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The use of next-generation sequencing technologies in drinking water distribution systems 
(DWDS) has shed insight into the microbial communities’ composition, and interaction in 
the drinking water microbiome. For the past two decades, various studies have been 
conducted in which metagenomics data have been collected over extended periods and 
analyzed spatially and temporally to understand the dynamics of microbial communities 
in DWDS. In this literature review, we outline the findings which were reported in the 
literature on what kind of occupancy-abundance patterns are exhibited in the drinking 
water microbiome, how the drinking water microbiome dynamically evolves spatially and 
temporally in the distribution networks, how different microbial communities co-exist, and 
what kind of clusters exist in the drinking water ecosystem. While data analysis in the 
current literature concerns mainly with confirmatory and exploratory questions pertaining 
to the use of metagenomics data for the analysis of DWDS microbiome, we present also 
future perspectives and the potential role of artificial intelligence (AI) and mechanistic 
models to address the predictive and mechanistic questions. The integration of meta-
omics, AI, and mechanistic models transcends metagenomics into functional 
metagenomics, enabling deterministic understanding and control of DWDS for clean and 
safe drinking water systems of the future.

Keywords: drinking water production, drinking water monitoring, high-throughput sequencing technology, 
metagenomics, machine learning, water distribution

INTRODUCTION

The importance of access to clean water and sanitation has been recognized worldwide as 
one of the main themes in the UN Sustainable Development Goals. While developed nations 
have connected their population to the water network, access to safe and clean water poses 
a challenge to the water management authorities. The rapid depletion of groundwater and the 
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contamination of surface water by industrial, agricultural, and 
urban waste streams have contributed to this problem. Sanitation 
and hygiene also rely heavily on adequate access to clean water 
for preventing and containing diseases to reduce the spread 
of pathogens and viruses (WHO, 2020). While the majority 
of drinking water bacteria is not dangerous for human health 
and is actually useful for the production of drinking water at 
the treatment plant, these organisms can cause unpleasant taste, 
odor, and turbidity of drinking water when present in excess 
(van Lieverloo et  al., 2002; Vreeburg et  al., 2004). Around 
80% of customers’ complaints to the water utilities are about 
unwanted aesthetic aspects of drinking water that are generated 
during its distribution. These impaired aesthetics, which are 
a result of the uncontrolled growth of indigenous bacteria in 
particles, sediments, and biofilms in distribution pipelines might 
even include the presence of invertebrates in the water 
(Polychronopolous et  al., 2003; Vreeburg and Boxall, 2007).

Uncontrolled growth of indigenous bacteria in water 
distribution systems results in microbially induced operational 
problems in distribution pipes which introduce significant 
investment and maintenance costs for water utilities (Allion 
et  al., 2011). In the Netherlands alone, investment costs on 
distribution pipelines require approximately 50% of water utility 
investments (de Moel et al., 2006). For example, sulfate-reducers 
and iron-oxidizers cause bio-corrosion of cast-iron pipes (Sun 
et  al., 2014), and the growth of bacteria to high numbers in 
the form of a biofilm cause fouling of concrete pipes In addition, 
the suspension of some of the bacteria which are attached to 
particles, sediments, or biofilms in distribution pipes can result 
in turbid or discolored water (Vreeburg et  al., 2004). These 
bacteria are non-pathogenic and their excessive growth makes 
the water yellowish (Vreeburg and Boxall, 2007). Iron particles 
and manganese precipitates in water which are partially produced 
by bio-corrosion of iron pipes (Sun et al., 2014) or manganese-
oxidizing or reducing organisms (Cerrato et  al., 2010) cause 
water to be  red or black colored (Seth et  al., 2004). Other 
bacteria produce molecules affecting the taste and odor of 
water. For example, Actinomycetes produce Geosmin which 
is responsible for an earthy-muddy water taste (Srinivasan and 
Sorial, 2011), and sulfate-reducing or sulfur-oxidizing bacteria 
can enhance a sulfur-based odor (Scott and Pepper, 2010). 
On top of that, fungi, and yeast induce other aesthetic problem 
that has been recorded in drinking water systems. They negatively 
alter water odor and taste Protozoa and invertebrates such as 
worms (e.g., Annelida), crustaceans (e.g., Asellidae), or snails 
(e.g., Mollusca) have also been found in distribution systems 
(Christensen et  al., 2011). As protozoa and invertebrates are 
at the top of the trophic chain, they indicate the presence of 
a high number of bacteria in water.

