence we may have rejected some harder satisfiable
instances.

10

4.3 Testing for Significance

Local search run-times can vary significantly on the same problem instance, as deter-
mined by the initial starting point and any subsequent randomized decisions. For this
reason empirical studies require the same problem to be solved multiple times, and at
least for the mean, median and standard deviation to be reported. However, it is still
unclear exactly how much confidence we can have in the reported differences between
algorithms. Standard deviation is informative for normally distributed data, but local
search run-times are generally not normally distributed, often having the median to the
left of the mean and a number of unpredictably distributed outliers. Hence standard
comparisons that assume normality, such as a two-sample t-test, are not reliable, and
the level of statistical confidence in differences between algorithms is rarely investi-
gated.

However, nonparametric measures, such as the Wilcoxon rank-sum test, do not
rely on normality, and only assume that the distributions to be compared have a similar
shape. To use the Wilcoxon test requires that the run-times (or number of flips) from
two sets of observations,A andB, are sorted in ascending order. Then each observation
is ranked (from1 . . . N) and the sum of the ranks for distributionA is calculated. This
value (wA) can now be used to test the hypothesis that distributionA lies to the left
of distributionB, i.e. H1 : A < B, using the normal approximation to the Wilcoxon
distribution [3]6:

z = (wA − nA(N + 1)/2− 0.5)/
√

nAnB(N + 1)/12

wherenA andnB are the number of observations in distributionsA andB respectively
andN = nA + nB . Using the standardZ ∼ Normal(0, 1) tables,z will give the
probabilityP that the null hypothesis,H0 : A ≥ B, is true.

While the Wilcoxon test provides a good measure of overall performance, it can
miss situations where one algorithm has a better probability of solving a problem within
a certain time-range, even though its overall performance is relatively poor. In such
circumstances a hybrid or portfolio approach [2] can produce better results, i.e. using
the algorithm that has the greater solution probability in a given time-range. Hence,
to test whether one algorithm clearly dominates another we have produced run-time
distributions (RTDs) [5] to compare the best performing algorithm variants for each
problem. RTDs are used to analyze local search performance of multiple runs on the
same problem instance. By calculating and graphing the cumulative percentage of runs
that have been solved over time, a picture of the overall behaviour of an algorithm on
a problem can be obtained (see Figures 6, 5, 7 and 8). More importantly, if the RTD
distribution of one algorithm dominates another on the same problem (i.e. at every time
point it has solved a greater percentage of runs), then we can be more confident that
the algorithm has the better performance. Conversely, if two RTDs cross (as in Figure
6), then we cannot safely conclude that one is uniformly better than another.

We therefore used a combination of the Wilcoxon test and an RTD analysis to
assess whether there is a significant difference in algorithm performance according to
the following rule: if the Wilcoxon rank-sum test is significant forp < 0.05 and the

6assumingnA > 12, nB > 12 and that no rank values are tied

11

RTD of the better algorithm dominates the other for all solution probabilities> 0.1
then the algorithm is classed as significantly better on the problem instance (one RTD
dominates another when its distribution lies above the other, otherwise the RTDs will
cross, e.g. see figure 7).

4.4 Parameter Setting

To make the empirical study feasible, we adopted a combination of exhaustive and
local search strategies for setting the parameters of individual algorithm variants. In
the exhaustive phase, we tested a range of parameter settings for the original SAPS and
PAWS algorithms on each problem instance. As the issue of the number and sensitivity
of parameters is important to our overall evaluation, we have taken a closer look at the
parameter tuning process in the following two subsections:

4.4.1 Tuning SAPS

As discussed earlier (see Section 2), SAPS has four parameters:α, ρ, Psmooth andwp.
In the original study [7], the SAPS authors fixedwp at 1% andPsmooth at 5% and
manipulatedα in the range of1.1 . . . 1.3 andρ in the range of0.2 . . . 0.9. However,
they acknowledged that “there are better parameter settings for almost all problem
instances tested here. Determining these settings manually can be difficult and time-
consuming.” The attempt to reduce this difficulty led to the development of Reactive
SAPS (RSAPS) [7]. Here, instead of fixingPsmooth and manipulatingα andρ, the
authors fixedα, manually manipulatedρ and setPsmooth using an automated reactive
mechanism.

As the problem set used in the current study contains several larger problems on
which SAPS has not been previously tested, and also because the question of which
SAPS parameters to fix and which to manipulate has yet to be settled, we decided to
test the three main SAPS parameters on an expanded range of settings, varyingα from
1.05 . . . 2.00 in steps of0.05, ρ from 0.05 . . . 1.00 in steps of0.05 andPsmooth from
4% . . . 8% in steps of1% (keepingwp fixed at 1%). For problems that PAWS solves in
fewer than one million flips, we allowed100 runs at each of the20 × 20 × 5 possible
settings. For the remaining problems we allowed10 runs at each setting and retested
the best10 of these at100 runs. We then sorted the results for each problem instance
according to the mean flip count and selected the best performing parameter setting for
use in the main study.

We firstly allowed SAPS such a wide range of parameter values to ensure that the
comparison with PAWS was not biased by a limited choice. Secondly, the experiment
allows us to examine the range and sensitivity of the SAPS parameters. In Table 1,
we show the mean flip counts of the best parameter settings for SAPS on each test set
problem, in comparison to the recommended default settings ofα = 1.3, ρ = 0.8 and
Psmooth = 5%, with 100 runs on each problem and a cut-off of 20 million flips (50
million for bin50-40). These results show that using default parameter settings is not a
practical approach, particularly on the larger, more difficult problems. For instance, the
default settings were unable to solve any run on the g250.29, f1600-med and f1600-
hard problems, and could only solve one out of100 runs on g125.17. The results

12

Tuned Settings Tuned Results Default Results Wilcoxon

Problem α ρ Psmooth success mean flips success mean flips speed-upp-value significant
bw large.a 1.30 0.80 6 100 2, 824 100 3, 000 1.06 0.13066 ×
bw large.b 1.30 0.80 5 100 45, 335 = = = = =

bw large.c 1.10 0.60 7 100 2, 103, 352 75 7, 034, 958 3.34 0.00000
√

bw large.d 1.05 0.80 5 100 2, 398, 205 5 19, 589, 233 8.17 0.00000
√

flat100-med 1.30 0.40 5 100 7, 460 100 10, 729 1.44 0.00000
√

flat100-hard 1.30 0.80 6 100 31, 812 100 29, 906 0.94 0.86585 ×
flat200-med 1.30 0.40 5 100 83, 558 100 168, 030 2.01 0.00000

√

flat200-hard 1.30 0.40 5 100 3, 397, 088 100 3, 837, 537 1.13 0.15793 ×
g125.17 1.20 0.05 5 97 4, 187, 750 1 19, 953, 867 4.76 0.00000

√

g250.29 1.15 0.10 6 90 4, 622, 915 0 20, 000, 000 4.33 0.00000
√

uf100-hard 1.30 0.80 5 100 4, 250 = = = = =

uf250-med 1.30 0.40 6 100 7, 050 100 13, 584 1.93 0.00000
√

uf250-hard 1.30 0.70 5 100 223, 593 100 254, 243 1.14 0.00710
√

uf400-med 1.30 0.20 5 100 61, 159 100 167, 785 2.74 0.00000
√

uf400-hard 1.30 0.20 5 100 1, 446, 987 98 3, 901, 415 2.70 0.00000
√

f800-med 1.25 0.10 5 100 263, 105 33 16, 665, 531 63.34 0.00000
√

f800-hard 1.25 0.30 5 100 1, 754, 017 17 18, 593, 591 10.60 0.00000
√

f1600-med 1.25 0.30 5 99 1, 303, 941 0 20, 000, 000 15.34 0.00000
√

f1600-hard 1.25 0.30 5 94 7, 777, 980 0 20, 000, 000 2.57 0.00000
√

ais10 1.30 0.90 4 100 18, 085 100 20, 339 1.12 0.00384
√

ais12 1.25 0.95 4 100 123, 099 100 186, 402 1.51 0.00000
√

logistics.c 1.30 0.90 5 100 8, 436 100 9, 399 1.11 0.00088
√

logistics.d 1.20 1.00 4 100 21, 248 100 57, 151 2.69 0.00000
√

par16-med 2.00 0.25 7 88 7, 720, 965 82 7, 521, 553 0.97 0.54918 ×
par16-hard 1.40 0.90 4 86 9, 725, 495 78 9, 825, 138 1.01 0.12296 ×
bin30-80 1.30 0.10 6 100 12, 299 100 23, 127 1.88 0.00000

√

bin30-40 1.25 0.50 6 100 19, 711 100 36, 826 1.87 0.00000
√

bin50-80 1.20 0.10 6 100 186, 552 100 1, 495, 097 8.01 0.00000
√

bin50-40 1.25 0.25 5 99 11, 562, 103 70 25, 607, 766 2.21 0.00000
√

Table 1: SAPS parameter tuning comparison: SAPS defaults areα 1.30,ρ 0.80 and
Psmooth 5%, rows with ‘=’ values indicate the default and tuned settings were equal.

also show that the best performing algorithms have exploited nearly the full range of
parameter settings withα varying between1.05 (bw large.d) and2.00 (par16-med),ρ
varying between0.05 (g125.17) and1.00 (logistics.d) andPsmooth varying between
4% (ais10) and7% (bw large.c). However, the larger values forα only appear on
non-statistically significant results (par16-med and par16-hard7). Ignoring these two
problems,α ranges more narrowly between1.05 . . . 1.40.

Although the results show that a wide range of parameter values were used to obtain
the best performance, we have yet to consider the sensitivity of individual parameters.
It could be the case that one SAPS parameter dominates the others to the extent that the
variations in the dominated parameters do not significantly affect performance. We can
firstly reject the hypothesis thatα is insignificant from the bwlarge.c result. Hereα is
the only parameter varied from the default, and the result is a significant difference in
performance. There are several similar examples of a significant difference obtained by
only manipulatingρ from the default (i.e. flat200-med, uf200-hard, uf400-med, uf400-
hard and logistics.c). Hence we can conclude thatα andρ are important parameters,
with ρ showing a significant difference at a sensitivity of at least0.01 (for logistics.c)

7Although not statistically different on flips the tuned par16 runs had better success rates.

