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Abstract

Background: The ability to efficiently search and filter datasets depends on access to high quality metadata. While

most biomedical repositories require data submitters to provide a minimal set of metadata, some such as the Gene

Expression Omnibus (GEO) allows users to specify additional metadata in the form of textual key-value pairs (e.g. sex:

female). However, since there is no structured vocabulary to guide the submitter regarding the metadata terms to

use, consequently, the 44,000,000+ key-value pairs in GEO suffer from numerous quality issues including redundancy,

heterogeneity, inconsistency, and incompleteness. Such issues hinder the ability of scientists to hone in on datasets

that meet their requirements and point to a need for accurate, structured and complete description of the data.

Methods: In this study, we propose a clustering-based approach to address data quality issues in biomedical,

specifically gene expression, metadata. First, we present three different kinds of similarity measures to compare

metadata keys. Second, we design a scalable agglomerative clustering algorithm to cluster similar keys together.

Results: Our agglomerative cluster algorithm identified metadata keys that were similar, based on (i) name, (ii) core

concept and (iii) value similarities, to each other and grouped them together. We evaluated our method using a

manually created gold standard in which 359 keys were grouped into 27 clusters based on six types of characteristics:

(i) age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi) treatment. As a result, the algorithm generated 18 clusters

containing 355 keys (four clusters with only one key were excluded). In the 18 clusters, there were keys that were

identified correctly to be related to that cluster, but there were 13 keys which were not related to that cluster. We

compared our approach with four other published methods. Our approach significantly outperformed them for most

metadata keys and achieved the best average F-Score (0.63).

Conclusion: Our algorithm identified keys that were similar to each other and grouped them together. Our intuition

that underpins cleaning by clustering is that, dividing keys into different clusters resolves the scalability issues for data

observation and cleaning, and keys in the same cluster with duplicates and errors can easily be found. Our algorithm

can also be applied to other biomedical data types.
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Background

Enormous amounts of biomedical data have been and are

being produced at an unprecedented rate by researchers

all over the world. However, in order to enable reuse,

there is an urgent need to understand the structure of

datasets, the experimental conditions under which they
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were produced and the information that other investi-

gators may need to make sense of the data [1]. That is,

there is a need for accurate, structured and complete

description of the data — defined asmetadata.

Gene Expression Omnibus (GEO) is one of the largest,

best-known biomedical databases [2]. GEO is an interna-

tional public repository for high-throughput microarray

and next-generation sequence functional genomic data

submitted by the research community. As of 2016,

the GEO database hosts > 69, 000 public series (study

records) submitted directly by over 3000 laboratories,
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comprising over 1,800,000 “Samples” and over 44,000,000

sample characteristics captured as unconstrained

key-value pairs1. Users submit data to GEO via a spread-

sheet (namely GEOarchive spreadsheet), which requires

them to fill out a metadata template that follows the

guidelines set out by the Minimum Information About

a Microarray Experiment (MIAME) guidelines [3]. The

metadata template includes fields for title, summary,

overall design, contributors, protocols (e.g. growth, treat-

ment, extraction, labeling, hybridization, scanning, and

data processing) as well as sample characteristics (e.g. sex,

organism, tissue, cell type). After submission, a curator

checks the content and validity of the information pro-

vided [4]. This process is not only time-consuming but

also error-prone considering the amount of manual labor

that is involved. GEO allows users to specify additional

metadata in the form of textual key-value pairs (e.g. sex:

female). However, since there is no structured vocabu-

lary to guide the submitter regarding the metadata terms

to use, consequently, the 44,000,000+ key-value pairs

in GEO suffer from numerous quality issues. Moreover,

without a standardized set of terms with which to fill

out the template fields, there are different versions of the

same entity without any (semantic) links between them.

Thus, we chose GEO as a use case for our study.

