
Clean 

A Language for Functional Graph Rewriting. 

T.H. BnJs, M.C.J.D. van Eekelen, M.O. van Leer, M.J. Plasmoijer. 
Computing Science Department, University of Nijmegen, 
Toemooiveld 1, NL-6525 ED Nijmegen, The Netherlands. 

E-mait: ...!mcvax!hobbit!{tom,marko,maarten,rinus} 

Partially supported by the Dutch Parallel Reduction Machine Project, 
sponsored by the Dutch ministry of Science and Education. 

Abstract. 

Clean is an experimental language for specifying functional computations in terms of graph rewriting. It is based 
on an extension of Term Rewriting Systems (TRS) in which the terms are replaced by graphs. Such a Graph 
Rewriting System (GRS) consists of a, possibly cyclic, directed graph, called the data graph and graph rewrite 
rules which specify how this data graph may be rewr~en. Clean is designed to provide a firm base for functional 
programming. In particular, Clean is suitable as an intermediate language between functional languages and 
(parallel) target machine architectures. A sequential implementation of Clean on a conventional machine is 
described and its performance is compared with other systems. The results show that Clean can be efficiently 
implemented. 

1 Introduction. 

In order to be able to reason about (future) functional languages and their implementations as well as for the 

comparison of new machine architectures (reduction machines), it is necessary to choose a computational model. 

Functional languages and their implementations have very little in common with the familiar Turing machine model 

of computation. The X-calcu{us is often seen as the computational model for these languages [PEY87]. However, 

most implementations are not really based on ~.-calculus but on combinatory togic [TUR79, JOH84, COU85]. 

Furthermore graphs are used for the representation of functional programs in which redundant computations are 

prevented via sharing of subgraphs. The presence of patterns in functional languages is very essential. Though it 

is possible to translate them to ordinary tests it appears to be worth-while to incorporate patterns in the 

computational model Consequently, if one wants to have a computational model for functional languages which is 

also close to their implementations, pure ~.-caiculus is not the obvious choice anymore. 

Another reason for reconsidering the computational model is that functional languages are still being further 

developed, Several researchers investigate how to incorporate concepts such as parallelism and unification 



365 

[HUD86, DEG86]. These appreciated concepts in some declarative languages are not straightforward to 

incorporate in functional languages nor in the underlying computational model of the Z-calculus. 

Hence, we have developed an alternative computational model by extending Term Rewriting Systems [O'DO85, 

KLO85] to a model of general graph rewriting. Via this general model it must be possible to reason about 

differences between languages, to prove correctness, to port declarative programs to different (parallel) machines. 

Lean (the Language of East-Anglia and Nijmegen) [BAR87a] is a first proposal for a language based on such a 

model. It is the result of collaboration between two research groups: the Declarative Alvey Compiler Target 

Language group at the University of East-Anglia [GLA85] and the Dutch Parallel Reduction Machine group at 

Nijmegen. 

The language Clean presented in this paper is roughly the subset of Lean intended for functional languages only. 

In Clean, graph representations of terms are used to perform term rewriting more efficiently. The design of Clean, 

done in parallel with the Lean language, was triggered by the need for an intermediate language and 

corresponding computational model in the Dutch Parallel Reduction Machine Project. This project, a collaboration 

between the Dutch Universities of Amsterdam, Utrecht and Nijmegen, has as its goal the development of a parallel 

reduction machine. An overview of the results of the project is given in [BAR87c]. 

The basis of Clean is that a computation is represented by an initial data graph and a set of rules used to rewdte this 

graph to its result. The rules contain graph patterns, that may match some part of the graph. If the data graph 

matches a rule it can be rewritten according to the specification in that rule. This specification makes it possible to 

first construct an additional graph structure and then link it into the data graph by redirecting arcs from the original 

graph. Clean describes functional graph rewriting in which only the root of the subgraph matching a pattern may be 

overwritten. The semantics allow parallel rewriting where candidate rewrites do not interfere. The rewriting process 

stops it none of the patterns in the rules match any part of the graph which means that the graph is in normal form. 

In this paper we first informally introduce the language Clean giving some examples how graph rewriting is 

performed. The general semantics of the graph rewriting process is explained in [BAR87a]. A formal description of 

the basis and theoretical properties of the graph rewriting model followed in this paper can be found in [BAR87b]. 

After the introduction to the language some examples are given to show its expressive power. Hereafter an 

implementation of Clean on a conventional machine is discussed. Its speed will be compared to other 

implementations of functional languages. 

2 General idea of the language. 

2.1 Clean graphs. 

The object that is manipulated in Clean is a connected, possibly cyclic, directed graph called the data graph. When 

there is no confusion, the data graph is simply called the graph. Each node in the graph has an unique identifier 

associated with it (the node identifier or nodeid). Each node contains a symboland a possibly empty sequence of 



366 

nodeid's (the arguments of the symbol) which define directed arcs to nodes in the graph. Symbols have fixed 

arities. The data graph is a closed graph i.e. contains no variables, this in contrast with the Clean graphs specified in 

rules, 

Programming with pictures is rather inconvenient so we have chosen for a linear notation for graphs, in the most 

extensive form of this notation (the canonical form) graphs are represented by giving the list of the nodes out of 

which the graph is built. 

Clean canonical notation Graphical equivalent 

A: (Hd B), 

B: (Cons C D), 

C: (0), 

D: (Nil); 

C: 

graph example 

In order to get a more readable form we may substitute the contents of a node for a nodeid mentioned in a node 

and furthermore we only explicitly have to notate nodeid's if we need them to express sharing. Brackets are left out 

if they are redundant, This way of representing graphs has the advantage that it is very comprehensive. Note that 

each Clean graph described in this way can be transformed to an equivalent graph notated in Clean's canonical 

form, The syntax of Clean is given in appendix A. 