13

 120000

 125000

 130000

 135000

 140000

 145000

 150000

 155000

 1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
F

lip
s

P_smooth

Figure 3: Psmooth settings for SAPS on
ais12 withα 1.25 andρ 0.95

 135000

 140000

 145000

 150000

 155000

 160000

 165000

 110 120 130 140 150 160 170 180 190 200

M
ea

n
F

lip
s

Max_inc

PAWS
Trendline

Figure 4: Maxinc settings for PAWS on
ais12

andα showing a sensitivity of at least0.15 (for bw large.d).
However, as Table 1 does not show a significant difference arising from the ma-

nipulation ofPsmooth alone, we decided to look at an individual problem (ais12) in
more detail. From our initial parameter tests at100 runs, the best setting for SAPS
on ais12 wasα = 1.25, ρ = 0.95 andPsmooth = 4%. In order to test sensitivity,
we decided to manipulatePsmooth from 1% . . . 12% in steps of1% at 1, 000 runs per
setting, keeping the other parameters fixed at their tuned values. The mean flip values
for each of these settings are graphed in Figure 3, and show there is a relationship be-
tweenPsmooth and performance on this problem. We performed a further Wilcoxon
analysis between the4% and5% Psmooth settings and found anearlysignificant time
difference atp = 0.06852. A second comparison between the4% and6% settings did
yield a significant difference atp = 0.00013.

From the foregoing analysis we can conclude that each of the three main SAPS
parameters can produce significant differences in performance on at least one of the
test problems. However, this result must be qualified in several respects. Firstly, fine
tuning parameters is unnecessary when comparing with another algorithm, if a coarsely
tuned version still dominates. As the subsequent results show, SAPS does not clearly
dominate PAWS, and so the fine tuning of parameters can be justified. Secondly, while
the individual parameters are sensitive in isolation, this does not mean that one or two
parameters could be fixed, and the free parameter(s) adjusted to achieve optimal perfor-
mance (this assumes that different combinations of parameter settings could produce
the same optimal performance). The earlier study on RSAPS [7] shows that holdingα
andρ constant and manipulatingPsmooth is not as effective as additionally allowingρ
to change. This indicates that at least two SAPS parameters need to be manipulated to
achieve acceptable performance.

If we further consider the actual effects ofα, ρ andPsmooth, it seems reasonable
to assume that similar weighting behaviour could be achieved with combinations of
different settings, i.e.α determines the amount of weight increase,ρ determines the
amount of decrease andPsmooth determines how frequently a decrease occurs. Hence
we could expect a smaller increase and larger decrease performed less frequently to be-

14

have similarly to a larger increase and a smaller decrease performed more frequently. In
this case we would prefer the setting that reduces weight more infrequently, as it would
be more time efficient. But the question remains as to how infrequently weight can be
reduced without degrading performance. Certainly we know performance will degrade
eventually, as the limit would be to never reduce weight, and the more infrequently we
reduce weight the more insensitive the search becomes to local conditions.

In summary, we conjecture there may be discoverable relationships betweenα,
ρ andPsmooth that could simplify the parameter tuning process. It may also be the
case that a more fine grained tuning of one parameter could eliminate the need to tune
another. We leave these questions for future research. In practical terms, the sensitivity
of the SAPS parameters means we cannot be certain of obtaining the best performance
without searching an extensive range of settings. While a particular parameter may
not be sensitive on a particular problem, we are unfortunately unable to know this in
advance.

4.4.2 Tuning PAWS

Tuning PAWS presented a relatively simpler problem. KeepingPflat constant at15%,
we manipulatedMaxinc from 5 . . . 100 in steps of5, with 100 runs at each setting (as
with SAPS we reduced the number of runs for the more difficult problems). We then
graphed the mean flip performance againstMaxinc and decided on an optimum setting
by visual inspection. If the performance still appeared to be improving atMaxinc =
100, we tested PAWS with no weight decrease (i.e.Maxinc = ∞), and, if this proved
better thanMaxinc = 100, the∞ value was accepted. Otherwise we continued with
a further analysis from105 . . . 200 in steps of5 (this secondary analysis only proved
necessary for the ais12 problem). Given an optimum point from graphical analysis,
a final fine grained analysis was performed around this point, in the range of±5 in
steps of±1. From this the best value was selected and used in the remainder of the
study. As an example, the performance graph for PAWS on ais12 for theMaxinc

range of110 . . . 200 is shown in Figure 4 (with a trendline fitted). This gives a fairly
typical picture of the behaviour ofMaxinc, showing the presence of an unambiguous
minimum flip value.

While Maxinc is sensitive to changes down to±1, especially forMaxinc < 20,
the tuning process is considerably simpler than for SAPS, and contains less margin for
error due to noise. This is because the single parameter allows for a simple graphical
analysis and hence the identification of trends that are independent of noise. Con-
versely, tuning SAPS runs the risk of missing the best parameter settings, even when
averaging over100 runs.

4.4.3 Tuning the Variant Algorithms

After completing the above exhaustive parameter tuning exercises, we used the SAPS
parameter settings to test the SAPS variants and the PAWS parameter settings to test
the PAWS variants, with two qualifications:

1. Changing from deterministic to probabilistic smoothing or vice versa (i.e. for
SAPS+d, SAPS+a, SAPS+t, PAWS-d and PAWS-a) requires a conversion of the

15

PAWS Maxinc and SAPSPsmooth parameters. This is achieved by dividing
either parameter into100. For example, ifMaxinc = 5, this is converted to a
Psmooth value of100/5 = 20%, i.e. reducing weight at every5th local minimum
is most closely approximated by a20% chance of reducing weight ateachlocal
minimum. Similarly,Psmooth can be converted to aMaxinc value using the
same procedure, i.e.100/20 = 5.

2. Although SAPS is usually run with a fixedwp probability of1% and PAWS is
run with a fixed flat move probability of15%, it was not clear which probability
value to use when converting between the two random move selection heuristics.
We therefore ran versions of SAPS+r, SAPS+a, PAWS-r and PAWS-a using both
settings and selected the best performing variant.

After these conversions, we tested all variants on the full problem set. The results
of a similar experiment (excluding SAPS+a, SAPS+t and PAWS-a) were informally
described in [17], where it was concluded that no particular variant produced an im-
provement over the base versions. For the current study, further parameter tuning was
executed in the local neighbourhoods of the original conversions. From this we found
that theα andρ values for SAPS are fairly robust, as wasPsmooth for SAPS+m and
SAPS+d. However, our tests showed that theMaxinc/Psmooth conversions did not
necessarily produce the best performance on all problems. Also, on several problems,
the optimalMaxinc settings for PAWS-m and PAWS-r differed slightly from the origi-
nal PAWS setting. Using these more refined settings we were able to produce consider-
ably better performance across the range of SAPS and PAWS variants, as the following
results show.

4.5 Results

Tables 2 to 7 divide the problem set results according to problem types, placing the in-
stances in ascending order of size and/or difficulty within each table. For each problem
we then report the performance of the original PAWS and SAPS algorithms and their
variants, as described in Section 3.1. All results have a 20 million flip cut-off, except
bin50-40 which has a 50 million cut-off, and the statistics refer to averages over 1,000
runs, except for those problems where at least one algorithm has an average flip cost
greater than one million, in which case the average is over 100 runs8.

In all six tables, the Wilcoxon values give the probability that the null hypothesis
A ≥ B is true, whereA is the distribution of flips or run-times that has thesmaller
rank-sum value. We recordP -values against distributionA and takeP < 0.05 to
indicate thatA is significantly less thanB, marking such results with ‘*’. Theintra
Wilcoxon column compares flips for the standard SAPS and SAPS+a heuristics for
SAPS, and the standard PAWS and PAWS-a heuristics for PAWS. Hence the Wilcoxon
intra column value of0.3473f in the bw large.a, SAPS+a row of Table 2 indicates
that we can reject the hypothesis that SAPS+a has significantly better flip performance
than SAPS on this problem (in all Wilcoxon statistics an ‘f’ refers to a comparison

8All experiments were performed on a Sun supercomputer with 8× Sun Fire V880 servers, each with 8
× UltraSPARC-III 900MHz CPU and 8GB memory per node.

16

between flips and a ‘t’ refers to a comparison between runtimes). Conversely, the intra
column value of *0.0283f in the bw large.d, PAWS row of Table 2 indicates that we
can accept the hypothesis that PAWS has significantly better performance than PAWS-
a on this problem. Additionally, the Wilcoxoninter column compares the basic SAPS
and PAWS heuristics in terms of both flips and time. Hence the Wilcoxon inter column
values of *0.0000f and *0.0000t in the bw large.d, PAWS section of Table 2 indicate
that we can accept the hypothesis that PAWS has better flip and time performance than
SAPS on this problem. The additional RTD analysis described in Section 4.3 is shown
in Table 8, where we present an overall comparison of the results.

Lastly, the table parameter column values for each variant are encoded usingα, ρ,
s andn, whereα andρ have their usual SAPS interpretation, buts andn have com-
mon definitions across both SAPS and PAWS variants, wheres represents the smooth-
ing parameter, which has a probabilistic interpretation for SAPS, SAPS+m, SAPS+r,
PAWS-d and PAWS-a, and a deterministic interpretation for all other variants (see Sec-
tion 4.4), andn represents a noise parameter which applies either as the probability of
taking a pure random move for SAPS, SAPS+m, SAPS+d, PAWS-r and PAWS-a, or as
the probability of taking a random flat move for all other variants.

In the following sub-sections we discuss the results for each of the six problem
domain tables.

