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1. Introduction

The decomposition problems of a graph arise in the filing theory and the
combinatorial theory of design of experiments. These problems have been
developed by Bermond and Schénheim [2], Bermond and Sotteau [3], Erdos,
Sauer and Schaer [S], Huang and Rosa [7] and so on. Yamamoto, lkeda,
Shige-eda, Ushio and Hamada [16] have completely soived the problem of
claw-decomposability of a complete graph. The claw-decomposition of a com-
plete graph yields an optimal binary-valued balanced file organization scheme of
order two which is called a Hiroshima University balanced file organization scheme
of order two (HUBFS,) [17]. A binary-valued balanced file organization
scheme is said to be optimal if it has the least redundancy among all possible
binary-valued balanced file organization schemes having the same parameters,
provided the distribution of records is invariant under the permutation of at-
tributes. A necessary condition and some sufficient conditions for complete
graph to be decomposed into a union of subgraphs have also been given by
Yamamoto and Tazawa [19]. The subgraph is a generalized graph of a claw
which is called a hyperclaw. This hyperclaw decomposition provides us an
optimal binary-valued balanced file organization scheme of general order k,
which is called an HUBFS,, in the above-mentioned sense [20].

Recently, the decomposition problems of other graphs than a complete graph
have been investigated by many authors. Myers [9] has investigated the decom-
position problems of the product of a complete graph with itself. Sumner [12]
has given some theorems on the 1-factorization. Bermond [1], Schonheim
[11] and Wilson [15] have investigated the decomposition problems of the
directed complete graphs. The decomposition problems of a complete multi-
partite graph have been devéloped by Cockayne and Hartnell [4], Tazawa, Ushio
and- Yamamoto [13]; Ushio, Tazawa and Yamamoto [14] and Yamamoto,
Ikeda, Shige-eda, Ushio- and Hamada [16].. Yamamoto, Ikeda, Shige-eda,
Ushio and ‘Hamada [16] have completely solved the problem of claw-decom-
posability of a complete bipartite graph. Ushio, Tazawa and Yamamoto [14]
have given a necessary and sufficient condition for a complete ‘m-partite graph
K, (n, n,..., n) with m sets of n points each to be decomposed into a union of
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line-disjoint subgraphs which are isomorphic to a claw. This result covers the
claw-decomposition theorem for a complete graph in [16]. Tazawa, Ushio and
Yamamoto [13] have also given a necessary and sufficient condition for the
decomposability of K,(n, n,..., n) into a union of line-disjoint subgraphs each
isomorphic to a partite-claw. A partite-claw-decomposition of a complete
m-partite graph yields an optimal multiple-valued balanced file organization
scheme of order two in that it has the least redundancy among all possible bal-
anced schemes with the same parameters for an equally likely distribution of
multiple-valued records. Such an optimal scheme is called a Hiroshima Univer-
sity balanced multiple-valued file organization scheme of order two (HUBMFS,)
[18].

In this paper, we shall, in particular, establish a necessary and sufficient con-
dition for a complete m-partite graph K,(n, n,..., n) to be decomposed into a
union of line-disjoint subgraphs, each being isomorphic to a generalized graph

of partite-claw.

2. Preliminaries

The reader is referred to [6] for any term not defined below. Consider a
graph without loops or multiple lines. Let m (>2) be an integer. A graph is
said to be m-partite if there exists a partition of its point set into m subsets V,,
V,s..., V,, such that no line joins two points in the same subset. Vi, V,,... and
V, are called its independent sets. An m-partite graph is denoted by G,(n,,
Rys..., N,), Where n; is the cardinality [V of V, (i=1, 2,..., m). An m-partite
graph is called complete, denoted by K,(n,, n,,..., n,,), if it contains every line
joining different independent subsets. A complete graph K,, with m points may
be considered as a special case of complete m-partite graph where n,=n,=---=
n,=1. A complete bipartite graph K,(1, ¢) with ¢+ 1 points and ¢ lines is called
a claw or star of degree ¢ (>2). A point of degree c is called a root and each
point of degree one is called a leaf of the claw.

Consider a claw which is a subgraph of an m-partite graph G,(n,, n,,..., n,,)
with m independent sets V,, V,,..., V,. Let V;, V,,,..., ¥V, _, be the point sets
not containing the root point of the claw and let v, be the number of the leaves
in ¥, for a=1,2,..., m—1. Then the claw is said to be evenly-partite in the
G,(ny, nay..., ny) if [v;, —v;,[ <1 holds for every o, =1 2,...,m—1. A partite-
claw (PC) in [13] is a special case of an evenly-partite-claw (EPC) in which every
point set contains at most one leaf. In Fig. 1, a 4-partite graph G,(4, 4, 3, 3)
with four independent sets V,, V,, V3, V, of 4, 4, 3, 3 points each is given. Two
claws of degree five being subgraphs of the same graph G,(4, 4, 3, 3) are also given.
Fig. 1 (a) shows an EPC since v,=v3;=2 and v, =1, while the claw in Fig. 1 (b)
is not evenly-partite since v,=3, v3=2 and v,=0.
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Fig. 1. Two claws of degree five

DerINITION 2.1. Let G be a graph with ¢ lines. A complete m-partite
graph K, (n,, n,,..., n,) with m independent sets of ny, n,,..., n, points each is
said to have a G-decomposition of degree ¢ if it is a union of line-disjoint
subgraphs each isomorphic to the graph G.

3. Adjacency matrix

In this section we shall observe that the G-decomposition problem can be
considered by using the property of adjacency matrix associated with a graph.
A directed graph obtained by assigning a direction to every line of a graph is
called an oriented graph. Let K,(n,, n,,..., n,,) be a labeled complete m-partite
graph with m independent sets V;={v, |lip=n;+n,+--+n,_,+p, p=1,2,...,n;}
(i=1, 2,..., m) and consider an oriented complete m-partite graph K, (n,, n,,...,
n,). The number of such oriented K,(n,, n,,..., n,)’s is, of course, 2* where

m=1 m
u=3% > nn; To an oriented K,(ny, n,,..., n,) there corresponds a 0-1
=1 j=T1

adjacency matrix of order i n;
i=1
(3-1) M = "Mij”
composed of m? submatrices M;;=|m,, ;| of size n; x n; defined by

1 if v;, is adjacent to v,
Mip.jq =
0 otherwise.
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Clearly,
(3.2) Mip,ig = 0 and Mipjqg + Mjgp =1

hold for all p, gq,i and j (#i), i.e., M;=0 and M;;+M7};=G,,,, (i# j), where
G, , denotes a ¢ x u matrix whose elements are all unity.

Conversely, a 0-1 matrix of order f n; satisfying (3.2) produces an oriented
complete m-partite graph K,(n,, nz,':l, n,). ‘Thus for a labeled complete
m-partite graph K,(n,, n,,..., n,,) there is one-to-one correspondence between

m m
oriented K, (n,, ny,..., n,)’s and > n;x > n; binary matrices satisfying (3.2).
=1 =1

THEOREM 3.1. A complete m-partite graph K,(ny, ny,..., n,) has a claw-
decomposition of degree ¢ if and only if there exists an oriented K,(n,, na,...,
n,) whose adjacency matrix M=|{M|l of order i n; satisfies the following

=1

condition:
(a) Every row sum of M is an integral multiple of c, i.e.,

m nj
'21 qzl’nip'jq = a;,¢ for p=1,2...,n;i=12,..,m
=

This theorem is proved by the same méthod as in Ushio, Tazawa and Yama-
moto [14] and we omit the proof. In the following theorem we consider an
evenly-partite-claw instead of a claw.

