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ABSTRACT 

 

A clay-rich Callovo-Oxfordian sedimentary formation was selected in the eastern Paris 

Basin (MHM site) to host an underground laboratory dedicated to the assessment of nuclear 

waste disposal feasibility in deep geological formations. As described initially, this formation 

shows a mineralogical transition from an illite-smectite (I-S) mixed-layered mineral (MLM), 

which is essentially smectitic and randomly interstratified (R=0) in the top part of the series to 

a more illitic, ordered (R≥1) I-S in its deeper part. 

This description has been challenged by using the multi-specimen method developed by 

Drits et al. (1997a) and Sakharov et al. (1999). It is shown that all samples contain a physical 

mixture of an unusually (?) illitic (~65 %I) randomly interstratified I-Exp (Illite-Expandable 

MLM) and of a discrete smectite, in addition to discrete illite, kaolinite and chlorite. 

Structural parameters of the different clay phases vary little throughout the series. According 

to the proposed model, the mineralogical transition corresponds to the disappearance of 

smectite with increasing burial depth. 

Comparison with clay minerals from formations of similar age (Oxfordian-Toarcian) 

throughout the Paris basin shows that the clay mineralogy in the deeper part of the series 

originates from a smectite-to-illite transition resulting from a low-temperature burial 

diagenesis. The anomalous lack of evolution of clay minerals in the upper part of the series is 

thought to be related to specific interactions between organic matter and clay minerals. 
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INTRODUCTION 

 

As is the case for many other countries, France is investigating the possibility of nuclear 

waste disposal in deep geological formations. For this purpose, the French nuclear agency 

(ANDRA) is currently setting up an underground laboratory in the eastern Paris Basin, at the 

limit between the Meuse and Haute-Marne departments (MHM site - Figure 1). The 

sedimentary host formation is a ~130 m thick clay-rich Callovo-Oxfordian sedimentary 

formation whose burial depth is about 350-550 m below the ground surface in the selected 

area. The mineralogy of this formation was studied in detail by Bouchet and Rassineux (1997) 

and consists mainly of clay minerals, quartz and calcite. 

These authors have shown that in spite of its macroscopic homogeneity, the Callovo-

Oxfordian clay series conceals a mineralogical transition between two illite-smectite (I-S) 

mixed-layered minerals (MLMs). The first one occurs in the top part of the series and is 

essentially smectitic and randomly interstratified (R=0) whereas the deeper part of the series 

is characterized by a more illitic, ordered (R≥1) I-S. This mineralogical transition is 

reminiscent of the diagenetic smectite-to-illite evolution through MLMs commonly described 

during burial of clay-rich sediments (Burst, 1969; Shutov et al., 1970; Perry and Hower, 

1970; Hower et al., 1976; Srodon, 1978, 1984; Boles and Francks, 1979; Velde et al., 1986; 

among others). In these latter series, it has been deduced that time and temperature promote 

smectite illitization (Hower et al., 1976; Velde and Vasseur, 1992), but additional factors such 

as K availability (Huang et al., 1993; Bauer and Velde, 1999) and water/rock ratio (Whitney, 

1990) may also influence reaction progress. 

In the studied Callovo-Oxfordian formation, the analysis of organic matter evolution 

(Elie et al., 2000), and of fluid inclusions (Cathelineau et al., 1997) consistently indicate that 

maximum temperature has not exceeded 40°C. This low temperature together with the very 
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sudden character of the mineralogical transition, which occurs over a 10 m depth interval, and 

its coincidence at a local scale with a maximum flooding surface seem to plead for a 

sedimentary origin to this transition (Pellenard et al., 1999), thus excluding any significant 

mineralogical evolution resulting from subsequent burial diagenesis. However, because the 

future underground laboratory will lie exactly in the mineralogical transition zone, additional 

investigations were performed in order to characterize the clay minerals from this transition 

zone more accurately in an attempt to better predict their possible evolution in response to 

storage-induced perturbations (Claret et al., 2002) and possibly to reconsider the origin of the 

transition. 

In this work, simulation of the experimental X-ray diffraction (XRD) patterns has been 

applied following the multi-specimen method proposed by Sakharov et al. (1999) to provide 

an accurate structural characterization of the clay minerals over the R0-R1 transition 

previously described in this Callovo-Oxfordian series. Clay minerals defining this transition 

are compared to those coming from formations of similar age (Oxfordian-Toarcian) 

throughout the Paris basin in order to assess the influence of low-temperature burial 

diagenesis on clay mineralogy. Finally the origin of the mineralogical transition is sought in 

the light of the strong interactions between organic matter and clay minerals demonstrated 

experimentally by Claret et al. (2002). 

 

MATERIALS AND METHODS 

 

Sample location and existing data  

 

The boreholes sampled (EST 104 and EST 204) were drilled in the Callovo-Oxfordian 

formation selected by Andra to host the future French underground laboratory in the MHM 
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site. The selection of this macroscopically homogeneous clay-rich formation (152-160 Ma) 

results from its potential ability to impede any possible migration of radionuclides from the 

storage to the environment by combining a very low hydraulic conductivity (10-11-10-13 m.s-1 - 

de Marsily et al., 2002) to a large vertical extension (≥ 40 m) on either side of the planned 

laboratory level. 

From XRD data, bulk rock chemical composition and cation exchange capacity (CEC) 

measurements, Bouchet and Rassineux (1997) made a semi-quantitative estimate of the 

mineralogy throughout the Callovo-Oxfordian sequence. They determined that quartz and 

calcite were present in similar proportions and globally represented approximately 50% of the 

bulk rock, whereas clay minerals represented 40-45%. Minor amounts of accessory pyrite, 

hematite and siderite were also detected throughout the sequence. In well EST 104, the 

transition from randomly interstratified (R=0) to ordered (R=1) I-S MLMs described by 

Bouchet and Rassineux (1997) occurs within the 484-496 m burial depth interval. This 

transition correlates with a decrease of the CEC measured on the <2 µm size fraction from 

0.35-0.40 meq.g-1 in the upper part of the sequence to ~0.25 meq.g-1 in its bottom part. In 

addition, this mineralogical transition coincides with the onset of kaolinite presence in the 

deeper sediments, whereas illite and minor amounts of chlorite are present throughout the 

sequence. 

Even though present in small amounts (0.5-1%) organic matter (OM) occurs throughout 

the sequence (Espitalié et al., 1987; Landais and Elie, 1999) and is systematically only 

slightly affected by thermal maturation, indicating a maximum burial temperature of ~40°C 

(Elie et al., 2000). A similar low value of the maximum burial temperature has been obtained 

from the analysis of fluid inclusions (Cathelineau et al., 1997). These values are consistent 

with the regional geological setting which indicates little post-sedimentation uplift and 

erosion during the Tertiary (Meunier and Velde, 2004). In the studied sequence, the nature of 
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the OM varies with burial depth, being from continental origin in the top part of the series 

(Oxfordian) but showing a stronger marine influence in its bottom part (Landais and Elie, 

1999). However, these latter authors have shown that in the MHM site the transition between 

the two types of OM does not strictly coincide with the mineralogical transition, which is 

actually slightly shallower. 

Additional samples were collected throughout the Paris basin to serve as a basis for 

comparing clay mineralogy in neighboring clay-rich formations. Four samples were collected 

in the few clay-rich Oxfordian horizons in the well EST 204 (MHM site – 218-250 m burial 

depth interval – 140-150 Ma). Other samples which were collected in the Toarcian black 

shales (180-190 Ma) from boreholes scattered throughout the Paris basin (Figure 1) were used 

to assess the influence of maximum burial depth on the low-temperature diagenetic evolution 

of clay minerals. The present burial depth of these samples which ranges from ~200 m in the 

eastern part of the Paris basin to ~2000 m in its central part is strictly correlated to their 

maximum burial depth which is a few hundred meters deeper throughout the basin as a result 

of a limited uplift and erosion event during the Tertiary (Lanson, 1990; Meunier and Velde, 

2004). 

 

Experimental 

 

Carbonates were removed for all EST 104 and EST 204 samples using the acetic acid-

acetate buffer method described in Moore and Reynolds (1989) prior to extraction of the 

<2 µm size fraction by centrifugation. Organic matter was removed at 50°C by adding small 

aliquots of hydrogen peroxide (H2O2 - 30%) to the suspension until gaseous emission has 

ceased. Size fractionation was used first on 29 samples selected from -417 to -528 m in 

borehole EST 104. From preliminary XRD results (Claret, 2001), 6 samples were selected as 
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being representative of the Callovo-Oxfordian series and more especially of the mineralogical 

transition (Figure 2). To minimize the contributions from mica, kaolinite, chlorite and quartz 

<0.2 µm size fractions were extracted for these 6 samples. 

