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Abstract. In quantum mechanics the statistics of the outcomes of a mea-

suring apparatus is described by a positive operator valued measure (POVM).
A quantum channel transforms POVM’s into POVM’s, generally irreversibly,

thus loosing some of the information retrieved from the measurement. This

poses the problem of which POVM’s are ”undisturbed”, namely they are not
irreversibly connected to another POVM. We will call such POVM’s clean.

In a sense, the clean POVM’s would be ”perfect”, since they would not have
any additional ”extrinsical” noise. Quite unexpectedly, it turns out that such

cleanness property is largely unrelated to the convex structure of POVM’s,

and there are clean POVM’s that are not extremal and vice-versa. In this
paper we solve the cleannes classification problem for number n of outcomes

n ≤ d (d dimension of the Hilbert space), and we provide a a set of either

necessary or sufficient conditions for n > d, along with an iff condition for the
case of informationally complete POVM’s for n = d2.
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1. Introduction

The new quantum information technology[1] has resurrected the interest in the
theory of quantum measurements[2] and quantum open systems[3, 4], shifting the
interest from applications to high-sensitivity and high-precision experiments[5] to
its use in quantum information processing[6]. Depending on the particular kind
of quantum processing—e. g. teleportation[7, 8], entanglement detection[9] and
distillation[10]—that are used in quantum computation[1, 6] and quantum crypto-
graphy[11], various new types of quantum measurements are now needed. The
theory for engineering new quantum measurements optimized according to given
criteria has been pioneered since the late 60’ by many authors[12] who concurred
to the making of the Quantum Estimation Theory[13], the ancestor of the modern
Quantum Information Theory.

The general strategy of quantum estimation theory is to optimize the output
statistics of the measuring apparatus according to a given criterion/fidelity, which
depends on the specific use of the measurement, the outcome statistics of the mea-
surement for all possible input states being described by a positive operator valued
measure (POVM)[13]. POVM’s form a convex set, where convex combinations cor-
respond to random choices among different apparatuses. Most optimization prob-
lems actually resort to minimize a concave function on such convex set, thereby
optimization can be restricted to its extremal points, where concave functions at-
tain their minimum. Coincidentally, due to the specific form of the optimization
function, in many applications the optimal POVM’s turn out to have unit rank—
e. g. for phase estimation on pure states[13, 14]—and this has led to the widespread
belief that optimality is synonym of rank-one, whereas for sufficiently large dimen-
sion, and typically for optimization with input mixed states, the rank of extremal
POVM’s can be easily larger than one, as shown in Refs. [15, 16, 17].

In a specific application the optimal POVM does not necessarily attain the whole
accessible information. At first sight, this assertion may appear contradictory:
how a POVM can be optimal, if it wastes accessible information? However, once
the measurement is performed, no other possibility for optimization is left apart
from the processing of the outcome—post-processing for short—and, being purely
classical, the post-processing cannot generally achieve the same result of a pre-
processing by a quantum channel. The situation is depicted in Fig. 1. Clearly,

FE ≡ FE data processing (A)

FE ≡ E FE (B)

Figure 1. There are two ways of processing POVM’s: (A) the
post-processing of the output data, and (B) pre-processing of the
input state by a quantum channel. The post-processing cannot
generally achieve the same result of a pre-processing: the post-
processing is purely classical, whereas the pre-processing is quan-
tum.
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the pre-processing can change the POVM irreversibly, reducing the information
from the measurement. On the other hand, it is possible that a POVM optimal
for a given criterion is obtainable from another cleaner one via an irreversible pre-
processing as in Fig. 1B. This means that in some cases we need to give up some
quantity of information for the quality of the information.

The above scenario poses the problem of which POVM’s are ”undisturbed”,
namely are not irreversibly connected to another POVM. We will call such POVM’s
clean—in a sense a clean POVM would be ”perfect”, since it would not have any
additional ”extrinsical” noise, or it has lost no information irreversibly. Quite sur-
prisingly, as announced, in this paper we will see that the cleanness property of
the POVM is largely unrelated to its extremality, and there are clean POVM’s
that are not extremal and vice-versa. The problem of classifying clean POVM’s
turns out to be more difficult than that of classifying extremal ones, and in this
paper we will give a complete classification of clean POVM’s only for a number n
of outcomes n ≤ d, whereas for n > d we will give a set of interesting necessary
conditions, and an iff condition for the case of informationally complete POVM’s
for n = d2. Clearly, the need for a number of outcomes n > d can be required by
the particular optimization problem (see, for example, Refs. [18, 19]), however, no
more than n = d2 elements are needed, which is the maximum number of outcomes
for extremality[15]. Davies [20] proved d2 to be an upper bound for the maximal
cardinality of the POVM needed to attain the accessible information, and still it
is debated if d2 outcomes are actually needed (the cases of Refs. [18, 19] proved
that the lower bound is actually larger than d). This difficulties reflect those in
classifying cleanness for n > d. In a sense it is clear that d2 elements are needed to
retrieve the accessible information, when the kind of information needs to be de-
cided after the measurement has been performed. Indeed, an extremal POVM with
d2 outcomes is versatile to any kind of information encoding, as it is ”information-
ally complete”[21], namely it makes possible to estimate any ensemble average by
changing only the data-processing of the outcomes (such an extremal measurement
with d2 elements can be proved to exist for any dimension d[15]). Clearly, for an
extremal informationally complete measurement, a further optimization step can
be achieved at the level of data processing[22, 23], once the kind of information of
interest has been decided. Thus, the post-processing of the measurement is still a
useful tool in retrieving the right information from a measurement.

The paper is organized as follows. After introducing some notations and pre-
requisites in section 2, in section 3 we state some general results about channels
and POVM’s which will be used throughout the paper. In section 4 we analyze
the convex set of channels connecting two POVM’s. Section 5 is devoted to a
complete analysis of the classical post-processing, and give a complete characteri-
zation of ”cleanness” under post-processing. Section 6 addresses the problem of the
pre-processing ordering of POVM’s, namely if a POVM is ”cleaner” than another,
and when they are ”equivalent”, which corresponds to the possibility of reversing
the action of the channel connecting the two POVM’s. Section 8 shows that for
dimension d = 2 equivalence under cleanness is the same as unitary equivalence.
Section 9 fully solves the case of number of outcomes n ≤ d, and gives some interest-
ing alternative theorems for the case of effects, namely the two-outcome POVM’s.
Sect. 10 analyzes the case of informationally complete POVM’s, giving also a iff
condition characterizing the clean POVM’s. Section 11 gives some conditions for
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rank-one measurements. Finally, we conclude the paper in Sect. 12 with a list of
most relevant results and of the main open problems.