THEOREM 3.2. A complete m-partite graph K,(n, ny,..., h,) has an
EPC-decomposition of degree c if and only if there exists an oriented K, (n,,

m
Ny,..., Ny) Whose adjacency matrix M=||M;|| of order % n, satisfies Condition
=1

(a) of Theorem 3.1 and the following condition:
(b) The submatrix M,; satisfies the row sum constraints

a,k < q;’l My, e < min (agyk + 1, 1) for p=1,2,.,n,

for every pair of i and j (#1i), where k is the greatest integer not exceeding
c/(m—1).

PrOOF. Suppose K,(ny, n,..., n,,) has an EPC-decomposition of degree c.
Consider an oriented K,(n,, #ns,..., 1,,) obtained by assigning a direction to every
line in such a manner that the point corresponding to the root of an EPC
is adjacent to the other end points corresponding to its leaves. Let M be the
adjacency matrix corresponding to the oriented K, (n,, n,,..., n,,). If a;, denotes
the number of EPC’s which have the same root point v;,, then there are exactly
a;,c points adjacent from v,,, because the degree of every EPC is c. Thus Con-
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dition (a) holds for the adjacency matrix M. Since an EPC with the root v;,
has k or k+1 leaves in V; for every j (#1i), there are at least a;,k points and at
most min (a,,(k+1), n;) points in V; (j#1) which are adjacent from v,,. Thus
we have Condition (b) for M. Conversely, suppose that there exists an oriented
K,(ny, ny,..., n,) whose adjacency matrix M = ||M,;|| of order Z n; satisfies Con-
ditions (a) and (b). Then we shall show by a constructive method that K,(n,,
n,,..., n,) has an EPC-decomposition of degree c. Construct an a; p X M non-
negative integral matrix B=|b,;|l, where b,; satisfies kgb,,lsk+l for every
h=1,2,..., a4 and j=1,2,...,m (#i). Its row and column sum vectors are
denoted by (c, c,...,¢) and (sy, Si,..., 5,), rESpectively, where s;= i‘, My iar
Such a matrix can be constructed (cf. Corollary 1.3 and Theorem 1.1 in [16]),
since a;,k <s;<min (a;,(k+1), n;) by Condition (b). Next, partition the set of
s; U’s standing on the pth row of M;; in M into a;, subsets S;;, Szj,..., Sg,,; Of
byj» byjs--os bgy,; 1’'s each.  Then S, = \J Sy, is the set composed of ¢ I’s for every
=1

h=1,2,...,a;, Thus if we select ¢ lines corresponding to ¢ 1’s of S, out of
K,(n,, n,,..., n,), then a collection of those ¢ lines corresponds to an EPC of
degree c. Hence K, (n,, n,,..., n,) has an EPC-decomposition of degree c.

m
Let a;, (p=1, 2,..., n;; i=1, 2,..., m) be 3 n; nonnegative integers satisfying
i=1

3 Y _(z z minp)le. - Consider the following:
=1 p=1

(1) Anm x m nonnegatlve integral matrix X = | x;;| satisfying

Ms

(3.3) lj = 2 ai‘,, X = 0, x,-j + xj,- = n,-nj (l ?é]).

1 p=1

j

(2) m nonnegative integral matrices Y;=|y,, ;|| (i=1, 2,..., m) of size n;xm
satisfying

(34) j;lyip,j = aipc’
(3.5) py Yip,j = Xij»
p=1
(3.6) @k < yip,; <min(alk + 1), n) (G #)),

where k is the greatest integer not exceeding ¢/(m—1).
3) (’5‘ ) 0-1 matrices M}, =|m%, .| (1<i<j<m) of size n;xn; satisfy-
ing

nj

ni
(3.7 _ qglm’fp ja = Vip; and pl__.‘:lm?p,iq =N Vi
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Then we prove

THeorREM 3.3. If the above-mentioned matrices X, Y, and MY; can be
constructed, then K, (ny, n,,..., n,) has an EPC-decomposition of degree c.

m m
Proor. Consider a ), n;x 3 n; matrix M=||M;;]| composed of m? sub-
i= i=1

1
matrices M;;=[\m,, ;| of size n; x n; defined by

M} for i<j
Gum, — M3T for i>j.

Then M is an adjacency matrix of an oriented K, (n,, n,,..., n,,) since M satisfies
(3.2). Moreover, since we have }j My, 0= Yip,; for i, j=1,2,...,m by (3.7), it
follows from (3.4) and (3.6) that qM satisfies Condition (a) of Theorem 3.1 and
Condition (b) of Theorem 3.2. Thus K,(n,, n,,...,n,) has an EPC-decom-
position of degree c.

Note that Theorems 3.2 and 3.3 are respectively identical with Theorems 4.1
and 4.2 in Tazawa, Ushio and Yamamoto [13] for n,=n,=-.-=n,, and k=0.

4. Claw-decomposition

With respect to G-decomposition of a complete m-partite graph K, (n,,
n,,..., h,) Where G is a claw, we have the following theorem.

THEOREM 4.1. Let ny, n,,..., n,, (m>=2) be m positive integers. If a com-
plete m-partite graph K,(n,, n,,..., n,) has a claw-decomposition of degree c,
then the following two conditions hold:

(1) cis a factor of Z f: nn;.

J=i+1

m=1 m
.. 2
(11) CS_J,'T:.I_JL"*I. .

2 n;— maxn;

i=1 Jj

. . , m-1 m
Proor. Since the number of lines of K, (ny, ny,...,n,) is 3 > mny,
i=1 j=i+1

Condition (i) is obviously necessary. Let V;, V,,..., V,, be m independent sets of
K,(ny, ny,..., n,), where |V|=n; for i=1,2,...,m. Let y; be the number of
claws whose roots are points of V; (i=1, 2,..., m). Then we have y;>n; for all
i except at most one, say j,, since K, (n, n,,..., n,) has a claw-decomposition of
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degree ¢. Therefore, we have

m=1 m

)3 Z mn; m
4.1) MC'L—=§1 Ein = Zn

i¥jo

Hence Condition (ii) is necessary since n;, <maxn;.
i

For the case n,=n,=-.-=n,=n, Ushio, Tazawa and Yamamoto [14] have
shown that a necessary and sufficient condition for K,(n, n,..., n) to have a claw-
decomposition of degree ¢ is that (i) and (ii) in Theorem 4.1 hold.

THEOREM 4.2. Let ny, ns,...,n, (m>2) and c(22) be positive integers
satisfying Condition (i) of Theorem 4.1. Put b= (2 Z n,nl)/c If bis an

integral multiple of f‘, n;, then K,(ny, n,,..., n,) has a claw-decomposition of
i=1
degree c.

