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INTRODUCTION

Pleistocene clay-bearing sediments of parts of northwestern Wash­

ington and southwestern British Coliambia were studied in an attempt to 

determine the clay mineral composition of these units; the origin of 

these clay minerals; and any correlation between clay mineral composi­

tion, sediment type, location, or probable geologic history of the 

sediments.
The Pleistocene stratigraphy of the area is fairly well known, 

although in some specific locations the stratigraphy has not been 
determined. Recorded work in the region dates back to Dawson (1887).

The units studied range in age from the greater than 50,000 
year old Double Bluff Drift to Holocene (Recent) river sediments. The 

units are composed of silt, clay, peat, gravel, sand, till and glacio- 

marine drift.
Previous studies of the clay mineralogy of Pleistocene and Holo­

cene units in the vicinity of the study area and their source rocks 
are quite limited. Subbarao (1953) found kaolinite, illite and chlorite 

in glacial clay in Seattle, Washington. Mullineaux, Nichols and Speirer 
(196U) found a greenish zone of weathered clay on unweathered pre-Vashon 

Drift on Capitol Hill in Seattle. The clay minerals in the unweathered 

sample consisted of chlorite, illite and montmorillonite in order of 
decreasing abundance. In the upper portion of the weathering profile, 

montmorillonite was the most abundant constituent, chlorite and kaoli­

nite were next most abundant, but illite was not found. Mullineaux 

(19^7) reported nonglacial clay at the same Capitol Hill location to 
be similar to those in the weathered deposits. Kelly (1970) found 

illite, chlorite and vermiculite in rocks of the basal Chuckanut For-
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mation near L^e Samish. Reynolds (l97l) foimd vermiculite, mixed-layer 

vermiculite-phlogopite, ferruginous bauxite, and montmorillonite-group 

mineral.s to be forming in the northern Cascades at the present time.
Willman, Glass and Frye (1963 and I966) studied in detail the clay 

mineralogy of Pleistocene tills and their weathering profiles in Illinois. 

Distinct differences in the clay mineralogy of the different tills were 

found. This report is an attempt to do a similar study on the glacial 

deposits of the north and central Puget Lowland, Fraser Lowland, San 
Juan Islands and Cascade foothills in Washington and British Columbia.

Samples were collected from sea cliffs, road cuts, gravel pits, 

river banks and river beds from sea level to an elevation of six hundred 

feet in the Cascade foothills. The sample sites were chosen because of 
their known or postulated stratigraphic position. A total of 85 samples 

were analyzed during the course of this study.
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REGIONAL SETTING

The Pleistocene and Holocene deposits studied occur in the north­

ern and central Puget Lovland, the foothills on the vestern edge of the 

Cascade Mountains, the San Juan Islands, and the Fraser Lowland in north­

western Washington and southwestern British Columbia. The area is border­

ed on the north by the southern edge of the Coast Mountains, on the west 
by the Olympic Mountains and Vaincouver Island, on the east by the Cascade 
Mountains, and on the south by a line approximating 48°N latitude. The 

western portion of this area is composed of numerous islsuids surrounded 
by salt water. The eastern portion consists of four broad alluvial val­

leys and the Cascade foothills.

SOURCE AREAS

Three probable sources for the late Pleistocene and Holocene depo­
sits studied are (l) the Cascade Range to the east, (2) southwestern 

British Columbia, eind (3) local units in the lowlands. Easterbrook (1963) 

found (1) rock typical of a Canadian provenance in the Bellingham Glacio- 

marine Drift in a deposit near Deming, Washington, (2) sand fragments of 

local provenance in the Deming Sand at the same location, and (3) rock 

types from the Cascades in the present Nooksack river at the same loca­

tion. The large quantity of British Columbia-derived rock fragments 

found in the glacial deposits indicates that southwestern British Colum­
bia is the principal source of the glacial deposits in the study area 
(Fig. 1). Easterbrook and Rahm (l970) reported glacial erratics of 

Canadian rock types as high as 5,700 feet in the Cascades. The rock 
fragments found in the interglacial and nonglacial deposits studied 

indicate that the Washington Cascades and local units are major sources

3
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glacial movements
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Uther Unmetamorphosed Rocks

Fig, 1. Generalized geologic map of southern Uritish Columbia 
and northwestern Washington (after Monger and Hutchison, 1971) 
with overlay of glacial features (Stockwell1963). .



of the material in these deposits.

British Columbia Source Area
Many people have studied the geology of southwestern British Colum­

bia. The following is a summary of work reported by Stockwell (19^3) 

and Monger and Hutchison (l97l). Most of the rocks in this area are 
either granitic intrusive or low-grade metamorphic rocks (Fig. l). Les­

ser amounts of sedimentary, high-grade metamorphic and volcanic rocks 

are present.
One of the more extensive xinits is the Tertiary Coast Range Batho- 

lith, a zone of predominately granodioritic (but including granite to 

gabbro) multiple intrusions that underlies much of southwestern British 

Columbia. A coarse-grained, pink feldspar-bearing granite from the 

Coast Range Batholith is quite distinctive in the glacial deposits.

Smaller granitic intrusions are also found on Vancouver Island 

and east of the Coast Range. These probably contribute some material 

to the glacial deposits in the study area, but the rocks from these 

units are not distinctive.
Metamorphic rocks are also extensive in southwestern British 

Colximbia. These are mainly metasediments and metavolcanics of late 
Paleozoic age and younger. As with the granitic rocks, fragments of 

the metamorphic rock types are also abundant in the Pleistocene deposits 

of the study area. For purposes of this study, the metamorphic rocks 
have been divided into low-grade metamorphic rocks (greenschist, sub- 

greenschist and blueschist facies) and high-grade metamorphic rocks 

(amphibolite facies) according to the phyllosilicates present. The 

low-grade rocks may contain micas. The presence of chlorite in the 

glacial deposits should be a good indication that their source is,

5



at least in part, an area of low-grade metamorphic rocks. Most of the 

metamorphic rocks in southwestern British Columbia are of low grade, but 
some high-grade metamorphic rocks are also found. Nonfoliated metamor­

phic rocks in this area include quartzite, metagreywacke and metaconglom­

erate. The Jackass Mountain m.etaconglomerate is especially distinctive 

in the glacial deposits.