4.5.1 Blocks World Results

For the smaller bwlarge.a and b problems (in Table 2), the SAPS variants generally
have the better flip performance. However, this advantage does not carry over into the
time domain, where PAWS is not significantly different from SAPS on bwlarge.a and
dominates on the three other problems. PAWS further dominates SAPS in terms of
flips for bw large.c and d. Hence, as problem size and difficulty increases, the PAWS
variants also improve relative to SAPS, meaning PAWS has the overall advantage for
this problem set.

In terms of individual variants, SAPS+a dominates the original SAPS, being sig-
nificantly better on problems b and d, and slightly better on a and c. SAPS+a also
challenges PAWS on bwlarge.b, having a better flip count and roughly equal time per-
formance. For the PAWS variants, there is a (non-significant) indication that PAWS-a
does better on the smaller a and b problems, but standard PAWS becomes better on the
larger problems, and is significantly better on bwlarge.d.

4.5.2 Graph Colouring Results

As with the blocks world problems, SAPS starts well on the smaller graph colouring
problems, having significantly better flip and time performance on the two flat-100
problems (see Table 3). However, as problem size increases, the relative performance
of PAWS also improves, becoming significantly better than SAPS in terms of flips and
time on flat200-med, g125.17 and g250.29, and roughly equal on flat200-hard.

The SAPS+a variant again looks better than standard SAPS, being significantly
better on flat100-med, flat-200-med and g125.17, andvergingon significantly better
for the flat100-hard and flat200-hard problems. However, the situation is less clear

17

Time (secs) Flips Wilcoxon

Problem Method Parameters % median mean median mean intra inter
SAPS α1.3ρ0.8s6n1 100 0.01 0.01 2, 184 2, 824 *0.0007f

bw large.a SAPS+m α1.3ρ0.8s6n1 100 0.01 0.01 2, 236 2, 905
SAPS+r α1.3ρ0.8s6n1 100 0.01 0.01 2, 168 2, 895
SAPS+d α1.3ρ0.8s16n1 100 0.01 0.01 2, 155 2, 809
SAPS+a α1.3ρ0.8s16n1 100 0.01 0.01 2, 089 2, 772 0.3473f
SAPS+t α1.3ρ0.8s16n15 100 0.01 0.02 2, 251 2, 889
PAWS s34n15 100 0.01 0.01 2, 518 3, 235 0.4570t
PAWS-m s34n15 100 0.01 0.01 2, 273 3, 003
PAWS-r s34n15 100 0.01 0.01 2, 403 3, 067
PAWS-d s3n15 100 0.01 0.01 2, 369 3, 169
PAWS-a s3n1 100 0.01 0.01 2, 453 3, 118 0.2075f

SAPS α1.3ρ0.8s5n1 100 0.20 0.26 34, 488 45, 335 0.4302f
bw large.b SAPS+m α1.3ρ0.8s5n1 100 0.20 0.28 34, 584 48, 071

SAPS+r α1.3ρ0.8s5n1 100 0.17 0.26 29, 701 45, 750
SAPS+d α1.3ρ0.8s30n1 100 0.15 0.21 26, 910 39, 033
SAPS+a α1.3ρ0.8s30n1 100 0.16 0.21 27, 591 37, 731 *0.0000f
SAPS+t α1.3ρ0.8s30n15 100 0.19 0.27 26, 508 38, 524
PAWS s50n15 100 0.16 0.21 33, 480 45, 501 *0.0000t
PAWS-m s50n15 100 0.15 0.20 30, 832 43, 418
PAWS-r s50n15 100 0.16 0.21 32, 977 44, 635
PAWS-d s2n15 100 0.15 0.21 32, 104 44, 458
PAWS-a s2n1 100 0.15 0.21 32, 133 44, 109 0.2402f

SAPS α1.1ρ0.6s7n1 100 17.63 26.45 1, 366, 319 2, 103, 352
bw large.c SAPS+m α1.1ρ0.6s7n1 100 18.53 30.96 1, 448, 924 2, 370, 600

SAPS+r α1.1ρ0.6s7n1 100 21.21 30.02 1, 669, 114 2, 264, 986
SAPS+d α1.1ρ0.6s20n1 100 13.80 16.68 1, 366, 083 1, 671, 323
SAPS+a α1.1ρ0.6s20n15 100 12.72 17.20 1, 224, 860 1, 664, 822 0.1256f
SAPS+t α1.1ρ0.6s20n15 82 15.00 29.34 1, 471, 762 4, 665, 851
PAWS s5n15 100 4.74 6.87 798, 389 1, 181, 032 0.3147f *0.0001f
PAWS-m s5n15 100 4.64 6.67 786, 344 1, 143, 014 *0.0000t
PAWS-r s5n15 100 5.84 7.40 957, 610 1, 247, 581
PAWS-d s30n15 100 7.26 9.04 1, 246, 342 1, 581, 417
PAWS-a s30n1 100 4.41 6.96 742, 669 1, 206, 099

SAPS α1.05ρ0.8s5n1 100 29.22 37.87 1, 868, 733 2, 398, 205
bw large.d SAPS+m α1.05ρ0.8s5n1 100 25.11 36.64 1, 512, 079 2, 213, 055

SAPS+r α1.05ρ0.8s5n1 100 30.92 47.27 1, 884, 327 2, 819, 920
SAPS+d α1.05ρ0.8s20n1 100 21.68 29.00 1, 210, 114 1, 660, 640
SAPS+a α1.05ρ0.8s20n15 100 20.01 25.53 1, 152, 146 1, 536, 322 *0.0002f
SAPS+t α1.05ρ0.8s20n15 85 34.03 48.02 2, 575, 821 4, 949, 418
PAWS s4n15 100 7.07 10.87 903, 962 1, 432, 780 *0.0283f *0.0000f
PAWS-m s4n15 100 7.50 10.13 1, 007, 744 1, 324, 650 *0.0000t
PAWS-r s4n15 100 8.24 10.45 1, 058, 403 1, 349, 599
PAWS-d s35n15 100 7.72 12.67 930, 462 1, 594, 599
PAWS-a s35n15 100 9.65 15.75 1, 175, 815 1, 956, 037

Table 2: Blocks world planning problem results

for the largest g250.29 problem, where SAPS is significantly better than SAPS+a but
has poorer success rate (90% versus 98%). For the PAWS variants, there is little dif-
ference on the smaller flat100 problems, but for all larger problems PAWS becomes
significantly better.

Considering the standard SAPS and PAWS algorithms, we can conclude that PAWS
has the better performance on this problem set, particularly as problem size grows.
However, if we include consideration of the SAPS variants, then SAPS further dom-
inates on both flat200 problems, at least in terms of flips. This is examined in more
detail when we look at the overall results in Table 8.

4.5.3 Small Random 3-SAT Results

Repeating the blocks world and graph colouring pattern, SAPS begins well on the
smaller problems, with significantly better flip and time performance on uf250-hard
and significantly better flip performance uf100-hard, but is overtaken by PAWS on
uf250-med and both larger uf400 problems (see Table 4).

18

Time (secs) Flips Wilcoxon

Problem Method Parameters % median mean median mean intra inter
SAPS α1.3ρ0.4s5n1 100 0.01 0.01 5, 415 7, 460 *0.0004f

flat100-med SAPS+m α1.3ρ0.4s5n1 100 0.01 0.01 5, 156 7, 340 *0.0209t
SAPS+r α1.3ρ0.4s5n1 100 0.01 0.01 5, 314 7, 532
SAPS+d α1.3ρ0.4s20n1 100 0.01 0.01 4, 623 6, 381
SAPS+a α1.3ρ0.4s20n1 100 0.01 0.01 4, 684 6, 527 *0.0056f
SAPS+t α1.3ρ0.4s20n15 100 0.01 0.02 5, 182 7, 425
PAWS s13n15 100 0.01 0.01 6, 402 8, 628 0.4683f
PAWS-m s10n15 100 0.01 0.01 5, 747 7, 883
PAWS-r s13n15 100 0.01 0.01 6, 078 8, 117
PAWS-d s11n15 100 0.01 0.02 6, 409 9, 024
PAWS-a s11n1 100 0.01 0.02 6, 207 8, 676

SAPS α1.3ρ0.8s6n1 100 0.04 0.06 21, 965 31, 812 *0.0010f
flat100-hard SAPS+m α1.3ρ0.8s6n1 100 0.04 0.06 20, 938 30, 288 *0.0164t

SAPS+r α1.3ρ0.8s6n1 100 0.04 0.05 22, 422 30, 669
SAPS+d α1.3ρ0.8s18n1 100 0.04 0.05 21, 449 30, 026
SAPS+a α1.3ρ0.8s18n1 100 0.04 0.05 20, 888 29, 321 0.0649f
SAPS+t α1.3ρ0.8s18n15 100 0.05 0.08 19, 828 29, 952
PAWS s46n15 100 0.04 0.06 26, 065 36, 178 0.2398f
PAWS-m s46n15 100 0.04 0.06 25, 626 37, 882
PAWS-r s46n15 100 0.05 0.07 27, 191 39, 825
PAWS-d s2n15 100 0.04 0.06 25, 039 35, 993
PAWS-a s2n1 100 0.04 0.06 27, 046 37, 880

SAPS α1.3ρ0.4s5n1 100 0.12 0.17 57, 411 83, 558
flat200-med SAPS+m α1.3ρ0.4s5n1 100 0.12 0.17 55, 035 79, 073

SAPS+r α1.3ρ0.4s5n1 100 0.12 0.17 59, 249 82, 414
SAPS+d α1.3ρ0.4s20n1 100 0.09 0.13 43, 725 61, 878
SAPS+a α1.3ρ0.4s20n1 100 0.09 0.12 40, 900 57, 946 *0.0000f
SAPS+t α1.3ρ0.4s20n15 100 0.16 0.23 48, 850 71, 190
PAWS s10n15 100 0.10 0.13 48, 990 67, 781 *0.0000f *0.0002f
PAWS-m s9n15 100 0.10 0.13 53, 529 71, 553 *0.0000t
PAWS-r s11n15 100 0.11 0.15 56, 983 78, 090
PAWS-d s13n15 100 0.11 0.16 59, 731 80, 022
PAWS-a s13n1 100 0.12 0.17 64, 818 88, 593