2. Notation and pre-requisites

Throughout this paper we will consider a quantum system with Hilbert space H
with finite dimension d = dim(H), and denote by S the set of states on H (corre-
sponding to positive unit-trace operator on H), and by B(H) the algebra of bounded
operators on H. We will use capital script fonts e. g. A,B, . . . to denote operator
algebras in B(H), and with the symbol A′ we will denote the commutant of A,
namely the algebra defined as A′ .= {Y ∈ B(H)|[X,Y ] = 0, X ∈ A}. Completely
positive trace-preserving (CPT) and identity-preserving (CPI) maps on S and B(H),
respectively—all generally referred to as channels—will be denoted by capital cal-
ligraphic letters, e. g. A ,B, . . ., whereas we will always use capital Roman letters
for operators. We will restrict attention to POVM’s {Pe}e∈E with finite sampling
space E, namely

Pe ≥ 0, ∀e ∈ E,
∑
e∈E

Pe = I. (1)

We will use extensively the vector notation P ≡ {Pe}, E(P) denoting the sampling
space of P, and |P| the cardinality of E(P). The vector notation will be naturally
extended to tensor products—e. g. P⊗Q for the POVM {Pe⊗Qf}e∈E(P),f∈E(Q) on
H⊗H—and to functionals—e. g. Tr[ρP] for the vector of probabilities Tr[ρPe]. By
Span(P) we will denote the linear operator space spanned by the POVM elements
{Pe}e∈E(P), and by Rng(P) the range of the POVM P, which is defined as the
following convex subset of R|P|

+

Rng(P) .=
{

R|P|
+ 3 p = Tr[ρP], ρ ∈ S

}
. (2)

The convex set of POVM’s with cardinality N will be denoted by PN .
Finally, we will use the symbol |A〉〉 to denote the following bipartite vector in

H⊗ H

|A〉〉 .=
d∑

m,n=1

Am,n|m〉|n〉 , (3)

where A ∈ B(H) is the operator corresponding to the d × d matrix with elements
Am,n on the basis {|n〉}. One can easily verify the following useful identities

A⊗Bᵀ|C〉〉 = |ACB〉〉
Tr1[|A〉〉〈〈B|] = AᵀB∗ (4)

Tr2[|A〉〉〈〈B|] = AB† ,

where Xᵀ denotes the transpose in the basis {|n〉}, while X∗ is the complex conju-
gate in the same basis. Tri denotes the partial trace on the i-th space.

3. Useful lemmas about channels and POVM’s

In the following we will name a map E spectrum-width decreasing when it reduces
the ”spectral width” of a real symmetric operator X, namely when

[λm(E (X)), λM (E (X))] ⊆ [λm(X), λM (X)], (5)
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λM (X) and λm(X) denoting the maximum and minimum eigenvalues of X, respec-
tively.

Lemma 3.1. Channels are spectrum-width decreasing.

Proof. Consider the eigenvector |ψj〉 of E (X) corresponding to the eigenvalue
λj(E (X)). One has

λj(E (X)) = Tr[E (X)|ψj〉〈ψj |] = Tr[XE ᵀ(|ψj〉〈ψj |)] ∈ [λm(X), λM (X)], (6)

since the dual map E ᵀ is CPT. �

Notice that in the above lemma the identity-preserving condition is crucial, since
the lemma would not hold for a CPT map E , e. g. E (ρ) = |ψ〉〈ψ|, and the spectral
width increases from [λm(ρ), λM (ρ)] to [0, 1].

The inverse of a non-unitary invertible channel is necessarily not completely
positive.

Theorem 3.2 (Wigner). Any invertible channel has CP inverse iff it is unitary.

Proof. Let E1 and E2 be two channels such that E2
ᵀ ◦ E1

ᵀ(ρ) = ρ. Hence:∑
ij

BjAi|ψ〉〈ψ|A†
iB

†
j = |ψ〉〈ψ|, ∀|ψ〉, (7)

where Ai and Bj are canonical Kraus representations for E1 and E2, respectively.
Since all terms in the sum are positive, this means that BjAi|ψ〉 = βψij |ψ〉, for all
|ψ〉 and all i, j. By linearity, it is clear that βij cannot depend on |ψ〉, implying
that BjAi = βijI, for all i, j.

We can now prove that βij 6= 0, for all i, j. Otherwise, there exists a couple
of operators Bk and Al for which BkAl = 0. These two operators must both be
non invertible, since, if one is invertible, the other has to be null, and we can
w.l.o.g. drop it from the Kraus representation (7). Let us fix the couple k, l for
which BkAl = 0, namely both are not invertible. Now, the only possibility to
have BjAi = βijI for all i, j is that BkAi = 0 for all i (since Bk is not invertible,
whence necessarily BkAi cannot be full-rank), and analogously BjAl = 0 for all j.
In this case, all Bj ’s supports would be forced to be contained in the orthogonal
complement to the range of Al (which is strictly contained in the full Hilbert space),
and this would be in contradiction with the normalization condition

∑
j B

†
jBj = I.

Therefore, βij 6= 0 for all i, j, and the operators Ai and Bj are all invertible. This
allows us to write

Bj = βijA
−1
i , ∀j,

Ai = βijB
−1
j , ∀i,

(8)

whence all Bj ’s are proportional to each other, and analogously for the Ai. In other
words, the Kraus representations of E1 and E2 are made of only one operator. This
means that E1 and E2 are unitary, one the inverse of the other.

The converse direction is trivial. In Corollary 10.4, we will prove that the inverse
map of an invertible non-unitary channel is indeed non-positive. �

Theorem 3.3 (Chefles, Jozsa, Winter). Consider two sets of pure states on H with
the same cardinality. There exist two channels mapping the elements of the first
set to the corresponding elements of the second set and vice versa, iff the two sets
of states are unitarily equivalent.
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Proof. See Ref. [24]. �

Lemma 3.4 (Lindblad). A channel E stabilizes an algebra S ⊆ B(H), namely

E (X) = X, ∀X ∈ S, (9)

iff the operators {Ek} of any Kraus form E (X) =
∑
k E

†
kXEk belong to the com-

mutant S ′ of the algebra S.