Hd (Cons 0 Hil) 

- -  examples of Clean graphs 

1 P t u s l ~ ' l  ~1 

Plus X X, 

X: Fac 1000; 

Cyclic: 1 

Cyclic: F Cyclic; 

2.2 Clean programs, 

Although for the understanding of the rewriting process it is important to know what a data graph looks like, the data 

graph itself is never specified in a Clean program. The initial data graph is a given object generated by the operating 

system as we will explain mater. Consequently a Clean program only consists of a set of rewrite rules. Each rewrite 

rule specifies a possible transformation of the data graph. 

Hd (Cons a b) -> a; 

Add Zero n => n I 

Add (Succ r~) n -> $ucc (Add r, rt) ; 

Fac 0 -> ! I 



367 

Fac n -> *I n (Fac (-I n I)) ; 

F (F x) -> x; 

Start stdin -> Add (Succ Zero) ($ucc (Succ Zero)); 

The left-hand-side of a rewrite rule consists of a Clean graph which is called a redex pattern. The right-hand-side 

either consists of a Clean graph called contractum pattern or the right-hand-side contains only a redirection. The 

patterns are said to be open since they contain variable nodeid's expressed by the identifiers starting with a lower- 

case letter. A redirection is not a graph but just consists of a single nodeid variable. The first symbol in a redex 

pattern is called the function symbol Rules starting with the same function symbol are collected together forming a 

rule-group. The members of a rule-group are separated by a T- Symbols other than function symbols are called 

constructors because they are usually used to construct data structures or data types. Note that function symbols 

may also occur at other positions than the head of the pattern. At such occurrences function symbols are also 

called constructors. The use of the start rule and its special argument is explained in the section on input/output. 

2.3 Rewriting the data graph. 

The initial graph of a Clean program is rewritten to a final form by a sequence of applications of individual rewrite 

rules. For a rule to be included in the sequence, there must be a correspondence between a redex pattern of the 

rule and some subgraph of the data graph. 

An instance of a redex pattern is a subgraph of the data graph for which there exists a mapping from the pattern to 

that subgraph in such a way that the mapping preserves the node structure (corresponding nodes must have the 

same arity) and that it is the identity on constants. This mapping is also called a match. The subgraph which matches 

a redex pattern is called a redex (reducable expression) for the rule concerned. 

Assume that we have the following Clean rules: 

Add Zero n -> n 

Add (Succ m) n -> Succ (Add m n) 

and assume that we have the following data graph 

Add (Succ Zero) (Add (Succ (Succ 

There are two redexes, both matching rule 2: 

and: 

I (I) 

; (2) 

Zero)) Zero); 

Add (Succ m ) n 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) 

Add (Succ m ) n 

Rdd (Suc¢ Zero) ( Add (Succ (Succ Zero)) Zero) 

In graphical form the first redex can be found by performing the following mapping: 



rede× pattern program graph 

B 

l ~  first redex 

J 

368 

We see that the redex pattern of ru~e 2 matches the indicated subgraph of the data graph if we substitute the 

following nodeid's of the graph for the variable nodeid's in the redex pattern: k := A, I := B, =, := C and n := D. Note 

that in order to perform this mapping we have to use the canonical form of the graphs. This means for nodeid's not 

explicitly mentioned in the patterns new unique variable nodeid's (in the example k and I) have to be invented. 

The redex pattern of rule 2 can also be mapped on another part of the data graph if we substitute k := D, I := E, • := 

F and n := 1-t, as shown in the next picture. 

program graph redex pattern 

I 

r 

~-= second rede× 

tf a particular rule is applied to a matching redex, the graph is rewritten according to the right-hand-side of that rule. If 

this fight-hand-side consists of a contractum pattern, the first step is to create an instantiation of this pattern which 

is called the contractum. The contractum is a new Clean graph as specified in the right-hand-side in which the 

nodeid variables defined on the ~eft-hand-side are replaced by the corresponding matching nodeid's in the redex. 

New nodeid constants are created for those nodeid variables in the right-hand-side which are not defined in the 

left-hand-side. 

The new data graph is finally constructed by taking all arcs pointing to the root node of the redex and redirecting 

them to the root node of the contractum. This has the effect of "overwriting" the root of the redex with the root of 

the contractum. If the fight-hand-side is a redirection no contractum has to be built. All arcs pointing to the root 

node of the redex are now redirected to the single nodeid that matches that nodeid variable. This "overwrites" the 



369 

root of the redex with the root of a subgraph of the data graph. This concept of redirecting has the advantage over 

the usual "overwdting of node's" semantics that we do not have to deal with indirection nodes on the semantic 

level. 

After the rewriting, nodes which are no longer reachable from the root of the data graph are considered to be 

garbage and may be collected by a garbage collector. 

We see that in the example above the second redex matches the data graph if we take the following mapping from 

the nodeid variables to the nodeid of the data graph: k := D, I := E, m := F and n := H. The right-hand-side of the 

second rule specifies that in this case the contractum can be constructed as follows: 

v 

redex 

i N m l r l l l ¢ l l  

F 

contractum construction 

contractum 

V V  
F H 

For the variables m and n in the right-hand-side we have to take the same mapping (m := F, n := H). For the other 

variables (say o and p, they are not specified explicitly) we invent new unique nodeid's (say J and K). Now the 

contractum is glued to the data graph by redirecting all nodes pointing to the root of the redex (D) to the root of the 

contractum (J). All nodes not reachable from the root of the data graph are considered to be garbage. If we remove 

these nodes (0 and E) we finally have the new data graph and can start another rewriting. 

new program graph garbage nodes 

13:1 Add I ~ I ~ I 

result of rewrite 

The graph after rewriting is called the result. The process of performing a rewriting is often called a reduction step. 