Unmetamorphosed sedimentary and volcanic rocks make up the remain­
ing rocks in this area. Most of these are of Carboniferous age or 

younger. Most of the sedimentary rocks are shale, sandstone and con­

glomerate, but some limestone, greyvacke and argillite are also found. 
Andesite and basalt are the most abundant volcanic rocks.

Washington Source Area

The following is a summary of work on the geology of northwestern 
Washington by Misch (1966) and Monger and Hutchison (1971)• Most of 

the rocks in this area are similar to those found in British Columbia, 

but there are a few obvious differences.

Metamorphic rocks make up most of the pre-Pleistocene deposits. 
Low-grade metamorphic rocks (phyllites and greenstones) are especially 

abundant in the lowlands. Both low-grade and high-grade metamorphic 
rocks (greenschist to amphibolite facies) of the Yellow Aster Complex 

and Cascade Metamorphic Suite are abundant in the Cascades.

Sedimentary rocks are also abundant in northwestern Washington. 
Sandstone, shale and conglom.erate of the Chuckanut and Huntingdon for­
mations (Cretaceous to early Tertiary) are found in the lowlands and 

the Cascade foothills. Late Middle Paleozoic to pre-Late Cretaceous 

eugeosynclinal deposits composed of greywacke, chert, argillite, lime­

stone and volcanic rocks are found along the western flank of the
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Cascades. Thqse rocks compose the Chilliwack Group, Nooksack Group, 

Wells Creek Volcanics euid Cultus Formation.
Late Pleistocene glacial and interglacial deposits are abundant in 

the lowlands and probably contributed much material to later deposits.

The reworking of earlier Quaternary deposits by later glaciations has 

complicated any attempt to use source area as a method of stratigraphic 

differentiation of the \anits studied.

Igneous rocks are more common in the Cascades than in the lowlands. 
Granodioritic rocks are moderately extensive in the north Cascades. The 

Mt. Baker Andesite is a distinctive unit in the Cascades and rock frag­

ments from it are found in some interglacial deposits in the lowland.

LATE PLEISTOCENE AND HOLOCENE GEOLOGY

Pleistocene deposits in the study area represent at least three 
periods of glaciation and three interglacial or nonglacial periods (Table 
l). The study of these deposits is complicated by the time-transgressive 

nature of their deposition. Work on the deposits dates back to I898. 
Modern studies include particularly. Armstrong (1956), Armstrong, Cran- 
dell, Easterbrook and Noble (1965), Crandell, Mullineaux and Waldron 
(1965), Easterbrook (1963, 1966, 1968 and I969) and Easterbrook, Crandell 

and Leopold (I967).

Double Bluff Drift
The Double Bluff Drift is the oldest Pleistocene deposit recognized 

in the study area. Material overlying this unit is too old to date by 
C^^ methods and no absolute date can yet be assigned to it. The Double 

Bluff Drift is exposed on Whidbey and Camano Islands and at Point Wilson 

on the Olympic Peninsula. The samples used in this study are from the

7
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type locality^at Double Bluff on Whidbey Island. This unit contains till, 

glaciomarine drift, sand and gravel. It has been tentatively correlated 
with the Stuck Glaciation (Easterbrook and others, I967).

Whidbey Formation
The next younger unit is the Whidbey Formation. Peat from this lonit 

has yielded dates of greater than l47,600 years (Easterbrook, Personal 

Communication, 1972). Exposures of the Whidbey Formation are reported 
from Whidbey, Guemes and Camano Islands and from Point Wilson on the Olym­
pic Peninsula (Easterbrook, I968 and 1969)» The samples used in this 

study are from Double Bluff and other locations on Whidbey Island. The 
formation consists of sand, silt, clay and peat, which were deposited in 

a floodplain environment dviring an interglaciation thought to be equiva­

lent to the Puyallup Interglaciation.

Possession Drilc
The next younger unit is the Possession Drift, which is made up of 

till and lesser amounts of peat, outwash deposits and glaciomarine drift. 

The Possession Drift has been reported on Whidbey and Guemes Islands and 
at Point Wilson on the Olympic Peninsula. Carbon l4 dates from Straw­
berry Point on Whidbey Island have given an age spread from 1*7,600 years 
B.P. to sometime between 3l*,900 and 27,000 years B.P. (Easterbrook, 19^9), 

thus correlating with the Salmon Springs Glaciation.

Olympia Nonglacial Sediments
Olympia nonglaciad deposits in the Puget Lowland have been corre­

lated with the Quadra Formation of southwestern British Columbia. Samples 

were collected from Point Grey in British Columbia and Strawberry Point 

on Whidbey Island. The formation is made of sand, gravel, silt and peat
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that were deposited in swajnp, lacustrine and floodplain environments. 
Carbon l4 ages for the Quadra Formation in British Columbia indicate an 
interval from at least 36,000 to 2^+,000 years B.P. In the Seattle area 

the range of the Olympia nonglacial interval is from 35,000 to 15,000 

years B.P. These ages indicate that the Possession Drift vas deposited, 

at least in part, during the latter portion of this interval. Samples 

of peat from the Olympia sediments at Strawberry Point have given an age 
spread from 2T,200i^^§§ years B.P. to 22,7001550 years B.P. (Easterbrook,

1969).

Fraser Glaciation

The Fraser Glaciation, which was the last major glaciation in the 

area, has been divided into the following units from oldest to yo\ingest: 
Vashon Stade, Everson Interstade and Simas Stade (Armstrong and others,
1965).

Vashon Stade. The Vashon Stade, represented by the Vashon Drift, 

includes the Esperance Sand and Vashon till. The Esperance Sand is made 
of sand and gravel deposited as the Vashon glacier advanced. In south­

western British Columbia deposition of the Esperance Sand was ended by 

advancing ice 20,000 years ago.
The Vashon till, made of compact massive till with minor sand and 

gravel lenses, is probably the most widespread glacial deposit in the 

study area. In British Columbia this unit is known as the Surrey till. 