This uncontrolled growth of indigenous bacteria during 
water distribution can result in the exceedance of water 
quality regulatory guidelines (Sartory, 2004). The current 
regulation dictates that water treatment processes should yield 
drinking water that causes less than 1 infection per 10,000 
people per year. However, continuous threats from newly 
emerging micro-pollutants and the risk of recontamination 
due to the growth of environmental pathogens in drinking 

water sources are still a concern. For instance, numerous 
pathogens which are opportunistic and hygienically threatening 
such as Legionella pneumophila, Aeromonas hydrophila, 
Pseudomonas aeruginosa, Klebsiella pneumoniae, Mycobacteria, 
and Campylobacter are able to grow at low nutrient 
concentrations in drinking water distribution systems and/
or in household pipelines.

Limiting changes in the bacterial community during drinking 
water distribution and the prevention of uncontrolled growth 
up to high bacterial cell numbers and to the occurrence of 
unwanted microorganisms is done through removing carbon 
sources and nutrients, inactivating pathogenic organisms, 
removing chemical toxic compounds, and improving the 
transparency, taste, odor, and color of the water at the water 
treatment plant. Achieving high-quality drinking water that is 
biologically stable during transportation is done through physical, 
chemical, and biological processes such as dosing chlorine, 
aeration, ozonation, UV irradiation, active carbon filtrations, 
coagulation, flocculation, sedimentation steps, and/or rapid or 
slow sand filtration. The choice of which steps to apply to 
treat the water will depend on the source of the water and 
the initial water quality. After treatment, the water is transported 
via a pipeline system to the point of use or discharge. In this 
transportation process, residual organic material and 
microorganisms in the water may alter the quality of the water 
in this distribution system. The microbiological activity influences 
the chemical composition of the water and vice versa. The 
presence of organic material in water sustains the growth of 
microorganisms that form undesired biofilms and/or turbidity 
in the distribution system. The current removal of the organic 
material in the upstream purification steps aims to minimize 
regrowth but does not always result in biologically stable water. 
A balance between the efforts put in the removal and the 
risks for regrowth may be  found in the specific quality of the 
organic material (Hijnen et  al., 2014). However, detailed 
characteristics of the organic material are largely unknown, 
hampering the design of more effective treatment steps to 
produce biological stable water, i.e., water that does not support 
the growth of bacteria and other organisms in the 
distribution system.

While many countries around the world add disinfectant 
(such as chlorine, mono-chloramine, or chlorine dioxide) to 
drinking water as a secondary disinfection step, some European 
countries such as the Netherlands, Germany, Austria, and 
Switzerland use extensive treatment strategies which eliminate 
the bacterial growth supporting compounds (nutrients) in the 
water supplied to limit the potential regrowth in the distribution 
system. One disadvantage of using disinfectants in drinking 
water is that disinfectants react with organic compounds which 
results in the potential formation of carcinogenic by-products. 
Therefore, the concentrations of added disinfectants are kept 
to a minimum, with a higher risk of regrowth. Both methods 
are very effective at limiting bacterial growth in drinking water 
distribution systems. Yet, microbial changes in drinking water 
during distribution have been recorded in many countries. A 
more comprehensive overview of the drinking water distribution 
system microbiome is provided by Gomez and Aggarwal (2019).
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This paper presents a review of recent advances in the 
monitoring, production, and distribution of drinking water 
using various -omics technologies. Firstly, the literature on 
microbial ecology in drinking water systems is revisited and 
various standard practices by water management authorities 
to monitor their activities are presented in “Microbiome in 
Water Systems” section. In “NGS Technology for Drinking 
Water Distribution Systems” section, the emergence of genetic 
sequencing technology as a new key-enabling water technology 
is discussed. This high throughput technology can shed light 
on microbial activities in much finer detail and allows us to 
understand the dynamics and various roles of microbial 
communities. This knowledge, through the employment of 
artificial intelligence and mechanistic models, can in turn 
be  used to monitor and control the biological processes in 
drinking water systems as illustrated in “Artificial Intelligence 
Methods in DWDS” section.

MICROBIOME IN WATER SYSTEMS

Factors Affecting Drinking Water Microbial 
Ecology
The complexity of water in a DWDS, as a living aquatic 
ecosystem, is further enhanced by numerous aspects which 
are influencing the network of microbial interactions that exist 
in it during its distribution. Some of the aspects that influence 
bacterial growth during water distribution are: (1) the existence 
of the food chain, (2) concentration and type of nutrients, 
(3) type and concentration of residual disinfectant (if any), 
(4) microcosmic environmental conditions found in bulk water, 
sediment and/or biofilm, (5) system-wide environmental 
conditions (temperature, pH, etc.), (6) prevailing hydraulic 
condition and pipe materials, (7) and water residence time/
water age (Prest et  al., 2016).