A data graph containing no redexes is said to be in norma/form. The rewriting process will start with the start rule 

and rewriting is performed repeatedly until the strategy has transformed the data graph to normal form. 



370 

2.4 Reduction strategies. 

In genera| there will be severat possibfe rede×es in the graph. It may even be the case that one and the same redex 

can be reduced according to more than one rule; a typical situation which is called an ambiguity in the literature. An 

algorithm which repeatedly rewrites the graph making choices out of the available redexes and out of all the 

possible matches of those rede×es is called a rewriting strategy or a reduction strategy. Note that this definition of 

strategy is somewhat more liberal than some definitions circulating in the literature. It allows the strategy to choose 

out of several possible matches of one and the same redex. Furthermore, it is also not necessary for a strategy to 

rewrite the graph until a normal form is reached, which e.g. allows strategies that reduce to head normal form only. 

Given a set of rules (including a start nJie), an initial graph and a rewriting strategy we have a system with a dynamic 

behavior, a rewriter. Although it is sometimes only implicitly defined, every implementation of a rewriting system 

must rewrite according to a given strategy. If the strategy is deterministic, every program (including a so-called 

ambiguous one) will always have exactly the same result. 

Every Clean program is reduced with one and the same strategy. This strategy is called the functional strategy, 

because it resembles very much the way in which normally reducing is performed in lazy functional languages. 

Below we will give an operational definition of the functional strategy. A formal description can be found in [GOO87] 

using a formal method described in lEEK86]. 

The functional strategy proceeds as follows: the strategy considers one or more candidates for rewriting. When a 

match is found rewriting is performed as described in the previous section. The functional strategy starts with 

reducing the root node of the graph to head normal form (RtoHNF). The result will be a graph with the property'that 

its root iS not part of any redex. Thereafter this reduction to head normal form is recursively called on the arguments 

of the obtained result (from left to right). 

The RtoHNF starts with the examination of the graph it is applied to: if the symbol in the root node of that graph is a 

constructor the reduction is finished. If the symbol is a function symbol the corresponding rewrite rules for that 

function are examined in order to see if the given graph is a redex or can become a redex+ tn textual order the 

corresponding rules are examined to see if one of the redex patterns matches or can be made to match. The graph 

is rewritten according to the first rule that matches and hereafter the RtoHNF is recursively applied to the subgraph 

with the redirected nodeid as root. If no rule can be made to match the reduction is finished. 

in order to examine the matching of redex pattern and graph the redex pattern is traversed in preorder and, 

possibly after forcing evaluation of corresponding parts in the graph, redex pattern and graph are compared. If 

there is a variable in the pattern, the traversal is continued. If a function symbol is encountered in the graph where 

there is a symbol in the pattern, the RtoHNF recursively calls itseff to force evaluation of this function. This aspect of 

the functional strategy is remarkable because evaluation is forced during a matching attempt. The resulting graph 

will be in head normat form. Hereafter a symbol encountered in the pattern must be the the same symbol as in the 

graph, tf they are different a match is impossible and the next rule is tried. If they are the same the traversal is 

continued. If the traversa] reaches the end of the pattern a match is found. The result of this lazy evaluation scheme 

is that after the traversal we might end up with a redex after all and the rule can be applied. 



371 

Example: 

In the following example a data graph is constructed in which parts are shared. Note that when the data graph 

is actually atreethereisnodifference with atermrewdting sy~em. 

Start stdin -> Double (Add (Succ Zero) Zero); (A) 

Double a -> Add a a; (B) 

fldd Zero n -> n 1 (I) 

Add (Succ m) n -> Suoc (Add m n) ; (2)  

Rewriting a shared part will reduce the number of rewriting steps compared to an equivalent term rewriting 

system. The rewriting will take place as specified below. Note that when a nodeid variable appears more than 

once at a right-hand-side, the rewriting process will generate a contractum in which the corresponding 

matching node is shared. 

Start Hil ml~ (A) 

Double (Add (Succ Zero) Zero) ml~ (B) 

Add X X, X:Rdd (Succ Zero) Zero ul~ (2) 

Add X X, X:Succ (Add Zero Zero) ml~ (2) 

Succ (Add M X), X:Succ M, M:Add Zero Zero m~- (I) 

Succ (Add Z X), X:Succ Z, Z:Zero mr- (I) 

Succ (Succ Zero) 

Although this functional strategy will look very familiar for people acquainted with functional languages, it really is a 

very peculiar strategy in the TRS and GRS world. To have a priority in the rewrite rules leads in general to a rewrite 

system without proper semantics [KLO85]. In this case the system is sound due to the forced evaluation of the 

arguments of a function as described above. Although we theoretically prefer a TRS without such a priority in rules, 

we have adopted the functional strategy because it is used so often in practice. 

2.5 Data types. 

Constructors are not only handy to create datastructures in the form of directed, possibly cyclic graphs, such as list 

and tuples, but they can also be used to represent any other object or to indicate the type of an object. For 

instance, one can define numbers as: 

0 -> Hum Zero; 

I -> Num (Succ Zero); 

2 -> Num (Succ (Succ Zero); 

* N I  

Here the constructor Num (also called a type constructor) indicates the type of the number objects while the 

constructors Succ and Zero (also called data constructors) are used to represent numerical values. A function for 

doing addition that yields a result of type Num could look like: 

Add (Num x) (Hum y) -> Hum (Add2 x y); 

Add2 Zero y -> y I 

Acld2 (Succ x) y -> Succ (Add2 x y) ; 

In Clean one is not obliged to specify the arguments of a constructor in a redex pattern if they are not used 

elsewhere in the rule. This is in particular a handy notation when one wants to write rules for objects of a certain 

type. For example instead of: 



372 

Fac 0 ~> I I 

Fac n:(l~u~, x)-> Ti~ss n (Fac (Minus n I)) 

one may write: 

Fac 0 -> I 
Fac n:~lum -> Ti~es n (Fac (Minus n I)) ; 

The value can be passed to a function by passing the corresponding nodeid (n in the example). Note that in this 

example the type of the argument is checked at run-time in the matching phase. Of course this check can be 

prevented by not using the Num constructor in the pattern or the objects. 