This <0.2 µm size fraction was then Ca-saturated with 1M CaCl2. Suspensions were 

kept in contact with the saline solution for 4-12 hours at room temperature to ensure a 

complete cation exchange. After three replications of this procedure, the chloride in excess 

was rinsed out using distilled water (Milli-Q – 18.2 MΩ.cm-1) until no precipitate formed with 

AgNO3. Samples from Toarcian black shales were prepared according to the method 

described by Lanson and Besson (1992) 

Oriented preparations were obtained for XRD analysis by pipetting a slurry of the Ca-

saturated suspensions on a glass side and drying at 40°C for a few hours to obtain an air-dried 

(AD) preparation. Ethylene glycol (EG) solvation of these oriented slides was achieved by 

exposing them to EG vapor at 70°C for 12 hours. XRD patterns of samples from EST 104 and 

EST 204 boreholes were recorded with a Bruker D5000 powder diffractometer equipped with 

a Kevex Si(Li) solid state detector using CuKα1+2 radiation. Intensities were recorded at a 

0.04° 2θ interval, from 2 to 50°, using a 6 sec counting time per step. Sizes of the divergence 

slit, the two Soller slits, the antiscatter, and resolution slits were 0.5°, 2.3°, 2.3°, 0.5° and 

0.06°, respectively. Using an Anton Paar TTK 450 chamber together with a Sycos H gas 

humidifier from Ansyco humidity was controlled at 40% RH for AD measurements. XRD 

data collection conditions for samples from Toarcian black shales were described earlier by 

Lanson and Besson (1992). 

Clay particle morphology was characterized by TEM on the <0.05 µm size fraction to 

avoid as much as possible kaolinite, chlorite and detrital mica particles. Highly diluted 

suspensions were ultrasonically dispersed and subsequently deposited on carbon-coated 
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copper grids. Observations were made using a JEOL 100CX TEM with an accelerating 

voltage of 80 kV. 

 

XRD profile modeling 

 

Structure models were determined for the 6 clay samples selected from EST 104 using 

the multi-specimen method (Sakharov et al., 1999). This method allows drawing constrains 

on the MLMs present in a given sample from the contrasting hydration/expansion properties 

of expandable interlayers after different treatments (e.g. Ca-saturated in AD and EG states, 

and/or Na-saturated in AD and EG states). The method itself consists of comparing directly 

experimental XRD profiles to those calculated from a structure model, the optimum fit to the 

experimental data being obtained by a trial-and-error procedure. Such structure models 

include for each MLM, the number (not limited to 2), the nature and the proportion of the 

different layer types and a statistical description of their stacking sequences (Reichweit 

parameter and junction probabilities - see Moore and Reynolds (1989) and Drits and 

Tchoubar (1990) for details). Because the different treatments may change the thickness and 

the scattering power of swelling interlayers but not the distribution of the different 2:1 layers, 

a consistent structure model is obtained when the stacking sequences of these different layer 

types are nearly identical for all experimental XRD profiles of the same sample. In addition to 

these structural parameters, relative contributions of the various phases to the different XRD 

patterns recorded for the same sample must be similar (Sakharov et al., 1999; Claret, 2001). 

The program developed by Drits et al. (1997a) and Sakharov et al. (1999) was used to 

fit experimental XRD profiles over the 2–50° 2θ CuKα range. Instrumental and experimental 

factors such as horizontal and vertical beam divergences, goniometer radius, length and 

thickness of the oriented slides were introduced without further adjustment (Drits and 
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Tchoubar, 1990). Sigmastar was set to 12 and the mass absorption coefficient (µ*) to 45, as 

recommended by Moore and Reynolds (1989). In the profile fitting process, it was necessary 

to define three different layer types as a function of their hydration properties. In addition to 

illite layers, expandable layers were differentiated as smectite or vermiculite as a function of 

the number of EG sheets in their interlayers in the EG state (2 and 1, respectively – Drits et 

al., 2002). Even though it does not coincide with the conventional nomenclature, this 

operational definition allowed accounting for the heterogeneous hydration/expansion behavior 

of expandable layers which is likely related to the amount and location of the layer charge. 

For the studied samples, it seemed unrealistic to assess otherwise the possible coexistence of 

layers with contrasting layer charge because of their polyphasic character. For these three 

layer types, hereafter referred to as I, S and V layers, z atomic coordinates and thermal 

displacement parameters (B) proposed by Moore and Reynolds (1989) were used for 

simulation. Position and amount of interlayer species (H2O and EG molecules in particular) 

were considered as variable parameters during the fitting process and varied about the values 

proposed by Moore and Reynolds (1989) after modification of layer thickness (L. Tck.) 

values. As relative humidity was set to 40% during XRD data collection, it is assumed that no 

collapsed expandable layers are contributing to the relative proportion of illite layer. 

However, because the hydration properties of a given layer may vary as a function of the 

interlayer cation, relative proportions of vermiculite and smectite may vary for the different 

states of the samples. Finally, lognormal distributions of coherent scattering domain sizes 

(CSDS) were assumed and characterized by their mean value (Drits et al., 1997b). Goodness 

of fit was estimated over the 4-50°2θ Cu Kα angular range using the RWP factor (Howard and 

Preston, 1989). 
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RESULTS 

 

Qualitative description of experimental XRD profiles 

 

MHM site. Experimental XRD patterns can be divided in two groups. Following EG 

solvation, samples from group 1 (samples from 447, 482, 489, 492 and 494 m) exhibit a 

reflection at ~17 Å whose intensity above the low angle "background" decreases with 

increasing depth (Figure 2). According to Srodon (1981) and Inoue et al. (1989) such 

behavior is characteristic of a randomly interstratified I-S (R=0) whose smectite content 

decreases. From the diagram proposed by Inoue et al. (1989), the estimated proportion of 

smectite varies from ~70% at the top of the series and ~50% for sample 494.  

Sample 528  does not show this 17 Å peak in its EG diffraction profile but rather a 

shoulder in the ~13.5 Å region corresponding to the ~12.5 Å hump observed in its AD pattern 

(Figure 2). The presence of these reflections is usually (Srodon, 1980; Watanabe, 1981, 1988; 

Velde et al., 1986) linked to the presence of an ordered I-S (R=1) with a maximum possible 

degree of ordering (MPDO). From the diagram proposed by Velde et al. (1986) the smectite 

proportion in this MLM ranges from 20-40%. 

Samples collected in the Oxfordian horizons from EST 204 borehole exhibit XRD 

patterns similar to those obtained from the deeper samples of the Callovo-Oxfordian series 

(Sample 528 - Figure 3a) and would usually be described as being characteristic of the 

presence of an ordered I-S (R=1). On the other hand, these XRD patterns are strikingly 

different from those obtained from the upper part of the Callovo-Oxfordian series which 

rather correspond to randomly interstratified (R=0) I-S MLMs (Group 1 samples - Figure 3a). 
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Additional samples from the Paris Basin. 

 

All samples from Toarcian black shales collected throughout the Paris basin exhibit 

rather similar XRD patterns whatever their maximum burial depth (Figure 3b). These patterns 

resemble those obtained from the deepest Callovo-Oxfordian samples (MHM site - Sample 

528). The presence of a ~12.5 Å reflection in the EG state, which correspond to the ~11.5 Å 

reflection in the AD state (Figure 3b), would usually be indicative of the presence of an 

ordered I-S MLM (R = 1) in addition to discrete illite, chlorite and kaolinite. The position of 

this reflection is rather constant indicating that the composition of the MLM is similar for all 

Toarcian samples whatever their maximum burial depth. As compared to the position 

observed for Callovian and Oxfordian samples (Figure 3a), this position is slightly shifted 

towards higher angles, indicating a slightly more illitic composition of the associated I-S 

MLMs. 

 

Quantitative description of experimental XRD profiles 

 

At first, XRD patterns of samples from group 1 were calculated for I-S compositions 

determined using the identification methods proposed by Srodon (1981) and Inoue et al. 

(1989). The results obtained using either of these methods differ significantly (Table 1) but 

none of these methods can provide a satisfactory fit to the experimental data as shown by the 

RWP factors obtained after a least-square refinement of the relative contributions of the 

different phases (I-S, illite, ± kaolinite, ± chlorite) to the diffracted intensity. As a 

consequence, the multi-specimen method developed by Drits et al. (1997a) and Sakharov et 

al. (1999) was used to obtain structure models for all samples from the Callovo-Oxfordian 

series (EST 104 borehole). 
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Contribution of individual minerals phases to XRD patterns. For samples of group 1, the 

optimum fit to the experimental data was obtained using a physical mixture of a randomly 

interstratified I-Exp (Illite-Expandable MLM) and of discrete smectite (Figure 4), in addition 

to discrete illite, kaolinite and chlorite. Optimum structural parameters of the different phases 

contributing to the diffracted intensity are listed in Tables 2a-c for Callovo-Oxfordian samples 

from EST 104 borehole (Figures 5, 6 and 7). These structural parameters vary little 

throughout the series (Tables 2a-c) thus justifying the use of the term "phase" to describe 

these different contributions. Relative proportions of these phases obtained for both AD and 

EG states are listed in Table 2d. 