The following lemma, which has been given by Moon [8], is useful for the
proof of Theorem 4.2.

LeMMA 4.3. There exists an adjacency matrix M of an oriented K, (n,,

n,,..., n,) which has a given row SUmM vector (0yqy... Ayps Eagseers Eangseers Contsee

,,,,,m) satisfying Z Za,p— Z i mn; and oy 2o, > 2, for all i if and

i=1 j=i+1
only if the mequalzty
m k m 1 1 m
(4.2) Y Ya,<KN -3 kn—>K?+ 13 k?
i=1 p=1 i=1 2 2 &

holds for every set of m integers k, satisfying 0<k,<n;, where N=n;+n,+.--+
n, and K=k1+k2+"‘+km.

ProoF oF THEOREM 4.2. Put a;,=b/N and o;,=a;,c for p=1,2,..,n

m—1 m m—-1 m
i=1,2,...,m. Then Z Zaip > X nnm; Since be= 3 Y nn;=(N2-
;=1 p=1 i=1 j=i+1 =1 j=i+1
z nDf2, we have 3 3 0, =(N?— 3 n)K/2N. Thus
i=1 p=1 i=1
(4.3) KN - k- Sk + S - § 3, =
' R ) & Z IN

where S=NK(N — K)+KZ n?— NZ k(@2n;—k). Let t;=n;—k; (i=1,2,..., m).
Then, substituting into S the followmg three identities

N = Zﬁ‘*‘ Zk,-
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Tni=31+ 23kt + 2k}
2kd2n; — k) =23 kit; + ki,

we have
i=1 j=1"1=1 i=1 J=1 i=1 j=1 i=1 i=1 j=1

—Zk{(t + Zt)(ti+ Zt)—Zti(ti+ th)+(l’+ th)}

J l l#l 1#1 1#;

+ éz,{(glkj)z - glk}}

Since ;>0 (i=1, 2,..., m) and (Z k,)2 Z k?>0, S>0 is obtained. There-
fore, the inequality (4.2) holds. It fo]lows from Lemma 4.3 that there exists an
adjacency matrix M satisfying Condition (a) in Theorem 3.1. Hence K,(n,,
n;,..., n,) has a claw-decomposition of degree c.

5. Evenly-partite-claw decomposition theorem

In the following we shall restrict our attention to the case that n,=n,=---=
n,=n. Let ¢ be a positive integer and put c=(m—-1k+1!(0<I<m—1). For
k=0, Tazawa, Ushio and Yamamoto [13] have given the following theorem:

THEOREM 5.1. Let m, n and ¢ be three positive integers satisfying m—1>
¢>2. Then a complete m-partite graph K,(n, n,..., n) has an EPC-decom-
position of degree c if and only if

(i) cis a factor of< 'g )nz, and

(ii) e<m—1ifniseven and c<m— 1-7 if nisodd.

s

As usual, let | 7] be the greatest integer not exceeding r and [r] be the smallest
integer not less than r. For k>1, we have the following theorem which will be
proved in Section 6.

THEOREM 5.2. Let m, n and c be three positive integers satisfying c>m>3.
Then a complete m-partite graph K,(n, n,..., n) has an EPC-decomposition of
degree ¢ if and only if the following three conditions hold:
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(i) cis a factor of( ”21 >n2.

(i) c< ('”;—1)” + 1.

(i) (m— 1){5_@'1:_-51 +v, < m—('iz:_—l)—nf <(m- I)Lmin (T”Z—, v,)J + vy,

where

n2(m — 1)(2¢c — mk — m) _n*(m— 1)(Q2c — mk)
el — K= 1) and 0= = R :

vy =

When I=m—1, Conditions (i)-(iii) in Theorem 5.2 are simplified as follows:

CoROLLARY 5.3. Let c¢c(=m) be an integral multiple of m—1(=2).
Then a complete m-partite graph K,(n, n,..., n) has an EPC-decomposition of
degree c if and only if the following two conditions hold:

(1) 2c is a factor of (m—1)n2,

@ cs(—'”—zl—)f.

Proor. Note first that k>1. It is enough to show that Conditions (1)
and (2) hold if and only if Conditions (i)-(iii) in Theorem 5.2 hold. If (i), (ii)
and (iii) hold, then (1) is obtained by the first inequality in (iii). (2) is also ob-
tained by (i), (ii) and m>3. Conversely, if (1) and (2) hold, then (i) and (ii)
hold obviously. It can be shown easily that the first inequality in (iii) is ob-
tained by (1) and that the second inequality of (iii) is obtained by (2).

6. Proof of Theorem 5.2

6.1. Necessity
Suppose that K, (n, n,..., n) has an EPC-decomposition of degree ¢. Then
¢ is obviously a factor of the number of lines of K, (n, n,..., n) (namely ('g )n 2).

Let V,, V,,..., V,, be m independent sets, each cardinality being n, of K, (n, n,...,
n) and let y; be the number of EPC’s whose roots are points of V, (i=1, 2,..., m).
Then we have the following statements which are immediate consequences:
(1) Every line belongs to exactly one EPC.
(2) For each EPC, there are I independent sets such that each set contains
k+1 leaves and there are m—1—1 independent sets such that each set
contains k leaves.
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(3) y;=n for all i except at most one, say j,.

Consider now any m—1 sets V;, V,,,..., V; _, where {i, is,..., in—}<={1,
2,..., m} and consider an EPC whose root is a point in either of V;,, V,,,..., ¥, _,.
Let X denote the set of all lines joining V;, and ¥, for all «, f=1, 2,..., m—1
(x#p) and let N denote the number of lines contained in X and in the EPC.
Then from the above-mentioned statements (1) and (2) it follows that c—k—1<
N<c—kholds. Thus it is easy to see that the cardinality of X satisfies

6D (Eye—tz B D=0, (5 e gy,

When i,# j, for a=1, 2,..., m—1,

6.2) (m ~ 1)(5" =7 = (e — k — 1)

since mi‘,l Vi, =(m—1)n by the statement (3). Substituting k=(c~10)/(m—1) into
a=1

(6.2) we have cggp—;ﬂi+1 that is Condition (if). We shall show that Con-

dition (iii) is necessary. Consider in (6.1) a set V; and the remaining m—1 sets

m—1
Vi Vigrers Vi,,_,» Then since ¢ 3 .Vi.=<gl>n2—yjc G#iy; a=1,2,..., m—1),
a=1
(6.1) becomes
— 152 _ a2
(6.3) {Mfc_l)i _ y,}(c i 1)(2m 2)n

SR [ S

Thus with respect to y;, we have

n?(m—1)2¢c — mk — m) n¥(m — 1)(2c — mk)
(6.4) Tele —k =1 VST e =R)

for j=1,2,....m

since ¢>k+1. Consider two sets V; and V; (i#j). Since the number of lines
joining ¥ and V; is n?, it can easily be seen by the statements (1) and (2) that

6.5 i+y)k+D)=n2>+y)k for i#j;ij=12..,m

holds. Thus we have

(6.6) Vi = I'—z—(Fn:_—l—)——l for all i except at most one,
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by the first inequality of (6.5). Applying (6.6) and the first inequality of (6.4)
to X y;, we have

6.7) m(m — 1)n? > (m - I)[ n? —l + n*(m—1)(2c — mk — m) )

2¢ 2(k+1) 2¢(c —k—1)
The second inequality of (6.5) gives
(6.8) »n< L%J for all i except at most one,

since k>0. The application of (6.8) and the second inequality of (6.4) to Iy,
gives

m(m — 1)n? . 2 n*(m~— 1)(2c — mk)
(6.9) — "< (m-— 1)‘_mm —g—k—, (e ——ck) >J

+ n*(m — 1) (2c — mk)
2¢(c — k) )

Hence combining (6.7) and (6.9) we obtain Condition (iii).