Proof. See Ref. [25]. �

Finally let us state some results about extendiblity of completely positive maps
(mostly taken from [26]). To this end let us consider a linear subset S of B(H)
which contains the identity and is closed under adjoints – each set S of this type
will be called in the following an operator system. It is easy to see that S is
generated (as a linear space) by its positive elements. It makes therefore sense to
speak about positive maps E : S → A into an algebra A and we can define also
complete positivity in the usual way. Now the question arises whether such an E
can be extended as a completely positive map to B(H). The following theorem gives
a positive answer [26, Thm. 6.2 and 7.5]:

Theorem 3.5 (Arveson’s extension theorem). Each completely positive map E :
S → B(H) defined on an operator system S ⊂ B(H) can be extended to a completely
positive map on B(H).

If E is only positive (and not necessarily completely positive) a similar result
is not available (cf. the corresponding discussion in Section 7). An important
exception arises however, if the algebra A is abelian [26, 3.9]

Theorem 3.6. If E : S → A is positive, S an operator system and A an abelian
algebra, the map E is completely positive.

4. The convex set of channels connecting two POVM’s

We now analyze the convex set of channels connecting two given POVM’s P and
Q, in equations

CPQ = {E channel |E (P) = Q}. (10)
The extremal elements of CPQ can be characterized in terms of the operators {Ei}
of the canonical Krauss decomposition by the following theorem.

Theorem 4.1. The map E ∈ CPQ is extremal iff for some element Pk of the
POVM P the operators {E†

iPkEj}ij made with the canonical Kraus operators {Ei}
of the map are linearly independent.

Proof. First we show by contradiction that the condition is sufficient. In fact,
suppose that E , with {E†

iPkEj}ij linearly independent, is not extremal in CPQ.
Then there exist two different channels E± ∈ CPQ such that

E =
1
2
(E+ + E−). (11)

Upon defining P ≡ E+ − E , clearly one has P(P) = 0 and E ±P = E±, which
are channels. Then RE± ≡ RE ± RP ≥ 0, where for any channel E the positive
operator RE in linear correspondence with E is defined as RE =

∑
j |Ej〉〉〈〈Ej | for

{Ej} Kraus operators of E [27]. This implies that Supp(RP) ⊆ Supp(RE ), namely
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there exists a nonvanishing matrix pij such that RP =
∑
ij pij |Ei〉〉〈〈Ej |. As a

consequence we have

P(Pk) =
∑
ij

pijE
†
iPkEj = 0 , ∀k . (12)

This contradicts the hypothesis. The proof that it is also necessary is now straight-
forward. Suppose indeed that the operators {E†

iPkEj}ij are linearly dependent.
Then there exists a non vanishing matrix of coefficients aij such that

∑
ij aijE

†
iPkEj =

0 for all k. If we define pij = κ(aij + a∗ij), then the map P(X) =
∑
ij pijE

†
jXEi

will annihilate all elements of the POVM P, namely P(P) = 0. Moreover, for a
sufficiently small κ 6= 0 both maps E± = E ±P will be channels and will belong
to CPQ. This implies that E = 1

2 (E+ + E−), namely E is not extremal. �

One can prove that either any element of the border of CPQ is also an element
of the border of the full convex set of channels, or CPQ ≡ {E }. This comes from
the definition of the border of a convex set

Definition 4.2. For a convex set C , an element p ∈ C belongs to its boundary ∂C
if and only if there exists q ∈ C such that

p+ ε(q − p) ∈ C , p− ε(q − p) 6∈ C , ∀ε ∈ [0, 1], . (13)

or, equivalently iff there exists q ∈ C such that for all ε > 0 for which p + εq ∈ C
then p− εq 6∈ C .

We will now prove the following lemma.

Lemma 4.3. The border of the convex CPQ is a subset of the border of the convex
of all channels.

Proof. Consider a channel E ∈ CPQ and a “perturbation” P such that E + εP ∈
CPQ ∀ε ∈ [0, 1]. By definition P(Pi) = 0 for all Pi, whence, if E −εP is completely
positive, then it necessarily belongs to CPQ. Therefore, the only way to have E on
the border of CPQ is to have E − εP not CP, namely E lies on the border of the
convex of all channels. �

A “geometrical” proof is also the following. Since the constraint defining CPQ is
linear, then CPQ is a linear section of the convex of all channels, whence its border
belongs to the border of the convex of all channels.

Remark. Notice that the convex set CII will coincide with that of all channels,
I = {I} denoting the trivial POVM.

Remark. From Lemma 4.3 it follows that when two POVM’s are connected by a
channel they can be always connected by a border channel, apart from the case in
which the connecting channel is unique.

5. Post-processing

The most general post-processing of a POVM, is a shuffling of the POVM ele-
ments with conditional probability p(i|j), corresponding to the mapping

Qi =
∑
j

p(i|j)Pj . (14)
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When two POVM’s P and Q are connected by a mapping of the form (14) for some
conditional probability p(i|j) we will write P �p Q, and say that the POVM P is
cleaner under post-processing—post-processing cleaner, for short—than the POVM
Q. Notice that a relation of the form (14) is meaningful generally for |P| 6= |Q|,
with the number of outcomes changing from input to output.

Relevant examples of post processing are:
(i) identification of two outcomes, e. g. j and k are identified with the same

outcome l, corresponding to p(n|j) = δln, p(n|k) = δln;
(ii) permutation π of outcomes, corresponding to p(π(j)|k) = δjk.

The relation �p is a pseudo-ordering, since it is
(i) reflexive, corresponding to

P �p P, p(i|j) = δij ; (15)

(ii) transitive, i. e. P �p Q �p R, corresponding to

Ri =
∑
j

p(i|k)Qk, Qk =
∑
j

p′(k|j)Pj ,=⇒ Ri =
∑
j

p′′(i|j)Pj ,

p′′(i|j) =
∑
k

p(i|k)p′(k|j).
(16)

An equivalence relation under post-processing can be defined as follows.

Definition 5.1. The POVM’s P and Q are post-processing equivalent—in symbols
P 'p Q—iff both relations P �p Q and Q �p P hold.

We are now in position to define cleanness under post processing, namely

Definition 5.2. A POVM P is post-processing clean if for any POVM Q such
that Q �p P, then also P �p Q holds, namely P 'p Q.

The characterization of cleanness under post-processing (classical) is much easier
than that of cleanness under pre-processing (quantum), and is given by the following
theorem.

Theorem 5.3. A POVM P is post-processing clean iff it is rank-one.