2.6 Basic types and predeflned delta rules. 

For practical reasons it is convenient that rules for performing arithmetic on primitive types (numbers, characters 

etc.) are predefined such that they can be implemented efficiently, preferably by using the integer and real 

representation and corresponding arithmetic available on the computer. 

In Clean for primitive types a number of constructors such as 1NT, REAL, and CHAR are predefined with hidden 

arity. Objects of these primitive types can be denotated: for instance 5 (an integer), 5.0 (a real), '5' (a character). The 

standard basic functions for arithmetic defined on these basic types are also predefined, These predefined rules 

are called d e l t a  t u t e s  . 

The possibility in Clean to reave out the specification of the arguments of a constructor in a redex pattern is 

mandatory for primitive type constructors. As a consequence how an object of a certain primitive type is 

represented will be hidden for the Clean programmer. Besides this special restriction, added only for software 

engineering reasons, primitive type constructors act as ordinary constructors. 

2.7 input and output. 

Input and output is always somewhat problematic in functional languages. We have chosen for a solution in which 

the operating system builds the initial graph. The initial graph contains the standard input as shown below. 

Root: Start Stdin, 

Stdln: Cons "Iine1\n" (Cons "line2kn" (Cons ......... )); 

The input can be accessed in the Clean program via the argument of the Start rule. The output generated by a 

Clean program is in principle a depth-first representation of the normal form to which the initial data graph is 

reduced. As soon as the initial graph is in head normal torm the head symbol is printed and hereafter the printing 

process is recursively applied to the arguments of that symbol In the near future it will be possible to associate 

printing actions with predefined constructors like in Mirandat [TUR85]. 

t 'Miranda' is a trademark of Research Software Ltd. 



373 

2.8 Annotations. 

In Clean to every node an attribute can be assigned via an annotation. Annotations have in general the form of a list 

of strings between cudy braces. Annotations are to be considered as compiler and run-time directives (pragmats). 

The number and type of annotations are left open and will depend on the actual implementation. Although 

annotations may influence the efficiency and strategy of the rewriting process, they are of course not allowed to 

influence the outcome of a computation. It is all right for a Clean compiler to ignore annotations, 

At this moment in our compiler only one annotation is implemented indicating that the annotated argument is 

needed for the computation ("!" or "{strict}"). Future annotations are planned for work to be done in parallel, for load 

distribution, etc. 

3 Examples of  Clean programs. 

3.1 Merging lists. 

The following Clean rules are capable of merging two ordered lists of integers (without duplicate elements) into a 

single ordered list (again without duplicate elements)l" : 

Merge HII Hil -> Hil I 

Merge f:Cons Nil -> f I 

Merge Nil s:Cons -> s I 

Merge f:(Cons a b) s:(Cons c d) -> IF (<I a c) 

(Cons a (Merge b s)) 

(IF (=I a c) 

(Merge f d) 

(Cons c (Merge f d))) ; 

Note that in the last rule the arguments as a whole as well as their decomposition is used. 

3.2 Higher order funct ions,  curry ing.  

In this example we show how higher-order functions are treated in Clean, by giving the familiar definition of the 

I (I) 

(Ap f a) (Map f b) ; (2) 

b; (3) 

2) (Cons 3 (Cons 4 Nil)); (4) 

function Map. 

Map f Nil -> Nil 

Map f (Cons a b) -> Cons 

Rp (*IC a) b -> *I a 

Start stdin -> Map (*IC 

This will be rewritten in the following way: 

S ta r t  Hi l  Hi l  Ni l  =~" (4 )  
Map (*IC 2) (Cons 3 (Cons 4 Hil)) =I~ (2) 

Cons (Ap L 3) (Map L (Cons 4 Hil)), L:(*IC 2) =k- (3) 

Cons (*I 2 3) (Map L (Cons 4 Hil)), L:(*IC 2) =I~ *I 

Cons 6 (Map L (Cons 4 Hil)), L:(*IC 2) =~ (2) 

t < I and = I are delta rules for integer comparison, I F is a delta rule for the conditional. 



374 

Cons 6 (Cons (Rp L i) (flop L ilil)), L:(~}C 2) ~ (3) 

Cons 6 (Cons (*I 2 4) (Mop L Nil)), L:(*IC 2) ~ tl 

Cons 6 (Cons 8 (flap L H i ( ) ) ,  L : ( * IC  2) ml* ( I )  
Cons 6 (Cons 8 liil) 

*1 is a predefined delta rule which multiplies two integers. Rule 3 of this example will rewrite (Ap (*IC 2) 3) using the 

constructor *IC which is the curried version of "1, to its uncurried form (*1 2 3) making the multiplication possible. One 

will need such an "uncurry" rule for every function which is used on a curried manner, Note that during rewriting the 

node L:(*IC 2) is shared. In this case sharing only saves space, but not computation. 

3.3 Graphs with cycles. 

The following example is is a solution for the Hamming problem: it computes an ordered list of all numbers of the 

form 2n3 m, with n,m _> 0. We use the map and merge functions of the previous examples. 

Ham -> Cons I (Merge (Map (*IC 2) Ham) (Mop (*IC 3) HAD)); 

A more efficient solution to this problem can be obtained by creating a cycle in the contractum. With these cycles 

we make heavy use of computations already performed. The new definition is: 

Ham -> x' Cons I (Merge (flap (*IC 2) x) (Map (*IC 3) x)); 

3.4 Comb ina to ry  Logic.  

Finally we show the Clean equivalent of a well-known TRS. 