Note that Condition (i) of Theorem 5.1 is obtained by substituting k=0
into the inequality (6.7).

6.2. Saufficiency

For a set of parameters m, n and ¢ satisfying Condition (i), we write in the
form

— 2
(6.10) m(—mz:‘—l)—n=mna+r O<r<mn).

Then we have two cases; a=0 and a>1 to prove that the remaining conditions
(ii) and (iii) are sufficient.

1°) Case a=0: In this case, we obtain m=c¢ and n=2 by Condition (ii).
Define m? square matrices M;; (i, j=1, 2,..., m) of order two by

I, for 1<i<j<m-1
(6.11) M;=(G,, for 1<i<m-landj=m
0 for i=j,

M;; =G, , — M for i>j,

where I, denotes the identity matrix of order 1. Then it is easy to check that the
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0-1 matrix M=||M;;}| of order mn composed of these submatrices M,; satisfies
Condition (a) in Theorem 3.1 and Condition (b) in Theorem 3.2. Thus K,(n,
n,..., n) has an EPC-decomposition of degree c=2,

2°) Caseax1: Write r=md+s(0<s<m). Let J, and J, denote the
sets {1, 2,..., s} and {s+1, s+2,..., m}, respectively. Let

[ a+1 (r=1,2,..,d)

(6.12) a;, =
a (p=d,+1,d,+2,..,n

for ieJ, and A=1, 2, where d;=d+1 or d according as A=1 or 2. Then a;,’s
satisfy gl pﬁlaw= ('g)nz/c.' It can be proved that K,(n, n,...,n) has an
EPC-decomposition of degree ¢ by the fact that the matrices X, ¥; and M}, in
Theorem 3.3 can be constructed for the particular set of a;, in (6.12). The con-
structions of such matrices X, Y; and M7}, are given in Sections 7, 8 and 9, in
order.

7. Construction of X

As stated in [13], suppose that four nonnegative integral matrices X,, (4, u
=1, 2) satisfying

n¥(G,, 5, — I,) for A=yu
(1.1) Xou+ X, =

n*G,, ., for A # p,
(7.2) [X11 X321im = c(na + d))j;,

can be constructed, where j, denotes a t-vector whose components are all unity
and s,=s or m—s according as t=1 or 2. Then the matrix

Xy X2
(7.3) X =
X2 X2

is a required matrix satisfying (3.3). These submatrices X,, can be constructed
by the same method as in [13]. So we have the following results which are given
for the respective cases that n is even and odd.

(1) Caseniseven. Lets,c/m=s;x+y; 0<y,;<s;,for A=1,2. Then

2
XM. = %(Gu,u - Iu) for A= 1’ 2’

(7.4) ] )
X2 = (% + %)Guss + By Xor = (% = x)Girpn, = BT,
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where B is a 0~1 matrix of size 5, x s, whose row sums are all y, and whose column
sums are all y,.

(2) Casenisodd. Let

x=L20—mJ
2m |’
=1 m—-s—=1 _ e o f2¢=m _
yi=0m=1)——+ 5 c(na + d) sx—sl( > x),
2 — —
,V2=C(na+d+l)—(m—1)n+1+£———1——-(m-s)x=szzc m_x>.

2 2 2m

Let B be a 0-1 matrix of size s, x s, whose row sum vector @ and column sum
vector B are respectively

(yl! Yaseees }’z) for odd 8
{ L L+l 1) d
Y2 = S V2T V2 + 2,...,y2+ 5 or even §;, an
31/2 S1/2
(yh Viseeos }’1) for odd 53
ﬂT =
1 - 1 1 1 f
Vit S it V= e V1T 5 or even s,.
5212 52/2
Then
2 _
X, = n 5 I(Gu,u -1)+ T&M/zj,ru/z1—1) for A=1,2,
(7.5)

2 1 2 ]
Yo = (B FL + %)6un + B Xoy = (L = %)Goy0 = BT,

where T'{#:#2) =|jt, || is a square matrix of order v defined by

(7.6) l“ =

1 if j—1=i,i+1,...,i4+u,—1modv fori=1,2,. L——;—'—J
+

ifj-lEi,i+l,...,i+u2—Imodvfori—Lv';lJ 1[ +1_|+2...,v

0 otherwise.
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8. Construction of Y,

For the matrix X in the preceding section, partition the partial row sum
> x;; of X on the submatrix X, into two parts
JjeJa

) _|da+1) J (2) =[(” d;)a ]
(8.1) Sitia Lna+ 7, jgaxu » S na ¥+ d, ,E,‘x”

for ieJ, (A=1, 2). Further, partition the partial row sumIZJ x; of X on X,,
€Ju

into two parts

) _[dia+1) -l ) | (n=dy)a J
(82) Sl,lu I'na + d& jgux” ] SS.“, \-na_*_ dl jz;-“xij

for ieJ;, and A, p=1,2 (A#p). Let W,=|w{®| (i=1,2,..,m) be m non-
negative integral matrices of size 2 x m which satisfy

(8.3) jg; wi@ =S, (el

for o, A, u=1, 2 and which satisfy

2 (a) ¢
(8'4) le? = Xy; (l,] = 1, 2,..., m).

as=
Let Y;=|y;, ll (i=1, 2,..., m) be m nonnegative integral matrices of size nxm
satisfying (3.4) and (3.6), and furthermore, satisfying

da
(8.5) Y Yipy =W and Y Vi =wP
p=1 p=dat1

foried, (A=1,2)and j=1, 2,..., m. Then we prove the following lemma.

LemMma 8.1. If the above-mentioned matrix Y, can be constructed for
every i=1, 2,..., m, then the matrices Y,, Y,,..., Y,, satisfy (3.4)-(3.6).

ProoOF. Since Y, satisfies (3.4) and (3.6), it remains only to be proved that
the matrix Y, satisfies (3.5). Using (8.4), we have

n da
21 Vip,j = zlyw,f + ;Z = wiy + wf = x.
= =

Thus Y, satisfies (3.5).

As the first step we shall construct in Subsection 8.1 m matrices W;, W,,...,
W,, and then as the second step construct in Subsection 8.2 m matrices Y;, Y,...,

Y,
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8.1. Construction of W,

We write S; ;, as
8.6) 512;. = (5, — l)ugli).l gl;).za SS’%; (52— 1)“522;. - "5,2}1.