Deposition of the Vashon till was ended by downwasting and floating of 
the glacier. In the San Juan Islands deposition ended 12,500 years B.P.

Partridge Gravel. Easterbrook (1968) reported a pebble-to-cobble 

gravel and sand that was deposited between the Vashon Stade and the

10



Everson Interstade. It is known as the Partridge Gravel from its type
A

locality at Partridge Point on Whidbey Island. Samples were collected 

from this location. The Partridge Gravel was probably deposited in 

water near stagnating ice.

Mary Hill Mudflow. A mudflow of imcertain age was found at the 

Mary Hill gravel pit in Port Coquitlam, British Columbia. Sam.ple BC-5A 

was collected from this location. The unit is located near the top of 
the pit at an elevation of 2T0t5'. From work by Armstrong (1965), this 

\mit would seem to be post-Vashon Stade (Surrey Drift) and pre-Everson 

Interstade (Capilano sediments). Its age is about 12,000 years B.P.

The deposit is located above a 20'-thick brown sandy gravel bed 
(Surrey Drift) and below a 2'-thick brown clayey silt with occasional 
pebbles (Capilano sediments). The mudflow is composed of a 2" to 2'- 

thick brown sandy silt with occasional pebbles.
The mudflow was recognized by its tabular nature, diamicton tex­

ture and its clay mineral content. The tabular nature of the deposit 

and its diamicton texture are evidence that this unit is either a thin 

till, thin glaciomarine drift or a mudflow. It is unlikely for a till 
or glaciomarine drift to be so thin (2"). The presence of a large 
amount of soil-type clay mineral (mixed-layer mica-vermiculite) is good 

evidence of the unit's nonglacial origin. VHiether the deposit was de­

posited subaerially or subaqueously is not known.

Everson Interstade. The Everson Interstade is represented pre­

dominantly by glaciomarine drift formed under floating ice. The float­

ing ice resulted from an invasion of the sea as the Vashon glacier 

retreated and thinned. Minor peat, clay and sand also occur. Along

11
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Bellingham Bay and the Nooksack River at Deming, the Everson Interstade 

is separated into three rock-stratigraphic imits: the Kulshan Glacio- 

marine Drift, the Deming Sand, and the Bellingham Glaciomarine Drift.
The Deming Sand was deposited during a short emergence of the land. A 

peat found in the Deming Sand gave a age of ll,6i+C±275 years B.P. 
to about 11,000 years B.P. (Easterbrook, 1969).

The Everson Interstade is represented by the Capilano sediments 
in British Columbia. The Capilano sediments are divided into three rock- 

stratigraphic units: the Whatcom glaciomarine deposits, the Newton stony 

clay, and the Cloverdale sediments.

Sumas Stade. The Sumas Stade, represented by the Sumas Drift found 
in the northern portion of the study area, consists of till, outwash, and 

ice-contact sediments. The till and outwash sediments were deposited 
directly on the Everson Glaciomarine Drift. Carbon lit ages from the 

Fraser Lowland indicate that the advance of Sumas ice began about 11,000 

years B.P. and that the deposition of outwash sediments ended about 10,000 
years B.P. (Armstrong and others, 1965; Easterbrook, I969).

Holocene Sediments

The youngest deposits studied are Recent silt, clay and sand fotind 

in transport in the major rivers in the study area. These deposits repre­

sent the present Holocene nonglacial period.

CLAY MINERALOGY

Procedures

Samples of Pleistocene sediments were collected from outcrops and 
streams throughout the study area (Fig. 2). Their location, color, eleva-

13



tion, stratigraphic location and sediment type vere noted (Appendix I&II) 

The samples vere then placed in plastic bags and taken to the laboratory 

for analysis with an X-ray diffractometer.

In the laboratory, the samples vere dispersed in distilled vater 
using a fev drops of concentrated NHi,OH as a dispersing agent. The frac­

tion finer than tvo microns vas obtained through gravity settling of 

the slurry. This portion vas dravn off by pipette and dropped onto tvo 

glass and tvo Coors porcelain slides vhich vere alloved to dry at room 

temperature.
Diffractograms vere run on an X-ray diffractometer after the slides 

had undergone the folloving treatments. A.ir dried glass and porcelain 

slides vere run on the diffractometer after storage in the laboratory 
atmosphere. The air-dried porcelain slides vere heated to 1+50°C and 

alloved to cool to room temperature. These vere X-rayed, heated to 575°C 

for one hour, alloved to cool and X-rayed again. The other glass slides 

and a fev other porcelain slides vere exposed to an ethylene glycol atmos 
phere at 90°C for at least 1^/2 hours. These slides vere stored in an 

ethylene glycol atmosphere until they vere X-rayed.

Some of the samples vere also treated vith HCl to determine the 
presence or absence of kaolinite. This treatment involved boiling the 

less-than-2-micron size fraction in IN HCl for four hours and then X- 

raying the air dried samples.

X-ray diffractograms vere recorded using a General Electric XRD-5 
diffractometer with nickel filtered copper radiation at UOkv end 20ma.
The range 20 = 2° to 20 = 35° was found to be most useful and least 

wasteful. A beam slit of 1°, a detector slit of .1° and a goniometer 

speed of 2° 20 per minute were used. Range and time constants of
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1000CPS/l4Sec. 2000/1+ and 5000/2 were used.

Clay Mineral Identification

The following clay mineral groups were identified by their charac­
teristic OOil reflections: montmorillonite, chlorite, clay sized micas, 

kaolinite and mixed-layer minerals. The following non-clay minerals 

were also identified from the X-ray diffractdgrams: quartz, amphibole 

and feldspars.

Montmorillonite ♦ Material that shows expansion from about ll+A to 
17A on glycolation was assigned to the montmorillonite group (Fig. 3).