SAPS α1.3ρ0.4s5n1 100 4.86 6.38 3, 173, 188 3, 397, 088
flat200-hard SAPS+m α1.3ρ0.4s5n1 100 3.75 5.64 1, 801, 981 2, 714, 483

SAPS+r α1.3ρ0.4s5n1 100 3.63 5.11 1, 791, 686 2, 532, 616
SAPS+d α1.3ρ0.4s20n1 100 3.02 4.50 1, 526, 524 2, 283, 598
SAPS+a α1.3ρ0.4s20n1 100 3.34 4.95 1, 634, 472 2, 417, 211 0.0525f
SAPS+t α1.3ρ0.4s20n15 93 5.83 9.76 1, 949, 826 3, 445, 606
PAWS s74n15 99 4.34 5.90 2, 354, 944 3, 224, 432 *0.0004f 0.3842f
PAWS-m s74n15 99 4.34 6.68 2, 414, 031 3, 748, 207 0.2121t
PAWS-r s74n15 100 5.58 6.70 3, 009, 177 3, 621, 447
PAWS-d s2n15 98 6.52 9.45 3, 376, 852 5, 001, 280
PAWS-a s2n15 99 7.83 9.93 4, 245, 350 5, 425, 641

SAPS α1.2ρ0.05s5n1 97 55.59 81.65 2, 772, 017 4, 187, 750
g125.17 SAPS+m α1.2ρ0.05s5n1 99 59.86 86.35 2, 940, 185 4, 253, 806

SAPS+r α1.2ρ0.05s5n1 99 54.59 81.10 2, 683, 624 3, 998, 689
SAPS+d α1.2ρ0.05s25n1 89 55.85 104.55 2, 564, 038 5, 457, 198
SAPS+a α1.2ρ0.05s25n15 100 35.10 52.35 1, 845, 627 2, 641, 413 *0.0104f
SAPS+t α1.2ρ0.05s25n15 73 55.80 111.66 2, 696, 440 7, 259, 569
PAWS s4n15 100 7.91 10.89 596, 447 841, 063 *0.0245f *0.0000f
PAWS-m s4n15 100 7.68 9.17 542, 355 668, 972 *0.0000t
PAWS-r s5n15 100 11.93 15.23 821, 849 1, 057, 978
PAWS-d s40n15 100 8.76 13.27 644, 027 986, 354
PAWS-a s40n15 100 11.86 17.15 849, 986 1, 235, 643

SAPS α1.15ρ0.1s6n1 90 100.14 219.92 563, 152 4, 622, 915 *0.0000f
g250.29 SAPS+m α1.15ρ0.1s6n1 92 102.70 201.86 595, 098 3, 876, 035

SAPS+r α1.15ρ0.1s6n1 98 92.71 166.75 576, 122 1, 554, 811
SAPS+d α1.15ρ0.1s30n15 99 107.15 182.17 845, 374 1, 727, 007
SAPS+a α1.15ρ0.1s33n15 98 170.04 289.68 1, 477, 554 3, 124, 190
SAPS+t α1.15ρ0.1s33n15 86 285.47 429.94 2, 661, 027 5, 313, 553
PAWS s4n15 100 19.73 21.89 275, 188 315, 937 *0.0000f *0.0000f
PAWS-m s4n15 100 20.33 23.92 252, 243 302, 942 *0.0000t
PAWS-r s5n15 100 34.22 45.43 348, 796 483, 978
PAWS-d s36n15 100 29.66 38.17 364, 024 444, 394
PAWS-a s36n1 100 47.22 60.43 502, 662 633, 402

Table 3: Graph colouring problem results

Variant performance also follows the previous results, with PAWS consistently out-
performing PAWS-a, and SAPS+a outperforming SAPS on all problems except uf100-
hard. SAPS+a further dominates PAWS in terms of flips on uf400-hard, while achiev-
ing similar time performance (see Table 8 for more details).

19

Time (secs) Flips Wilcoxon

Problem Method Parameters % median mean median mean intra inter
SAPS α1.3ρ0.8s5n1 100 0.01 0.01 2, 857 4, 250 0.4726f *0.0444f

uf100-hard SAPS+m α1.3ρ0.8s5n1 100 0.01 0.01 3, 041 4, 344 0.2460t
SAPS+r α1.3ρ0.8s5n1 100 0.01 0.01 2, 924 4, 120
SAPS+d α1.3ρ0.8s20n1 100 0.01 0.01 2, 833 4, 095
SAPS+a α1.3ρ0.8s20n1 100 0.01 0.01 2, 936 4, 330
SAPS+t α1.3ρ0.8s20n15 100 0.01 0.01 3, 222 4, 455
PAWS s40n15 100 0.01 0.01 3, 282 4, 579 *0.0280f
PAWS-m s40n15 100 0.01 0.01 3, 124 4, 641
PAWS-r s40n15 100 0.01 0.01 3, 368 5, 017
PAWS-d s3n15 100 0.01 0.01 3, 370 4, 650
PAWS-a s3n1 100 0.01 0.01 3, 614 4, 809

SAPS α1.3ρ0.4s6n1 100 0.01 0.02 4, 895 7, 050
uf250-med SAPS+m α1.3ρ0.4s6n1 100 0.01 0.02 4, 799 6, 939

SAPS+r α1.3ρ0.4s6n1 100 0.01 0.02 4, 628 6, 353
SAPS+d α1.3ρ0.4s19n1 100 0.01 0.01 4, 282 5, 972
SAPS+a α1.3ρ0.4s19n1 100 0.01 0.02 4, 519 6, 442 0.0503f
SAPS+t α1.3ρ0.4s19n15 100 0.02 0.02 4, 647 6, 197
PAWS s11n15 100 0.01 0.01 3, 795 5, 040 *0.0000f *0.0000f
PAWS-m s11n15 100 0.01 0.01 3, 954 5, 356 *0.0000t
PAWS-r s11n15 100 0.01 0.01 3, 733 5, 183
PAWS-d s12n15 100 0.01 0.01 4, 135 5, 705
PAWS-a s12n1 100 0.01 0.01 4, 358 5, 993

SAPS α1.3ρ0.7s5n1 100 0.41 0.56 160, 710 223, 593 *0.0000f
uf250-hard SAPS+m α1.3ρ0.7s5n1 100 0.39 0.58 149, 149 223, 794 *0.0000t

SAPS+r α1.3ρ0.7s5n1 100 0.39 0.55 156, 802 220, 161
SAPS+d α1.3ρ0.7s20n1 100 0.34 0.53 140, 166 215, 087
SAPS+a α1.3ρ0.7s20n1 100 0.36 0.52 140, 695 206, 023 *0.0412f
SAPS+t α1.3ρ0.7s20n15 100 0.53 0.70 152, 322 202, 540
PAWS s18n15 100 0.52 0.79 213, 393 320, 273 *0.0008f
PAWS-m s17n15 100 0.63 0.94 262, 147 394, 199
PAWS-r s18n15 100 0.56 0.83 229, 184 342, 383
PAWS-d s7n15 100 0.55 0.78 222, 563 316, 954
PAWS-a s7n1 100 0.64 0.91 265, 259 375, 917

SAPS α1.3ρ0.2s5n1 100 0.12 0.17 42, 514 61, 159
uf400-med SAPS+m α1.3ρ0.2s5n1 100 0.12 0.17 41, 799 59, 483

SAPS+r α1.3ρ0.2s5n1 100 0.13 0.17 45, 721 61, 997
SAPS+d α1.3ρ0.2s20n1 100 0.09 0.14 33, 420 50, 452
SAPS+a α1.3ρ0.2s20n15 100 0.09 0.13 31, 938 47, 701 *0.0000f
SAPS+t α1.3ρ0.2s20n15 100 0.13 0.19 33, 425 48, 856
PAWS s9n15 100 0.08 0.10 28, 601 38, 363 *0.0000f *0.0000f
PAWS-m s9n15 100 0.07 0.10 27, 945 39, 660 *0.0000t
PAWS-r s9n15 100 0.08 0.11 29, 027 42, 359
PAWS-d s12n15 100 0.09 0.12 32, 760 44, 729
PAWS-a s12n1 100 0.09 0.13 35, 277 49, 865

SAPS α1.3ρ0.2s5n1 100 2.06 4.01 744, 592 1, 446, 987
uf400-hard SAPS+m α1.3ρ0.2s5n1 100 2.92 4.10 1, 028, 231 1, 441, 876

SAPS+r α1.3ρ0.2s5n1 100 2.15 3.33 779, 638 1, 207, 029
SAPS+d α1.3ρ0.2s20n1 100 1.46 2.14 549, 547 804, 463
SAPS+a α1.3ρ0.2s20n1 100 1.31 1.98 479, 088 726, 173 *0.0001f
SAPS+t α1.3ρ0.2s20n15 96 2.09 5.13 555, 764 1, 496, 309
PAWS s8n15 100 1.71 2.28 699, 892 929, 791 *0.0036f *0.0178f
PAWS-m s8n15 100 1.76 2.48 705, 893 1, 000, 962 *0.0026f
PAWS-r s8n15 100 2.08 2.76 857, 409 1, 154, 580
PAWS-d s17n15 100 2.08 2.55 834, 369 1, 017, 859
PAWS-a s17n1 100 2.83 3.88 1, 116, 114 1, 537, 465

Table 4: Small random 3-SAT problem results

4.5.4 Large Random 3-SAT Results

These problems continue the small 3-SAT results from Table 4, and show the dom-
inance of PAWS growing as problem size increases, with significantly better perfor-
mance compared to all SAPS variants for all problems in terms of both flips and time
(see Table 5).

PAWS remains dominant over PAWS-a, but PAWS-d also performs well on the
three larger and more difficult problems. More interestingly, the previous dominance
of SAPS+a over SAPS breaks down, with no significant difference on any problem
except f1600-med where SAPS dominates.