As it currently stands, GEO metadata suffers from sev-

eral quality issues including redundancy, heterogeneity,

inconsistency, incompleteness, etc. These key-value pairs

are manually entered by the submitters and have dif-

ferent spellings (e.g. age: 21 years, age_yrs: 21)

or use different terms to define the same concept (e.g.

disease: Still, illness: Still). For instance,

the key “age” itself has over 31 different variants. Specif-

ically for the key “age in years”, there are heterogeneous

notations such as “age (y)”, “age in years”, age (years)”, “age

at diagnosis (years)” or “age (yrs)”. On the other hand,

for biomedical concepts such as the key “disease” has dif-

ferent notations such as“ disease”, “illness”, “clinical type”,

“infection status” or “healthy control”, which are lexically

very different thus making it hard to identify similar keys.

Additionally, corresponding to these keys are a myriad

of values, heterogeneous in themselves such as different

notations of the same disease name or the value of age.

Thus, when one attempts to find similar studies by query-

ing the metadata using keywords (as available by the GEO

website), all the related studies are not retrieved, resulting

in loss of important information. Thus, as a first step, we

aim to identify and resolve such quality issues in the keys

of the millions of GEO Sample records.

Good quality metadata is essential in finding, interpret-

ing, and reusing existing data beyond what the original

investigators envisioned. This, in turn, can facilitate a

data-driven approach by combining and analyzing sim-

ilar data to uncover novel insights or even more subtle

trends in the data. These insights can then be formed into

hypothesis that can be tested in the laboratory [2]. Thus,

scalable methodologies to curate the existing metadata,

which is of poor quality, is of prime importance to help

enable reuse of the vast amounts of valuable biomedical

data. Poor metadata quality has important implications

for the re-usability of data. In [5], the authors performed a

multi-cohort analysis of the publicly available gene expres-

sion datasets, which revealed a robust diagnostic signature

for sepsis. To execute their study, the authors were forced

to use a variety of keywords to retrieve a large set of

potential datasets and subsequently examine each one to

identify essential metadata and ensure that they met their

inclusion criteria. Such laborious approaches pose a crit-

ical barrier in scaling up their approach so as to find

diagnostic signatures for other disorders.

Thus, we propose cutCluster, an algorithm for scalable

agglomerative clustering to group similar keys together

so as to identify the closely-related ones as well as the

erroneous ones in order to tackle the metadata qual-

ity problem, specifically for gene expression data. Our

intuition that underpins cleaning by clustering is that,

dividing keys into different clusters resolves the scala-

bility issues for data observation and cleaning, and keys

in the same cluster with duplicates and errors can easily

be found. Related work includes Freudenberg et al. [6]

who developed a computational framework for analyti-

cally and visually integrating knowledge-base functional

categories with the cluster analysis of genomics data,

based on the gene-specific functional coherence scores.

Loureiro et al. [7] describes a methodology of the appli-

cation of hierarchical clustering methods to the task of

detecting erroneous foreign trade transactions. Ulrich

et al. [8] provided an R implementation for the affinity

propagation clustering technique, which has gained

increasing popularity in bioinformatics. For concept

matching, Giunchiglia et al. [9] presented basic and opti-

mized algorithms for semantic matching and discussed

their implementation within the S-Match system. Using

clustering to data cleaning is widely accepted in practice

to improve data quality, and our clustering algorithm

incorporates various similarity measures and is very

scalable for cleaning gene expression metadata.

Methods

In this section, we explain the extraction and selection

process of the GEO dataset metadata, particularly the

keys, as the first step since it was unknown how many dif-

ferent key categories are present. This was followed by the

gold standard creation on a subset of the keys (since one

did not already exist) to validate our approach. Then, we

present details of our three similarity measures and cut-

Cluster, our clustering algorithm, used for the clustering

of the selected GEO keys. Figure 1 displays our proposed
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Fig. 1 Steps undertaken for applying our cutCluster algorithm to perform cleaning by clustering of the GEO metadata, i.e., characteristics keys

workflow including the specific steps undertaken in the

process.