Assessment of Drinking Water Microbial 
Quality
Characterizing organic material in water and quantifying its 
growth-promoting properties for micro-organisms has been 
previously done using different methods. The assimilable organic 
carbon (AOC) method is based on the measurement of the 
growth of two pure bacterial strains in a pasteurized water 
sample. The biodegradable dissolved organic carbon (BDOC) 
method measures the uptake of dissolved organic carbon (DOC) 
by the autochthonous bacteria in a water sample, the liquid 
chromatography–organic carbon detection technique (LC-OCD) 
identifies and quantifies natural organic matter constituents in 
aquatic environments, and the biofilm formation rate (BFR) 
method quantifies the ability of water to promote the growth 
of bacteria into a biofilm. However, these methods are indicative 
tools and do not provide detailed characteristics of the organic 
material which subsequently hampers real-time monitoring of 
treatment processes and their optimization.

In addition, understanding microbial dynamics in drinking 
water distribution systems has been limited because of drawbacks 

of available methods for characterizing drinking water bacterial 
communities which rely heavily on culture-based techniques. 
Assessing water microbial quality has been traditionally done 
using heterotrophic plate counts (HPC) which is a method 
for bacterial enumeration. Alternatively, bioassays which are 
analytical methods for determining the concentration or potency 
of a substance by its effect on living cells or tissues can 
be  applied. When microorganisms grow on organic substrates, 
specific degradation pathways are induced to enzymatically 
metabolize these organic compounds. Specific assays that can 
detect these enzymes require time-consuming, lengthy laboratory 
work. These methods are hypothesis-driven whose goal is to 
detect a targeted suspected compound and a selection of enzyme 
assays needs to be  determined upfront. As these methods 
generate an assessment of the water quality with a time lag, 
detect only a minute fraction of the bacteria found in water 
in reality, and are limited when it comes to identifying all 
characteristics of the bacterial community found in the water, 
Next Generation Sequencing (NGS) technologies have been 
introduced in order to better assess the microbial drinking 
water quality. Initially, NGS technologies were utilized by the 
medical field for studying the gut microbiome (Malla et  al., 
2019) and by pharmaceutical industries for drug discoveries 
and personalized medicine (Vandeputte, 2021). Progressively, 
this technology has been introduced into the field of 
environmental microbiology to study soil microbiome (Nesme 
et  al., 2016), and aquatic systems (Behera et  al., 2021), and 
subsequently into the fields of wastewater treatment and drinking 
water quality and their respective processes (Tan et  al., 2015; 
Zhang and Liu, 2019). While the development of the NGS 
technologies is a process of continuous enhancements (Slatko 
et  al., 2018), the greatest advantage of NGS technologies is 
that they can provide a comprehensive assessment of the 
abundance, viability, and community composition of the 
microorganisms found in the water sample. The new field of 
meta-omics enables scientists to study mixtures of genetic 
material from all organisms in a sample. Figure  1 shows the 
subfields of meta-omics and what kind of questions these fields 
attempt to address.

Mechanistic Models for Simulating 
Drinking Water Quality in Distribution 
Networks
Water utilities have been using mechanistic hydraulic models 
to simulate drinking water quality in drinking water distribution 
systems. These simulation tools are used for the purpose of 
optimizing the design of the water infrastructure and its facilities, 
the real-time hydraulic operation and monitoring of the network, 
simulation of events of contamination and tracing the source 
of such an event, and establishing guidelines for the operation 
and maintenance (O&M) of the supply system.

In 1990, the United States Environmental Protection Agency 
(USEPA) developed the Environmental Protection Agency 
Network (EPANET) which is the first computational software 
package for modeling the hydraulics of drinking water distribution 
systems (Rossman, 2000). Since then several commercially 
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available spin-offs of EPANET were released. EPANET model 
start from a link-node structure where pipes are modelled as 
links, and junctions, hydraulic control elements, consumers, 
and sources are modelled as nodes. Drinking water quality is 
modeled in EPANET as an “additional simulation layer” on 
top of the hydraulic simulations which provide the core 
functionality of EPANET. Water age and source-tracing are 
two functionalities in EPANET which can provide an overarching 
assessment of the overall drinking water quality in distribution 
systems. Water age provides a proportional indicator of the 
decay of the residual disinfectant in the system and the formation 
of the respective disinfection by-products (DBP). On the other 
hand, source-tracing, which simulates the flow-path of water 
from the point of supply up to the point of consumption, has 
an added value when modeling drinking water quality in multi-
quality water distribution systems where water comes from 
different sources. Source-tracing provides insight into a source 
of a contaminate in case of a contamination event, indicates 
potential mixing areas in the water supply network and provides 
knowledge about source influence areas in the system. Water 
age and source-tracing are mere high-level indicators of drinking 
water quality and in actuality drinking water quality may differ 
remarkably (Chenevey, 2022).