20

Time (secs) Flips Wilcoxon

Problem Method Parameters % median mean median mean intra inter
SAPS α1.25ρ0.1s5n1 100 0.59 0.91 169, 562 263, 105 0.3358f

f800-med SAPS+m α1.25ρ0.1s5n1 100 0.74 0.96 207, 760 270, 976
SAPS+r α1.25ρ0.1s5n1 100 0.76 0.95 221, 127 272, 112
SAPS+d α1.25ρ0.1s30n15 100 0.54 1.02 160, 086 307, 293
SAPS+a α1.25ρ0.1s30n15 100 0.70 0.99 213, 200 284, 172
SAPS+t α1.25ρ0.1s30n15 100 1.11 1.39 228, 023 282, 938
PAWS s9n15 100 0.26 0.36 82, 392 115, 451 *0.0007f *0.0000f
PAWS-m s9n15 100 0.33 0.43 102, 667 131, 183 *0.0000t
PAWS-r s9n15 100 0.29 0.49 91, 693 172, 521
PAWS-d s16n15 100 0.29 0.45 95, 509 145, 289
PAWS-a s16n1 100 0.42 0.54 129, 184 171, 549

SAPS α1.25ρ0.3s5n1 100 4.88 6.12 1, 414, 621 1, 754, 017 0.2034f
f800-hard SAPS+m α1.25ρ0.3s5n1 100 5.35 6.45 1, 494, 538 1, 804, 377

SAPS+r α1.25ρ0.3s5n1 100 3.92 5.54 1, 113, 578 1, 576, 366
SAPS+d α1.25ρ0.3s30n1 100 5.91 7.50 1, 739, 737 2, 184, 186
SAPS+a α1.25ρ0.3s30n1 100 5.49 7.25 1, 557, 723 2, 039, 950
SAPS+t α1.25ρ0.3s30n15 99 8.14 11.16 1, 545, 959 2, 135, 779
PAWS s10n15 100 2.58 3.18 897, 696 1, 087, 076 0.2442f *0.0011f
PAWS-m s10n15 100 3.04 4.36 916, 292 1, 334, 897 *0.0000t
PAWS-r s10n15 100 3.53 4.40 1, 199, 636 1, 607, 297
PAWS-d s14n15 100 2.27 3.09 753, 345 1, 035, 762
PAWS-a s14n1 100 2.80 4.11 867, 340 1, 277, 586

SAPS α1.25ρ0.3s5n1 99 3.06 5.94 693, 385 1, 303, 941 *0.0279f
f1600-med SAPS+m α1.25ρ0.3s5n1 100 2.58 4.96 538, 407 1, 033, 478

SAPS+r α1.25ρ0.3s5n1 100 3.30 5.12 715, 152 1, 098, 818
SAPS+d α1.25ρ0.3s30n15 99 4.80 8.11 1, 086, 758 1, 920, 641
SAPS+a α1.25ρ0.3s30n15 100 4.49 8.07 1, 036, 529 1, 810, 566
SAPS+t α1.25ρ0.3s30n15 92 5.64 16.70 896, 631 2, 742, 393
PAWS s10n15 100 0.98 1.74 284, 591 548, 322 *0.0006f *0.0000f
PAWS-m s10n15 100 2.02 2.29 499, 642 576, 618 *0.0000t
PAWS-r s11n15 100 2.04 2.67 521, 920 762, 255
PAWS-d s14n15 100 1.18 1.76 327, 235 501, 171
PAWS-a s16n1 100 1.68 2.21 484, 481 637, 422

SAPS α1.25ρ0.3s5n1 94 30.62 34.34 6, 499, 140 7, 777, 980
f1600-hard SAPS+m α1.25ρ0.3s5n1 92 22.52 35.53 4, 750, 016 8, 038, 419

SAPS+r α1.25ρ0.3s5n1 88 35.33 38.21 7, 490, 954 8, 996, 248
SAPS+d α1.25ρ0.3s30n1 70 54.91 54.66 11, 777, 404 14, 064, 479
SAPS+a α1.25ρ0.3s28n15 95 23.13 32.29 5, 097, 994 7, 389, 302 0.2850f
SAPS+t α1.25ρ0.3s28n15 75 43.74 57.72 6, 514, 258 8, 996, 673
PAWS s11n15 96 11.94 18.86 3, 000, 027 5, 019, 099 *0.0233f *0.0001f
PAWS-m s9n15 94 11.72 17.15 3, 764, 003 5, 826, 437 *0.0000t
PAWS-r s11n15 95 16.37 21.59 4, 778, 339 6, 348, 370
PAWS-d s14n15 100 9.35 16.02 2, 709, 427 4, 711, 993
PAWS-a s16n1 95 16.20 19.86 4, 651, 466 6, 053, 078

Table 5: Large random 3-SAT problem results

4.5.5 Structured DIMACS Results

These less related problems show PAWS doing significantly better on the par16 and
logistics instances, but with SAPS pulling ahead on flip count for the ais problems (see
Table 6). However, as the ais problem difficulty increases, there are signs that PAWS
scales better, particularly in terms of time performance.

SAPS+a returns to its position of relative dominance over SAPS, although it only
achieves a significant difference on logistics.c and ais12. PAWS also continues to dom-
inate or roughly equal the performance of PAWS-a and its other variants.

4.5.6 Random CSP Results

Finally, Table 7 show the results for the random binary CSPs. These problems present a
mixed picture, with SAPS showing better flip but equal time performance on bin30-40,
and PAWS showing significantly better time and flip performance on bin30-80. For the
larger problems, and unlike the other problem domains, SAPS and PAWS show roughly
equivalent performance, with SAPS having an edge in terms of flips for bin50-40 and

21

Time (secs) Flips Wilcoxon

Problem Method Parameters % median mean median mean intra inter
SAPS α1.3ρ0.9s5n1 100 0.04 0.05 6, 954 8, 436

logistics.c SAPS+m α1.3ρ0.9s5n1 100 0.04 0.05 6, 687 8, 246
SAPS+r α1.3ρ0.9s5n1 100 0.04 0.05 6, 512 8, 328
SAPS+d α1.3ρ0.9s20n1 100 0.04 0.04 6, 450 8, 071
SAPS+a α1.3ρ0.9s20n1 100 0.04 0.05 6, 397 8, 028 *0.0378f
SAPS+t α1.3ρ0.9s20n15 100 0.05 0.06 6, 740 8, 610
PAWS s∞n15 100 0.02 0.03 5, 229 6, 771 *0.0280f *0.0000f
PAWS-m s∞n15 100 0.02 0.03 5, 144 6, 611 *0.0000t
PAWS-r s∞n15 100 0.02 0.03 5, 604 7, 612
PAWS-d s0n15 100 0.02 0.03 5, 047 6, 588
PAWS-a s0n1 100 0.02 0.03 5, 530 6, 734

SAPS α1.2ρ1.0s4n1 100 0.18 0.19 19, 202 21, 248
logistics.d SAPS+m α1.2ρ1.0s4n1 100 0.19 0.20 18, 269 20, 904

SAPS+r α1.2ρ1.0s4n1 100 0.18 0.20 19, 199 21, 486
SAPS+d α1.2ρ1.0s23n1 100 0.18 0.19 18, 721 21, 384
SAPS+a α1.2ρ1.0s23n1 100 0.20 0.21 18, 869 21, 355 0.3690f
SAPS+t α1.2ρ1.0s23n15 100 0.36 0.38 21, 794 24, 005
PAWS s∞n15 100 0.12 0.14 18, 330 22, 632 0.0707f
PAWS-m s∞n15 100 0.11 0.12 18, 163 21, 546 *0.0000t
PAWS-r s∞n15 100 0.12 0.13 18, 316 21, 777
PAWS-d s0n1 100 0.12 0.13 17, 584 21, 351
PAWS-a s0n1 100 0.11 0.12 17, 867 21, 236 *0.0519f

SAPS α1.3ρ0.9s4n1 100 0.06 0.10 11, 708 18, 085 *0.0182f
ais10 SAPS+m α1.3ρ0.9s4n1 100 0.07 0.11 13, 197 19, 692

SAPS+r α1.3ρ0.9s4n1 100 0.07 0.10 13, 225 18, 442
SAPS+d α1.3ρ0.9s25n1 100 0.07 0.10 12, 516 18, 755
SAPS+a α1.3ρ0.9s25n1 100 0.06 0.09 12, 086 17, 299 0.3011f
SAPS+t α1.3ρ0.9s25n15 100 0.08 0.11 13, 207 18, 670
PAWS s52n15 100 0.06 0.09 13, 661 19, 594 0.0712f 0.4243t
PAWS-m s52n15 100 0.07 0.09 14, 227 20, 086
PAWS-r s52n15 100 0.07 0.11 15, 024 22, 974
PAWS-d s2n15 100 0.07 0.09 14, 081 19, 892
PAWS-a s2n1 100 0.07 0.10 14, 836 20, 638

SAPS α1.25ρ0.95s4n1 100 0.60 0.86 86, 025 123, 099 *0.0014f
ais12 SAPS+m α1.25ρ0.95s4n1 100 0.67 0.96 93, 867 133, 992

SAPS+r α1.25ρ0.95s4n1 100 0.60 0.88 85, 202 125, 727
SAPS+d α1.25ρ0.95s30n1 100 0.60 0.86 88, 482 127, 737
SAPS+a α1.25ρ0.95s30n15 100 0.53 0.81 78, 086 117, 774 *0.0000f
SAPS+t α1.25ρ0.95s30n15 100 0.68 0.98 90, 437 130, 949
PAWS s148n15 100 0.57 0.80 102, 774 142, 979 0.2565f 0.0792t
PAWS-m s148n15 100 0.52 0.79 94, 512 143, 541
PAWS-r s148n15 100 0.64 0.94 111, 792 164, 807
PAWS-d s1n1 100 0.60 0.85 102, 253 145, 982
PAWS-a s1n1 100 0.60 0.87 102, 275 149, 958

SAPS α2ρ0.25s7n1 88 12.32 20.98 5, 589, 195 7, 720, 965
par16-med SAPS+m α2ρ0.25s7n1 90 12.73 19.90 5, 563, 752 7, 667, 145