This material could also include swelling chlorites and vermicxilites, 

but is grouped with montmorillonite because of difficulty of positive 

identification. Montmorillonite group minerals were found in alm.ost all 

samples. The larger amount of these minerals in the brownish samples 

would seem to indicate that montmorillonite is forming in the present 

weathering profile. This conclusion agrees with work by Reynolds (l97l) 
and Mullineaux (1967).

Chlorite. Chlorite was identified from the presence of a l^+A peak 
which intensified after heating to 575°C for one hour and a 7A peak which 

shrinks or vanishes completely after heating (Fig. 3). Chlorite is 

present in most of the samples tested.

Clay Micas. Clay micas were identified from a strong lOA peak that 
intensified on heating (Fig. 3). The minerals in this group are probably 

a mixt\ire of illite and clay sized muscovite, biotite and phlogopite.

There seems to be no reason to attempt to sepeirate the different minerals. 

Clay mica is abundant in all samples tested and constitutes most of the
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C = Chlorite 
CM = Clay f'.ica

0 = Quartz '
K = Kaolinite

M = Montmorillonite

Fig. 3. X-ray diffractorraris of oriented, <2 nicron, typical sar.ple (CK-IA).
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clay fraction of some samples.

Kaolinite. Kaolinite vas tentatively identified from the.presence 
of a 7A (OOl) peak (Fig. 3). Other tests vere needed since this peak 

could also belong to chlorite 002. Brown (1961, p. 85) recommended heat­

ing in HCl to destroy the chlorite. This vas done with a few samples of 

till, glaciomarine drift and peat-associated deposits. A small amount 

of kaolinite vas found in all samples tested. More kaolinite vas found 
in the deposits associated with peat than the other deposits. This is 
typical of underclay-type deposits (Grim, I968, p., 555-557).

Vermiculite. The presence of vermiculite cannot be determined with 

the techniques used in this study. The chlorite peaks occur at similar 

spacings and overlap those of vermiculite. Vermiculite was found in 
weathered material by Mullineaux (1967) and Reynolds (1971) and is pro­

bably present in the weathered material in the study area. Vermiculite 
is probably one of the first weathering stages of micas.

Mixed-layer Clay Minerals. A mixed-layer clay mineral shoving a 

peak in the area of 12A was found in some of the samples (Fig. It). This 

is a randomly interstratified mica-vermiculite. The changes that occur 
on heating indicate the mica-vermiculite nature of the material. A 
"shoulder" is found to appear on the low angle side of the lOA peak 

after heating. This wo\ild result from driving out part of the water 
which had expanded the mica-vermiculite layers. Rich (1958) found a 

similar mineral in a muscovite weathering profile in Virginia. The best 

examples of this material were found associated with peat deposits, es­

pecially location 1-9. The origin of this clay mineral is uncertain.

The most probable source is mica altering to vermiculite or vermiculite



CA = Clay Mica 
C = ChlcriCe ML = Mixed-layer Mica-icnr.iculite

Fig. 1*. X-ray diffractegrans pf oriented, ^2 r.icrcn, sarple containing 12A 

mixed-l<ayer cla.y r.ir.eral (l-9C).



altering to mica. The former is the liiost logical, because it is probably 
»

easier to replace interlayer cations with water layers in a leaching en­

vironment than to introduce cations. Mixed-layer mica-vermiculite is 

the first weathering stage of micas. The time of formation is also in 

doubt, but it may be forming at the present time.

Non-Clay Minerals. Quartz, amphibole and feldspar were identified 
from the diffractograms. Quartz was identified from 3.35A (lOl) and 

U.27A (lOO) peaks. Amphibole was identified from a peak in the vicinity 

of 8.5A (no). Feldspar was identified from one or two peaks in the 

region 3.17A to 3.22A (OUO and 002).

Origin of the Clay-Sized Fraction

There are two probable origins of the clay-sized fraction in the 

deposits studied. The minerals were formed by mechanical disintegration 
before deposition or chemical weathering before and after deposition of 

the sediments. Determination of the most common environment is difficult, 

since most of the clay minerals could form in both environments, but some 

of the clay minerals are more indicative of one weathering environment 
than another. Chlorite and clay mica are indicative of a mechanical 
disintegration environment, hence glacial deposits in general (Millot, 

1970, p. 137), while montmorillonite, kaolinite, vermiculite and the 

mixed-layer clays are more indicative of chemical weathering.

The extent of clay formation before deposition is more difficult 
to determine. The deposits, with few exceptions, seem to have undergone 
both mechanical disintegration and chemical weathering before deposition. 

The mweathered deposits contain chlorite, clay mica and montmorillonite. 

These minerals are indicative of both mechanical disintegration and chem-
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ical weathering^and-indicate a complex predeposition history of the clay 

minerals in the deposits studied. The clay minerals vere derived from 

previously weathered deposits in all source areas and from mechanical, 

action during glacial transport.

The amount of clay mineral formation after deposition is often 
indeterminable, since the exact original clay mineral composition of 

these deposits is unknown, but montmorillonite is forming as the depo­
sits weather aud mixed-layer clays are probably forming in the deposits 

associated with peat.

QUMTITATIVE STUDIES

The clay mineralogy of the samples was studied quantitatively in 

order to gain detailed information about the clay mineral content of 

these samples. With complex clay mineral suites any quantitative study 
is at best semiquantitative, but an approximation can be made by using 
characteristic X-ray peaks. Carroll (1970) siimmarized the difficulties 

in quantitative studies caused by the following differences between 

samples: differences in mass absorption coefficients of individusil
minerals, orientation of grains, thickness of the mounts, weight of the 

clay sample used, evenness of spread of the mixed minerals, differences 
in crystal perfection, polytypism, hydration and chemical composition.

It is best to use the same techniques in all instances and note that the 

values attained are valid only within the scope of these techniques and 

this study. Any close comparison with values obtained in other studies 

is at best tenuous.
Under ideal conditions one can use mixtures of standard clay mine­

rals to form calibration curves to, determine weight percentages of the
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minerals present.' This is impossible vith samples studied in this report. 
Standard clay minerals for the specific minerals that occur in the samp­

les studied do not exist. Some comparison of the amounts of the various 

minerals can he made hy measuring the peak areas of the various hasal 

reflections. That semiquantitative method is used here.