In EPANET, the Dynamic Water Quality Model (DWQM) 
serves as the basis for water quality modelling. For this, EPANET 
uses continuity equations for energy, mass, flow at nodes, flow 
for each storage component, mass for each storage component 
and each quality parameter, and equations for dilution 
requirements for modelling water quality under unsteady state 

flow conditions (Todini and Rossman, 2012). DWQM models 
single species concentration in the distribution system under 
first-order kinetics and plug-flow advection assumptions. 
However, the single species models do not account for microbial 
growth in the drinking water system and are merely limited 
to modeling process parameters throughout the distribution 
network (Woolschlager et  al., 2005).

Recently, the National Health Systems Resource Centre 
(NHSRC) released a Multi-Species eXtension to EPANET 
called EPANET-MSX that enables modelling of numerous 
interacting species in the bulk flow and on the pipe walls, 
while modelling microbial growth, as well. This extension 
models heterotrophic microbial growth in both their fixed 
and suspended forms through solving a set of interdependent, 
multispecies, mass balance equations which is an expansion 
of the fundamental equations provided in the DWQM (Shang 
et al., 2011). Other multi-species models which are empirical, 
semi-mechanistic, and mechanistic were developed for research 
purposes to simulate microbial drinking water quality are 
not commercially available (). However, the modeling of 
microbial growth in the multi-species models is limited to 
two species/values (i.e., mass of free bacteria in bulk water, 
and mass of attached bacteria on pipe wall), and does not 
account for the rich microbial diversity which exist in the 
drinking water. In addition, the computation nature of 
EPANET-MSX, which solves a set of differential-algebraic 
equations (DAEs) in semi-explicit form, renders this model 
computationally inefficient for modeling the concentration of 
each bacterial species in a system that contains bacterial 

FIGURE 1 | Subfields of meta-omics and the questions they address.
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diversity in the magnitude of thousands. Hence, incorporating 
machine learning algorithms, which are good at handling 
data that are multi-dimensional and multi-variety, with 
metagenomics dataset can potentially present a computationally 
more efficient approach for simulating microbial drinking 
water quality (Rackauckas et  al., 2020).

NGS TECHNOLOGY FOR DRINKING 
WATER DISTRIBUTION SYSTEMS

Metagenomics Analysis for Microbial 
Communities
The emergence of new genetic sequencing technologies has 
enabled the gathering of crucial in-situ information related to 
microbial communities and occupancy-abundance dynamics in 
drinking water. In the pioneering work of Santo Domingo 
et  al. in 2003 at the US Environmental Protection Agency 
Test and Evaluation (T&E) facility, metagenomics was applied 
to investigate the role of heterotrophic bacteria and ammonia-
oxidizing bacteria in drinking water. They used a Distribution 
System Simulator (DSS) to assess the biofilm microbial 
composition in drinking water distribution systems (DWDS) 
due to the role of biofilms, which can contain human microbial 
pathogens, on public health. The researchers conducted 16S 
rDNA sequence analysis on both biofilm and bulk water samples 
from the DSS which revealed that α-Proteobacteria and 
β-Proteobacteria were the predominant bacteria in the feed 
water, discharge water, and biofilm samples. This early 
metagenomics application has been used to determine the 
effectiveness of disinfectant treatment to control microbial 
communities in DWDS. In 2005, Tokajian et  al., conducted a 
phylogenetic assessment of heterotrophic bacteria using 16S 
rDNA sequencing from an operational water distribution system 
in Lebanon. Water samples were taken from raw unchlorinated 
aquifer water and from different sites in the distribution network 
on a bimonthly basis over a period of 1 year. The analysis 
confirmed the aforementioned observations (Santo Domingo 
et  al., 2003; Williams et  al., 2004) that the majority of bacteria 
in drinking water were α-, β-, and γ-Proteobacteria. In addition, 
the study also revealed a higher presence of sphingomonads 
in drinking water samples than reported elsewhere in literature 
which can be  attributed to the specific operational conditions 
in Lebanon.