From Figure 4, it is clear that the ~17 Å maximum observed on the XRD patterns of the 

Callovo-Oxfordian samples and which was originally attributed to a randomly interstratified 

I-S, rather corresponds to the contribution of discrete smectite. As a consequence the steady 

decrease of this maximum with increasing depth is related to the decreasing proportion of 

smectite (Table 2d). In addition, one may note that the proportion of the discrete smectite is 

lower than that of the randomly interstratified I-Exp phase in spite of the very intense 

contribution of the former phase to the XRD pattern because of contrasting structure factors 

for the two phases. Because the structure factor is very high for the 001 reflection of EG-

solvated smectite, it is possible to detect the contribution of this phase even if present in a 

very low proportion (1-4%) as in samples 492 or 494 (Figure 6). In the low angle region, the 

randomly interstratified I-Exp contributes only to an increased "background" without any 

significant intensity modulations (Figure 4). The contribution of this I-Exp phase increases 

slightly with increasing depth (Table 2d), whereas the relative proportion of illite is about 

constant throughout the whole Callovo-Oxfordian sequence. 
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Detailed composition of the different minerals contributing to XRD patterns. All samples 

from the Callovo-Oxfordian series sampled in the EST 104 borehole are a physical mixture of 

a randomly interstratified I-Exp and of discrete smectite in addition to discrete illite, kaolinite 

and chlorite (Figure 4). Discrete illite systematically contains a small amount of randomly 

interstratified expandable layers (~5%), and the non-expandable layers exhibit a constant 

interlayer composition with 0.95 K atoms per O10(OH)2. The mean coherent scattering 

domain size (CSDS) along the c* axis remains constant throughout the series for this discrete 

illite phase with 12 layers in both AD and EG states. Because of their overwhelming 

proportions in the samples (Table 2d) and because of their potential impact on the retention 

properties in the geological formation special attention will be paid to the mineralogical 

description of discrete smectite and of the randomly interstratified I-Exp phase. 

The expandability with EG of discrete smectite is similar for all samples from Group 1 

(Table 2a), with the systematic presence of 2 sheets of EG molecules and a basal spacing of 

16.7 Å after EG solvation. In contrast, the hydration behavior of these expandable layers is 

heterogeneous with about one third of the expandable layers incorporating only one sheet of 

H2O molecules after Ca-saturation. However, the ratio between these two layer types is 

constant throughout the series. In addition, the mean CSDS along the c* axis remains constant 

for this discrete smectite phase throughout the series with 3.5 and 3.0 layers in the AD and 

EG states, respectively. 

The very illitic composition of the randomly interstratified I-Exp phase, although 

unusual in sedimentary series, is also very constant throughout the studied sequence, with 

only a slight increase of its illite content in sample 528 (from 65 to 70 %I - Tables 2b,c). The 

swelling behavior of the Ca-saturated expandable layers is similar all for group 1 samples 

(Table 2b) as about 70% of these layers incorporate 2 sheets of EG molecules after EG 

solvation to systematically exhibit a 17.0 Å basal distance (S layers). Only 1 sheet of EG 
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molecules is present in the remaining expandable layers leading to a basal distance of 12.9 Å 

(V layers). In the AD state, the hydration behavior of these expandable layers is also constant 

for group 1 samples with 60-70% of these layers hosting 2 sheets of H2O molecules (L. 

Tck. = 15.0 Å), while the remaining layers accept only 1 sheet of H2O molecules (L. 

Tck. = 12.5 Å). On the other hand the swelling behavior of these expandable layers is much 

more heterogeneous for sample 528 leading in particular to the description of this contribution 

as two MLMs having the same I:Exp ratio (70:30). The composition (I:Exp = 70:30) and the 

stacking sequence (R = 0) of the first MLM (MLM1 - Table 2c) is similar to that of the I-Exp 

phase in samples of group 1 (Table 2b). All expandable layers of this MLM1 incorporate 2 

sheets of EG molecules after EG solvation (L. Tck. = 16.8 Å), whereas one third of these 

layers accept only 1 sheet of H2O molecules associated with Ca2+ cations (L. Tck. = 12.5 Å) 

in the AD state. The swelling behavior of expandable layers present in the second MLM 

(MLM2) is more complex (Table 2c). After EG solvation, expandable layers with 1 and 2 

sheets of EG molecules (L. Tck. = 13.5 Å and 16.8 Å, respectively) are present in equal 

proportions. In addition, the former layers are segregated (R = 1) as PVV (0.40) is greater than 

the abundance of vermiculite layers (WV = 0.15 - Table 2c). The hydration behavior of 

expandable layers in the AD state is even more complex leading to the description of the 

MLM2 contribution as two MLMs. In the first one, layers which fully expand after EG 

solvation (S layers), are randomly distributed between S and V1 layers (1:2 ratio) in the AD 

state (WS-EG = WS-AD + WV1-AD), whereas V layers in the EG state remain only partially 

hydrated (V2 layers), exhibiting the same tendency to segregation (PVV-EG = PV2V2-AD = 0.40 > 

WV2-AD). In the second MLM, all layers which fully expand (S layers) after EG solvation 

incorporate two sheets of H2O molecules in the AD state (S1 layers – WS-EG = WS1-AD), 

whereas V layers in the EG state are represented by S2 and V layers (1:2 ratio) in the AD 

state (WV-EG = WS2-AD + WV-AD). Again, the tendency to segregation of these V layers is 
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maintanied in the AD state (PS2S2-AD > WV2-AD, and PVV-AD > WV-AD – Table 2c) and the 

occurrence probability of VV pairs in the EG state (WVV = WV x PVV = 0.06) is kept constant 

in the AD state (WS2 x (PS2S2 + PS2V) + WV x (PVS2 + PVV) = 0.06 – Table 2c). 

However, if the contributions of MLM1 and MLM2 to the Ca-EG diffraction pattern are 

considered together, the occurrence probability of II, IS, … layer pairs is similar to that of a 

randomly interstratified I-Exp (70:30) MLM (Figure 8). The only significant difference is 

induced by the slight tendency to segregation of V-type layers.  

To summarize, from group 1 to sample 528 samples the structural evolution of the I-

Exp phase may be described as 1) an increased proportion of non-expandable layers, 2) a 

reduced ability of the expandable layers to incorporate 2 sheets of EG molecules after EG 

solvation possibly indicating a higher layer charge, and 3) a tendency to segregation of these 

V-type layers. In addition, one may note that the K-content of the I-type layers (0.75 K atoms 

per O10(OH)2) is lower than that obtained for the discrete illite phase. 

 

Influence of structural parameters on calculated XRD patterns 

 

During the trial-and error fitting of a simulated XRD pattern to the experimental data a 

large number of parameters are adjusted, and the relevance of the different "improvements" 

has to be assessed to validate the increased complexity (realism ?) of the proposed model. As 

the main parameters used to characterize a MLM are the number and nature (layer thickness 

but also chemical composition) of the different layer types, their relative proportions and 

junction probabilities, these parameters were specifically assessed. 

The sensitivity to the number of different layer types in a given MLM was assessed first 

for sample 447 (Ca-EG) by assuming that all expandable layers in the I-Exp MLM are S-type 

layers incorporating 2 sheets of EG molecules after EG solvation leading to a 65:35:0 I:S:V 
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ratio as compared to the optimum 65:25:10 value (Table 2b). The resulting fit to the 

experimental data (Figure 9a) is of poorer quality (RWP = 10.2% as compared to the optimum 

8.8%). This modification leads in particular to the presence of a sharp maximum on the high 

angle side of the illite 001 peak (9.98 Å - Figure 9a) and to a significant intensity decrease of 

the high angle side of the illite 002 peak (5.00 Å). In addition, relative abundances of discrete 

smectite, I-Exp MLM and discrete illite (25, 45, and 30%, respectively) are different from the 

optimum values (25, 55, and 20%, respectively) leading to significant discrepancies with the 

values obtained on the Ca-AD XRD pattern (24, 54, and 21%, respectively). 

The sensitivity to junction probabilities in a given MLM was assessed for sample 447 

(Ca-EG) by assuming a slight segregation of S-type layers in the I-Exp MLM. In the 

calculated pattern PSS was increased from the optimum 0.25 value (PSS = WS, as R = 0 - Table 

2b) to 0.40, whereas all other independent parameters (PSV, PVS and PVV) were kept constant 

(0.10, 0.25 and 0.10, respectively – Table 2b). Again, the quality of fit is significantly 

decreased (RWP = 11.5% as compared to the optimum 8.8%) and significant discrepancies are 

visible (Figure 9b) on the low-angle side of the illite 001 peak (9.98 Å) and on the intensity of 

the 3.33 Å maximum. 