S8 = iy — Bl S = sl + 3,

for ieJ, and A, p=1,2 (A#p), where 0<r{®),<s;—1 and 0<r{®),<s, for
a=1,2. Let U® be an m x m matrix

vy U
8.7 U(‘)=l: }
Uy U

composed of four submatrices U® (4, p=1, 2) defined by

ui® JOT () aits
UR = | 0T |, U = it |,
L ug;.gljgﬂr h Lug;.}Zlm—s
(8.8)
[ 4@ 5407 ul®) 2207
U = “£+2 2T |, U® =] uld, 22]5;.2-23 s
Lughr | i

for each a=1, 2, where j{¥ denotes a 0-1 t-vector whose ith component is only
zero. Consider 0-1 matrices N{® (a, 4, p=1, 2) of size s, x s, satisfying
N(l)]s,. (r(ll)lus "gl)lw o rg,lgu)r

(8.9) for pu=1,2,
21)].1" (rg-%-)l ,2u9 rs+)2 S2uscere rSvtl,)Zu)T

(8.10) N - NP =X, -UY -UYP for 41=1,2
. —-N Y + N® =X, - U - UP for A#pu;A u=1,2, and
(8.11) (NW), = 0 for i=1,2,..,m,

where (A4),; denotes the (i, j)th element of the matrix A and X, is given in Section
7. Then we have the following lemma.

LeMMA 8.2. Suppose that the matrices of order m

NY N ¥R N
(8.12) N = [ ] and N@) = [ . :’
- Ng ) Nslz)

o Pt
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can be constructed. Then the matrices W, W,,..., W, satisfying (8.3) and
(8.4) can be constructed.

Proor. By Z x,,=SS‘},, S{2), and by (8.6) and (8.7), a combination of
(8.9) and (8.10) glves

(li)ls,. (r(lz)lw "52)1/4’ .3 "g,Z) )T

(8.13) for pu=1,2.

g%t)]s,. (rgi)l s 2p rs+)2 2pr s r;(nz,)Zu)T

Consider a 2 x m matrix W;=||w{#| defined by
(8.14) ng) = (U(a))u + (N(a)),j, a = 1, 2; j = ], 2,..., m

for every i=1, 2,..., m. Then it is easy to see that w(“)>0 for all «, i and j.
We have Z wi® = Z (U™, + Z (N“‘))U Sﬁ‘},, (zeJA) from (8.6), (8.9) and

(8.13). We also have Z wie) = Z (U(“))j+ Z (N®@),;=x,; from (8.10). Thus
the matrices Wy, W,,... W satlsfy (8 3) and (8 4)

From Lemma 8.2 the construction of W, can reduce to the construction of
N@), The following two lemmas, which are proved easily, are useful for the con-
struction of N(®,

LemMMA 8.3. Let D be a 0-1 matrix of size ax b whose ath row sum is 4,
for a=1,2,...,a. Let p,(a=1,2,...,a) be nonnegative integers satisfying
4,<p,<b for every «. Then two 0-1 matrices P and Q of size a x b each, which
satisfy Pj,=(p1, P2»---» Pa)T and P—Q=D, can be constructed.

LeMMA 8.4. Let D be a 0-1 square matrix of order a with zero diagonal
whose ath row sum is A, for a=1, 2,..., a. Let p, (x=1, 2,..., a) be nonnegative
integers satisfying A,<p,<a—1 for every a. Then two 0-1 matrices P and Q
of size ax a, which have zero in the diagonal positions and which satisfy Pj,
=(p1s P2s--+» Pa)T and P—Q=D, can be constructed.

Now we proceed to the construction of N®). Let ig, ig+1,..., ip+s,—1
denote all element of J,. Let J; and J) be the sets {io, ip+1,..., g +LS2—*J—1}

and {i°+|,£2i_|’ io+l_§24_]+l,..., i0+sl—1}, respectively. Then note that from
the construction of X given in Section 7 S{*), can also be written as follows:

St = (3= Duf + 7, SPh = (51— Du ~ R,

- (2)
S{D, = s,ull) — riL, S, = suP) + r@
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for ieJ) and

S = (1= DU + 0, si3,

(Sl - l)u;.()?) - r,l(J.Z)a

S"ua(”Z) + r’(Z)

Ss.l;u = suu;-(ul) - r;-(ul)’ SEZ}#
for ieJj, where 0<r{, ri®’<s;—1 and 0<ri®, ril¥<s, for A, p,a=1,2
A#w. Let D,,=X,,~UL-UR. We consider the construction of N2

K T A iu

Casel. n is even. We have u{®=u}® and ri®=r® for every i, u
Au Ap ip
and «, since S{=), =S¥, (ieJ};i'e ) by (7.4). First we construct N&.
2
We have r{=r% and u“’+u(2)—7, since  S{1),+S{3),= XJ)xi,:(sl—l)
A

(r D), r (1)

n;(ieJl) by (7.4). Thus D;;=0. Put N{@=T, 4+"22" for A, a=1,2 where
T{u1.42) is defined in (7.6). Then it is easy to check that (8.9), (8.10) and (8.11)
hold. We next construct N (Ap) and consider r{l) —r{?) denoted by 4,,.
Since S{!,+S{?),= Z x”-(m s)(2 +x>+y2 (ield,), 4,, takes elther -V,
or m—s—y,. When Alz-— —y,, we have D,,=B since ul{) +u® =" 3 ‘ix. We
also have y,<r{i¥<m-—s, where y, is the row sum of B. Therefore, it is
shown easily by Lemma 8.3 that we can construct 0-1 matrices N}’ and N
which satisfy N@¥j,._,=r3j, and N -N{Y=B. Namely, those matrices
satisfy (8.9) and (8.10). On the other hand, when 4,,=m—s—y,, we have
D,;=B-G,,_, since u“)+u(2)—2+x+1. We also have m—s—y,<r{V
<m-—s, where m—s~y, is the row sum of G,,_,—B. Therefore, it is verified

by Lemma 8.3 that we can construct 0-1.matrices N} and N} satisfying
N -s=rYj, and NP -NP=G,,_,—B, which satisfy (8.9) and (8.10).

Since S{3,+S{3, = 2 x,,-s(2 —x)—-y1 for ieJ, by (7.4), 4,, takes either

2

Y1 Or y;—s. When Ay, =y, ulh + Q}:%—-x holds. Thus we have D,, =
—BT. We also have y, <r{Y <s, where y, is the row sum of BT. Therefore,
it follows from Lemma 8.3 that two 0-1 matrices N§{ and N satisfying (8.9)
and (8. 10) can be constructed. On the other hand, when A4,,=y,—s, u$¥+

2’-——2——x 1 holds. Thus we have D,;=~BT+G,,_,,. Wealsohaves—y,

<r{®<s, where s— y, is the row sum of G,,_,,—~BT. Therefore, it follows from
Lemma 8.3 that we can construct 0-1 matrices N and N2 satisfying (8.13)
and (8.10). Note that a combination of (8.13) and (8.10) gives (8.9).