Once microbial communities are identified using 
metagenomics data, the next step is to establish their specific 
role, function, and interaction with the environment. In 2006, 
Eichler et  al. used RNA- and DNA-based 16S rRNA gene 
fingerprinting further to gain a comprehensive understanding 
of how different factors (i.e., different raw water sources, different 
treatment processes, and distribution) influence the microbial 
communities in tap water designated for human consumption. 
Based on the DWDS of the city Braunschweig in Germany 
involving two water reservoirs with two different surface water 
types: oligotrophic water and dystrophic water, Eichler et  al. 
(2006) observed that that major taxonomic groups typical of 
freshwaters such as α-Proteobacteria, β-Proteobacteria, and 

Bacteroidetes dominated the system. Comparative cluster analysis 
to the data revealed that there are three major types/clusters 
of communities in the system, each associated with the two 
types of surface water and to the chlorinated water, which is 
found to promote the growth of nitrifying bacteria. This work 
demonstrated the role of metagenomics analysis in revealing 
the importance of source water microflora to the drinking 
water microflora, in monitoring water quality, and in assessing 
the performance of different treatment processes. Further studies 
on the microbial diversity and composition in DWDS which 
support the metagenomic analysis in Eichler et  al. (2006) were 
presented in Santo Domingo et al. (2003); Tokajian et al. (2005); 
Berney et  al. (2009); Revetta et  al. (2010), and Vital et  al. 
(2012). The results of these studies are summarized in 
Supplementary Table  1.

Metagenomics Analysis for Temporal and 
Spatial Distributions and Intra-community 
Dynamics
The first study to investigate spatial and temporal dynamics 
of drinking water microbiota using metagenomics was presented 
in Rudi et  al. (2009). The authors used 16S rRNA sequencing 
analysis to assess temporal and spatial diversity of tap water 
(namely, kitchen tap and toilet tap) microbiota in a Norwegian 
hospital between January and July 2006 (for temporal analysis). 
In their study, the researchers used density distribution analyses 
to investigate tap-specific distributions of the bacterial groups. 
Based on the hierarchical clustering analysis, they concluded 
that the microbiota clustered according to the location (spatial) 
and not to the season (temporal). Related to a potential public 
health issue, metagenomics analysis in their study provided 
additional insights. It is shown in Rudi et  al. (2009) that 
Legionella had the highest relative abundance for the pathogen-
related bacteria in the dataset, especially in the low-usage tap, 
which can be investigated further for controlling local Legionella 
or other pathogens colonization. Such spatial metagenomics 
analysis can prevent pathogenic outbreaks from reoccurring, 
such as the well-known Pseudomonas aeruginosa outbreak in 
an intensive care unit at Akershus university hospital which 
could be  traced back to a single tap.

In 2014, Pinto et  al. (2014) used a spatially distributed and 
temporally varying sampling approach to conduct spatial–
temporal surveying and occupancy-abundance modelling 
techniques using metagenomics analysis in a chlorinated drinking 
water distribution system in the USA. They sampled and 
analyzed the bacterial communities in water leaving the treatment 
plant from June 2010 to August 2011 at the clean water reservoir 
of a wastewater treatment plant and at three locations from 
three different sectors in the drinking water distribution system 
(resulting in nine locations in total). The analysis, which was 
based on total DNA extracts, resulted in the identification of 
4,369 Operational Taxonomic Units (OTUs) at a 97% similarity 
cut-off, across 20 different phyla in the 138 water samples 
over the 15-month sampling period. In spite of the high diversity 
of the bacterial community found in the water, the Proteobacteria 
phylum is again the dominant DW bacterial community 
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representing 60%–70% of the bacterial community for any 
given sample. Using Mantel’s test, changes in the microbial 
community can be  explained by around 5% of the highly 
diverse OTUs which indicates that this subset of OTUs can 
be  used to track changes in the community. For instance, it 
was observed that β- and δ-Proteobacteria dominated the DWDS 
during the summer months while α- and γ-Proteobacteria were 
dominant in the winter. β-Proteobacterium Hydrogenophaga 
(a genus of comamonas bacteria) in contrast displayed peak 
relative abundance in the colder months. Pinto et  al. (2014) 
concluded also that biofilms in the neighborhood of each 
sampling location or possibly even microbial ingress into the 
DWDS led to the observed location-specific OTUs in the system.