The sensitivity to the nature of the different layer types is illustrated for sample 447 

(Ca-EG) by assuming first that the basal distance of the minor S-type layers in the I-Exp 

MLM is decreased from the optimum 17.0 Å value to 16.7 Å as for discrete smectite. Even 

though the overall agreement with the experimental XRD pattern is similar to the optimum 

one (RWP = 8.8% as for the optimum fit), a significant shift of the calculated 3.33 Å maximum 

as compared to the experimental XRD pattern is observed (Figure 9c) supporting the 

hypothesis of a L. Tck. value of 17.0 Å. The chemical composition, and more specifically the 

interlayer K content, may also be efficiently constrained because of its influence on the 

calculated XRD profiles. If, for example, the K-content of the I-type layers in the I-Exp MLM 
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is assumed to be 0.90 (K per O10(OH)2), instead of the optimum 0.75 value, the agreement 

between calculated and experimental patterns for sample 492 (Ca-EG) is significantly 

deteriorated (RWP = 15.0% as compared to the optimum 10.1%). Specific discrepancies occur 

on peak intensity of the illite 001 peak and on the two sides of the illite 002 peak (9.98 Å and 

5.00 Å, respectively - Figure 9d) 

 

DISCUSSION 

 

Validity of the proposed mineralogical description 

 

Samples from group 1 may be described as containing, in addition to discrete illite, 

kaolinite and chlorite, a mixture of a discrete smectite and of a randomly interstratified I-S-V 

MLM (polyphasic model). An alternative model was also considered in which the smectite 

and I-Exp MLM contributions were combined into a unique I-S-V MLM showing a strong 

tendency to segregation (R = 1 – segregated model). Even though the two conceptual models 

are strikingly different (a monophase Vs. a physical mixture) the layer pair abundances (Wij) 

calculated for the two models are similar and the diffraction effects obtained for both models 

are close. However, the first hypothesis has been preferred for several reasons which will be 

discussed hereafter. The first endorsement for this preference comes from the better quality of 

fit obtained using this model with two contributions. However, this improved quality of fit 

should be weighted against the increased number of adjustable parameters resulting from the 

split of the segregated I-S-V contribution in two independent contributions. No quantitative 

estimate has been made but this increase is basically limited to the possibility of having 

different CSDS for the two phases and different L. Tck. for the S-type layers in these phases, 

and in our opinion, cannot account alone for the improved quality of fit. Furthermore, the 
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polyphasic model allowed to meet the additional constrains coming from the relative 

proportions of the different phases determined from the analysis of different XRD patterns for 

the same sample (Claret, 2001). This model also allowed us to propose a consistent 

description of the clay mineralogy for all samples from the Callovo-Oxfordian series which 

contain a discrete smectite phase and a randomly interstratified I-Exp MLM (I:Exp ratio ≈ 

2:1) in addition to discrete illite, kaolinite, and chlorite. Additional data supporting the 

polyphasic model comes from the high-pH alteration experiments performed by Claret et al. 

(2002) on the same Callovo-Oxfordian samples. These authors indeed showed, using sample 

490, that the smectite phase is preferentially altered during these experiments, leading to the 

formation of a randomly interstratified I-Exp MLM (I:Exp ratio being 50:50 in this new 

phase), whereas the original I-Exp MLM is left unaltered. On the one hand, this behavior is 

consistent with the likely contrasting stabilities of discrete smectite and I-Exp MLM in these 

high pH conditions. For the segregated model on the other hand, this behavior implies the 

specific alteration of clusters of expandable layers in the segregated I-Exp, whereas isolated 

expandable layers in the same I-Exp phase would be left unaltered. Because we could not 

think of a rationale for the contrasting stability of similar expandable layers, the experiments 

performed by Claret et al. (2002) were assumed to support the polyphasic model. 

 

Clay mineralogy in the Callovo-Oxfordian series 

 

In the samples studied, the main clay phase is the randomly interstratified I-Exp MLM 

which accounts for about 60% of the diffracting material in the <0.2 µm size fraction. The 

very illitic composition of this MLM phase, which contains about 65% of non-expandable 

illite layers, is seldom described for I-S MLMs in diagenetic environments as 

interstratification is most often described as ordered (R = 1 with maximum possible degree of 
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ordering – MPDO ; see Drits and Tchoubar (1990) for details) for I-S MLMs in which illite 

prevails (Moore and Reynolds, 1989). However, the illite content in I-Exp MLMs 

corresponding to the R = 0 to R = 1 transition is not strictly defined in the literature. For 

example, from the analysis of the XRD results obtained on Gulf Coast samples by Perry and 

Hower (1970), Bethke et al. (1986) has set this transition between 60-70 %I for shales. 

Samples identified by Perry and Hower (1970) as containing such a highly illitic randomly 

interstratified MLM (E-10080, C-15509, e.g.) exhibit XRD patterns very similar to that of 

samples 492 and 494 in which the smectite contribution is faint. After EG solvation, these 

XRD patterns show only a broad and poorly defined shoulder at ~17 Å, and the contribution 

of such a highly illitic randomly interstratified MLM to the diffracted intensity is extremely 

diffuse (Figure 4). Because position of diffraction maxima is widely used to identify MLMs, 

this specific diffraction fingerprint, without any significant maximum, likely hinders the 

recognition of such highly illitic randomly interstratified MLMs in natural samples and is 

most likely responsible for their seldom described occurrence. Such highly illitic (60-70%Ill) 

randomly interstratified MLMs have also been recognized in soils (Righi et al., 1995; Velde 

and Peck, 2002) 

A peculiarity of this randomly interstratified I-Exp MLM comes from the composition 

of its I-type interlayers which contain 0.75 K atoms per O10(OH)2 according to XRD profile 

modeling. This low K-content, which is confirmed by the sensitivity tests (Figures 6a and 9d), 

is in agreement with early studies of Hower and Mowatt (1966) and Srodon and Eberl (1984). 

This low K-content is not associated with the presence of NH4+ as interlayer cations as the 

basal distance determined from the simulation of XRD patterns for non-expandable layers is 

systematically 9.98 Å. If NH4
+ cations were present (tobelite-like layers) this would lead to an 

increase of the d-spacings as described by Drits et al. (2002). However, this composition was 

challenged by Meunier and Velde (1989) who determined a higher layer charge (0.87 per 
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O10(OH)2) from the interpolation of published chemical data. This higher K-content in illite 

was later confirmed by Lanson and Champion (1991) from EDS analysis on a TEM, and by 

Srodon et al. (1992) from the combination of EDS analyses on TEM, and CEC and total 

surface measurements. One possible explanation for this discrepancy may lie in the nature of 

the samples analyzed in these latter studies as most chemical data do not come shales samples 

but rather from bentonites. This hypothesis is supported by the similar low K-content 

determined by Sakharov et al. (1999) for shale samples, in contrast with the higher K-contents 

they reported for hydrothermal and bentonite samples. Such low K-content of illite layers in 

shales has also been reported by Drits et al. (1997a, 2002), and Lindgreen et al. (2000) using 

a similar multi-specimen approach to XRD patterns. It should be noted that the K-content in 

the discrete illite phase is much higher (0.95 per O10(OH)2) than that in the I-Exp MLM. 

Another essential feature of the expandable clay phases in the Callovo-Oxfordian 

samples is the heterogeneous hydration and swelling behaviors for expandable layers. This 

heterogeneity, which has been accounted for by using two types (S and V) of expandable 

layers with contrasting hydration./expansion properties, likely results from different amounts, 

and possibly location, of the layer charge. However, the binary (S- or V-type) 

hydration/expansion behavior of expandable layers is only a simplistic indication of their 

charge distribution which could be better assessed by using different interlayer cations and 

relative humidities (see for example Calarge et al., 2003 or Meunier et al., 2004) and/or 

alkylammonium cations. This heterogeneity has long been recognized in the AD state and, as 

a consequence, most identification methods for I-Exp MLMs are based on the analysis of 

XRD patterns recorded after EG solvation (Srodon 1980, 1981; Watanabe, 1981, 1988; Velde 

et al., 1986; Inoue et al., 1989). However, in our opinion this intrinsic heterogeneity is an 

indicator of the burial diagenesis evolution in particular for the early stages of smectite 

illitization, in which significant structural modifications of the expandable layers occur 
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without illite layer formation (Sato et al., 1996; Drits et al., 1997a; Beaufort et al., 2001). In 

addition, even though in the discrete smectite all expandable layers incorporate two sheets of 

EG molecules after EG solvation, the swelling heterogeneity is preserved for the I-Exp MLM, 

which contains about one third of expandable layers with a unique sheet of EG molecules 

(Table 2b). Because of this swelling heterogeneity, which is very likely to be common (see 

Meunier et al. (2000) for a review), most usual identification methods for I-Exp MLMs are 

unable to provide a good description of natural samples as they are based on the assumption 

of two-component (I-S) MLMs. 