Ap (Rp (Rp S a) b) c -> Rp (Ap a c) (Rp b c) 
Ap (Ap K a) b => a 

4 The imp lementa t ion  of Clean. 

This section will describe the current implementation of Clean. This implementation was developed as a testbed for 

the definition of Clean. It was partly constructed concurrently with the language itself. The advantage was that the 

definition of Clean could often be corrected or adjusted when an inconsistency was overlooked and became 

apparent in the implementation. 

The Clean compiler was developed on a VAX/750 running UNIX BSD 4.2. UNIX and VAX specific aspects will now 

and then surface in the implementation and in the following sections. We have tried to minimize this. 

4.1 Clean run- t lme philosophy. 

Clean is a graph rewriting language, therefore in principle we need a heap to build graphs in. The initial graph is built 

by the rumtime system. Under control of the reduction strategy this graph will be transformed to normal form. 

These transformations are performed by the compiled code, using a heap and 2 stacks (a system stack and an 



375 

argument stack). The functional strategy is compiled into this code. This means that for the implementation of a 

new strategy it is necessary to change the compiler or at least its code generator. 

The basic implementation algorithm looks for a matching redex according to the functional strategy. It will overwrite 

the matching redex with the corresponding right-hand-side, thereby realizing redirection. This continues until 

there is no redex left. The main work that is being done this way is building graphs. Hence the code will not be fast, 

because the system is continuously allocating nodes in the heap. As a stack mechanism is inherently faster then a 

heap mechanism, at least in Von Neumann like machine architectures, we have tried to put the graph on a stack 

instead of in a heap whenever possible. The main issue in this respect is the LIFO access characteristic of a stack 

opposed to the random access in a heap. We had to find LIFO behaving mechanisms in our language, or its 

implementation. Lazy evaluation does not behave LIFO, eager evaluation does. This is the reason we need a 

strictness analyzer, which could free us from a lot of laziness, and give us eagerness instead. In 4.5 we discuss how 

we used strictness. 

4.2 Graphs. 

In a Clean graph we can distinguish regular nodes and leaf nodes. Every node has a symbol field which indicates 

the kind of symbol stored in the node. It is implemented as a pointer to a record containing all the necessary symbol 

information. If the symbol field labels a node as a regular node it can only be tilled with references to nodes. If the 

symbol field indicates a leaf node then the rest of the node has no node reference at all. The other bits of the node 

will contain information Hke a number or a character code. 

r ' Ii ] - I ~  - - - I  F /~ .~ ' / /~ I  1.2345678E*10 I 

rsgular node leaf node 

This strict division is made to enable the garbage collector to easily and quickly follow all the necessary links in the 

heap. 

Regular nodes are either rule or constructor instantiations. Rules have code associated with them which needs to 

be called for reduction to head normal form. Constructors have code, that will be called when the constructor 

needs to be printed. This includes code to evaluate arguments, 



376 

~ ~ ' ' - - I 1 ~- i,~,~'/~ . . . . . . . . . . . . . .  I 
~ / /  I CONSTRUCTORI 

/ /  I "C°n~" I 

rule node n 

Graphs are built from right to left, from bottom to top using the argument stack. This works fine if we have no sharing 

and cycles in the right-hand-side. If a certain subtree is shared we will save a reference to this subtree as soon as it 

is built, if the subtree is needed again, the saved reference can be taken. Cycles can be solved by inserting a place 

holder on the argument stack whenever we find a link back to a former node. We save a reference to the node with 

the place holder in it. As soon as the node to which the link back referred has been built, the place holder is 

replaced by the actual reference. 

4.3 Reducing graphs. 

Reducing first involves finding a redex, using the functional strategy, by matching the formal and actual arguments 

of a rule. Every formal argument is a graph of node patterns. A node pattern can either be a variable or a pattem. In 

case of a variable the reference to the actual argument is copied to the argument stack. In case of a pattern, the 

actual argument is first reduced to head normal form. If the result matches the pattern a pointer to the actual 

argument is copied to the argument stack. 

After a match has been found the rule must be rewritten. Due to the match the argument stack contains references 

to all the left-hand-side variables. The rewdte code of the rule will use these during its rewrite. Having rewritten the 

rule all the references are popped of the stack and the result is pushed on top of it. The following picture will 

illustrate thist : 

FromBg (BEnd f b) -> Cons f (FromBy (Bind (+I f b) b)); 

enter 'FromBy ~ 

unevaled 

ii!, 

after match 

I 

argument stack states while reducing 

leave 'FromBy" 

coo~l I ' l  ~ I 

W'/~ " t  ~ .  

i" + I is the delta rule for integer addition, 



377 

The above scheme works fine for eager evaluation. We actually have the top node available on the stack at all 

times. Using lazy evaluation we sometimes have to rewrite a node which has already been built, therefore we have 

to adapt this scheme. First the contents of the node in the graph is copied to the stack, then it is rewritten. This will 

return a new node, in head normal form, on the stack. But the real top node is still untouched in the heap. The 

redirection is implemented by making the old node an indirection node pointing to the new node. Overwriting the 

old node is in general impossible because the new node could be bigger than the old one. 

4.4 Heap management. 

The heap delivers variable sized nodes. Once created, a nodes size can not be changed. Heap management 

routines take care of garbage collection in the heap. The garbage collector is based on a simple mark/scan 

algorithm. 

The memory management used is an ad hoc solution, which happens to perform satisfactory. It could be 

streamlined significantly, or even be replaced altogether, to get a better performance. A fast memory management 

is essential. 