Proof. First notice that a POVM P with elements having rank higher than one
are not post-processing clean. In fact, in this case one can diagonalize all the
POVM elements and consider the POVM P′ made of rank-one projections over all
eigenvectors multiplied by the corresponding eigenvalue. Then, clearly P′ �p P by
identification of outcomes. In equations

Pi =
∑
ki

|λ(i)
ki
〉〈λ(i)

ki
|, P ′

i,k = |λ(i)
k 〉〈λ

(i)
k |, =⇒ P′ �p P, (17)

corresponding to the identification of outcomes

p(i|j, kj) = δij ∀kj . (18)

Reversely, all rank-one POVM’s are post-processing clean, namely if Q �p P, then
also P 'p Q must hold. In fact, suppose that P is rank-one and that there exists
a POVM Q such that Q �p P, namely

Pi =
∑
j

p(i|j)Qj . (19)
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Now, since all elements Pi are rank-one, the elements Qj are necessarily propor-
tional to Pi for all the indices j such that p(i|j) 6= 0, namely also Q is rank-one,
with

p(i|j)Qj = αjPi , (20)

with
∑
j αj = 1, and αj ≥ 0. For a fixed j, p(i|j) = 0 for at least one i, otherwise

all the Pi’s would be proportional. For the same reason, for a fixed i, p(i|j) = 0
for at least one j. We can then collect the indices i such that p(i|j) 6= 0 in the set
I(j), and write

Qj =
∑
i

p(i|j)Qj =
∑
i∈I(j)

p(i|j)Qj =
∑
i∈I(j)

αjPi . (21)

Finally, it is immediately verified that

q(j|i) =

{
αj , i ∈ I(j)
0, otherwise

(22)

is a conditional probability since for all i one has
∑
j q(j|i) =

∑
j αj = 1. Therefore,

from Eq. (21) it follows that we have also P �p Q, namely P 'p Q.�

6. Pre-processing: ordering and equivalence of POVM’s

The action of channels allows to define the following pseudo-ordering.

Definition 6.1. Given the POVM’s P and Q with |P| = |Q| we define P � Q iff
there exists a channel E such that

Q = E (P), (23)

and we will say that the POVM P is cleaner than the POVM Q.

Definition 6.2. We call a POVM P ”clean” iff for any POVM Q such that Q � P
one also has P � Q.

It is easily proved that the relation � is transitive and reflexive, namely it is a
pseudo-ordering. Let us now define the following relation

Definition 6.3. We say that the two POVM’s P and Q are equivalent—denoted
as P ' Q—when one has both P � Q and Q � P.

Clearly ' is an equivalence relation. The pseudo-ordering � now defines a partial
ordering between equivalence classes. Indeed define the ordering between classes as
follows

[P] ≥ [Q] iff P′ � Q′ , ∀P′ ∈ [P], Q′ ∈ [Q] . (24)

The above ordering is consistently defined, since P′,P′′ ∈ [P] means both P′ � P′′

and P′′ � P′, whence, by transitivity P′′ � P′ � Q′ � Q′′, and the ordering
doesn’t depend on the chosen elements of the equivalence classes. This proves the
consistency of the definition of ≥. Therefore, in the following we can consider a
single element P instead of the class [P]. In this way we can easily prove reflexivity
[P] ≥ [P], since P � P, and transitivity

[P] ≥ [Q], [Q] ≥ [R] ⇒ [P] ≥ [R] , (25)
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since P � Q, Q � R implies P � R by transitivity of �. Now let us consider
the case when both [P] ≥ [Q] and [Q] ≥ [P]. Then we have P � Q and Q � P,
namely [P] ≡ [Q]. �

One would be tempted to conjecture that the relation ' is equivalent to unitary
equivalence, which is defined through

Definition 6.4. The POVM’s P and Q are unitarily equivalent, P 'U Q for short,
iff there exists a unitary operator U such that Q = UPU†.

However, as we will see in the following, there exist equivalent POVM’s which
are not unitarily equivalent.

We have now the following necessary condition for equivalence under pre-processing

Theorem 6.5. If P ' Q then for each event e ∈ E(P) we have

λM (Pe) = λM (Qe) ≡ λM (e) , λm(Pe) = λm(Qe) ≡ λm(e) . (26)

Proof. By Lemma 3.1 we have both λM (Pi) ≥ λM (Qi) and λM (Pi) ≤ λM (Qi),
and similarly for the minimum eigenvalues. �

7. Pre-Processing: positive maps and related theorems

There are two interesting variants of the relation � just introduced, which help
to get a more geometric insight into the structure. The first arises, if we replace
the completely positive map E in Definition 6.1 by positive (but not necessarily
completely positive) one. Hence we can define for two POVMs P, Q with |P| = |Q|

P � Q ⇔ Q = E (P), E positive. (27)

It is obvious that P � Q implies P � Q but the other way round does not hold.
This can be seen, if we consider an informationally complete POVM P and define
Q = Θ(P), where Θ denotes the transposition map (i.e. Θ(A) = Aᵀ). Positivity
of Θ implies P � Q. But Θ is only positive and not completely positive and it
is the only map which connects P and Q. The latter follows from informational
completeness of P, because this implies that the elements of P are a basis of B(H).
Hence P � Q does not hold.

Now consider the ranges Rng(P), Rng(Q) of P and Q, defined in Equation (2).
If p ∈ Rng(Q) there is by definition a density operator ρ with p = Tr[Qρ]. Hence,
P � Q implies

p = Tr[Qρ] = Tr
[
E (P)ρ

]
= Tr

[
PE ᵀ(ρ)

]
(28)

and therefore we get p ∈ Rng(P). This observation motivates the definition:

P ⊃r Q ⇔ Rng(Q) ⊂ Rng(P). (29)

According to our previous discussion we get in this way a hierarchy of relations

P � Q ⇒ P � Q ⇒ P ⊃r Q. (30)

We have already seen that the direction of the implication between � and � can
not be reversed. For � and ⊃r this is more difficult. To see that they are (very)
closely related, consider the linear hull Span(P) of the elements of P, which is
obviously an operator system (cf. Section 3). Hence we can speak about positive
linear maps from Span(P) to Span(Q). This fact can be used to characterize the
relation ⊃r in the following way:
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Proposition 7.1. Consider two POVMs P, Q with |P| = |Q|. Then the following
statements are equivalent:

(i) P ⊃r Q
(ii) There is a (unique) positive map E : Span(P) → Span(Q) with E (P) = Q.