 

Evolution of clay mineralogy in the Callovo-Oxfordian series 

 

The data described in the present article offer a novel description of the "R0-to-R1" 

transition originally described by Bouchet and Rassineux (1997) in the Callovo-Oxfordian 

series of the MHM site. In the proposed description, the structural characteristics of the 

different contributions to the diffracted intensity are nearly constant throughout the series, 

thus justifying the use of the term "phase" to describe these different contributions. The CSDS 

and the I:Exp ratio are about constant for all these contributions, and the hydration/swelling 

behavior of expandable layers does not change significantly with depth. The main structural 

evolution occurs for sample 528, in which the contribution of the I-Exp MLM is split because 

of the increased heterogeneity of swelling properties in expandable layer. However, if the two 

contributions are considered together, they are very close to that of a randomly interstratified 

I-Exp containing 70% illite layers as shown by the calculated occurrence probabilities of the 

different layer pairs (Figure 8). 

As a consequence, the mineralogical transition described by Bouchet and Rassineux 

(1997) does not correspond to the progressive illitization of I-S MLMs as originally proposed 
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but rather to the disappearance of smectite with increasing depth. In the new description, 

XRD patterns (after EG solvation) exhibiting a vague shoulder at ~17 Å are indicative of an 

illite-rich (~65 %I) randomly interstratified I-Exp MLM similar to the one originally 

described by Perry and Hower (1970) in deeply buried Texas Gulf Coast "R = 0" samples. In 

addition, in the present case study the progressive decrease of the 17 Å peak/low angle 

shoulder intensity ratio is not indicative of the increasing proportion of illite layers in a 

randomly interstratified I-S MLM, as assumed by Inoue et al. (1989) and by Bouchet and 

Rassineux (1997) for smectite-to-illite conversion series, but rather corresponds to the 

decreasing proportion of a discrete smectite phase. Claret (2001) has shown that the use of the 

multi-specimen method on clay-size fractions of samples from the Gulf Coast classic 

diagenetic smectite-to-illite conversion series leads to a similar mineralogical description for 

the uppermost part of the series in which randomly interstratified I-Exp MLMs dominate. 

 

Evidence for a low-temperature mineral diagenesis 

 

One objective of the present study was also to unravel the possible origin of the 

observed mineralogical transition, and more especially to assess the sedimentological control 

on this transition suggested by Pellenard et al. (1999). The clay mineralogy of the Callovo-

Oxfordian series was thus compared to that of other formations of similar ages (Oxfordian – 

Toarcian) occurring in the Paris basin. From the qualitative comparison of XRD patterns, the 

mineralogy of these formations is akin to that of sample 528, whereas samples from group 1 

exhibit strikingly different XRD patterns (Figure 3). One may note that sample 528 is similar 

to older Toarcian sediments collected throughout the Paris basin (Figure 3b) and to younger 

Oxfordian sediments sampled in the MHM site (Figure 3a). According to usual identification 

criteria (Velde et al., 1986) I-S MLMs observed in sample 528 from the Callovo-Oxfordian 
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series and in Oxfordian samples would contain ~40% of expandable layers (I-Exp peak 

position at about 12.5 Å in the Ca-AD state - Figures 2 and 3a). Toarcian samples (180-190 

Ma) exhibit a more illitic clay mineral composition, as compared to younger Oxfordian and 

Callovian samples (150-162 Ma), as indicated by the I-Exp peak position at about 11.5 Å in 

the Ca-AD state the position (Figure 3b). In addition, because XRD patterns of all Toarcian 

samples are alike whatever their maximum burial depth the driving force for the smectite-to-

illite evolution is most likely time rather than temperature for these Jurassic sediments. All 

above observations suggest that the clay mineralogy of sample 528 is consistent with that 

described in formations of similar ages as resulting from a diagenetic smectite-to-illite 

transition.  

The assumption of a pervasive low-temperature diagenesis is supported by the presence 

throughout the Callovo-Oxfordian series of clay-size particles exhibiting idiomorphic shapes 

(Figure 10) indicating a systematic crystallization of clay (I-Exp MLMs) particles. Similar 

neoformed particles have also been observed by Rousset and Clauer (2003) in the same 

formation. However, these authors plead for a limited clay diagenesis because radiogenic ages 

measured in the Callovo-Oxfordian sediments are systematically older than stratigraphic ages. 

This apparent contradiction is probably due to the systematic presence of discrete illite even 

in the finest size fractions. This phase, which is likely of detrital origin, accounts for about 

25% of the <0.2 µm (Table 2d), and its high K-content may exert a strong influence on 

measured radiogenic ages. 

From the comparison between kerogen maturation and I-S composition made by Velde 

and Espitalié (1989) for Jurassic samples (150-180 Ma) the I-S composition in sample 528 

(20-40%S from the method developed by Velde et al (1986)) corresponds to the absence of 

any kerogen (type III) transformation, which is consistent with the very low maximum 

temperature recorded by OM (Elie et al., 2000) and fluid inclusions (Cathelineau et al., 1997). 
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On the other hand , the clay mineralogy of group 1 samples is noticeably different from 

sample 528 and the origin for their "immature" character in the general scheme of smectite 

illitization should be sought. In other words, the problem is not to understand the origin of the 

sudden transition from smectite-rich sediments to illite-rich sediments but rather to 

understand why in the upper part of the series the smectite-rich sediments have not evolved 

towards more illitic compositions. 

 

Origin of the observed mineralogical transition 

 

The above discussion has shown that the low maximum burial temperature experienced 

by these Callovo-Oxfordian sediments is not responsible for the absence of mineralogical 

evolution in the upper part of the series. Furthermore, the sudden character of the 

mineralogical transition, which occurs over a 10 m depth interval, results in an extremely low 

temperature difference between the two parts of the series that can not account for the 

observed contrast of their clay mineralogy. Similarly, the chemical homogeneity of the 

formation, which confers constant geochemical characteristics to the bulk rock and identical 

octahedral and interlayer compositions to the clay fraction throughout the Callovo-Oxfordian 

formation (MHM site – Rousset and Clauer, 2003), does not plead for a chemical origin to 

this mineralogical transition. Because the availability of K is known as a possible limiting 

factor for smectite illitization (Pytte and Reynolds, 1989; Whitney, 1992; Huang et al., 1993), 

it was specifically checked that K-feldspars and detrital micas are present throughout the 

series as a potential K-source.  

As the low-temperature and the K-availability hypotheses on the origin of the observed 

mineralogical transition can be ruled out, the very low degree of clay mineral diagenesis of 

the uppermost (group 1) samples can be alternatively connected to the low clay reactivity 
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evidenced on the same samples by Claret et al. (2002) in his high pH experiments. From these 

experiments, and more especially from X-ray microscopy observations, Claret et al. (2002) 

has shown that the organic coating on the edges of clay particles is responsible for a limited 

reactivity of clay minerals from the Callovo-Oxfordian series. Using in particular the 

steranes:hopanes and pristine:phytane ratios Landais and Elie (1999) have determined that the 

nature of this OM varies with burial depth in the MHM site, being from continental origin 

(type III) in the top part of the series (Oxfordian) whereas it shows stronger marine influence 

(type II) in its bottom part. It is therefore likely that the influence of OM on clay reactivity 

will be different in the upper and deeper parts of the series as a result of this contrasting origin 

and nature. In particular, OM may totally impede the reactivity of clay particles in the upper 

part of the series whereas the reactivity of clay minerals is only partly affected in the deeper 

part of the series. This is consistent with the results of Claret et al. (2002). These authors 

indeed observed strictly no evolution for their uppermost sample (447) whereas partial 

smectite dissolution was described for sample 490 under the same experimental conditions. 

However, Landais and Elie (1999) have shown that the transition between the two types 

of OM does not strictly coincide with the mineralogical transition, which is actually slightly 

shallower in the MHM site. As a consequence these different OM inputs can not account 

alone for the mineralogical transition observed within the Callovo-Oxfordian series. On the 

other hand, these two primary continental and marine domains are not homogeneous as some 

of the OM geochemical parameters vary within these domains. Such variation of geochemical 

parameters may reflect subtle differences in the origin or in the evolution of OM after 

deposition (e.g. contrasting depositional environments) and could lead to contrasting 

reactivity of the OM. In turn, interactions between this OM and clay minerals may allow a 

"normal" low-temperature diagenetic smectite-to-illite evolution in the deeper part of the 

Callovo-Oxfordian series whereas they can considerably slow down the evolution of clay 
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minerals in the upper part of the series. For example, the change in the distribution of alkyl-

napthalenes (Landais and Elie, 1999 – Figure 3.7), which occurs within the Oxfordian 

domain, coincides with the observed mineralogical at a burial and could possibly indicate 

such a difference of OM reactivity.  

As a consequence, it seems likely that the origin of the observed mineralogical 

transition is actually related to sedimentology (Pellenard et al., 1999). However this influence 

does not come from contrasting mineral contributions as supposed earlier (Pellenard et al., 

1999), but rather from different inputs of OM coming with these detrital mineral contributions 

or from different evolutions of this OM after deposition. 