No attempt at a detailed statistical study of the veilues obtained 

vas made. The values overlap too much for a useful separation to be made, 

but trends can be identified directly from the graphs. A line of separa­

tion drawn statistically would not have a practical use.

Methods Used
Biscaye's (I965) weighting factors were applied to the areas of 

the basal peaks (glycolated) of the various clay minerals in order to 

make this semiquantitative analysis more realistic. The factors used 
are as follows: the area of the 17A peak for the montmorillonite con­
tent (possibly includes expandable chlorite and vermiculite), four times 

the lOA peak for the clay mica content and twice the 7A peak area for 

the kaolinite and chlorite content. For these calculations the lOA 
peak also includes the mixed-layer peak. The peak areas were calculated 

by tracing the peaks on tracing vellum, cutting them out and weighing 
them on a Mettler balance. The peak areas (weights) were multiplied by 

the appropriate weighting factors, totaled, and used to calculate 
"percentages" for the various clay mineral groups (Appendix III). All 
values have been rounded to the nearest five percent. These "percentages" 

are real only within the scope of this report, but they are at least 

approximations of reality.
There is some disagreement as to which method of sample slide pre­

paration is best. Gibbs (1965) reported error in quantitative clay
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mineral studies caused by segregation of montmorillonite due to its 

smaller size and therefore lover settling velocity than kaolinite or 

illite, thus resulting in apparent montmorillonite contents that are 

higher than the actual values. The following techniques were recom­
mended by Gibbs: the smear-on-glass, suction on ceramic tile and

powder press techniques. The pipette-on-glass method used in this 

report was not recommended. The smear-on-glass and powder press tech­

niques were rejected because of the large amount of sample needed. A 

method similar to the suction on porcelain slide technique was tried.
This involved using a dry porcelain slide to produce a suction effect. 

Fifteen samples were analyzed using both glass and porcelain slide 

techniques. There is an apparent increase in montmorillonite content 
from using the pipette—on-glass technique (Fig. 5)* This report does 

not purport to give "real" percentages of clay mineral content. The 
values given have meaning only within the scope of the techniques used 
in this report. There are some real objections to using porcelain slides 

in a general study such as this. The most important objection is that 

quartz, miiLlite and corundum peaks show through the clay peaks and con­

fuse their identification and intensities. Another objection is that 
the use of settling in water to obtain the less-than-two-micron fraction 

already involves a segregation of montmorillonite. Therefore, the 
values obtained are different from the ' real values no matter which 

method of slide manufacture is used.

Results
General Conclusions. The only general conclusion that can be made 

from the quantitative data is that chlorite and kaolinite are never 
abundant in the samples tested EUid rarely make up more than one-third
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Montmorillonite
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of the sample (Figs. 6,7&8). Chlorite is not the principal clay-type 
*

mineral in the source areas and weathering might have destroyed much of 

whatever chlorite was present, since chlorite is very easily weathered. 
No correlation between sample location and clay mineral content coiild be 

made.

Weathered Zones. More montmorillonite is present in the oxidized 
(brown) glacial deposits than in the unoxidized (grey) deposits (Figs.

6&T). In the nonglacial deposits there is poor correlation between color 

and clay mineraJ. content (Fig. 8) as a result of the varied predeposi- 

tional and outcrop conditions. On the other hand, the glacial deposits 
show definite weathering horizons. Montmorillonite (expandable clays) 

and probably vermiculite as well, are being formed from micas and chlorite 

by leaching in the weathering zone. This is obvious from Figure 9* Will- 
man, Glass and Frye (1986) found similar results in Illinois glacial 

deposits. Evidence of weathering and the formation of new clay minerals 

was observed even in the younger deposits.
A study of the chlorite 7A aind iHA peaks also indicates that weather­

ing has occurred in the oxidized deposits. A larger IUA peak, in the 

absence of kaolinite, is indicative of Mg-rich chlorite or the presence of 
vermiculite and chlorite (Grim, 19^8, p. 147-153). In samples from loca­

tion BC-4, the non-weathered sample contains Fe-rich chlorite. The weath­

ered sample contains Mg-rich chlorite or vermiculite. Destruction of 

Fe-rich chlorite and the formation of vermicxilite probably accompany 

weathering of the glacial deposits. This may indicate that the source 

of the brown color in the weathered material, is, at least in part, iron 

from weathered Fe-rich chlorite.
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Comparison of Tills and Glaciomarine Drift. An attempt to dif­

ferentiate between tills and glaciomarine drift on the basis of clay 

mineralogy was made. The samples from the glaciomarine drift seem to 
contain more clay mica than samples from tills (Fig. 10). The mean, 

of the clay mica content of the twelve normal unweathered till samples 
is 28^ {Q~=8%), while the mean of the clay mica content of the thir­

teen unweathered glaciomarine drift samples is 38^ (cr=8/S). The clay- 
mica-rich tills of British Columbia (Fig. 10) are an apparent contra­

diction to this trend, but their clay mineral content is the result of 

unusual particle size distribution and will be discussed later. The 
difference in clay mica content of the tills and glaciomarine drift 

may be significant, but it is not great enough to differentiate till 

from glaciomarine drift by clay mineralogy alone. Differentiation 

between different glaciomarine units on the basis of clay mineralogy 
was also attempted (Fig. 6), but no correlations could be made.

There are two probable reasons for the larger amount of clay mica 

in the glaciomarine drift. The higher clay mica content could be caused 

by variation in settling rates of the various clay mineral types in sea 
water. Grim (1968, p. 538) reported differentiation of clay minerals 

caused by flocculation of illite in the near-shore environment. This 
flocculation could help to account for the lower bulk density of the 
glaciomarine drift reported by Easterbrook (196^+). The reformation of 

clay mica from degraded illite in the area of deposition could also 

cause the difference in the clay mica content in the different deposits. 