Case2. nis odd. We shall treat the constructions of N{¥ and N

(A#p) separately. First we construct N{® and there are two subcases with
respect to s;.
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Case2.1. s, is odd. We have u@=u}® and ri®=r{, since
S, =5, (iel}; i'eJy) by (7 5. Let A,,=ri®—r. Then since S{}),+

SEh= 3 xy=(s- DI il O1Y 1 (ieJ,) by (1.5), 4,, takes either s,12—-1 or

—s‘2~1. When 4,;= 2_1, we have D;=T{{s2~1/2.Ga-1/2) since u{} +uly
2 __ —

=1 We also have S 1<r(1)<s,1—1, where $2=1 s the row sum of

2

D,,. Therefore, it is verified from Lemma 8.4 that we can construct two 0-1
matrices N{9 and N satisfying (8.10), (8.11) and N{¥j. =r{Pj,, which
satisfy (8.9). On the other hand, when 4,,= —s—‘zj—l, we have D, =

— T{{sa=D/2,(sa=D/DT gince u( 4+ u(@) =" ; I, We also have & ) izl -1,

where SAZ— I is the row sum of —D;,. Therefore, it is shown from Lemma

8.4 that we can construct two 0-1 matrices N{Y and N¥ which satisfy N2j,, =
r@js,, N —N{@¥=-D,, and (8.11). Namely, those matrices satisfy (8.9),

(8.10) and (8.11). _
Case 2.2. s, is even. Let d,,=r{¥—r. Then since S{1,+S{?),=

3 x;=(s 1)”2‘1 Si(ie;) by (7 ither S#(then uSY
2 X=(8;— 24 (ieJy)) by (7.5), 4,, takes either 3 then uil+

Jjeda
2 —1> or — ‘+1<then ul) +u@P =" +l>. Let A}, =ri¥—ri. Then

€
u@= 3

since  S{1),+S52), = inj=(sl—1)n ‘1+£24—1(ie.1") by (1.5), 4, takes

either £ 1<then u’(1)+u’(2)=n22_1> or —~<then u"”+u’(2)=——n2+l). We
have Sﬁ“,{,l S, (iedi, i'eJ; and a=1, 2) by (8.1), since Z xu_ Z Xpj
Therefore, it follows that u{® >u’{®. Thus we have the followmg three p0551-

bilities:

Dll = TS?' %_1) lf (All’ All) = S" s2" - 1)

8.15) Dy =T ™) — =10 if (4, A“)—(-—s—‘+1 4 )

Dy = ~T( 30" it (A 430 = (=3 +1, - ).

With respect to the respective possibilities in (8.15), it follows from Lemma 8.4
and the method in Case 2.1 that we can construct two O-1 matrices N and
N satisfying (8.9), (8.10) and (8.11),

We finally construct N (A#yu) and we consider the following four sub-

cases with respect to s and m—s.
Case 2.3. s isodd. This case gives {9 =u}y and r{9 =r{, since S{*}, =
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2
SR (ieJi; 'eJD by (1.5).  Since Sfi,+50,= 3 x,-j=(m—-s)(n ¥ 1+x>
le . . [
+y, for ield,, r{y —r{? takes either —y, or m—s— y,,.2 Along the line similar
to Case 1, N{¥ and N satisfying (8.9) and (8.10) can be constructed for the
respective cases of 4,,=—y, and 4;,=m—s—y, where 4,,=r{y —r{®.

Case24. sis even. Let A,,=r{¥—r{%. Then since S{!},+S{},= ZJ
jeJa

2 .

-=(m-—s)(n ;1+x)+y2 = (ieJy) by (7.5), 4,, takes cither —y2+%
2

(then u(”+u(122)=§—;'—1+x> or m=s—yy+— (then u‘“-{-u(&’=£2il +x+1>.

2
Let 4j,=ri’~ri®. Then since S{1},+85,= % xij=(m—s)<” +1 +x>+ Vs
jed

—l—(ieJ”), ', takes either —y2—5<then WP +uP=l ;1+x> or m—s

-y, -—-—(then wP+uP=" 2+1+ +1) We have S{#),>S{3), for ieJ,
i’eJy and a=1, 2, since Z Xpj > Z x,;. Therefore, it follows that u{$) >u(®.
Thus we have the followmg three poss1b111t1es

D,=B if (A,Z,A;2)=(_y2+%,_y2_L>,

Os/l,m—s
(8.16) Dlz = B -
G.!/Z,m—s

if (A di) =(-n+Lim-s-p-1),
DIZ =B — Gs,m—s

if (443, 475) = (m—s—- Va2 +—;—,m—s—y2~—;—),

where O, is the txu zero matrix. With respect to the respective possibilities

in (8.16), it follows from Lemma 8.3 and the method in Case 1 that we can con-
struct two 0-1 matrices N{L and N{¥ satisfying (8.9) and (8.10).

Case2.5. m—s is odd This case gives u$® =u® and r{¥=r;®. Since

{4, +53, = 2 x,j—s< 5 1—x)—y1 for ielJ,, r$¥—r$? takes either y, or
yi—s. Itis venﬁed easily that N{}) and N3 satisfying (8.9) and (8.10) can be
constructed for the respective cases of 4,,=y, and 4,,=y,—s where 4,,=
rsl)_rgz)

Case 2.6. m—sis even. Since uj® >u{® is obtained by (7.5), it is seen
easily that we have the following three possibilities:

Dy = — BT if (4,4, A31)=<}’1+‘;—J’1—%—>,
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G(m—s)/z,.v .
(8.17) Dy = — BT + if (4,4, Aél)=<}’1+"l~‘s,y1 "‘l‘)’
O(nl—-s)/z,s . 2 2

D21 = — BT + Gm—s.s

i (o 450 =(pi+ 4 =5, 70— 4 = 5),

where A,,=r{)—r$? and Ay =ry¥—ry?. In the respective possibilities in
(8.17), it follows from Lemma 8.3 and the method in Case 1 that we can con-
struct two 0—1 matrices N$! and N{% satisfying (8.9) and (8.10).

8.2. Construction of Y,

We shall construct m nonnegative matrices satisfying (3.4), (3.6) and (8.5)
by using m matrices W;=|w{?| (1—1 2,..., m) of size 2x m which are given in
Subsection 8.1. We write w{® a

W%}) =d,f{} + €}, 0<el) <d,
(8.18)
P=(n—d)fP +e?, 0<eP<n-d,

forieJ, j=1,2,...,mand A=1,2. Let
(8.19) fI9 = (a+ e — ﬁlfgp and @ = ac - ): £
P

for i=1, 2,..., m. Then we can construct two 0-1 matrices Z{V’ of size d,xm
and Z{? of size (n—d,)x m for every ieJ, and A=1, 2 [10], [16] which satisfy

Z(l) _fgl)ld Z(I)T (e( S)’_“, e(iyxn))'r and
(8.20)
ZSZ)Jm = iZ)]n—d,w Zg:”jn—d; = (eg%)’ eﬁ%’,..., egrzn))r'
Define the matrices
Y(l) = ]d4(f§l o f 5 fm) and
YSZ)‘ = jn—d;(fs%)’ ff%),,fgﬁ.))

for ieJ,. Further, define a nonnegative integral matrix Y;=|y,, ;|| of size nxm
by '

(8.21)

Ygl)‘+zgl)
v {

for i=1,2,.,m.
Ygz)‘+zgz)



Claw-Decomposition and Evenly-Partite-Claw-Decomposition 523

Then we have (Y{*+Z{)j, =( i SIP+ S, =(a+ Dk, and (Y +ZP)j,

=( z FP+ )iy, =aCiy-4, by (8.19), (8.20) and (8.21). Thus Y, satisfies
3. 4) for every i. It can'also be shown easily that (8.5) holds by applying (8.18),
(819) and (820) to YTj,=Y{O'Tj, + Y('Tj,_, 4+ Z(OTj, +ZTj, . We
shall prove that Y; satisfies the remaining condition (3.6). It can be shown

easily that a(k+1)<n. From this fact and the structure of Y, it is sufficient to
show that

(8.22) (@a+ Dk < f{P< min((a + D(k + 1), n) — &Y (Jj#1,
(8.23) ak < fP < a(k + 1) - 6 (j#1
for ie J, where 6‘{;’:1 or 0 accordmg as e(“) is a positive integer or zero.