Proof. The implication (ii)⇒ (i) is trivial. Hence consider only the other direction.
Here, the idea is to define the map E by

E (Pe) = Qe ∀e ∈ E. (31)

This map is well defined because we have (by assumption) for each density operator
ρ a second density operator σ such that Tr[Qeρ] = Tr[Peσ] holds for all e ∈ E. Hence
if

∑
e λePe = 0 for some real λe we get∑

e∈E

λe Tr[ρQe] =
∑
e∈E

λe Tr[σPe] = Tr

[
σ

∑
e∈E

λePe

]
= 0. (32)

Since ρ is arbitrary this implies
∑
e λeQe = 0. Therefore E defined in (31) is well

defined, as stated. Using the same reasoning we can show that E is positive, which
concludes the proof. �

The difference between condition (ii) of this lemma and the definition of � in
Equation (27) is the domain of the the map E . The following counter example
which is taken (in a slightly modified form) from [26] shows that such a map is in
general not extendible as a positive map to B(H).

Consider the diagonal 4×4 matrixX = diag(1, i,−1,−i) and the operator system
S spanned by I,X,X†. It is easy to see that a general element A = aI + bX + cX†

is hermitian iff c = b∗ and a = a∗ hold, and it is positive iff in addition a ≥
2 max(|<b|, |=b|) hence,

A ≥ 0 ⇒ c = b∗ and a ≥
√

2|b|. (33)

Now consider the linear map

S 3 A = aI + bX + cX† 7→ E (A) =
(

a
√

2b√
2c a

)
⊗ I2, (34)

where I2 denotes the 2 × 2 unit matrix. Since a 2 × 2 matrix is positive iff its
diagonal elements and its determinant are positive, positivity of E follows directly
from Equation (33). On the other hand we have ‖E (I)‖ = 1 and ‖E (X)‖ =

√
2.

Since ‖X‖ = 1 this implies ‖E ‖ ≥
√

2 > ‖E (I)‖. But a positive map from a C*
algebra A into a a C* algebra B always satisfies [26, Cor. 2.9] ‖E ‖ = ‖E (I)‖. Hence
the map defined in Equation (34) can not be extended to B(C4) – not even to the
abelian algebra generated by I,X,X†. As a consequence of this reasoning we have
shown that P ⊃r Q does not imply P � Q.

Hence positive maps can in general not be extended as a positive map to a
bigger algebra. A very important special case arises, however, if the map E is
completely positive. In this case a completely positive extension always exists (cf.
Theorem 3.5) This fact can be used along with Proposition 7.1 to get an interesting
characterisation of � in terms of ranges.

Theorem 7.2. Consider two POVM’s P, Q with |P| = |Q|. Then the following
statements are equivalent:

(i) P � Q
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(ii) There is an informationally complete POVM M such that P ⊗ M ⊃r
Q⊗M.

(iii) P⊗M ⊃r Q⊗M holds for all POVMs M.

Proof. The implication (i)⇒ (iii) follows from the fact that (i) implies the existence
of a map E such that Q = E (P), and trivially the map E ⊗I connects P⊗M with
Q⊗M, whence the statement via Eq. (29). Implication (i) ⇒ (ii) is just a special
case of the previous one. Implication (iii) ⇒ (ii) is trivial. Hence only (ii) ⇒ (i)
remains to be shown.

To this end note that informational completeness of M implies

Span(Q⊗M) = Span(Q)⊗ B(H), (35)

and similarly for P⊗M. Therefore we have (according to (ii) and Proposition 7.1)
a unique positive map

F : Span(P)⊗ B(H) → Span(Q)⊗ B(H) (36)

with
F (P⊗M) = Q⊗M. (37)

If we can show that F has the form

F = E ⊗I (38)

with a positive map E : Span(P) → Span(Q) and the identity I on B(H), the
theorem is proved because:

• Due to Equation (38) and positivity of F the map E is completely positive
as a map on the operator system Span(P). Hence by theorem 3.5 it is
extendible to a completely positive map on B(H).

• Equations (37) and (38) imply E (P) = Q and therefore P � Q.
To prove Equation (38) firstly note that (ii) implies P ⊃r Q. This follows from

(with e ∈ E(Q) and a density matrix ρ on H):

Tr[ρQe] = Tr

ρ⊗ I

d

Qe ⊗ ∑
f∈E(M)

Mf

 (39)

=
∑

f∈E(M)

Tr
[
(Qe ⊗Mf )

(
ρ⊗ I

d

)]
(40)

because we have by assumption a density matrix σ on H⊗ H such that

Tr
[
(Q⊗M)

(
ρ⊗ I

d

)]
= Tr

[
(P⊗M)σ

]
(41)

which in turn implies

Tr[ρQe] =
∑

f∈E(M)

Tr
[
(Pe ⊗Mf )σ

]
(42)

= Tr

Pe ⊗
 ∑
f∈E(M)

Mf

σ

 (43)

= Tr
[
(Pe ⊗ I)σ

]
= Tr[Pe Tr2 σ], (44)

where Tr2 denotes the partial trace over the second tensor factor. Hence Tr[ρQ] =
Tr[(Tr2 σ)P] which implies P ⊃r Q as stated.
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Now we can apply again Propostion 7.1 and get a positive map E : Span(P) →
Span(Q) satisfying E (P) = Q and therefore E ⊗I (P⊗M) = Q⊗M. Since F is
uniquely determined by Equation (37) this implies F = E ⊗ I , which completes
the proof. �

This theorem gives a clear geometric picture for the relation � and it helps to
understand the difference between � and �: if P � Q holds we find for each
separable state ρ on H ⊗ H a second separable state σ such that Tr[Q ⊗ Mρ] =
Tr[P⊗Mσ]. Hence, if P � Q does not hold (but P � Q) there must be an entangled
state ρ such that the probability vector Tr[Q⊗Mρ] can not be reproduced by any
expectation value of P ⊗M. This can be rephrased as follows: If P � Q holds
but not P � Q we can reproduce the distribution of outcomes of Q measurements
on one system by appropriate P measurements, but there is information about
entangled states which can be gained only by Q and not by P.

A second special case of Proposition 7.1 arises, when Q is abelian (i.e. all ele-
ments of the POVM commute). In this case the map E constructed in Proposition
7.1 is a map into an abelian algebra and therefore completely positive. Hence we
get

Theorem 7.3. Consider two POVMs P,Q with |P| = |Q| and assume that Q is
abelian. Then P ⊃r Q and P � Q are equivalent.