Prest (2015) studied temporal dynamics in bacterial 
community characteristics during a 2-year drinking water 
monitoring campaign in a full-scale distribution system operating 
without detectable disinfectant residual. The data collected came 
from a total of 360 water samples which were sampled on a 
biweekly basis from Kralingen water treatment plant effluent 
and at one fixed location in the DWDS. The samples were 
analyzed for heterotrophic plate counts (HPC), Aeromonas plate 
counts, adenosine-tri-phosphate (ATP) concentrations, flow 
cytometric (FCM) total and intact cell counts (TCC, ICC), 
water temperature, pH, conductivity, total organic carbon (TOC) 
and assimilable organic carbon (AOC). Computational 
multivariate analyses showed that the change in microbial 
parameters between the water treatment plant and DWDS had 
a predictable annual trend comparable to the water seasonal 
temperature fluctuations and was negatively correlated to the 
AOC concentration in the water treatment plant effluent. Prest 
(2015) concluded that microbial growth in DWDS was not 
attributed to a single parameter only in the treated effluent. 
Roeselers et  al. (2015) conducted a similar study in which 
spatial and temporal patterns in phylogenetic diversity were 
investigated using high-throughput sequencing technology in 
32 DWDS networks in the Netherlands where residual disinfectant 
is not used. They observed that the microbial community 
compositions from water samples can be  differentiated based 
on the source of the water sample, e.g., raw water and processed 
water in different locations. In addition, the researchers observed 
that community structures of processed water did not differ 
substantially from end-point tap water which indicates that 
network-specific communities are stable in time. The analysis 
on microbial community clusters showed that the treatment 
plant rather than the sampling time points differentiates drinking 
water microbial communities.

All of the above-mentioned findings were consistent with 
the conclusions made by Blokker et  al. (2016) who used self-
organizing maps for relating water quality and water age in 
DWDS from a multi-year Dutch and United  Kingdom dataset. 
Their analysis showed that water age and temperature may 
be  treated as independent parameters influencing microbial 
water quality. In addition, they concluded that there is a clear 
influence of temperature, which is dictated by seasonal change, 
on Aeromonas and the HPC at 22°C. They also showed that 
while water age has been traditionally used as a mathematical 
modelling tool to give an indication for all system-specific 

degradation of water quality, it appears to be  of little value 
as an indicator for specific microbial water quality compared 
to water temperature. Their study recommends that specific 
DWDS conditions such as temperature, substrate concentration, 
and local shear stresses be incorporated in water quality models 
to better understand the risk of developing vulnerable water 
quality locations in drinking water distribution systems.

To assess the origin of bacteria in tap water and distribution 
system in an unchlorinated drinking water system, Liu et  al. 
(2018) looked into the bacterial communities associated with 
biofilms, suspended particles, and loose deposits which are 
released in the distribution system as they are considered the 
major potential risk for drinking water bio-safety. They quantified 
the proportional contribution of the source water, treated water, 
and distribution system in determining the tap water bacterial 
community and concluded that the water purification process 
shaped the community of planktonic and suspended particle-
associated bacteria in treated water. Correspondingly, Liu et al. 
(2018) recommended that tap water quality can be  improved 
by both improving the purification steps and by cleaning the 
DWDS regularly.

In a recent study, Douterelo et  al. (2018) used shotgun 
metagenomic sequencing to evaluate the taxonomic associations 
and functional aptitude of microbial communities found in 
chlorinated DWDS from two operational DWDS in the Southwest 
of the United  Kingdom, where one DWDS is fed by surface 
water and the other one by groundwater. They isolated DNA 
from 24 samples which were taken from six bulk water and six 
biofilm samples at each sampling site. The shotgun metagenomic 
analysis showed that all domains of life (i.e., prokaryotes, eukaryotes, 
archaea, and viruses) are diversely present in the DWDS which 
is consistent with all previous metagenomics studies in DWDS. The 
researchers noted that the identification of metazoan DNA does 
not imply that the actual organisms are in the samples, but it 
can be  used to indicate an ingress, e.g., free DNA released from 
animals or plants into the original source water or hydraulically 
introduced ingress. They concluded that limiting the entry of 
organic matter in the system can be  an approach to inhibit the 
growth of biofilms in the system. Additionally, the researchers 
suggested that understanding the mechanism of biofilm formation 
can bring about the capacity to create the environmental conditions 
which favor the growth of infrastructure-protective extracellular 
polymeric substances (EPS) or exterminate pathogens. While the 
genus Pseudomonas has been used to indicate biofilm formation, 
they recommended the use of alternative bio-indicators of corrosion 
or biofilm formation in DWDS such as Bacteroidetes. Further 
studies on the microbial dynamics in DWDS which support the 
findings in the abovementioned studies are presented in Bae 
et  al. (2019); Dai et  al. (2019); Dias et  al. (2019); Erdogan et  al. 
(2019); Kori et  al. (2019); Perrin et  al. (2019); Brumfield et  al. 
(2020); Maguvu et  al. (2020); Siedlecka et  al. (2020); Vavourakis 
et  al. (2020); Atnafu et  al. (2021); Bian et  al. (2021); Kennedy 
et  al. (2021), and Sevillano et  al. (2021). A summary of the 
results of these studies is provided in Supplementary Table  1.