Casel. i,jeJ,(i#j). In this case s;>2 and d,>1. By the structure of
W, in Subsection 8.1 and by (8.6) and (8.18) we have
@20 s o P e S uh— el S A%+ (= el
! d; - d; d}.(sl -1 di(s; — D)

Substituting S1; in (8.1) into (8.24) we obtain

_ (a+ Dk 1 _

where R= {0+ D)+ (s, ~ De{P}/dy(s;—1). R<1 is obvious. Thus from

Lemma 8.5 given later it follows that f{{>(a+ 1)k.

Put yo=min ((a+1)(k+1), n). By considering the structure of W; we have

( ) _ of1) (1) 4 1) _ (D) St1)
8.26 (1) — Wij €ij < Ui, za i [ ¥ - i,Ad — R ,
( ) Ty d, d, di(s; — 1) !

where &{’=1 or 0 according as r{}), is a positive integer or zero and R, ={r{});
+(s;~D(e}P — e} /d(s,—1). Substituting S{1); in (8.1) into (8.26) we ob-
tain

(8.27) Ho — 8 — fiP > po + R, — 8P — R,,

where R,={(a+1) Z i }(na+d,)(s,—1). Obviously R,—8{}P>—1.
Therefore, (8.27) becomes

(8.28) Ho — &P —fi¥ > po — R, — 1.

Suppose ug=n. Apply the inequality Z xl < (85— 1)” i obtained by the
structure of X in Section 7 to po—R,. Then since a>1 and d 1=>1, we have
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a+1 n+1
na+a',1 2

(8.29) fo— Ry =n— Ry =n~—

_ 1 n?—1 ‘__ =
_na+dl{ L@ 1) +na 1}20.

Thus it follows from (8.28) and (8.29) that f{P<n—4&V. If py=(a+1)(k+1),
then by Lemma 8.8 given later we have

(8.30) po — Ry =(a+ Dk +1)~R,

(a+ Dk + 1) _ 1
= T+ d, {("" T4 - T DEFD ,-EA"”‘} 2 0.

Thus we find f{V<(a+1)(k+1)—6&{P from (8.28) and (8.30). Hence (8.22)
holds for i, jeJ, (i#j). By Lemmas 8.5, 8.8 given later, we can similarly show

(8.23).

Case2. ieJ,andjeJ,(A#u). Inthiscases>1. Along the method simi-
lar to Case 1, we obtain

@3) [P -(@+Dk> M{L 3 x, — (na + dl)}+ R,,

(8.32) min (@ + D) (k + 1), n) — 6 — f{P

. ___a+1
> min ((a + 1) (k + 1), n) —-—-——-———(na F d).)S“ j%ﬂxu: + R29
where R; and R, are the numbers satisfying R; > —1 and R,>—1. Applying
Lemmas 8.6 and 8.7 given later to (8.31) we have f{P>(a+1)k. Let po=
min((a+1)(k+1), n). Suppose po=n. We have the inequality 3 x;;<
j'elu

2
s“<" ;—1 +x+1) by the structure of X in Section 7. Therefore, by a>1, d;>1

nt—1 .
and 5 —x—1>0, we obtain

___a+1 ) _a+1 /41 )
(8.33) o m(na+d4)s“ j%“xij,ZM e+ \ 2 +x+1

_ 1 n~-1__ _ _
_m+d1{( ~Lox 1)(a 1) + nd, 1}20.

Thus it follows from (8.32) that f{¥<n—8. If py=(a+1)(k+1), then by

Lemma 8.9 given later we have

a+1
bo = Gra + dys, ,~§, iy
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_ @+ Dk+D)

na + d;_ {(na + dl)

_— > 0.
PR

Therefore, it follows from (8.32) that f{P<(a+1)(k+1)—45{). Hence (8.22)
holds forie J, and jeJ, (A#u). By Lemmas 8.6, 8.7 and 8.9 given later, we can
similarly show (8.23).

Some lemmas used above are given in the following.
Put n?=2ka+ g (0<p<2k).

LeEMMA 8.5. Ifk>1 and s;>2, then the inequality

1 ,
(8.34) Gi= Dk JEZJ‘; ij2na+d, for ieJ,
holds for the matrix X given in Section 7.
Proor. It follows from (7.4) and (7.5) that ( ¥ x;)/(s;—1Dk=[n?/2k]=a
jed
for every ieJ,. Therefore, it is enough to prove t}ha‘tt a>na+d, holds. Since

2 _ 2
(8.35) a—(na+d)=(2; 2/’;k> - ((Ln_fcl_)n_ _ %>
~mwl s _ B
=% Tm 2w

it follows that (8.34) holds for 1%2. Consider A=1. We have

(m — 2)kp
(8.36) > e

by the inequality ( 2>n2/c<(m I)L J+v2 which is obtained by Condition

(iii) in Theorem 5.2. By (8.36) and s>2, m(n*— B)l—m(m— DkB+2cks>
m(m—2)kfi ~m(m — 1)kf+4ck=4ck—mkp is obtained. Thus we have

2 — —
x—(na+d+1)= m(n* — B)i Zn’:lgn,: DkB + 2¢cks _ | > 4ck2mcr’1:kﬁ

1.

Therefore, noting <2k we have a—(na+d+1)> —1.

LeMMA 8.6. If both of k and s are positive integers, then the inequality

(8.37) Z j2na+d+1 Sfor i=1,2,..,5

(m—S)

holds for the matrix X given in Section 7.
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Proor. We have from (7.4) and (7.5)

i ;= (m— s)( m) % if nis odd and s is even,

=S

2
={(m — s)(% + —}%) otherwise

2
for i=1,2,...,s. It follows from s>1 that %+% >(na+d+1)k. Put N=

2
(m——s)(%+-c’ﬁ>——%. Then we have N>(m—s)(na+d+1)k for odd n and

even s, since N is an integer in (7.5). Hence (8.37) holds.

LeMMA 8.7. If k, s and a are all positive integers, then
(8.38) Sl—kélx,-jzna+ d fori=s+1,s+2,....,m
holds for the matrix X given in Section 7.