SAPS+r α2ρ0.25s7n1 89 10.19 20.95 4, 624, 300 7, 340, 485
SAPS+d α2ρ0.25s15n1 96 10.68 15.22 4, 985, 909 6, 677, 620
SAPS+a α2ρ0.25s15n15 95 11.01 14.48 4, 885, 148 6, 595, 288 0.3181f
SAPS+t α2ρ0.25s15n15 40 timed out 54.53 timed out 12, 899, 759
PAWS s36n15 97 5.32 8.77 2, 646, 531 4, 496, 763 0.0692f *0.0004f
PAWS-m s36n15 100 6.00 8.14 3, 116, 219 4, 216, 251 *0.0001t
PAWS-r s36n15 99 6.70 8.98 3, 316, 710 4, 517, 832
PAWS-d s3n15 97 8.16 10.36 4, 081, 225 5, 320, 932
PAWS-a s3n15 98 7.30 10.31 3, 835, 814 5, 512, 200

SAPS α1.4ρ0.9s4n1 86 13.78 18.71 6, 454, 597 9, 725, 495
par16-hardSAPS+m α1.4ρ0.9s4n1 83 17.02 20.19 7, 687, 612 10, 286, 242

SAPS+r α1.4ρ0.9s4n1 87 12.34 17.37 5, 781, 604 8, 950, 757
SAPS+d α1.4ρ0.9s30n1 90 14.88 16.87 6, 954, 962 8, 547, 129
SAPS+a α1.4ρ0.9s25n1 94 12.86 16.11 5, 751, 190 7, 597, 764 0.0790f
SAPS+t α1.4ρ0.9s25n15 79 28.17 36.20 7, 272, 386 9, 141, 042
PAWS s40n15 98 6.79 9.51 3, 379, 909 4, 809, 418 0.1057f *0.0000f
PAWS-m s40n15 100 6.43 8.45 3, 314, 958 4, 355, 509 *0.0000t
PAWS-r s40n15 98 6.67 8.90 3, 312, 261 4, 493, 758
PAWS-d s3n15 97 12.25 13.78 6, 144, 198 7, 104, 478
PAWS-a s3n1 99 7.67 10.79 4, 072, 925 5, 761, 065

Table 6: Structured DIMACS problem results

PAWS being significantly better in terms of time on bin50-80.
As with the large 3-SAT problems, the SAPS+a variant no longer clearly domi-

nates SAPS, showing roughly equivalent performance on bin50-40, slightly better per-
formance on bin30-40, significantly better performance on bin30-80, but significantly
worse performance on bin50-80. PAWS and PAWS-a show similar performance, with

22

Time (secs) Flips Wilcoxon

Problem Method Parameters % median mean median mean intra inter
SAPS α1.3ρ0.1s6n1 100 0.06 0.08 8, 661 12, 299

bin30-80 SAPS+m α1.3ρ0.1s6n1 100 0.05 0.08 7, 729 11, 853
SAPS+r α1.3ρ0.1s6n1 100 0.05 0.08 7, 940 12, 242
SAPS+d α1.3ρ0.1s20n1 100 0.05 0.07 7, 999 11, 642
SAPS+a α1.3ρ0.1s20n1 100 0.05 0.07 7, 511 10, 593 *0.0009f
SAPS+t α1.3ρ0.1s20n15 100 0.05 0.08 7, 652 10, 594
PAWS s7n15 100 0.04 0.06 7, 576 10, 633 *0.0449f *0.0066f
PAWS-m s7n15 100 0.04 0.05 7, 283 10, 102 *0.0000t
PAWS-r s9n15 100 0.05 0.07 9, 089 12, 089
PAWS-d s15n15 100 0.05 0.07 8, 463 11, 803
PAWS-a s17n1 100 0.05 0.07 8, 172 11, 956

SAPS α1.25ρ0.5s6n1 100 0.08 0.12 13, 716 19, 711 *0.0101f
bin30-40 SAPS+m α1.25ρ0.5s6n1 100 0.09 0.12 14, 470 20, 149 0.4072t

SAPS+r α1.25ρ0.5s6n1 100 0.08 0.12 14, 031 20, 330
SAPS+d α1.25ρ0.5s17n1 100 0.08 0.11 13, 644 18, 797
SAPS+a α1.25ρ0.5s15n1 100 0.08 0.11 12, 741 19, 119 0.1191f
SAPS+t α1.25ρ0.5s15n15 100 0.08 0.12 12, 044 17, 540
PAWS s7n15 100 0.08 0.12 15, 927 22, 422 *0.0000f
PAWS-m s7n15 100 0.08 0.13 15, 779 24, 321
PAWS-r s9n15 100 0.10 0.14 18, 746 27, 309
PAWS-d s20n15 100 0.08 0.12 15, 798 23, 287
PAWS-a s20n1 100 0.10 0.14 19, 432 27, 610

SAPS α1.2ρ0.1s6n1 100 1.81 2.92 119, 552 186, 552 *0.0181f
bin50-80 SAPS+m α1.2ρ0.1s6n1 100 2.08 3.82 130, 022 224, 231

SAPS+r α1.2ρ0.1s6n1 100 2.35 3.53 141, 777 216, 651
SAPS+d α1.2ρ0.1s30n15 100 2.58 3.81 202, 745 297, 099
SAPS+a α1.2ρ0.1s30n1 100 2.19 3.54 160, 871 262, 727
SAPS+t α1.2ρ0.1s25n15 98 2.12 7.09 141, 226 604, 380
PAWS s5n15 100 1.44 1.85 128, 837 168, 402 0.4011f 0.3574f
PAWS-m s5n15 100 0.99 1.42 90, 567 130, 162 *0.0062t
PAWS-r s5n15 100 1.73 2.60 165, 065 266, 514
PAWS-d s30n15 100 1.63 1.99 147, 552 182, 763
PAWS-a s30n15 100 1.44 2.14 134, 187 198, 013

SAPS α1.25ρ0.25s5n1 99 96.84 149.05 7, 579, 338 11, 562, 103 0.0735f
bin50-40 SAPS+m α1.25ρ0.25s5n1 92 114.69 165.67 8, 961, 133 11, 552, 914 0.2535t

SAPS+r α1.25ρ0.25s5n1 100 100.58 149.47 7, 783, 134 11, 482, 673
SAPS+d α1.25ρ0.25s20n1 99 81.24 120.76 6, 450, 368 9, 449, 164
SAPS+a α1.25ρ0.25s20n1 100 101.38 131.05 7, 682, 577 12, 130, 118 0.3305f
SAPS+t α1.25ρ0.25s20n15 37 timed out 334.81 timed out 32, 454, 528
PAWS s6n15 98 121.12 169.55 10, 866, 838 14, 848, 547
PAWS-m s6n15 91 155.61 209.73 13, 644, 648 17, 170, 359
PAWS-r s6n15 100 114.85 194.17 10, 487, 116 17, 164, 797
PAWS-d s30n15 100 84.64 119.13 7, 591, 267 13, 659, 181
PAWS-a s30n1 99 100.44 126.90 8, 923, 186 14, 874, 496 *0.0419f

Table 7: Random binary CSP problem results

PAWS dominating on the smaller bin30 problems, and PAWS-a matching PAWS on
bin50-80 and dominating on bin50-40.

5 Analysis

Table 8 gives an overall comparison of the results from Tables 2 to 7, identifying the
best variant for each algorithm on each problem, and giving a Wilcoxon and RTD
analysis of the comparative time performance of these best variants. As discussed
in Section 4.3, one variant is only considered significantly better than another if the
Wilcoxon rank sum test is significantand it has a dominating RTD.

Table 8 also provides statistics on the relative average lengths of listL for SAPS,
SAPS+t and PAWS, and a comparison of the relative SAPS and PAWS flip rates. As
the flip rates and list lengths remained stable across problem variants, we only report
the statistics for the base versions of SAPS and PAWS (with the exception of SAPS+t
list lengths which were affected by the threshold heuristic). We also show the Satz and
zChaff solution times for each problem in seconds (as discussed in Section 4.2).

23

Best Time Variant List Length Flips per sec

Problem SAPS PAWS Overall Wilcoxon RTD Satz zChaff SAPS SAPS+t PAWS SAPS PAWS
bw large.a SAPS+a PAWS-m PAWS 0.0021

√
0.08 0.01 1.4843 1.9527 2.8450 222, 967 253, 184

bw large.b SAPS+a PAWS-m no sig diff 0.2124 × 0.26 †0.01 1.1457 1.7786 3.1005 176, 073 209, 888

bw large.c SAPS+a PAWS-m PAWS 0.0000
√

2.15 †0.53 1.0185 3.2655 4.0911 79, 529 171, 719

bw large.d SAPS+a PAWS-m PAWS 0.0000
√

660.60 †2.01 1.0654 5.7542 4.9923 63, 320 131, 772

flat100-med SAPS+d PAWS-m SAPS 0.0003
√

0.01 0.01 1.1612 2.0977 3.4890 546, 523 578, 702

flat100-hard SAPS+a PAWS-d SAPS 0.0012
√

0.02 †0.01 1.0405 2.1411 3.0929 564, 152 592, 997

flat200-med SAPS+a PAWS no sig diff 0.0355 × 0.12 0.30 1.0617 3.0782 5.2708 483, 891 519, 477

flat200-hard SAPS+d PAWS no sig diff 0.2747 × †0.03 0.57 1.0016 3.2044 3.4551 497, 716 541, 442

g125.17 SAPS+a PAWS-m PAWS 0.0000
√

> 1hr > 1hr 1.0045 3.2766 3.5996 51, 289 77, 222

g250.29 SAPS+r PAWS-m PAWS 0.0000
√

> 1hr > 1hr 1.0358 5.3512 4.7199 11, 927 14, 439

uf100-hard SAPS+d PAWS no sig diff 0.0850
√

0.03 0.01 1.0269 1.4609 1.9685 433, 712 454, 314

uf250-med SAPS+d PAWS PAWS 0.0002
√

1.25 4.63 1.0793 1.7371 3.1550 391, 263 406, 842

uf250-hard SAPS+a PAWS SAPS 0.0000
√ †0.32 93.62 1.0027 1.7448 3.3338 397, 796 407, 566