Proof. According to Proposition 7.1 there is a positive map E from Span(P) into
the abelian C* algebra A generated by the elements of Q. According to Theorem
3.6 this map is completely positive and by Theorem 3.5 therefore extendible as a
completely positive map to B(H). Hence P ⊃r Q implies P � Q. Since the other
implication is trivial the proof is completed. �

Note that a similar result does not hold if P is abelian and Q is not. The counter
example given after Proposition 7.1 applies even in this case.

The result from Theorem 7.3 is very useful, in particular because the range
Rng(P) of an abelian POVM has a very simple structure, which is completely
characterized by the joint eigenvalues of the elements of P. To see this, consider a
joint set of eigenvectors ψα, α = 1, . . . , d and

Pe =
d∑

α=1

λe,α|ψα〉〈ψα| ∀e ∈ E. (45)

The joint eigenvalues vectors

λα = (λe,α)e∈E ∈ R|P| (46)

form a set of probability vectors (in the case of joint degeneracies of the elements
of P some of them may coincide) and for each convex linear combination

p =
d∑

α=1

pαλα, pα ≥ 0,
∑
α

pα = 1 (47)

we can find a density operator (ρ =
∑
α pα|ψα〉〈ψα| will do) such that p = Tr[ρP]

holds. Hence the convex hull of the λα satisfies conv(λ1, . . . ,λd) ⊂ Rng(P). On
the other hand we have for each density operator ρ:

Tr[ρP] =
d∑

α=1

〈ψα, ρψα〉λα (48)
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which implies Tr[ρP] ∈ conv(λ1, . . . ,λd). Hence we have just shown:

Proposition 7.4. The range Rng(P) of an abelian POVM P coincides with the
convex hull of the λ1, . . . ,λd.

The most simple example arises in the case of effects, i.e. measurements with
two outcomes. Obviously, each effect is abelian and has the form P = {P, I − P}
with a positive operator P ≤ I. If µ1, . . . , µd are the eigenvalues of P given in
decreasing order we get λα = (µα, 1 − µα). Hence all λα ∈ R2 are located on the
graph of the function R 3 x 7→ 1−x ∈ R, and λ1 respectively λd are the outermost
points. This leads immediately to the following characterization of the relation �
for effects:

Theorem 7.5. The effect P is “cleaner” than the effect Q, i. e. P � Q iff

[λM (P ), λm(P )] ⊇ [λM (Q), λm(Q)]. (49)

Corollary 7.6. Given two effects P and Q, then P ' Q iff λM (P ) = λM (Q) and
λm(P ) = λm(Q).

8. Pre-processing: equivalence in dimension two

For dimension two the cleanness equivalence ' and the unitary equivalence 'U
coincide.

Theorem 8.1. For two-level systems P ' Q iff P 'U Q.

Proof. If all the elements of both POVM are trivial, i. e. Pe = αeI and Qe = βeI,
∀e, then the thesis follows easily. Therefore, we will focus on the nontrivial case,
in which there exists at least one element Pi of P (or Qi of Q) that is nontrivial.
Then, first, also Qi (or Pi) is not proportional to the identity, since otherwise
Pi = F (Qi) = αiF (I) = αiI, which contradicts the hypothesis. Second, by
Theorem 6.5 one has

Pi = λM (i)|φ(i)
M 〉〈φ

(i)
M |+ λm(i)|φ(i)

m 〉〈φ(i)
m | , (50)

Qi = λM (i)|ψ(i)
M 〉〈ψ

(i)
M |+ λm(i)|ψ(i)

m 〉〈ψ(i)
m | . (51)

Now, by hypothesis, there exist channels E and F such that Qi = E (Pi) and
Pi = F (Qi). Then, by linearity,

Qi = λM (i)E (|φ(i)
M 〉〈φ

(i)
M |) + λm(i)E (|φ(i)

m 〉〈φ(i)
m |) . (52)

We will now consider

Tr[Qi|ψ(i)
M 〉〈ψ

(i)
M |] = λM (i) = Tr[PiE ᵀ(|ψ(i)

M 〉〈ψ
(i)
M |)] , (53)

and this clearly implies that E ᵀ(|ψ(i)
M 〉〈ψ

(i)
M |) = |φ(i)

M 〉〈φ
(i)
M |. Analogous arguments

lead to the conclusion that E ᵀ(|ψ(i)
m 〉〈ψ(i)

m |) = |φ(i)
m 〉〈φ(i)

m |, and moreover F ᵀ(|φ(i)
M 〉〈φ

(i)
M |) =

|ψ(i)
M 〉〈ψ

(i)
M | and F ᵀ(|φ(i)

m 〉〈φ(i)
m |) = |ψ(i)

m 〉〈ψ(i)
m |. By collecting all the eigenstates of

nondegenerate Pi’s and Qi’s in two sets, namely,

E ᵀ : {|ψ(i)
M 〉〈ψ

(i)
M |, |ψ

(i)
m 〉〈ψ(i)

m |}i 7−→ {|φ(i)
M 〉〈φ

(i)
M |, |φ

(i)
m 〉〈φ(i)

m |}i
F ᵀ : {|φ(i)

M 〉〈φ
(i)
M |, |φ

(i)
m 〉〈φ(i)

m |}i 7−→ {|ψ(i)
M 〉〈ψ

(i)
M |, |ψ

(i)
m 〉〈ψ(i)

m |}i .
(54)

and applying Theorem 3.3 it follows that there exists a unitary U such that Qi =
UPiU

† for all nontrivial Qi’s. Clearly, the same unitary transformation maps the
trivial elements. �
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9. Pre-processing: cleanness for number of outcomes n ≤ d

Lemma 9.1. For fixed number of elements n ≤ d the POVM P is clean iff
λM (Pi) = 1 for all i. Such condition is also equivalent to λm(Pi) = 0 with multi-
plicity at least n− 1, and each vector which is eigenvector with unit eigenvalue for
some element Pj must belong to the kernel of all other POVM elements.

Proof. We first prove that the condition is also equivalent to λm(Pi) = 0 for all i.
Indeed, consider a normalized eigenvector |u〉 of Pj with eigenvalue 1, and suppose
by absurd that some element Pi has λm(Pi) > 0. Then

〈u|u〉 =
∑
k

〈u|Pk|u〉 = 〈u|Pj |u〉+ 〈u|Pi|u〉+
∑
k 6=i,j

〈u|Pk|u〉 > 1, (55)

and in order to have no contradiction one must have 〈u|Pi|u〉 = 0, namely λm(Pi) =
0. Notice that Eq. (55) also implies that 〈u|Pk|u〉 = 0 for all k 6= j, namely the
same eigenvector |u〉 of Pj is eigenvector of all Pk for all k 6= j. Moreover, since
there must be at least n vectors as |u〉, each being eigenvector of a different element
Pj corresponding to unit eigenvalue, and since any two vectors must be orthogonal
(since for some j they are eigenvectors corresponding to different eigenvalues of Pj),
this means that the 0 eigenvalue for each POVM element must have multiplicity
at least n− 1, and all the eigenvectors of any element with eigenvalue 1 are in the
kernel of the remaining elements.