Both factors could and probably do account for the difference in the 
clay mica content of the deposits. More work is needed to determine how 

much effect each has. The comparison of potassi\im-argon age determina-
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tions of the clay micas in the tills and glaciomarine drifts might he 
*

of use in determining how much new clay mica was formed in the glacio- 

meirine deposits. This may not work if much of the clay mica was formed 

hy feldspar weathering in the source areas.

High Clay Mica Content oif British Columbia Tills. The high clay 

mica content of certain British Colvimbia tills (Fig. 10) is the result 

of an unusual particle size distribution in these tills. The five 

samples which gave the high clay mica contents all contain very little 

clay-sized material. A small amount of clay mica can give unrealistic 
"percentages" since so little clay is present. The clay mica probably 

resulted from mechanical disintegration of the relatively unweathered 

granitic rock which is abundant to the north. This disintegration would 

result in groxmd mica being the only abundant clay mineral present.

Origin of Montmorillonite in the "Unweathered" Glacial Deposits. The 
amount of montmorillonite (15^-65^) present in the "unweathered" glacial 

deposits indicates that weathering took place in the source areas for 

these deposits. A large amount of this montmorillonite probably formed 
in the mountains of southwestern British Columbia. This suggestion 
agrees with work by Reynolds (1971), who reported rapid clay mineral 
(vermiculite, mixed-layer vermiculite-phlogopite and montmorillonite 

minerals) formation in the Cascades at the present time. Some of the 

montorillonite probably formed by weathering of the older glacial depo­

sits and was later incorporated into the younger deposits with reglacia­

tion.

Nonglacial Deposits. The clay mineralogy of the nonglacial depo­

sits is complicated because of their varied histories. The sands and

31



gravels seem to contain less chlorite than the silts and clays (Fig. 8) 

This is probably caused by greater weathering of chlorite in the permeable 

sands and gravels than in the impermeable clays and silts. No other con­

clusions about the nonglacial material were made.
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CONCLUSIONS AND SUMMARY

1. The clay minerals in the late Pleistocene and Recent deposits of 

northwestern Washington and southwestern British Columbia were formed 

by mechanical disintegration before deposition and chemical weathering 

before and after deposition.
2. Montmorillonite, chlorite and clay mica are the most abundant clay 

minerals in the samples studied. Kaolinite and mixed-layer vermicxolite- 

mica were found in some of the samples studied. The presence or ab­
sence of vermiculite could not be determined with the methods used in 

this study.
3. The late Pleistocene glaciations of the north and central Puget 
Lowland and the Fraser Lowland cannot yet be distinguished on the basis 

of their clay mineralogy alone.
k. There are -'.pparent differences between the clay mineral contents of 
tills and glaciomarine drifts. The glaciomarine drifts seem to contain 

more clay mica. The difference in clay mica content may have been caused 

’ by the flocculation of clay mica in sea water and/or the formation of 

clay mica (illite) in the sea water by absorption of potassi\am ions.

5. Weathering and the formation of new clay minerals is occurring in 
late Pleistocene and Recent deposits in northwestern Washington and south.

western British Columbia.
6. A randomly interstratified vermiculite-mica is associated with some 

of the peat deposits. This mineral was probably formed from mica alter­

ing to vermiculite.
7. A previously unreported post—Vashon mudflow was found at the Mary 

Hill gravel pit in Port Coquitlam, British Colximbia.
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PROBLEMS REMAINING

1. What is the rate of veathering and new clay mineral formation in the 

late Pleistocene deposits of the Puget Lowland?
2. More work is needed on the clay mineralogy of the pre-Olympia depo­

sits in the Puget Lowland.
3. What is the age, size and source of the mudflow at Port Coquitlam?

U. How much vermiculite and kaolinite are present in the deposits 

studied?
5. What is the relationship between particle size and clay mineral 

composition of the glacial deposits?
6. What is the origin and rate of formation of the mixed-layer mica- 

vermiculite?
7. Is the higher clay mica content of the glaciomarine drift real or 

apparent?
8. How much of the glaciomarine drift is authigenic and how much is 

detrital?
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APPENDIX I



SAMPLE LOCATIONS

Whatcom Co^anty

1. Sample Nvunhers: W-1 B, C, D, E
Location: Y Road and Mt. Baker Highway-
Longitude and Latitude: 122°21'2"W L8°i48'15’N

Topographic Situation: Road Cut
Sample Elevations: l70’-L80'

2. Sample Numbers: W-2 A, C; W-3 A, B, C, B, E; W-1| B, C; W-5 A, B, C, D

Location: Cedarville
Longitude and Latitude: 122°l6'0"W L8°^9*^0"N

Topographic Situation: River Bank
Sample Elevations: 190’-2^:5'

3. Sample Number: W-6B
Location: North Fork Nooksack River 2 m.iles east of Maple Falls
Longitude and Latitude: 122°1'L6"W U8°55’29"N
Topographic Situation: River Sand Bar
Sample Elevation: 590'

1+. Sample Number: W-7B
Location: Middle Fork Nooksack River, Heisler's Ranch
Longitude and Latitude: 122°6'L2"V7 L8°L6'39"N
Topographic Situation: River Sand Bar
Sample Elevation: 520'

5. Sample Number: W-8A
Location: South Fork Nooksack River, Saxson Bridge
Longitude and Latitude: 122°9'^5"W L8°40'10"N

Topographic Situation: River Bank
Sample Elevation: 350'

6. Sample Number: W-9B
Location: Nooksack River, Marietta Bridge
Longitude and Latitude: 122°3^'55"W H8 L7'27''N
Topographic Situation: River Bank
Sample Elevation: 3'

7. Sample Number: W-lOA
Location: Everson
Longitude and Latitude: 122^21'5"W H8 58'48 N
Topographic Situation: Road Cut
Sample Elevation: 70'

8. Sample Number: W-llA
Location: Southeast corner Point Roberts
Longitude and Latitude: 123°1'34"W 48°59'13"N

Topographic Situation: Sea Cliff
Sample Elevation: 5'
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SAI-IPLE LOCATIONS 
(continued)