Here it becomes clear why we can not merge the argument stack with the system stack, why we need a separate 

stack with node references. Our compilation scheme does not guarantee that all non-garbage nodes can be found 

from the root of the data graph. Therefore the garbage collector will have to look in the stack for references to find 

all non-garbage nodes. Because it is impossible for the garbage collector to identify items on a stack as node 

references or other values, such as reals or integers, we save references to nodes on a special stack. 

4.50ptlmisatlons using strictness 

As we have seen, we want to make use of the stack, and ban the use of the heap, as much as possible. Lazy 

evaluation prohibits this, eager evaluation enables this. This led us to methods of trading laziness for eagerness 

where ever possible, without endangering the termination of the reduction process. 

The functional strategy enables us to compile the right-hand-side of rules in an efficient way. To illustrate this we will 

first introduce two types of contexts which can be identified in the right-hand-side. Then we will see how to use 

them. 

• Immediate context 

• Postponed context 

upon entering the rule, nodes in an immediate context may be evaluated to head 

normal form immediately. 

upon entering the rule, nodes in a postponed context may not be evaluated, and 

must be built as graphs, which can be passed as arguments to other rules, or given as 

a result. 



378 

We will call nodes immediate or postponed according to their context. The top node of a right-hand-side is an 

immediate node. All subnodes of a postponed node are postponed. The symbol of an immediate node 

determines the context of its argument nodes. For a node with a rule symbol all strict arguments are immediate, all 

other arguments are postponed. For nodes with a constructor symbol all arguments are postponed. Strictness for 

user-rules is given by annotations, for delta-rules it is known by the compiler. 

Consider the following rules, in which rule'S ~ has one stdct argument and rule °NS' has one non-strict argument 

(the boxes are postponed contexts): 

i F1 x-, Cone "i'l I<s [ ]  )ll 

F2 × -> +1 (*1 x t0 ) 20 ; 

F3 x -> +i (S x ) (HS D ; 

F4 x -> IF (=1 (S x ) ( H S E ] ) )  (S x ) ( l i s r ~ )  ; 

postponed contexts 

in principle we have to build the right-hand-side graphs, as they are. However, if we discover an immediate node, 

while building the right-hand-side, we will not allocate it in the heap, but try to reduce it first and use the result. For 

user-rules this means calling the reduction code, for delta-rules the appropriate instructions are executed. If the top 

node of a right-hand-side contains a function symbol, the user rule will always be catled (the top node is always 

immediate!). In the code we change this to a jump to the rule. This way we automatically remove tail recursion. For 

example: 

~ 
" F x -> F (..argument..); ] 

L tail recursion . . . .  

F will actually be a loop in the generated code. 

Things are less straightforward when we introduce sharing and cycles. We will not discuss the solutions here. We 

were able to devise a compilation scheme to cover all possible combinations of sharing and cycles in right hand 

sides, with the above principles. 

4.6 Small strictness analysis. 

Although we consider strictness annotations to be generated by the compiler generating Clean, we incorporated a 

very simple strictness analyzer in our compiier. This analysis is based on certain aspects of the functional strategy. 

Consider a rule with a pattern at the left-hand-side. Upon entering the rule we will always evaluate the actual 

argument for the first pattern. At compile time it is undecidable whether we have to match any of the other patterns 

in thiS rule, because the first match may fail. Therefore it is only the first argument with a pattern in a rule that can be 

marked as strict. 



379 

For example (the strict arguments are surrounded by boxes): 

FI xly;<Cons o b) I" z -> ........ ; 

F2 ~ -> ....... I 
F2 Ix I -> ........ .: 

F3 x ~ -> . . . .  I 
F3 I0 W -> ..... ; 

F4 ~HII HII -> ....... ; 

strict arguments 

4.7 Efficiency of the generated code. 

The compiler we constructed is slow, due to the fact that flexibility of the compiler was more important than 

compilation speed. The speed of the generated code, on the other hand, was of primary importance. The 

optimisations we devised are very suitable for VAX-like machines (PDP, MC68000). For other machines they may 

not always be the best, To get an impression of the speed of the code generated by the current implementation 

one can look in appendix B where some benchmark results are shown. Although these results show that Iml is an 

order of magnitude faster then Clean, we may conclude that we are on the right track. Specially when we bear in 

mind that not yet all of the possible optimisations are included in the current Clean implementation. For example, 

leaf nodes are always built in the heap while the values could often be maintained on a stack. 

5 Conclusions and future research. 

Clean is an experimental language with many facets. First of all it is a language for specifying computations in terms 

of graph rewriting. As such it is a convenient and elegant language. 

Clean also has a very interesting underlying model of computation: a Graph Rewriting System which can be seen as 

an extension of a Term Rewriting System [KLO85]. This has the advantage that a lot of theoretical properties from 

the TRS world are inherited and provide a sound foundation for a GRS theory. For instance, in [BAR87b] it is 

proven that all hyper-normalizing strategies in the TRS world, a class to which all well-known normalizing strategies 

belong, are also normalizing in the GRS world. 

Clean can be used as intermediate language between functional languages and (parallel) machine architectures. In 

[KOO87] it is shown that functional languages like SASL [TUR79], Miranda [TUR85], OBJ2 [FUT84] and Tale 

[BAR86] can easily be compiled to Clean code. Compilers (one written in Modula2, one written in Miranda) are 

being implemented targeted to Clean. With the current Clean implementation they run 30 to 50 times faster than 

the current Miranda system. The Clean implementation described in this paper runs reasonably fast considering 



380 

the fact that we did not want to spend much time on tdvial, but time-consuming, ad hoc optimisations (see appendix 

B). 

Our plans are to improve Clean in the near future. We will do this in the more general Lean framework [BAR87a] in 

which Clean wilt be one of several possibte subsets with certain desired properties (in this case geared to functional 

languages and suited for parallel architectures). Our intentions are to include separate compilation, moduladzation, 

general type system, unification, general IO etc. All this must be accomplished without loosing the basic elegance, 

the practical usability and the theoretical framework of the model. This wilt take some time. 