We now prove that the condition is sufficient. Suppose that a POVM Q exists
such that Q � P. Then by Lemma 3.1 {0, 1} ⊆ Sp(Qi) for all i. We then need to
prove that in this case P ' Q. From now on we will denote by |u〉Pi an eigenvector
of Pi with eigenvalue 1 and by |u〉Qi the same for Qi. The proof is constructive:
consider the map with Stinespring form E (X) = V †(I ⊗X)V , where

V =
∑
i

√
Pi ⊗ |u〉Qi , (56)

and the notation T = O ⊗ |u〉 denotes the operator defined as T |ψ〉 = O|ψ〉 ⊗ |u〉
for all |ψ〉 ∈ H. It is clear that E (Qi) = Pi. Similarly, consider the map F (X) =
W †(I ⊗X)W , where

W =
∑
i

√
Qi ⊗ |u〉Pi . (57)

This is such that F (Pi) = Qi. We proved that POVM’s P such that λM (Pi) = 1
for all i are clean. We will now prove that it is also a necessary condition. Consider
indeed a generic POVM Q such that at least for one outcome j λM (Qj) < 1. Then
one can consider any POVM P with λM (Pi) = 1 for all i and construct the isometry

W =
∑
i

√
Qi ⊗ |u〉Pi . (58)

It is clear that the Stinespring form W †(I ⊗ X)W defines a channel E such that
E (Pi) = Qi for all i. Then P � Q. Moreover, by hypothesis λM (Pj) > λM (Qj)
and then it is impossible that P ' Q. �

An immediate corollary is the following

Corollary 9.2. The only clean elements with n = d are the observables.
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Proof. In Lemma 9.1 for n = d the iff condition is equivalent to have eigenvalue
0 with multiplicity d − 1 for each POVM element, namely each POVM element is
rank one, and they are orthogonal. �

Allowing mapping between POVM’s with different number of outcomes, the
situation simplifies:

Theorem 9.3. For n ≤ d outcomes the set of clean POVM’s coincides with the
set of observables.

Proof. Consider a generic POVM Pi with i = 1, . . . , n ≤ d. This can be always
regarded as the pre-processing of any desired observable {|i〉〈i|}i=1,...,d. In fact,
using the isometry from H to H⊗2

V =
n∑
i=1

√
Pi ⊗ |i〉, (59)

the following channel expressed in the Stinespring form

M (X) = V †(I ⊗X)V (60)

gives
M (|i〉〈i|) = Pi, i = 1, . . . d. (61)

For a POVM with n < d outcomes (strictly), notice that it is equivalent to a POVM
with d outcomes and d−n vanishing elements. On the other hand, for n < d there
is no channel that can increase the number of outcomes back to d, whence a POVM
with n < d outcomes cannot be clean. For n = d Corollary 9.2 asserts that the
only clean POVM’s are the observables. �

10. Pre-processing: ordering of informationally complete POVM’s

Lemma 10.1. If the POVM Q is infocomplete then every P such that P � Q is
infocomplete, too.

Proof. For d2 outcomes POVM’s, P and Q are infocomplete iff their elements are
linearly independent. Suppose by absurd that there exists a nonnull vector of d2

coefficients ci such that
∑d2

i=1 ciPi = 0, then also

E

 d2∑
i=1

ciPi

 = 0 =
d2∑
i=1

ciQi = 0 , (62)

which contradicts the hypothesis.
If the number of outcomes is greater than d2, suppose

E (X) = 0 , (63)

for some X 6= 0, namely E would have non trivial kernel, in which case Span(Q) ⊆
Rng(E ) ⊂ B(H), which contradicts the hypothesis that Q = E (P) is infocomplete.
Then E is invertible. Now, P must be infocomplete, otherwise the inverse of E
would not have full rank, which is absurd. �

The above theorem is immediately extended to any linearly independent POVM
Q. More interestingly, for any infocomplete POVM P one can prove the following
lemma
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Lemma 10.2. If the POVM P is infocomplete then every Q such that P ' Q is
infocomplete, too.

Proof. It follows immediately from definition of ' and Lemma 10.1. �

On the other hand, each POVM that is equivalent to an infocomplete one, is
also unitarily equivalent to it, namely, more precisely

Theorem 10.3. If P is an infocomplete POVM, then P ' Q iff P 'U Q.

Proof. Since the POVM’s P and Q must be both infocomplete by the previous
lemma, then the maps E and F are uniquely defined, and are the inverse of each
other. Then, by Theorem 3.2 E (X) = UXU† for some unitary U . �

An alternative elegant proof of the above theorem would be the following.

Proof. By hypothesis, there exist E and F such that E (P) = Q and F (Q) = P.
This means that F ◦ E stabilizes the algebra generated by P, that is Span(P) ≡
B(H). On the other hand, the commutant of an infocomplete POVM is only the
identity, since [Pi, X] = 0 for all i implies [A,X] =

∑
i ai[Pi, X] = 0 for all A ∈

B(H). This fact along with Lemma 3.4 implies that F ◦ E is the identical map.
The thesis is then a straightforward consequence of Theorem 3.2. �

Corollary 10.4. For each non unitary invertible channel E on B(H) there exists
at least a pure state ψ ∈ H such that E ᵀ−1(|ψ〉〈ψ|) 6≥ 0.

Proof. Let us consider an extremal POVM with d2 rank-one elements {|αi〉〈αi|}
i = 1, . . . , d2 (according to Ref. [15] such a POVM always exists for any dimension
d, and it is necessarily informationally complete). Assuming E invertible, let’s
consider Qi = E−1(|αi〉〈αi|). The POVM |αi〉〈αi| is clean since it is rank-one.
However, since it is also infocomplete, then Qi cannot be itself a POVM, otherwise
according to Theorem 10.3 it would be unitarily equivalent to |αi〉〈αi|. Moreover,
being both |αi〉〈αi| and Qi infocomplete, the map E would be univocally defined,
whence itself unitary, contrarily to the hypothesis. Then, {Qi} is not a POVM.
However, since the map E is a channel, whence E−1 must be identity preserving,
one has

∑
iQi = I, then necessarily at least one element Qj cannot be positive,

namely there exists a vector ψ ∈ H for which

〈ψ|Qj |ψ〉 < 0. (64)

This inequality can be rewritten as follows

Tr[|ψ〉〈ψ|E−1(|αj〉〈αj |)] = Tr[E ᵀ−1(|ψ〉〈ψ|)|αj〉〈αj |] < 0, (65)

namely E ᵀ−1(|ψ〉〈ψ|) is not positive. �

We have also the following interesting theorem.