 

CONCLUSION 

 

XRD patterns of the studied Callovo-Oxfordian series of samples are very similar to 

those described in the literature as characteristic of a diagenetic smectite-to-illite conversion 

series. However, for the studied series, the multi-specimen method leads to their description 

as a physical mixture of a seldom described illitic (~65 %I) randomly interstratified I-Exp 

(Illite-Expandable MLM) and of a discrete smectite, in addition to discrete illite, kaolinite and 

chlorite. 

The mineralogical composition of the deepest sample is akin to that of clay-rich 

formations of similar age (Oxfordian-Toarcian) sampled throughout the Paris basin, thus 

pleading for a similar low-temperature burial diagenetic origin (smectite-to-illite transition). 

The anomalous lack of evolution of clay minerals in the upper part of the series is thought to 

be related to specific interactions between organic matter and clay minerals, even though the 

major change in OM origin is not strictly coincident with the mineralogical transition. 
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According to the proposed model, the mineralogical evolution observed in the top part 

of the series (group 1 samples) corresponds to the disappearance of smectite with increasing 

depth. The diffuse diffraction fingerprint of the highly illitic randomly interstratified MLM 

(mostly a broad hump in the low-angle region) is likely to be responsible for its scarce 

identification in natural samples. 

The sensitivity of the multi-specimen method developed by Drits et al. (1997a) and 

Sakharov et al. (1999) to small structural variations has been strongly enhanced by the 

additional constraint imposed from the required coincidence between relative proportions of 

the different phases determined from the various XRD patterns recorded on the same sample. 

This constraint represents an additional criterion to select between different structure models 

leading to fits of similar quality to the experimental patterns. 

 

ACKNOWLEDGMENTS 

 

The results presented in the present article were collected during a Ph.D. thesis granted 

by Andra (French National Agency for Nuclear Waste Disposal). Andra is thanked for the 

large access to MHM site samples and for the permission to publish this manuscript. BL and 

FC acknowledge financial support from Andra and from the CNRS/PICS709 program. 

V.A.D. and B.A.S. are grateful to the Russian Science Foundation for financial support. 

Marcel Elie is thanked for the fruitful discussions about OM geochemistry in the Paris basin. 

The authors also thank D. Peaver, A. Plançon and D.K. McCarty for their careful and 

constructive reviews of the original manuscript. 

 

 27 



REFERENCES 

 

Bauer, A. and Velde, B. (1999) Smectite transformation in high molar KOH solutions. Clay 

Minerals, 34, 259-273. 

Beaufort, D., Berger, G., Lacharpagne, J. C. and Meunier, A. (2001) An experimental 

alteration of montmorillonite to a di+trioctahedral smectite assemblage at 100 and 

200°C. Clay Minerals, 36, 211-225. 

Bethke, C. G., Vergo, N. and Altaner, S. P. (1986) Pathways of smectite illitization. Clays 

and Clay Minerals, 34, 125-135. 

Boles, J. R. and Francks, G. S. (1979) Clay diagenesis in Wilcox sandstones of Southwest 

Texas: Implications of smectite diagenesis on sandstone cementation. Journal of 

Sedimentary Petrology, 49, 55-70. 

Bouchet, A. and Rassineux, F. (1997) Echantillons d'argiles du forage EST 104 : Etude 

minéralogique approfondie. Andra, Report DR-P-0ERM-98-007A, Chatenay Malabry, 

France, 107 pp. 

Burst, J. F. (1969) Diagenesis of Gulf Coast clayey sediments and its possible relation to 

petroleum migration. American Association of Petroleum Geologists Bulletin, 53, 73-

93. 

Calarge, L., Lanson, B., Meunier, A., and Formoso, M.L. (2003) The smectitic minerals in a 

bentonite deposit from Melo (Uruguay). Clay Minerals, 38, 25-34. 

Cathelineau, M., Ayt Ougougdal, M., Elie, M. and Ruck, R. (1997) Mise en evidence d'une 

diagénèse de basse température dans les series mésozoiques du site Est : une étude des 

inclusions fluides des argiles et de la matière organique. Proceeding of the Journées 

scientifiques, ANDRA, CNRS, Bar le duc, pp. 28. 

 28 



Claret, F. (2001) Caractérisation structurale des transitions minéralogiques dans les 

formations argileuses : Contrôles et implications géochimiques des processus 

d'illitisation. Cas particulier d'une perturbation alcaline dans le Callovo-Oxfordien 

Laboratoire souterrain Meuse-Haute-Marne. Ph.D. thesis, Université Joseph Fourrier, 

Grenoble, France, 174 pp. 

Claret, F., Bauer, A., Schäfer, T., Griffault, L. and Lanson, B. (2002) Experimental 

investigation of the interaction of clays with high pH solutions : A case study from the 

Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France). 

Clays and Clays Minerals, 50, 633-646. 

Drits, V. A. and Sakharov, B. A. (1976). X-Ray structure analysis of mixed-layer minerals. 

Dokl. Akad. Nauk SSSR, Moscow, 256 pp. 

Drits, V. A. and Tchoubar, C. (1990). X-ray diffraction by disordered lamellar structures: 

Theory and applications to microdivided silicates and carbons. Springer-Verlag, 

Berlin, 371 pp. 

Drits, V. A., Lindgreen, H., Sakharov, B. A. and Salyn, A. S. (1997a) Sequence structure 

transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic 

shales, North Sea. Clay Minerals, 32, 351-371. 

Drits, V. A., Srodon, J. and Eberl, D. D. (1997b) XRD measurement of mean crystallite 

tickness of illite and illite/smectite : Reapparisal of the Kubler index and the scherrer 

equation. Clays and Clays Minerals, 45, 461-475. 

Drits, V. A., Lindgreen, H., Sakharov, B. A., Jakobsen, H. J., Salyn, A. L. and Dainyak, L. G. 

(2002) Tobelitization of smectite during oil generation in oil-source shales. 

Application to north sea illite-tobellite-smectite-vermiculite. Clays and Clays 

Minerals,, 50, 82-98. 

 29 



Elie, M., Faure, P., Michels, R., Landais, P. and Griffault, L. (2000) Natural and laboratory 

oxidation of low-organic-carbon-content sediments: comparaison of chemical changes 

in hydrocarbons. Energy and Fuels, 14, 854-861. 

Espitalié, J., Marquis, F., Sage, L. and Barsony, I. (1987) Géochimie organique du Bassin de 

Paris. Revue de l'Institut Français du Pétrole, 42, 271-302. 

Howard, S.A., and Preston, K.D. (1989) Profile fitting of powder diffraction patterns. Pp. 

217-275 in: Modern Powder Diffraction ( D.L. Bish and J.E. Post, editors). 

Mineralogical Society of America, Wahington D.C. 

Hower, J. and Mowatt, T. C. (1966) The mineralogy of illites and mixed-layer 

illite/montmorillonites. American Mineralogist, 51, 825-854. 

Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A. (1976) Mechanism of burial 

metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. 

Geological Society of America Bulletin, 87, 725-737. 

Huang, W.L., Longo, J.M., and Pevear, D.R. (1993) An experimentally derived kinetic model 

for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay 

Minerals, 41, 162-177. 

Inoue, A., Bouchet, A., Velde, B. and Meunier, A. (1989) Convenient technique for 

estimating smectite layer percentage in randomly interstratified illite/smectite 

minerals. Clays and Clay Minerals, 37, 227-234. 

Landais, P. and Elie, M. (1999) Utilisation de la géochimie organique pour la détermination 

du paléoenvironnement et de la paléothermicité dans le Callovo-Oxfordien du site de 

l´Est de la france. Etude de l´Est du bassin de Paris, Edition EDP Sciences, 35-61. 

Lanson, B. (1990) Mise en évidence des mécanismes de transformation des interstratifiés 

illite/smectite au cours de la diagenèse. Ph.D. thesis, Université Paris 6 - Jussieu, 

France, 366 pp. 

 30 



Lanson, B. and Champion, D. (1991) The I/S-to-illite reaction in the late stage diagenesis. 

American Journal of Science, 291, 473-506. 

Lanson, B. and Besson, G. (1992) Characterization of the end of smectite-to-illite 

transformation: Decomposition of X-ray patterns. Clays and Clay Minerals, 40, 40-52. 

Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. and Dainyak, L. (2000) 

Illite-smectite structural changes during metamorphism in black Cambrian Alum 

shales from the Baltic area. American Mineralogist, 85, 1223-1238. 

de Marsily, G., Goncalves, J., Violette, S. and Castro, M.C. (2002) Migration mechanisms of 

radionuclides from a clay repository toward adjacent aquifers and the surface. 

Comptes Rendus Physique, 3, 945-959. 

Meunier, A. and Velde, B. (1989) Solid solutions in I/S mixed-layer minerals and illite. 