uf400-med SAPS+a PAWS PAWS 0.0000
√

57.81 > 1hr 1.2044 2.0989 4.0647 358, 898 379, 945

uf400-hard SAPS+a PAWS no sig diff 0.1778 × 178.92 > 1hr 1.0011 2.0151 3.3460 361, 168 407, 892

f800-med SAPS PAWS PAWS 0.0000
√‡ > 1hr > 1hr 1.0211 2.8490 5.2173 289, 413 321, 861

f800-hard SAPS+r PAWS-d PAWS 0.0001
√‡ > 1hr > 1hr 1.0032 2.8492 4.1244 286, 740 342, 084

f1600-med SAPS+m PAWS PAWS 0.0000
√

> 1hr > 1hr 1.0155 4.2052 4.2509 217, 590 314, 260

f1600-hard SAPS+a PAWS-d PAWS 0.0000
√

> 1hr > 1hr 1.0030 4.2985 7.9250 215, 021 257, 173

logistics.c SAPS+a PAWS-d PAWS 0.0000
√

0.45 0.08 2.5263 2.9066 3.7940 179, 318 247, 502

logistics.d SAPS+m PAWS-a PAWS 0.0000
√

505.20 0.19 17.7148 17.8127 18.2289 110, 813 167, 203

ais10 SAPS+a PAWS no sig diff 0.3532 × 0.06 0.09 1.0130 1.2968 2.0533 187, 028 209, 968

ais12 SAPS+a PAWS no sig diff 0.3518 × 0.17 2.73 1.0036 1.3062 1.7517 143, 347 179, 228

par16-med SAPS+a PAWS-m PAWS 0.0003
√‡ 1.66 †0.49 1.0007 3.7710 5.3424 337, 548 499, 311

par16-hard SAPS+a PAWS-m PAWS 0.0000
√‡ †0.56 1.71 1.0005 3.8163 5.6082 468, 056 496, 370

bin30-80 SAPS+a PAWS-m PAWS 0.0000
√

0.26 28.48 1.0363 1.6553 2.8070 153, 169 187, 080

bin30-40 SAPS+d PAWS no sig diff 0.1263 × 0.33 †0.02 1.0220 1.7828 3.3194 170, 857 189, 825

bin50-80 SAPS PAWS-m PAWS 0.0000
√

> 1hr > 1hr 1.0091 1.6773 3.4783 63, 909 90, 890

bin50-40 SAPS+d PAWS-d no sig diff 0.4766 × > 1hr > 1hr 1.0002 1.4881 5.1387 78, 822 89, 409

Table 8: Overall problem comparison. Key:†indicates the Satz or zChaff run-time
dominates all other methods;

√
indicates the run-time distribution (RTD) of the overall

best variant dominates the other best variant;‡ indicates the RTD domination is not
perfect, some cross-over at solution probability< 0.1; × indicates significant cross-
over of RTDs at solution probability> 0.1

As there are considerable differences between the average flip rates for SAPS and
PAWS on nearly all problem instances, in the following analysis we limit the compar-
ison between SAPS and PAWS to their relative run-time distributions. However, as
flip rates are fairly stable between variants of the same algorithm class, we generally
consider flip distributions when comparing particular variants.

5.1 PAWS versus SAPS

The first striking feature of Table 8 is the dominance of the PAWS variants on the
overall problem set. Of the29 problem instances, PAWS is significantly better on17
instances, SAPS is significantly better3 instances, with no significant difference on the
remaining9 instances. For the17 instances on which PAWS is classed as better, in13
cases the RTDs are clearly dominant, and in4 cases there is some crossing at a solution
probability of less than10% (marked with a‡ in Table 8). To give an idea of these

24

distributions, Figures 7 and 8 show two of the RTDs that cross at less than10%, Figure
5 shows a clearly dominant RTD and Figure 6 shows clearly crossing distributions.

The three instances on which SAPS does dominate are of relatively small size and
can each be solved within0.32 seconds by Satz or zChaff, and for those problems
which the complete solvers find challenging (i.e. take longer than one second to solve),
SAPS equals the performance of PAWS on only two instances: uf400-hard and bin50-
40. In this context, bin50-40 presents an interesting case, as it has the longest solution
times and highest flip count within the problem set, so any conclusion of the superiority
of PAWS on larger problems must necessarily be qualified. Also, as with all empirical
evaluations of stochastic local search algorithms, our conclusions cannot be reliably
generalized beyond the given problem set. Having said this, the results do indicate that
additive weighting has better general time performance than any of the multiplicative
alternatives considered.

5.2 PAWS Variants

An examination of the relative performance of each PAWS variant in Table 8 shows that
standard PAWS is better on12 instances, PAWS-m is better on11 instances, PAWS-d
is better on5 instances and PAWS-a is better on1 instance (but only marginally). This
firstly indicates that PAWS-r and PAWS-a do not perform well, and by implication that
the random flat move heuristic is playing an important role in the performance of PAWS
(i.e. both PAWS-r and PAWS-a have had the random flat move heuristic removed).

Considering the flip count statistics of PAWS in relation to PAWS-d, there are sev-
eral problems where PAWS-d has considerably worse performance, e.g. bwlarge.c,
flat200-med, g250.29 and par16-hard, whereas on the five problems where PAWS-d
has the best performance, the mean flip count in comparison to PAWS differs by less
than10%. A further run-lengthdistribution (RLD) analysis [5] comparing flip perfor-
mance on these problems confirmed that PAWS-d does not clearly dominate PAWS on
any problem instance (an RLD analysis differs from the RTD analysis only in consid-
ering flip instead of time performance). Hence there is strong evidence suggesting that
deterministic smoothing performs better than probabilistic smoothing for PAWS.

Lastly, the nearly equal first status of PAWS and PAWS-m (on a simple count of
the problems on which they do better) suggests that they have roughly equal overall
performance. However, a closer analysis of the flip counts for each problem shows
there are several problems on which PAWS has considerably better mean flip per-
formance (uf250-med, f800-hard, f1600-hard and bin50-40) and a similar number on
which PAWS-m appears to dominate (par16-med, par16-hard and bin50-40). We there-
fore performed another RLD analysis on these problems, which showed a significant
dominance only on bin50-40 (in favour of PAWS) and bin50-80 (in favour of PAWS-
m). As there was no significant difference on any other problem, this suggests the
multiple inclusion heuristic has a minimal effect on the overall performance of PAWS.

We therefore conclude, on the basis of the experimental evidence, that the PAWS
deterministic smoothing and random flat move heuristics do contribute positively to
the performance of additive weighting, and that the multiple inclusion heuristic has no
significant effect either positively or negatively.

25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

so
lu

tio
n

pr
ob

ab
ili

ty

run-time (secs)

PAWS
SAPS

Figure 5: Run-time distribution compar-
ing SAPS and PAWS-m on bin50-80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

so
lu

tio
n

pr
ob

ab
ili

ty

run-time (secs)

PAWS
SAPS

Figure 6: Run-time distribution compar-
ing SAPS+d and PAWS-d on bin50-40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

so
lu

tio
n

pr
ob

ab
ili

ty

run-time (secs)

PAWS
SAPS

Figure 7: Run-time distribution compar-
ing SAPS+r and PAWS-d on f800-hard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

so
lu

tio
n

pr
ob

ab
ili

ty

run-time (secs)

PAWS
SAPS

Figure 8: Run-time distribution compar-
ing SAPS+a and PAWS-m on par16-hard

26

5.3 SAPS Variants

Again performing a count on Table 8 gives17 problems for which SAPS+a is better,
6 problems for which SAPS+d is better,2 problems for which SAPS+r is better,2
problems for which SAPS+m is better, and2 problems for which SAPS is better. The
counts certainly suggest that SAPS benefits from the inclusion of the PAWS heuristics.
However, a closer examination of the problem flip counts shows that it is hard to draw
a general conclusion that fits all problem instances.

Firstly, SAPS+a and SAPS+d often clearly perform better than the other variants,
while themselves having similar performance, i.e. on bwlarge.b, c and d, flat100-med,
flat200-med and hard, uf400-med and hard and par16-med and hard. However, there
are other problems where SAPS does well and SAPS+a and SAPS+d do relatively
worse, i.e. on f800-med and hard, f1600-med and bin50-80. Then there are problems
where SAPS+d does badly relative to all other variants, i.e. g125.17 and f1600-hard,
and other problems where SAPS+d does well and SAPS+a does poorly, i.e. g250.29
and bin50-40. Considering the other variants, SAPS+r only stands out on f800-hard
and g250.29 and SAPS+m only stands out on f1600-med, otherwise their performance
follows SAPS fairly closely. Hence, we consider that the +m and +r heuristics do not
have a major effect on SAPS, at least in isolation. This result is further supported by
the relatively insignificant effects that would be expected from these heuristics. Firstly,
although SAPS+m biases the move choice towards literals that appear more than once
in the false clause list, it does not override the move cost. Also, removing this heuristic
from PAWS has already been shown above to have little effect. Secondly, the SAPS+r
heuristic is only operational in situations where no improving move is available, and
then only for1% of the time. At this point it simply reduces the domain of choice
from all possible moves, to moves that have a zero cost (i.e. within the threshold of
±0.1). While this removes the chance of taking a cost increasing move, such moves
will typically be quickly reversed in a local search. Also, in further work on SAPS,
the removal of the random flip heuristic has been shown to have little noticeable effect
[20]. Our results therefore support these findings.

This leaves SAPS+d and SAPS+a as the two candidate best SAPS variants. Of
these SAPS+d has a slight advantage, firstly, because its worst performance is on prob-
lems for which SAPS is not competitive, and secondly because it represents a simpler
change to SAPS, i.e. switching from probabilistic to deterministic smoothing. How-
ever, uniformly adopting deterministic smoothing would definitely degrade the perfor-
mance of SAPS on a range of the larger randomly generated CSP and 3-SAT problems.
We therefore conclude that the best overall performance could be obtained by adding
an additional SAPS parameter that switches between deterministic and probabilistic
smoothing. This extends the results presented in [20], where a deterministic version
of SAPS was found not to differ from SAPS in performance on a range of the smaller
problems already considered in this study.