Theorem 10.5. Every channel F which maps the set of states S surjectively on
itself, i. e. such that F (S) ≡ S, is necessarily unitary.

Proof. First, suppose that F is invertible, then F must be unitary, otherwise
F−1(S) = S would not be possible by Lemma 10.4. On the other hand, if F is
not invertible, then its range must have dimension strictly smaller than d2. Now,
consider a rank-one infocomplete POVM P with |P| = d2. Clearly, some POVM
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element cannot belong to F (S), and this proves that F (S) ⊂ S strictly, since such
normalized POVM elements are just pure states. �

For qubits this theorem has the simple geometric interpretation that the Bloch
sphere transformed under F−1 for any invertible non unitary F becomes an ellip-
soid which contains elements outside the Bloch sphere.

By definition, and according to Theorem 10.3 an infocomplete POVM P is clean
iff E−1(P) is not a POVM for all invertible non unitary maps E . This means that
as soon as the set S of states is transformed by E−1, the POVM is able to detect
at least one of the points in E−1(S) − S, say E−1(|ψ〉〈ψ|), since the “probability
distribution” corresponding to E−1(|ψ〉〈ψ|) is no longer positive.

11. Pre-processing: ordering of rank-one POVM’s

Intuitively one thinks that a rank-one POVM is clean. This is actually true, and
it is more precisely stated by theorem 11.2 in this section. In order to prove it, we
first need the following

Lemma 11.1. If the POVM Q is rank-one (i. e. each element Qi can be written
as Qi = |wi〉〈wi|), then for any POVM P such that P � Q, also P is rank-one,
and Tr[Pi] = Tr[Qi], ∀i.

Proof. Consider the following normalized vectors

|w̃i〉 =
1√
N i

|wi〉 , Qi = Ni|w̃i〉〈w̃i| , (66)

where Ni = Tr[Qi] = ||wi||2, whence
∑
iNi = d. Suppose P � Q, and E (P) = Q.

Then one can easily verify the following identity

Ni = Tr[Qi|w̃i〉〈w̃i|] = Tr[E (Pi)|w̃i〉〈w̃i|] = Tr[PiE ᵀ(|w̃i〉〈w̃i|)] . (67)

Now, by the CPT property of E ᵀ, E ᵀ(|w̃i〉〈w̃i|) is a state and clearly the last
expression in Eq. (67) is less than or equal to the maximum eigenvalue λM (Pi) of
Pi. We have than the following situation

Ni ≤ λM (Pi) ≤ Tr[Pi] . (68)

By the normalization and positivity of POVM’s, we have that d =
∑
iNi =∑

i Tr[Pi] and Ni ≥ 0, Tr[Pi] ≥ 0. These conditions along with Eq. (68) imply

Ni ≡ Tr[Pi] ∀i , (69)

and this in turn implies λM (Pi) = Tr[Pi], namely Pi is rank-one. �

We will now prove the following theorem

Theorem 11.2. If Q is rank-one, then P � Q iff P 'U Q. Namely, rank-one
POVM’s are clean.

Proof. First, notice that by Lemma 11.1, P � Q implies that P is rank one with
Tr[Pi] = Tr[Qi], for all i. We have then

Pi = |vi〉〈vi| = Mi|ṽi〉〈ṽi| , ||ṽi|| = 1 , (70)

Qi = |wi〉〈wi| = Mi|w̃i〉〈w̃i| , ||w̃i|| = 1 , (71)
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where Mi ≡ Tr[Pi] = Tr[Qi], consistently with Lemma 11.1. Now, by hypothesis
we have

Mi = Tr[E (Pi)|w̃i〉〈w̃i|] = Tr[PiE ᵀ(|w̃i〉〈w̃i|)] = Mi Tr[|ṽi〉〈ṽi|E ᵀ(|w̃i〉〈w̃i|)] . (72)

As a consequence, necessarily Tr[|ṽi〉〈ṽi|E ᵀ(|w̃i〉〈w̃i|)] = 1, and by CPT property of
E ᵀ this implies E ᵀ(|w̃i〉〈w̃i|) ≡ |ṽi〉〈ṽi|. Notice that since E ᵀ(I) =

∑
iMiE ᵀ(|w̃i〉〈w̃i|) =∑

iMi|ṽi〉〈ṽi| = I, then E ᵀ and E are unital, namely both CPT and CPI. Then,
by applying Theorem 3.3 one has P 'U Q. The converse is trivial. �

12. Conclusions

In this paper we have introduced the notion of clean POVM’s, namely which
are not irreversibly connected to another POVM via a quantum channel. We used
the adjective “clean” for such POVM’s in the sense that they are not affected
by “extrinsical” quantum noise from the action of a channel which is in principle
avoidable. We have seen that, quite unexpectedly, the cleanness property is largely
unrelated to the convex structure of POVM’s, and there are clean POVM’s that
are not extremal and extremal POVM’s that are not clean.

The classification problem of POVM’s cleanness turned out to be much harder
than that of their extremality, and in this paper we gave a complete classification
of clean POVM’s only for number n of outcomes n ≤ d (d dimension of the Hilbert
space), whereas for n > d we gave a set of either necessary or sufficient conditions,
and an iff condition for the case of informationally complete POVM’s for n =
d2. The difficulty for classifying the case n > d reflects analogous difficulties in
the theory of quantum measurements in assessing the maximal POVM cardinality
needed to attain the accessible information, cardinality whose lower bound has been
shown to be actually larger than d[18, 19].

The novel issue of clean POVM’s naturally opens new problems in the theory of
quantum information and quantum measurements. Besides the problem of the gen-
eral classification of cleanness, it raises the problem of characterizing all POVM’s
achievable from a given one via a quantum channel, or, reversely, of all POVM’s
which can be evolved toward a given one via a quantum channel. These are only
initial steps toward a thorough analysis of the general problem of the partial or-
dering induced by channels on the convex set of measurements, an issue which is
not an academic mathematical problem, but which is relevant for engineering new
quantum measurements with minimal available resources.
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