Because strategies have a critical influence over efficiency future versions of Clean aim to give the programmer 

explicit control over rewrite order, for instance via high level specification of (parallel) reduction strategies and a 

formalism for mixing several strategy schemes during evaluation lEEK86]. 

We will improve the efficiency of the compiler and the code generated by the compiler, implementations of Clean 

are planned for Motorola based architectures and parallel architectures like the Experimental Parallel Reduction 

Machine [HAR86] and the Distributed Object Oriented Machine [ODIJ85] being developed in the Philips 

Laboratories, the Netherlands. Requests for the current implementation can be sent to one of the authors or E- 

mailed to: ... !mcvax!hobbit!cleanrequest. 

6 Acknowledgements. 

We are grateful to Henk Barendregt and Pieter Koopman of the University of Nijmegen for several suggestions and 

inspiring discussions. We also thank Renan Sleep, John Glauert and Richard Kennaway of the University of East- 

Anglia very much for the fruitful collaboration on the Lean work, which heavily influenced Clean. 



381 

7 References .  

[BAR86] 

[BAR87a] 

[BAR87b] 

[BAR87c] 

[cou85] 

[DEG86] 

[EEK86] 

[FUT84] 

[GLA85] 

[GOO87] 

[HAR86] 

[HUD86] 

[JOH84] 

[K0087] 

[KL086] 

[O'DO85] 

[ODIJ85] 

[PEY87] 

[TUR79] 

[TUR85] 

Barendregt, H.P., Leeuwen, M. van, "Functional Programming and the Language Tale", (Eds. J.W. de Bakker, 
W.-P. de Roever and G. Rozenberg), Springer LNCS 224, pp 122 - 207, 1986. 

Barandragt, H.P., Eekalen, M.C.J.D. van, Glauert, J.R.W., Kennaway, J.R., Plasmaijer, M.J., Sleep, M.R., 
"Towards an Intermediate Language based on Graph Rewriting", University of East-Anglia and University of 
Nijmegan, Proceedings of the PARLE conference on Parallel Architectures and Languages, Eindhoven, the 

Netherlands, June 1987. 

Barendregt, H.P., Eekelen, M.C.J.D. van, Glauart, J.R.W., Kannaway, J.R., Plasmeijer, M.J., Sleep, M.R., "Term 
Graph Reduction", University of East-Anglia and University of Nijmagen, Proceedings of the PARLE conference 
on Parallel Architectures and Languages", Eindhovan, the Netherlands, June 1987. 

Barendregt, H.P., Eakalen, M.C.J.D. van, Plasmaijer, M.J., University of Nijmegan; Hartel, P.H., Hartzbargar, 
L.O., Vree, W.G., University of Amsterdam, "The Dutch Parallel Reduction Machine Project", to appear. 

Cousineau, G., Curien, P.L, Mauny, M., "The Categorical Abstract Machine", Proc. Conf. on Functional 
Languages and Computer Architecture, Nancy, pp. 50 -64, September 1985. 

De Groot, D. & Lindstrom G. (eds), "Logic Programming: Functions, Relations and Equations", Prentice Hall 
1986. 

Eekelan, M.C.J.D. van, Plasmeijar, M.J., "Specification of rewriting strategies in Term Rewriting Systems", 
University of Nijmegen, to appear in the LNCS proceedings of the Workshop on Graph Reduction, Santa Fe, New 
Mexico, 1986. 

K.Futatsugi, J. Goguan, J.-P. Jouannaud, J. Mesequer, "Principles of OBJ2", Proc. of the 12 th ACM POPL 
Conf., New-Orleans, 1985. 

J.R.W. Glauert, J.R.Kennaway, and M.R. Sleep, "Dactl0: a computational model and compiler target language", 
Report SYS-C87-03, School of Information Systems, University of East Anglia, to appear, ICL Journal, 1987. 

Goos, J., Van Latum, F., "Complete specification of practical rewriting strategies", Master Thesis, University of 
Nijmegen, March 1987. 

Hartel, P., Vrae, W., "A Load Distribution Network for a Multi Processor Reduction Machine", Internal Report D-6, 
Dutch Parallel Reduction Machine project, University of Amsterdam, April 1986. 

Hudak, P., and Smith, L., "Para-Functional Programming: A Paradigm for Programming Multi-Processor 
Systems", 12th A.C.M. Syrup. on Principles of Programming Languages, Jan. 1986, pp. 243 - 254. 

Johnsson, T., "Efficient Compilation of Lazy Evaluation", Proc. of the ACM Sigplan '84, Sigplan Notice, Vol. 19, 
No 6, June 1984. 

Koopman, P.W.M., Nocker, E.G.J.M.H., "Compiling Functional Languages to Functional Graph Rewriting 
Systems", University of Nijmegen, Internal report, to appear. 

Klop, J.W., "Term rewriting systems", Notes for the Seminar on Reduction Machines, Ustica 1985, to appear. 

O'Donnell, M.J., "Equational Logic as a Programming Language", Foundations of Computing Series, MIT Press, 
1985. 

Odijk, E.A.M., "DOOM: a Decentralized Object-Oriented Machine", Doc. Nr. 0125, Esprit 415 internal report, 
Philips, Eindhoven, 1985. 

Payton Jones, S. L., "FLIC - a Functional Language Intermediate Code", Dept. of Comp. Sc., University College 
London, internal working paper. 

Turner, D.A., "A new Implementation Technique for Applicative Languages", Softw. Pract. and Experience, Vol 9 
(1), pp. 31 - 49, January 1979. 

Turner, D.A., "Miranda: A non-strict functional language with polymorphic types", Proc. Conf. on Functional 
Languages and Computer Architecture, Nancy, pp. 1 - 16, September 1985. 