9. Sample Number: W-12A
Location: Point Roberts
Longitude and Latitude: 123°3'28"V U8°59*59"N

Topographic Situation: Gravel Pit
Sample Elevation: 130'

10. Sample Number: W-13B
Location: Boundry Bluff, Point Roberts
Longitude and Latitude: 123°5'H"W li8°59'^2"N
Topographic Situation: Road Cut
Sample Elevation: 95'

11. Sample Numbers: V-l^i B, C
Location: East Shore of Bellingham Bay
Longitude and Latitude: 122°31'29"W 1+8°1+6'U"N

Topographic Situation: Sea Cliff
Sample Elevations: 5'-20'

12. Sample Number: W-15C
Location: East Shore of Bellingham Bay
Longitude and Latitude: 122°32'l6"W U8°U6'38"N
Topographic Situation: Sea Cliff
Sample Elevation: 100'

Island Coimty

13. Sample Numbers: I-IA; 1-2 A, B
Location: North side of Penn Cove
Longitude and Latitude: 122°i+2'25"W i+8 lJ|'l8"N
Topographic Situation: Sea Cliff
Sample Elevations: 5'-25'

lU. Sample Number: I-3B 
Location: Greenbank
Longitude and Latitude: 122 33'52"W L8 6'UU"N
Topographic Situation: Road Cut
Sample Elevation: TO'

15. Sam.ple Nimibers: I-lB, I-5A
Location: Barnum Point
Longitude and Latitude: 122°2T'2"W 1*8 11'1*5 N

Topographic Situation: Sea Cliff
Sample Elevations: 115'-130'

16. Sample Nvimbers: 1-6 A, B
Location: Barniam Point
Longitude and Latitude: 122°2T'l*l"N 1*8 11'35 N

Topographic Situation: Sea Cliff
Sample Elevations: 5'-10'
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SAICPLE LOCATIONS 
(continued)

17. Sample Numbers: I-T A, C, E
Location: West Beach, Whidbey Island
Longitude and Latitude: 122°i+5'57"W U8°13'55"N

Topographic Situation: Sea Cliff
Sample Elevations: 5'-15'

18. Sample Numbers: 1-8 B, C; 1-9 A, B, C, D
Location: 2^/2 miles north of West Beach
Longitude and Latitude: 122°l5'0"W U8°15'^0"N
Topographic Situation: Sea Cliff
Sample Elevations: 3'-10'

19. Sample Numbers: I-IO A, B, C, D, E, F
Location: Strawberry Point
Longitude and Latitude: 122°30'20"W l+8°l8'35"N
Topographic Situation: Sea Cliff
Sample Elevations: 3'-30'

20. Sample Numbers: I-ll A, C, D
Location: Double BluffLongitude and Latitude: 122°32’l40"W LT°58'5"N
Topographic Situation: Sea Cliff
Sample Elevations: 5-25'

21. Sample Number: I-13B
Location: West side of Useless Bay
Longitude and Latitude: 122°2T'32"W 1)7°58'3^"N

Topographic Situation: Sea Cliff
Sample Elevation: 100'

San Juan Cotmty

22. Sample Number: SA-IA
Location: South side of Sucia Island
Longitude and Latitude: 122°5^'HW ^8 L5'0"n
Topographic Situation: Sea Cliff
Sample Elevation: 15'

Skagit Coimty

23. Sample Number: SK-IA
Location: Bow Hill Road and 1-5 FreewayLongitude and Latitude: 122°21'0"W 33'30"N

Topographic Situation: Road Cut
Sample Elevation: 300'

1*1



SAMPLE LOCATIONS (continued)

2h. Sample Number; SK-IE
Location: Bov Hill Road and 1-5 FreevayLongitude and Latitude: 122 20'27"W i}8°33'25 N
Topographic Situation: Road Cut
Sample Elevation: 255'

25. Sample Ntunber: SK-2A.
Location: Skagit River 3 miles north of Concrete
Longitude and Latitude: 121*^H2'20"W ^+8°30'20"N
Topographic Situation: River Bar
Sample Elevation: 195'

26. Sample Number: SK-3A
Location: Southeast end Big Lak.eLongitude and Latitude: 122°12'20"W U8°21'55 N
Topographic Situation: Road Cut
Sample Elevation: 125*

27- Sample Numbers: SK-i+ B, C
Location: Nookachamps Creek and Highway lA near Clear Lake
Longitude and Latitude; 122 15'17"W J48*^25'^6"N
Topographic Situation: River Bank
Sample Elevations: 70'-75'

28. Sample Nvmiber: SN-IA
Location: North Fork Stillaguamish River, Cicero
Longitude and Latitude: 122°0'3^"W L8*^16'U"N
Topographic Situationf River Bar 
Sample Elevation: 130'

29. Sample Numbers: SN-2 A, B, D
Location: 1-5 Freeway and Stillaguamish RiverLongitude and Latitude: 122°12'35"W 48°12'0"N
Topographic Situation: Road Cut
Sample Elevations: 90'-135'

30. Sample Number: SN-3ALocation: 1-5 Freevay 1^/3 miles north of the Stillaguamish River
Longitude and Latitude: 122°13'20"W L8°13'20 N
Topographic Situation: Road Cut
Sample Elevation: I80'

British Columbia

31. Sam.ple Number: BC-IA
Location: Northwest corner Centennial Park, Abbotsford
Longitude and Latitude: 122°19'2"W ^t9°2'50 N
Topographic Situation: Road Cut
Sample Elevation: 220'
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SAMPLE LOCATIONS 
(continued)

0 '

32. Sample Nvunbers: BC-2 A, B
Location: Hxintingdon Road 1 mile west of PeardonvilleLongitude and Latitude: 122°25’5C"W 1+9°1'2"N
Topographic Situation: Road Cut
Sample Elevations: 265'-275'

33. Sample Numbersr BC-3 A, C
Location: Matsqui municipal gravel pit on Lefeuvre Road
Longitude and Latitude: 122°26'i+5"W ii9°l'20"N
Topographic Situation: Gravel Pit
Sample Elevations: 275'-310'