Proor. We have from (7.4) and (7.5)

i n2 c 1 . . .
xij2s\5 ~m) =5 if nis odd and m—s is even,

2
n (4 .
= s(~2~ w otherwise

for i=s+1, s+2,..., m. We shall first prove that
(8.39) L= (nat d)k

holds, and there are three cases to consider.
2
Casel. B=0 and I>k. This case gives [v,] <—3F_1
1) Thus since =0

Using Condition

(iii) in Theorem 5.2 we have <m>n2/c<m|_v2_| <m| =

and s>1 we obtain na +d£2—;—2. Therefore, (8.39) holds.
Case2. B=0 and I<k. From s>1 and (8.35) it follows that na+d<

2 2
From this fact and by k>1 we have ZL—i—-(na+d)k 2%—-}% —(a—1)k

a—1. > “m

=_IC;I.ZO_
m

Case 3. B#0. As seen in (8.35) it is sufficient to examine the following

three subcases with respect to na+d.
Case 3.1. na+d<a—2. (8.39) holds obviously, since k>1.
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Case 3.2. na+d=a—1. If f>2, then (8.39) is obvious. Suppose f=1.
. . (m—-Dn? s n*—1
Then using na+d=a—1 we have the equation e T m +1= .

Solving for I we obtain I=(m—1)kr/(n?—r), where r=1 +2k<1 - %'-) We also
obtain r <142k <n since n is odd and since a>1. Therefore,

(840)  I=(m - Dk <(m— )”;1 n__m-1

n—n 2

Thus it follows from (8.40) that (8.39) holds.

Case 3.3. na+d=a. We have sc _(m-Dn?_(m—f)c_(m—1B _
e ) m 2 2k 2

(nzz—-kﬂ)l by na+d=a=(n2_ﬂ)/2k_ By using (836),

sc _ (m—l)ﬂ nz-—ﬂ)ls(m—l)ﬁ_(m—Z)kﬁ=£_
2k 2 2k 27

Thus B ZTn—' Using this inequality for § and noting s >1 we have (8.39). Put

2
N=s 1'2— —%)—- % Then from (8.39) it can be seen easily that N >s(na+d)k
for odd n and even m—s, since N is an integer in (7.5). Hence (8.38) holds.

Put n2=2(k+1)a’'— ' (0< ' <2(k+1)).
LemmA 8.8. Ifs;>2, then

(8.41) '(}'l—_:'—l)lm]z x;<na+d, Sfor i€eJ,

eJa

holds for the matrix X given in Section 7.

Proor. It follows from (7.4) and (7.5) that ( Z x,j)/(s,, -Dk+D<
[n?[2(k + 1)] =o' for every ieJ;. Therefore, it is enough to prove that

(8.42) na+d,>o

holds. It can be shown easily that (8.42) holds for A=1. Consider the case A=2.
We have by Condition (iii) in Theorem 5.2

(k + D){(m — Dn* + B’}
(8.43) c < n’”+ﬂ n

Using (8.43) and #' <2(k+1), we have

(844) ma+d—oq="mzn’_ s _m+p
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n2 + B (m — n? n+ B
2(k D m-DP ¥ 2+ 1D ﬁ
_ n+ B B _ 5
T m = Dn? + B 2k+1) m
>—__MHF s

m—-—Dn2+p8 m
Since §'<n? and since s, >2, i.e.,, s<m—2,

n?+ g s
m—-10n+F Tm

-——2 -1

(8.45) na+d-o>-— -2
m

i
m
Hence (8.42) holds.

LemMmA 8.9. Ifs>1, then

(8.46) m—l—)‘1§+1x,1 <na+d+1 Sfor i=1,2,...,5, and

(8.47) Tsﬁc_l—-l-—ljlg‘lx”sm-" d for i=s+1,s+2,....m

hold for the matrix X in Section 7.

Proor. We have from (7.4) and (7.5)

3 (2 + V4L i oai i
2 x;<(m s)<2+m)+2 if nis odd and s is even,

—m -+ € ~
=(m s)( 5 + m) otherwise
fori=l1, 2,...,s. We shall first prove that
2
(8.48) (na + d + D(k + 1)21’2—+%

holds. It is enough to examine two cases; na+d>a’ and na+d=a'—1, because
na+d>ao' —1 by (8.44).
Case 1. na+d>a'. (8.48) holds, since
a+d+DEk+D-(T+ ) 2@ +nk+n-(5+L)

ﬂ +k+l——>0

(m—s)c _ _ (m—1)n?
m

Case?2. na+d=a'—1. In this case we have 3
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+GR L. Therefore, by (843,
(m — s)c - (m — )n? + (n? + B)e
" 2 2% + 1)
- (m — 1)n? (m - Dn? + g B
= 5t 5 =5.

Thus ﬂ’zz(—m;}‘ﬂc—zz—ni. Using this inequality for f’ we have (8.48). Let
. .

N=(m—s)<?2—+£t—>+ 1. Then from (8.48) it can be seen easily that (m—s)-

(k+1)-(na+d+1)>=N holds for odd n and even s, since N is an integer. Hence

(8.46) holds. It can also be shown easily that (8.47) holds.

9. Construction of M}

As seen in Subsection 8.2, we know the following fact from the structure of
Yi=lyipl. Vip..; takeseither f{¥ or f{¥+1 and n—y,, , takes either n—f%
or n—f{% —1 for every pair of ieJ, and jeJ, (i# j), where p, and g, (x=1, 2)
are integers satisfying 1<p,<d,, d;+1<p,<n,1<q,<d, and d,+1<q,<n.
It can be shown easily from (8.22), (8.23) and [10], [16] that if one of d;, n—d,,
d, and n—d,, is zero, then a 0-1 matrix M§; of order n satisfying (3.7) can be con-
structed for every pair of i and j satisfying ieJ,, jeJ, and i<j. Consider
4, w=(1, 1), (2, 2) and (1, 2) and suppose that all of d;, n—d,, d, and n—d,
are positive integers. Then we have the following Statements A, B, C and D.

STATEMENT A.
R+l i e 21
Iz
P if e =0
holds for ieJ, and je J, (i# j).

STATEMENT B.

AP +2  if P =0 and P >P-h=2
< 3

2P+ 1 otherwise
holds for ie J, and je J, (i# j).
STATEMENT C.
2 if e¥=>1

n—f&%’z[ \
1 if e¥=0
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holds for each case of (a) even n and i,jeJ, (i#)), (b) odd n, d,>2 and i, je
Ji(i#j))and (c)ieJ, and je J,.
STATEMENT D.
% if n+d,isoddand €3 > n_—___ag,;z
n—f@ >
'—lizfdl otherwise

holds for ieJ, and jeJ, (i# )).

It can be verified by k>1 and Lemmas 8.5, 8.6 that Statement A holds. It
follows from a>1 that Statement B holds. Statement D can be shown by the
structure of X given in Section 7 and by considering a>1. Furthermore, by the
structure of N{¥ given in Subsection 8.1, it can be shown that Statement C holds.

By applying the above Statements A, B, C and D to the existence theorem
[10], [16] of 0-1 matrix, though some calculations are needed, we can show that
a 0-1 matrix M}, of order n satisfying (3.7) can be constructed for every pair of i
and j satisfying ie J,, je J, and i<j.
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