American Mineralogist, 74, 1106-1112. 

Meunier, A., Lanson, B. and Beaufort, D. (2000) Vermiculitization of smectite interfaces and 

illite layer growth as a possible dual model for illite-smectite illitization in diagenetic 

environments: a synthesis. Clay Minerals, 35, 573-586. 

Meunier A. and Velde B. (2004) Illite. Origins, evolution and metamorphism. Springer-

Verlag, Berlin, in press. 

Meunier A., Lanson B. and Velde B., (2004) Composition variation of illite-vermiculite-

smectite mixed-layer minerals in a bentonite bed from Charente (France), Clay 

Minerals, 39, in press. 

Moore, D. M. and Reynolds, R. C., Jr (1989). X-ray Diffraction and the Identification and 

Analysis of Clay Minerals. Oxford University Press, Oxford and New York, 322 pp. 

Pellenard, P., Deconinck, J. F., Marchand, D., Thierry, J., Fortwengler, D. and Vigneron, G. 

(1999) Eustatic and volcanic influenc during Middle Callovian Oxfordian clay 

 31 



sedimentation in the eastern part of the Paris Basin. Compte rendus de l´academie des 

sciences, 328, 807-813. 

Perry, E. A., Jr and Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays 

and Clay Minerals, 18, 165-177. 

Pytte, A. M. and Reynolds, R. C. (1989) The thermal transformation of smectite to illite. Pp. 

133-140 in: The thermal history of sedimentary basin : methods and case history (N. 

D Naesser and T. H MCCulloh, editors). Springer-Verlag, New York. 

Righi, D., Velde, B. and Meunier A. (1995) Clay stability in clay-saturated soil systems. Clay 

Minerals, 30, 45-54. 

Rousset, D. and Clauer, N. (2003) Discrete clay diagenesis in a very low-permeable sequence 

constrained by an isotopic (K-Ar and Rb-Sr) study. Contributions to Mineralogy and 

Petrology, 145, 182-198. 

Sakharov, B. A., Lindgreen, H., Salyn, A. and Drits, V. (1999) Determination of illite-

smectite structures using multispecimen XRD profile fitting. Clays and Clays 

Minerals, 47, 555-566. 

Sato, T., Murakami, T. and Watanabe, T. (1996) Change in layer charge of smectites and 

smectite layers in illite/smectite during diagenetic alteration. Clays and Clay Minerals, 

44, 460-469. 

Shutov, V.D., Drits, V.A. and Sakharov, B.A. (1969) On the mechanism of a postsedimentary 

transformation of montmorillonite into hydromica. Pp. 523-531 in: Proceedings of the 

International Clay Conference, Tokyo (L. Heller, editor). Israel University Press, 

Jerusalem. 

Srodon, J. (1978) Correlation between coal and clay diagenesis in the Carboniferous of the 

upper Silesian coal basin. Proceedings of the International Clay Conference, Oxford, 

pp. 251-260. 

 32 



Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder 

diffraction. Clays and Clay Minerals, 28, 401-411. 

Srodon, J. (1981) X-Ray identification of randomly interstratified illite-smectite in mixtures 

with discrete illite. Clay Minerals, 16, 297-304. 

Srodon, J. (1984) Mixed-layer illite-smectite in low-temperature diagenesis: Data from the 

Miocene of the Carpathian foredeep. Clay Minerals, 19, 205-215. 

Srodon, J. and Eberl, D. D. (1984) Illite. Pp. 495-544 in: Micas (S. W. Bailey). Reviews in 

Mineralogy, 13, Mineralogical Society of America, Washington D.C. 

Srodon, J., Elsass, F., McHardy, W. J. and Morgan, D. J. (1992) Chemistry of illite-smectite 

inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137-

158. 

Velde, B. and Peck, T., (2002) Clay mineral changes in the morrow experimental plots, 

University of Illinois. Clays and Clay Minerals, 50, 364-370. 

Velde, B., Suzuki, T. and Nicot, E. (1986) Pressure-Temperature-Composition of 

illite/smectite mixed-layer minerals: Niger delta mudstones and other examples. Clays 

and Clay Minerals, 34, 435-441. 

Velde, B. and Espitalié, J. (1989) Comparison of kerogen maturation and illite/smectite 

composition in diagenesis. Journal of Petroleum Geology, 12, 103-110. 

Velde, B. and Vasseur, G. (1992) Estimation of the diagenetic smectite to illite transformation 

in time-temperature space. American Mineralogist, 77, 967-976. 

Watanabe, T. (1981) Identification of illite/montmorillonite interstratification by X-ray 

powder diffraction. Journal of the Mineralogical Society of Japan, Spec. Issue 15, 32-

41. 

Watanabe, T. (1988) The structural model of illite/smectite interstratified mineral and the 

diagram for their identification. Clay Science, 7, 97-114. 

 33 



Whitney, G. (1990) Role of water in the smectite-to-illite reaction. Clays and Clay Minerals, 

38, 343-350. 

Whitney, G. (1992) Dioctahedral smectite reactions at elevated temperatures: Effects of K-

availability, Na/K ratio and ionic strength. Applied Clay Science, 7, 97-112. 

 34 



Table 1. Mineralogical characterization of sample 447 using the identification methods 

proposed by Srodon (1981) and Inoue et al. (1989) for the identification of randomly 

interstratified (R = 0) I-S MLMs. 

 

Identification method (Srodon, 1981) (Inoue et al., 1989) 

Criterion 

Position (15-16°2θ range): 

15.94°2θ 

Position (31-32°2θ range): 

31.46°2θ 

Uncorrected smectite content: 

60% 

63.1=
−SI

I

I

I
 

Smectite content correction: 

15% 

Peak
Saddle

 ratio : 0.82 

%I in the randomly 

interstratified I-S MLM 
25 45 

RWP (%) 32.0 19.7 

Note: RWP is the usual criterion to assess the quality of fit. This value has been calculated after 

simulation of the I-S contribution according to the identification performed. Other 

contributions to the diffracted intensity from discrete illite, kaolinite, and chlorite were 

introduced as in the optimum fit (Tables 2a-d). The RWP value obtained for the structural 

model proposed for sample 447 (Ca-EG) is 8.8%. 
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Table 2a. Composition of the smectite phase throughout the Callovo-Oxfordian series in the 

EST 104 borehole (Group 1 samples). Structural parameters are determined from XRD 

profile fitting using the multi-specimen technique (Sakharov et al., 1999). 

 

 State Ca-EG Ca-AD 

Sample Layer type S V S V 

 L. Tck. (Å) 16.7 12.9 15.0 12.5 

447 Rel. Prop. (%) 100 0 60 40 

482 Rel. Prop. (%) 100 0 70 30 

489 Rel. Prop. (%) 100 0 60 40 

492 Rel. Prop. (%) 100 0 70 30 

494 Rel. Prop. (%) 100 0 75 25 

Note: L. Tck. is the basal spacing along the c* axis of the different 

layer types present in the smectite phase. S and V layer types are 

differentiated from their swelling behaviors. S layers incorporate 

2 sheets of ethylene glycol (EG) after EG solvation (Ca-EG) 

and/or 2 sheets of water molecules in the air dried state (Ca-AD). 

In these states, V layers incorporate 1 sheet of EG molecules 

and/or 1 sheet of water molecules, respectively. Rel. Prop. is the 

relative proportion of each layer type in the smectite crystallites. 

For all samples the mean coherent scattering domain size (CSDS) 

along the c* axis is 3.5 layers in the AD state and 3.0 in the EG 

state (lognormal distribution). 
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Table 2b. Composition of the I-Exp MLM (R=0) phase throughout the Callovo-Oxfordian 

series in the EST 104 borehole (Group 1 samples). Structural parameters are determined 

from XRD profile fitting using the multi-specimen technique (Sakharov et al., 1999). 

 

 State Ca-EG Ca-AD 

Sample Layer type I S V I S V 

 L. Tck. (Å) 9.98 17.0 12.9 9.98 15.0 12.5 

447 Rel. Prop. 65 25 10 65 20 15 

482 Rel. Prop. 65 25 10 65 25 10 

489 Rel. Prop. 65 25 10 65 20 15 

492 Rel. Prop. 65 25 10 65 22 13 

494 Rel. Prop. 65 28 7 65 20 15 

Note: All notations as for Table 2a. I denotes non-expandable (illite) layers. For all 

samples the mean CSDS along the c* axis is 12 layers in both AD and EG 

states (lognormal distribution). 
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Table 2c. Composition of the I-Exp mixed-layer phases for sample 528. Structural parameters 

are determined from XRD profile fitting using the multi-specimen technique (Sakharov et 

al., 1999). 