The aforementioned literature review has shown the 
applicability of metagenomics analysis to understand the role 
of spatial and temporal distribution and to study the dynamics 
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of microbial communities in DWDS. A number of genetic 
markers can be  identified for monitoring the variation in the 
communities that in turn provide the health status of 
DWDS. There are many ongoing research projects that are 
built on these findings allowing the development of monitoring 
systems using predictive models based on the variation in the 
relative abundance of genetic markers and on recent advances 
in data science, statistical learning, and artificial intelligence.

ARTIFICIAL INTELLIGENCE METHODS 
IN DWDS

Current Lines of Enquiry on Microbial 
Dynamics
In previous sections, a literature overview has been presented 
on the use of metagenomics data which have been collected 
over extended periods and analyzed temporally and spatially 
to understand the dynamics of microbial communities in 
DWDS. These works addressed mostly confirmatory and 

exploratory questions corresponding to the use of metagenomics 
data for the analysis of DWDS. From a confirmatory angle, 
the results so far have addressed the questions on the associations 
between seasonality/location/type of source water/kind of 
disinfectant/treatment processes and different environmental 
parameters on the microbial community composition and 
structure found in DWDS. From an exploratory angle, research 
works hitherto have addressed the question of which factors 
influence most prevalently the microbial dynamics observed 
in DWDS. As the next step in data science, where data are 
used to answer predictive questions, there are currently many 
ongoing research activities where metagenomics data are analyzed 
for decision-making processes, such as process control and 
risk mitigation. These works involve the development of predictive 
models of DWDS that are enriched by real-time information 
of microbial communities’ activities from metagenomics data.

The field of machine learning, which is encompassed by 
the field of artificial intelligence (AI), can be  used to process 
metagenomics data into meaningful information that can enrich 
predictive models of DWDS. Figure  2 shows the circles of 

FIGURE 2 | The circle of learning in artificial intelligence.
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learning methods within the AI field that incorporate recent 
advances in machine learning and deep learning. Based on 
the data structure, problem formulation, and the machine 
learning algorithm used, data science can address different 
aspects of control and optimization of DWDS and the quality 
monitoring thereof. In this regard, machine learning can 
be  deployed for four categories of application in DWDS: 
modelling microbial network interactions, prediction and 
forecasting of microbial and chemical water quality, decision 
support for maintenance and operation, and system optimization.

Addressing any type of question using data for different 
applications can be  done through the use of three main types 
of machine learning: unsupervised learning, supervised learning, 
and reinforced learning. Unsupervised machine learning algorithms 
aim to identify meaningful patterns in the data by looking for 
hidden features in the unlabeled dataset and inferring clusters, 
accordingly. The use of such algorithms to answer questions 
regarding prevalence clusters within the microbial communities 
of drinking water has been illustrated by Pinto et  al. (2014) as 
mentioned above. K-means clustering, Neural Networks (NN), 
and Principal Component Analysis (PCA) are some of the 
unsupervised machine learning approaches which are used for 
solving clustering problems. Supervised machine learning 
algorithms are deployed on labeled training data sets to make 
predictions. Classification problems are problems where supervised 
machine learning algorithms can be used to predict which category 
something falls into. Naive Bayes Classifier, Support Vector 
Machines (SVM), Logistic Regression, and Neural Networks are 
some of the approaches that can be deployed to solve classification 
problems. In the DWDS case, Liu et al. (2018) used the Bayesian 
“SourceTracker” method to assess the origin of bacteria in tap 
water and distribution system. Supervised machine learning 
algorithms can also be  used to solve regression problems, for 
instance, in making predictions on a continuous scale. Various 
regression methods (linear, nonlinear, or Bayesian) using nonlinear 
static, dynamic, or spatially distributed models, can be  used in 
these cases. Negara et al. (2019) has used SVM to solve a nonlinear 
regression problem that maps metagenomics data from a waste-
water treatment plant into the process parameters. Finally, 
reinforcement learning algorithms use feedback-based learning 
algorithms where actions and rewards are defined, involving the 
decision-making agent and environment, in order to maximize 
a given utility/value function.