3^. Sample Numbers: BC-ij A., C
Location: Nathan creek l/U mile north of B.C. Electric R.R. tracks
Longitude and Latitude: 122°26'1:3"W 1*9°6'22"N
Topographic Situation: Road Cut
Sample Elevations: 260'-275'

35- Sample Number: BC-5A
Location: Mary Hill gravel nit. Port CoquitlamLongitude and Latitude: 122^1+6'55"W 1:9°11+'17"N
Topographic Situation: Gravel Pit
Sample Elevation: 270'

36. Sample Numl-ers: BC-6 C, E, F, G
Location: Linton gravel pit, Surrey
Longitude and Latitude: 122°5^'0"W L9°7'35"N
Topographic Situation: Gravel Pit
Sample Elevations: 225'-270'

37. Sample Numbers: BC-7 A, B
Location: Highway 10 1/^ mile west of Scott Road, Surrey
Longitude and Latitude: 122°53'30"W 1+9°6'32"N
Topographic Situation: Road Cut
Sample Elevations: 1^5’-150'

38. Sample N\ambers: BC-8 A, D, G, H
Location: Point Grey, VancouverLongitude and Latitude: 123°15'36"W 1+9°18'17"N
Topographic Situation: Sea Cliff
Sample Elevations: 60'-195'

39- Sample Number: BC-12A
Location: Junction Pitt River and Fraser River, Port CoquitlamLongitude and Latitude: 122°L6'10"W it9°13'53"N
Topographic Situation: River Bank
Sample Elevation: 3'



APPENDIX II



STRATIGRAPHIC INFORJ-IATION

Sample
Niunber

Stratigtaphic Unit Sediment Type Color

W-IB
C
D
E

W-2A
C

W-12A
W-13B
W-ll|B

D
W-15C
I-IA
I-2A

B
I-3E
I-l+B
I-5A
I-6A

B
I-7A

C
E

I-8B
C

I-9A

Vashon till
It IT

Everson Glaciomarine Drift
II II II

Bellingham Glaciomarine Drift

Till
It

Glaciomarine Drift
It ft
ft II
If If

W-3A Deming Sand ■ Clay
B tt II Sand
C It If It

D If tf Silt
E ft ft SandW-1*B Kulshan Glaciomarine Drift Glaciomarine
C It tt It It

W-5A Deming Sand Sand
B It If Peat - Clay
C If If Sand
D ft It Clay

W-6B Recent stream sediments Sand
W-7B tf It tt tt

W-8A If II It ft

W-9B It ft tt Silt
W-lOA Everson1 Glaciomarine Drift Glaciomarine
W-llA Quadra sediments Clay

Drift
It

Everson Glaciomarine Drift
tl If It

Kulshan Glaciomarine Drift 
Deming Sand
Bellingham Glaciomarine Drift
Whidbey Formation
Everson Glaciomarine Drift

II II II

Vashon till 
Esperance Sand 
Vashon till
Everson Glaciomarine Drift 
Vashon till
Everson Glaciomarine Drift 
Partridge Gravel 
Everson Glaciomarine Drift 
^-fhidbey Formation 
Vashon till 
VHiidbey Fonnation

Glaciomarine

Drift

Drift
tt

Silt
Glaciomarine Drift 
Clay
Glaciomarine

Till
Sand
Till
Glaciomarine
Till
Glaciomarine
Sand
Glaciomarine
Sand
Till
Clay

Drift
II

Drift
Drift
Drift

Grey
ft

Light brovn 
Dark Grey 
Light Grey 
Grey 
Brown

II
II
II
«

Grey
It

Dark brown 
Grey
Dark grey 
Grey
Dark brown
Grey
Brown

ft

Grey
II

Brown
Grey
Brown

It

Grey
Brovn

tt

Grey
Brown
Light grey 
Brown

tt

Light brovn 
Brown 
Dark grey 
Grey

It
ft

B tl It Peat - Silt Brown
C tf tf Clay Grey
D ft ft ft II

•lOA Early Possession Drift Till Brown
B I'/hidbey Formation Sand Light brown
C Middle Possession Drift 1? Dark brown



STRATIGRAPHIC INFORMATION 
(continued)

Sample Stratigraphic Unit
Number

Sediment Type Color

I-IQD Middle Possession Drift Sand Brown
E Olympia sediments Clay Grey
F Upper Possession Drift Till Dark brown

I-llA Double Bluff Drift Glaciomarine Drift Dark grey
C Whidbey Formation Sand Brown
D Double Bluff Drift Till Grey

I-13B ^^hidbey Formation Silt 11
SA-IA Everson Glaciomarine Drift Glaciomarine Drift Brown
SK-IA Vashon till Till Grey

E Everson Glaciomarine Drift Glaciomarine Drift Brown
SK-2A Recent river sediments SEuid Dark grey
SK-3A Vashon till Till GreySK-l+B Everson Glaciomarine Drift Glaciomarine Drift tt

C t» IT tl If II Brown
SN-IA Recent river sediments Sand Grey
SN-2A Vashon recessional outvash It Brown

B Vashon till Till Grey
D tt ft tl tl

SN-3A If If tl II

BC-IA S\amas till tt Brown
BC-2A 11 11 tt II

B Advance Siimas outwash Gravel 11

BC-3A Everson Glaciom.arine Drift Glaciomarine Drift Grey
C Recessional Sumas outvaSh Sand BrownBC-l+A Everson Glaciomarine Drift Glaciomarine Drift It

C If If 11 tl tt Grey
BC-5A Mary Hill mudflow Diamicton BrownBC-6C Quadra sediments Sand tt

E Surrey Drift Till Grey
F Capilano sediments Glaciomarine Drift tt

G Capilano bar samd Sand Brown
BC-7A Surrey Drift Till Grey

B 11 II tl II

BC-8A Quadra sediments Sand tt

D II II Silt tt

G II II Sand tl

H Surrey Drift Till tt

BC-12A Recent river sediments Sand Brown
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CLAY MINERAL CONTENT
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