 MLM1 (R = 0) 

 Ca-EG Ca-AD 

L. Tck. (Å) 9.98 16.8 9.98 15 12.5 

Rel. Prop. (%) 70 30 70 20 10 

 MLM2 (R = 1) 

 Ca-EG Ca-AD 

 I S V I S V1 V2 

L. Tck. (Å) 9.98 16.8 13.5 9.98 15.0 12.5 12.5 

Rel. Prop. 70 15 15 70 5 10 15 

Junction 

probability 

parameters 

PSS = 0.15, PSV = 0.15 

PVS = 0.15, PVV = 0.40 

PSS = 0.05, PSV1 = 0.10, PSV2 = 0.15 

PV1S = 0.05, PV1V1 = 0.10, PV1V2 = 0.15

PV2S = 0.05, PV2V1 = 0.10, PV2V2 = 0.40 

  I S1 S2 V 

L. Tck. (Å) 9.98 15.0 15.0 12.5 

Rel. Prop. 70 15 5 10 

Junction 

probability 

parameters 

 PS1S1 = 0.15, PS1S2 = 0.05, PS1V = 0.10 

PS2S1 = 0.15, PS2S2 = 0.13, PS2V = 0.27 

PVS1 = 0.15, PVS2 = 0.13, PVV = 0.27 

Note : All notations as for Table 2a. Relative abundance of MLM1 is 23% and 20% in 

EG and AD states, respectively. Relative abundance of MLM2 is 45% and 48% 

(15% + 33%) in EG and AD states, respectively. The mean CSDS along the c* axis 

is 12 layers in both AD and EG states (lognormal distribution) 
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Table 2d. Relative proportions of the different phases contributing to the diffracted intensity 

in the sampled Callovo-Oxfordian series (EST 104 borehole) as determined from XRD 

profile fitting using the multi-specimen technique (Sakharov et al., 1999). 

 

Sample State 
I-Exp MLM 

(%) 

Smectite 

(%) 

Illite 

(%) 

Kaolinite 

(%) 

Chlorite 

(%) 

RWP

(%) 

Ca-EG 54 24 21 0 1 8.8 
447 

Ca-AD 55 20 25 0 1 11.5 

Ca-EG 54 20 25 0 1 7.7 
482 

Ca-AD 53 18 28 0 1 9.7 

Ca-EG 67 10 21 0 2 10.5 
489 

Ca-AD 62 10 27 0 1 11.0 

Ca-EG 66 4 24 5 1 10.1 
492 

Ca-AD 61 4 29 5 1 10.6 

Ca-EG 68 1 27 3 1 8.0 
494 

Ca-AD 66 3 27 3 1 10.8 

Ca-EG 68* 0 21 10 1 12.2 
528 

Ca-AD 68* 0 21 10 1 13.2 

Note : Relative proportions are given as weight %. * For sample 528 the contributions of both 

MLM1 and MLM2 (Table 2c) are summed up to determine the relative contribution of the I-

Exp MLM phase. RWP is the usual parameter to assess the quality of fit. 
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FIGURE CAPTION 

 

Figure1. Sample location. MHM indicates the planned Meuse / Haute-Marne underground 

laboratory. Boreholes EST 104 and EST 204 are located nearby. GSY, CPG, MRY, 

CPY,CEY, MOP, BAT, CHV are boreholes drilled for oil exploration purposes (Lanson, 

1990). 

 

Figure 2. Experimental XRD patterns (oriented slides, <0.2 µm size fraction) of the six 

samples selected as being representative of the Callovo-Oxfordian series (Claret, 2001). 

Group 1 (Gp1) samples exhibit a 17.3 Å peak in the EG state, whereas sample 528 does 

not show this diffraction maximum. The solid and gray traces represent XRD patterns 

recorded in AD state and after EG salvation respectively. Peak positions are outlined as 

dashed lines for mica (M), chlorite (Ch), and quartz (qz) contributions. Peak positions of 

other clay minerals are outlined as dot-dashed and solid lines for AD and EG states, 

respectively. 

 

Figure 3. Comparison of experimental XRD patterns characteristic of group 1 (Gp1, sample 

447) and sample 528 with that obtained (a) on Oxfordian samples from borehole EST 

204 (MHM 218-249) (oriented slides, <2 µm size fraction)and (b) on samples from 

Toarcian black shales taken at various burial depth throughout the Paris basin (Lanson, 

1990-oriented slides, <2 µm size fraction). Patterns and peak positions as in Figure 2. 

 

Figure 4. elementary contributions to the diffracted intensity as determined using the multi-

specimen method developed by Sakharov et al. (1999) to the XRD pattern recorded on 

sample 447. Experimental XRD patterns are shown as crosses, whereas the respective 

contribution of discrete smectite, I-Exp MLM, and illite are shown from top to bottom as 
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solid, dashed, and dot-dashed lines, respectively. Relative intensities of these elementary 

contributions are normalized according to their relative proportions (Table 2d). Positions 

of the diffraction maxima are indexed, and quartz (qz) impurity is labeled. The broken x-

axis indicates a scale change. (a) Ca-saturation and EG solvation. Scale factor x5 over the 

14-50°2θ CuKα range. (b) Ca-saturation and AD state. Scale factor x10 over the 14-

50°2θ CuKα range.  

 

Figure 5. Comparison between experimental and calculated XRD patterns for sample 447. 

Experimental data are shown as crosses, whereas the optimum fit is shown as a solid line. 

Structural parameters leading to the optimum fit presented are given in Table 2. Positions 

of the diffraction maxima are indexed, and quartz (qz) impurity is labeled. The gray 

rectangle indicates a scale change. (a) Ca-saturation and EG solvation. Scale factor x6.5 

over the 14-50°2θ CuKα range. (b) Ca-saturation and AD state. Scale factor x10 over the 

14-50°2θ CuKα range.  

 

Figure 6. Comparison between experimental and calculated XRD patterns for sample 492. 

Structural parameters leading to the optimum fit presented are given in Table 2. Patterns 

as for Figure 5. (a) Ca-saturation and EG solvation. Scale factor x3 over the 14-50°2θ 

CuKα range. (b) Ca-saturation and AD state. Scale factor x5 over the 14-50°2θ CuKα 

range.  

 

Figure 7. Comparison between experimental and calculated XRD patterns for sample 528. 

Structural parameters leading to the optimum fit presented are given in Table 2. Patterns 

as for Figure 5. (a) Ca-saturation and EG solvation. Scale factor x3 over the 14-50°2θ 

 41 



CuKα range. (b) Ca-saturation and AD state. Scale factor x6.5 over the 14-50°2θ CuKα 

range.  

 

Figure 8. Comparison between the occurrence probability of the different layer pairs in an I-

S-V MLM calculated for different structure models. Solid bars represent the randomly 

interstratified (R = 0) I-Exp MLM phase (65 %I, 25 %S, 10 %V) used to describe 

samples from group 1 in the Ca-EG state. Open bars represent the combined contribution 

of MLM1 and MLM2 phases used to describe sample 528 in the Ca-EG state. MLM1 and 

MLM2 contributions were calculated separately and summed up using their optimum 

ratio (23:45 – Table 2c). Hatched bars represent a randomly interstratified (R = 0) I-Exp 

MLM phase with the same composition (70 %I, 20 %S, and 10 %V) as the combined 

contribution of MLM1 and MLM2 used to describe sample 528 in the Ca-EG state. 

 

Figure 9. Sensitivity of the trial-and-error calculation procedure used in the multi-specimen 

method to structural parameters. Patterns as for Figure 5. Arrows indicate significant 

misfit as compared to the optimum fits shown in Figures 5-7. Structural parameters for 

the optimal models are given in Table 2. (a) Sample 447 Ca-saturated after EG solvation. 

V layers in the I-Exp MLM are replaced by S layers leading to a 65:35:0 I:S:V ratio in 

this phase as compared to the optimum 65:25:10 ratio (Table 2b. Scale factor x6.5 over 

the 14-50°2θ CuKα range. (b) Sample 447 Ca-saturated after EG solvation. S layers are 

slightly segregated in the I-Exp MLM as PSS is increased from the optimum 0.25 value 

(PSS = WS as R = 0) to 0.40 (PSS > WS). Scale factor x6.5 over the 14-50°2θ CuKα range. 

(c) Sample 447 Ca-saturated after EG solvation. The basal distance of S layers along the 

c* axis is increased from the optimum 17.0 Å value to 16.7 Å. Optimum fit is shown as a 

solid line whereas the alternative model leads to the dashed line. Scale factor x6.5 over 
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the 14-50°2θ CuKα range. (d) Sample 492 Ca-saturated after EG solvation. The K-

content of I layers in the I-Exp MLM is increased from the optimum 0.75 value to 0.90 

(K per O10(OH)2). Scale factor x3 over the 14-50°2θ CuKα range. 

 

Figure 10. TEM micrographs obtained on the <0.05 µm fraction after Na-saturation. 

Assemblages of lath-shaped particles (I-Exp MLMs) with relative orientations of 120° 

may be observed throughout the whole Callovo-Oxfordian series. 
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