382 

Append ix  A: Clean Syntax,  

Clean syntax: 

CteanProgram 
RuleGroup 
Rule 

Graph 
Redirection 
NodeDefinition 
Node 
Annotation 

Term 

{ RuleGroup } 
[ "STRATEGY' StrategyName ";1 Rule { "l' Rule } ";' 
Graph "->' Graph 
Graph "->' Redirection 
[ Annotation ] [ Nodeid ":' ] Node { ",' NodeDefinition} 
[ Annotation ] Nodeid 
[ Annotation ] Nodeid ":' Node 
Symbol { [Annotation] Term } 
"{' AnnotationName { ",' AnnotationNarne } "}' 
ShorthandAnnotation 
Nodeid 
[ Nodeid ":' ] Symbol 
[ Nodeid ":'] "(' Node ")' 

Clean name conventions: 

Symbol 

Nodeid = 
FunctionSymbol = 
ConstructorSymbol = 
DeltaRuleSymbol = 
AnnotationName = 
ShorthandAnnotation = 
StrategyName = 
TypeConstructor = 
TypeDenotation = 

FunctionSymbol 
ConstructorSymbol 
DeltaRuieSymbol 
TypeConstructor 
TypeDenotation 
(* Character sequence starting with a lower-case character 
(* Character sequence starting with a upper-case character 
{* Character sequence starting with a upper-case character 
(* A predefined delta rule name *) 
(* ~mplementation dependent *) 
(* Implementation dependent *) 
"Functional' 
"{NT t "REAL' 1 "CHAR' { "STRING' J "BOOL' 
5, 4.6e-3, 'a', "a string\007", TRUE (* examples *) 

*) 
*) 
*) 

Some context sensitive restra!n!s: 

Graphs are connected, 
Shadng of labels is not allowed in left hand sides of rules. 
Symbols have a fixed adty. 
Every function is defined once, 
Every label is defined once in a rule, 
Delta rules can not be re-defined, 



383 

Appendix  B. Per formance measurements .  

The results of two benchmarks are reproduced here to give an idea about the speed of the compiled code. 

Benchmark 1 involves the reversion of a list, benchmark 2 is the all time favorite nfib number. The reversion 

benchmark reverses a list of n elements n times, this means doing n 2 reversion steps. In our tests n ranged from 1 

to 1000. The nfib benchmark gives the number of function calls it did as output. We will only give the Clean 

programs here, it is straightforward to translate them to other languagest. 

Reverse n 

Walk (Cons x Nil) 

Walk (Cons x r) 

Rev_n I list 

Rev_n n list 

Rev (Cans x r) 

Rev Nil ist 

~--benchmarkl,Cleanve~ion. 

-> 

-> 
-> 

-> 

-> 

I i s t  -> 
-> 

Walk (Rev_n n (FromTo I n ) ) ;  

x I 
Walk r; 

Rev list Nil I 

Rev_n (--I n) (Rev list Nil); 

Rev r (Cons x list) I 

list 

Nfib 0 -> I 

Nfib I -> I 

(Nfib ( - - I  n))  (Hf ib  

I 
I 

( - I  n 2 ) ) ) ;  t 
The following programming systems were tested: 

Clean 

lisp 

liszt 

Iml 

miranda 

saslcom 

saslint 

Clean Compiler, version 4.0, University of Nijmegen, Netherlands. 
Authors: Tom Brus, Maarten van Leer. 
Franz Lisp interpreter, Opus 38.79, Unix 4.2 BSD distribution. 
Author: Keith Skowler. 
lisp compiler, VAX version 8.36 [.79], Unix 4.2 BSD distribution. 
Author: John Foderaro. 
Iml compiler, preliminary version, Chalmers, Sweden. 
Author: Lennart Augustsson, Thomas Johnsson. 
miranda interpreter, version 0.292, Research Software Ltd., England. 
Author: David Turner. 
sasl compiler, version 1.1, University of Nijmegen, Netherlands. 
Author: Riet Oolman. 
sasl interpreter, version 1.1, University of Nijmegen, Netherlands, 
Author: Riet Oolman. 

All tests were done on a VAX11/750 under UNIX BSD 4.2, partly during working hours. All times mentioned are 

user times returned by the time(l) command. We measured the number of reverse steps per second (for reverse), 

and the number of function calls per second (for nfib): 

I" ++ I and - -  I are delta rules for integer increment and decrement, - 1 is for integer subtraction, 



384 

#steps/sea 

100000 

1001!0 

IODO 

100 

10 

number of reverse steps per second, tn reverse(n). 

j , ~  6 "~-~° 

t0 100 1000 10000 100000 10001300 
total number of reverse steps In test (hA2). 

Clean 

~- miranda 

-=- saslaom 

-m sasllnt 

-~ liszt 

-~ llsp 

Iml 

nfib num 
(calls/sec) 100 ¸ _  

10 

1 

0 

nfib number at nfib(n). 

- - - - ~ . ~ l  . o-"6 :o~ ~°'~ 

1 10 100 i000 10000 100000 1000000 1E+07 
nfib(n). 

.,- Clean 

,o~ miranda 

"- saslcom 

• ~- saslint 

liszt 

lisp 

Iml 

We see tha t  t hese  numbe rs  s tabi l ize to w h a t  w e  cal l  the  reve rse  n u m b e r  and  the  nf ib n u m b e r  of  the 

implementat ion.  Below, these numbers  are tab led separately: 

l a n g u a g e  

saslint 

mira 

lisp 

saslcom 

liszt 

c lean  

nrr~ 

rev number  

8 

123 
151 

677 

1669 

3521 

23436 

nfib number  

7 

120 

467 

728 

1258 

2322 

19635 