5.4 The SAPS Threshold Heuristic

So far we have not considered the SAPS threshold variant, SAPS+t. This is because,
while it can equal the flip performance of SAPS+a (on which it is based) for many

27

smaller problems, it produced some of the highest failure rates of any variant on several
of the larger problems (uf400-hard, f1600-med and hard, par16-med and hard, and
bin50-40). Also, due to the additional overhead of calculating an averaged flip cost,
the time performance of SAPS+t was uniformly worse than SAPS+a. Hence, we can
conclude that adding a threshold, at least to SAPS+a, does not improve the performance
of multiplicative weighting.

In relation to the effect of the threshold heuristic on the candidate list lengths, Table
8 clearly shows the greater choice in candidate moves available to PAWS, and that, as
solution times increase, the SAPS list length tends to zero. For the SAPS+t experiments
we set the threshold value to0.1, producing SAPS+t list lengths somewhere between
those of SAPS and PAWS. Further experiments with larger threshold values did pro-
duce longer list lengths, but these changes uniformly caused SAPS+t performance to
degrade. Hence we have no evidence to suggest that the superior performance of PAWS
can be explained by its greater choice of moves. If this were the case, we would expect
SAPS+t to have improved over SAPS+a, as SAPS+ais PAWS except that it uses mul-
tiplicative weighting. This refutes our earlier conjecture [17] and reopens the question
of explaining the superior performance of PAWS, especially on the larger problems.

6 Conclusions

The aim of this study was to identify and analyze the key features required for an ef-
fective clause weighting local search algorithm. On the basis of the previous work, we
observed that the best clause weighting algorithms use the same underlying strategy,
i.e. to increase clause weights in a local minimum, and then to periodically reduce
or smooth these weights to maintain a stable relative weight distribution that remains
sensitive to local conditions in the search space. From this we identified the key distin-
guishing feature of current approaches, i.e. the use of additive or multiplicative clause
weighting. We therefore set out to systematically investigate the performance of addi-
tive and multiplicative clause weighting on a range of SAT benchmark problems, and
using a range of sub-heuristics.

Overall, our results indicate that additive weighting tends to perform better than
multiplicative weighting, particularly on larger and more difficult problems. From our
investigation into the various additive and multiplicative sub-heuristics, we came to the
following conclusions:

• Some form of random plateau move heuristic is useful for additive weighting.
This is less relevant to multiplicative weighting, possibly because the finer weight
distinctions caused by multiplicative updates produce smaller plateau areas.

• Deterministic weight reduction appears generally helpful for additive weighting,
but only assists multiplicative weighting on selected instances.

• The effect of multiple inclusion heuristic is not significant. Overall it had lit-
tle effect on multiplicative weighting, and only made a small difference, both
positively and negatively, to additive weighting performance.

28

• The threshold heuristic caused a fairly uniform deterioration in the performance
of multiplicative weighting. This means the superior performance of additive
weighting cannot obviously be explained by the greater choice of moves afforded
by additive weight updates.

As the threshold heuristic failed to produce any improvement, we were led to de-
velop a new conjecture to explain the relatively better performance of the additive ap-
proach:

Firstly, the study has shown that the differences in performance between the addi-
tive and multiplicative schemes cannot be explained by differences in the sub-heuristics
used. If this were the case we would expect the performance of SAPS and PAWS to
become equivalent with the right application of heuristics. However, regardless of the
choice of sub-heuristic, additive weighting has shown the generally superior perfor-
mance.

Secondly, our experiments with SAPS+t indicate that there is no causative link be-
tween the coarser weight distinctions of additive weighting and its better performance9.
Hence, the overall outcome of the study suggests there is something inherent in addi-
tive weight updates that can improve the performance of clause weighting algorithms.
By a process of elimination, the remaining distinction is the essential geometric nature
of multiplicative weight updates, i.e. multiplicatively increasing weight will always
cause those clauses with greater weight to have a greater relative increase in weight.
Conversely, additive updates are more egalitarian, with each false clause getting an
identical weight increase. The overall effect is that multiplicative weighting will raise
the weight on a false clause more quickly, relative to other clauses with lesser weight,
and will also reduce weight more quickly when a clause becomes true. Hence, a newly
weighted clause will have less immediate effect on the search trajectory, and the ba-
sic ordering of clause weight importance will differ, i.e. in a multiplicative scheme,
clauses that have been false for longer will have greater importance.

In general, therefore, additive weighting is a “blunter” instrument. For instance,
most clause weights at any point in an additive search will have their weights set to
one, whereas multiplicative weighting retains small real valued distinctions on nearly
all clauses that have been false. Additive weighting is also less selective: it does not
care how long a clause has been true or false, it still gets the same update. The conjec-
ture of our study is therefore that this generally simpler behaviour explains the better
performance of additive weighting on longer term searches. In particular, additive
weighting provides a relatively greater emphasis on clauses that have recently become
false and so is more responsive to the immediate situation. More generally, the effi-
ciencies gained in performing simpler clause weight updates mean additive weighting
can also dominate on smaller problems where multiplicative weighting otherwise has
the advantage in terms of flips.

Overall the case for preferring additive over multiplicative weighting is compelling:
firstly, the average flip performance of PAWS does not differ significantly from SAPS
on smaller problems and strongly dominates SAPS on the more difficult problems (i.e.
those beyond the reach of Satz or zChaff). Secondly, additive weighting is more time

9This must be qualified by the understanding that there are other possible threshold heuristics that may
have better performance

29

efficient than multiplicative due to using integer rather than real-valued clause weights.
This is shown by the consistently faster flip rates for PAWS on most problems (re-
membering SAPS and PAWS are running within the same software architecture). And
finally, the search space of possible parameter settings is at least an order of magnitude
less for PAWS than for SAPS.

In summary, this paper balances much of the recent work on clause weighting that
has concentrated on multiplicative updates, showing that additive weighting can be
faster, simpler in terms of parameter tuning, and more applicable to larger problems
beyond the reach of complete search methods. However, multiplicative weighting still
has the better performance in several problem domains, especially in terms of flips,
and in future work it would be worth identifying the problem characteristics and search
behaviors that favour a multiplicative approach.

References

[1] H. Everett. Generalized Lagrange multiplier method for solving problems of the
optimal allocation of resources.Operations Research, 11:399–417, 1963.

[2] I. Gent, H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and
randomness. InProceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99), 1999.

[3] J. Gibbons and S. Chakraborti.Nonparametric Statistical Inference, pages 241–
251. Statistics: Textbooks and Monographs. Marcel Dekker, Inc., New York,
1992.

[4] H. Hoos. An adaptive noise mechanism for WalkSAT. InProceedings of the
Nineteenth National Conference on Artificial Intelligence (AAAI-02), pages 655–
660, 2002.

[5] H. Hoos and T. Stutzle. Evaluating Las Vegas algorithms: Pitfalls and remedies.
In Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence
(UAI-98), pages 238–245, 1998.

[6] H. Hoos and T. Sẗutzle. Stochastic Local Search: Foundations and Applications.
Elsevier, New York, 2005.

[7] F. Hutter, D. Tompkins, and H. Hoos. Scaling and probabilistic smoothing: Ef-
ficient dynamic local search for SAT. InProceedings of the Eighth International
Conference on the Principles and Practice of Constraint Programming (CP’02),
pages 233–248, 2002.

[8] C. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems. In
Proceedings of the Third International Conference on the Principles and Practice
of Constraint Programming (CP’97), pages 341–355, 1997.

[9] D. McAllester, B. Selman, and H. Kautz. Evidence for invariance in local search.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), pages 321–326, 1997.

30

[10] P. Mills and E. Tsang. Guided local search applied to the satisfiability (SAT) prob-
lem. InProceedings of the 15th National Conference of the Australian Society for
Operations Research (ASOR’99), pages 872–883, 1999.

[11] P. Morris. The Breakout method for escaping local minima. InProceedings of the
Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 40–45,
1993.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. InProceedings of the 39th Design Automation
Conference (DAC 2001), pages 530–535, 2001.

[13] S. Prestwich. Local search on SAT-encoded CSPs. InProceedings of the Sixth In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT-
03), 2003.

[14] D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT
procedures. InProceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-00), pages 297–302, 2000.

[15] D. Schuurmans, F. Southey, and R. Holte. The exponentiated subgradient al-
gorithm for heuristic Boolean programming. InProceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI-01), pages 334–
341, 2001.

[16] Y. Shang and B. Wah. A discrete Lagrangian-based global search method for
solving satisfiability problems.J. Global Optimization, 12:61–99, 1998.

[17] J. Thornton, D. Pham, S. Bain, and V. Ferreira Jr. Additive versus multiplicative
clause weighting for SAT. InProceedings of the 19th National Conference on
Artificial Intelligence, AAAI-2004, pages 191–196, 2004.

[18] J. Thornton, W. Pullan, and J. Terry. Towards fewer parameters for clause weight-
ing SAT algorithms. InProceedings of the 15th Australian Joint Conference on
Artificial Intelligence, AI-2002, pages 569–578, 2002.

[19] J. Thornton and A. Sattar. On the behaviour and application of constraint weight-
ing. In Proceedings of the Fifth International Conference on the Principles and
Practice of Constraint Programming, CP’99, pages 446–460, 1999.

[20] D. Tompkins and H. Hoos. Warped landscapes and random acts of SAT solving.
In Proceedings of the 8th International Symposium on Artificial Intelligence and
Mathematics, AIMA-04, 2004.

[21] Z. Wu and B. Wah. An efficient global-search strategy in discrete Lagrangian
methods for solving hard satisfiability problems. InProceedings of the Seven-
teenth National Conference on Artificial Intelligence (AAAI-00), pages 310–315,
2000.

31