Knowledge Gaps and Latent Potential for 
the Discovery of Novel Lineages
In a study conducted by the United  States Environmental 
Protection Agency (US EPA) which aimed at identifying microbial 
communities in drinking water by analyzing 16S rRNA-based 
clone libraries, the researcher found a majority mounting to 
57.6% of the sequences belongs to the category of difficult-
to-classify bacteria. The researchers observed that 44% of these 
difficult-to-classify sequences were closely related to sequences 
retrieved from preceding genomics-based drinking water studies. 
Thus, these hard-to-classify sequences are most likely indicative 
of novel lineages which are characteristic of the drinking water 

microbiome and may play vital roles in drinking water 
biogeochemical processes (Revetta et al., 2010). As a consequence 
of this knowledge gap, light must be  shed on the limitations 
of any artificial-intelligence-based models that use metagenomics 
data because the performance of any data-driven mathematical 
model depends on the quality of data it is fed (Sessions and 
Valtorta, 2006; Alves et  al., 2021; Sambasivan et  al., 2021).

In their opinion paper Hull et al. (2019), highlight that research 
in the field of drinking water (DW) microbiome is lagging 
behind compared to research advancements in the fields of the 
human microbiome, and environmental microbiomes. Thus, they 
suggest that the field of DW microbiome can benefit greatly 
from combining efforts for building a DW microbe project 
(DWMP). By going in the footprints of other genome databases, 
the field of DW microbiome can benefit from enriching a central 
database to include within-species resolution data. In addition, 
further whole-genome sequencing of DW samples can tackle 
the issue of unclassified/unknown/sequences (Hull et  al., 2019).

Future Technology in DWDS: 
Meta-Transcriptomics
Meta-transcriptomics (RNA) data introduces additional 
dimensionality into the mathematical problem formulation that 
machine learning algorithms can accommodate to address questions 
regarding functionality. Meta-transcriptomics transcends 
metagenomics data analysis, where in addition to identifying 
the microbial communities in DWDS, it can provide information 
on the functions of each organism (functional metagenomics). 
One of the advantages of meta-transcriptomics is its ability to 
differentiate between the active part of a microbial community 
from the total community which can be  quite distinct from one 
another. The extra knowledge on the functions of species in the 
microbial community in drinking water can provide valuable 
information for better understanding the metabolic pathways 
that are expressed in the bacteria that are present in the aquatic 
environment of drinking water. The information can be  used 
by operators to deploy appropriate control actions that inhibit 
undesired metabolism and promote favorable ones (e.g., the 
metabolic pathways to convert major and minor carbon sources 
or specific compounds like pollutant degradation). Researchers 
in the medical field previously showed that meta-transcriptomics 
can provide a high-resolution picture of the microbiome’s functional 
dynamics (Lavelle and Sokol, 2018). From a meta-omics point 
of view, it is envisioned that meta-transcriptomics will be crucial 
for the next step in an obtaining accurate understanding of 
microbial communities’ activities in DWDS.

DISCUSSION

Metagenomics analysis of DWDS has revealed that high-resolution 
spatial and long-term temporal metagenomics data of DWDS 
provide insights on the variation of microbial communities under 
different environmental conditions. A group of genetic markers 
can subsequently be  identified to monitor the dynamic changes 
in the drinking water microbiome. The ability to forecast the 
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spatial distribution and temporal dynamics of a drinking water 
bacterial community can make water quality monitoring more 
cost-effective, contribute to public health safety by ensuring a 
safe water supply and increase the performance of process control 
strategies. Knowing the normal conditions for the operation of 
the system in its steady-state allows for finding anomalies and 
invasive pathogens faster. While in all the aforementioned literature 
(Supplementary Table 1), metagenomics data has been effectively 
collected over extended periods and analyzed to understand the 
dynamics of microbial water quality in both wastewater treatment 
plants and water distribution systems, the data analysis has been 
limited to correlation analysis of available process data. An 
integrated approach that combines the meta-genomic data with 
predictive kinetic-mechanistic modelling, potentially combined 
with machine learning techniques, is still lacking. Consequently, 
current and future research directions should aim towards the 
development of a new approach using machine learning techniques 
to interpret DNA and RNA Next Generation Sequencing (NGS) 
data in combination with chemical and physical process knowledge 
to form the basis of a deeper understanding and prediction of 
the biological and chemical processes in the DWDS. It will 
transcend metagenomics into functional metagenomics in the 
drinking water management systems.
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