Dataset metadata extraction

As our use case, we selected metadata from the GEO

dataset, in particular, from the “Sample” records. A

Sample record describes the conditions under which

an individual Sample was handled, the manipulations

it underwent, and the abundance measurement of each

element derived from it. In a Sample, from these different

metadata elements, we specifically chose the “Character-

istics” field (see Fig. 1), which contains information about,

for example, tissue, age, gender, cell type, disease and

strain, used in the study. This information is structured

in the key-value pair format. For example, in the Sam-

ple GSM549324, one of the key-value pair is gender:

Male, where “gender” is the key and “Male” is the value.

In the entire GEO dataset, there are over 44,000,000

key-value pairs. Figure 2 shows the occurrence of the top

20 keys in GEO.

As a first step, we aim to identify and resolve such

quality issues in the keys of the GEO Sample records.

The problems in the keys range from (i) minor spell-

ing discrepancies (e.g. age at diagnosis (years),

age at diagonosis (years); genotype/varaiation,

genotype/varat,genotype/varation, genotype/variaion,

genotype/variataion genotype/variation), (ii)

having different syntactic representations (e.g. age

(years), age(yrs) and age_year), (iii) using

different terms altogether to denote one concept (e.g.

Fig. 2 Number of occurrences of the top 20 occurring keys in GEO
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disease vs. illness vs. healthy control) or (iv)

using two different key terms in one (e.g. disease/cell

type, tissue/cell line, treatment age).

Thus, when one attempts to find similar studies by

querying the metadata using keywords (as available at

the GEO website), some related studies would not be

retrieved resulting in loss of important information. We

used the SQLite3 GEO database2 to acquire the GEO

metadata. We then retrieved a sample of these GEO keys

and created a gold standard for them, as described in the

next section.

Metadata selection and gold standard creation

Out of over 11,000 unique keys in GEO, to test our

approach, we chose 359 keys. That is, we queried the

dataset using regular expressions with a key string to

retrieve all the different variants of that key.We first chose

six key categories, namely (i) age, (ii) cell line, (iii) dis-

ease, (iv) strain, (v) tissue and (vi) treatment, as these are

the most frequently occurring ones (c.f. Figs. 1 and 2).

In order to validate our results and since one did not

already exist, we created a gold standard of all these keys

by manually dividing these 359 keys into several clusters.

In total, we created 31 reference clusters, where four clus-

ters with only one key were excluded. The remaining 27

clusters with 355 keys were considered as the gold stan-

dard. The average number of keys in each cluster was 13,

and the standard deviation was 13.84. The maximum and

minimum numbers of keys in a cluster were 78 and 3,

respectively. This gold standard is available at http://ws.

nju.edu.cn/geo-clustering/. Our next step was to per-

form the clustering based on three similarity measures as

explained in the next section.

Similarity measures

To resolve various heterogeneities in the GEO keys, we

explored three types of similarities to compare any two

GEO keys (see Fig. 1):

• Name similarity, denoted by simname(), is computed

by comparing the lexical names of the keys, such as

“tissue isolated” and “tissue derived”.
• Core concept similarity, denoted by simcore(), is

computed by comparing the most important

concepts (called core concepts [10]) in the names of

the keys. The core concept is either the first verb in

the name that is greater than four characters long or,

if there is no such verb, the first noun in the name,

together with any adjective modifying that noun. For

example, the core concept of “tissue isolated” is

“isolated”, while the core concept of “tissue derived”

is “derived”. We first extracted the core concepts

using Stanford NLP parser [11] and then extended

these concepts with synonyms obtained from a

thesauri http://www.thesaurus.com.

• Value similarity, denoted by simvalue(), is calculated

by comparing all the values, e.g. “Male”, “Female”, of a

key, e.g. “gender”. We chose the highest score from

the similarities of all value pairs.

Tomeasure the similarities between strings, we used the

Jaro-Winkler method, since it repeatedly performs well,

among the best, for tasks like ontology alignment [12] and

record matching [13].

To formalize, given two keys ti, tj, the overall simi-

larity, denoted by sim(), between ti, tj is defined as a

weighted combination of the name, core concept and

value similarities:

sim(ti, tj) = α · simname(ti, tj)

+ β · simcore(ti, tj)

+ γ · simvalue(ti, tj), (1)

where α,β , γ are the weighting factors in [ 0, 1] range, s.t.

α + β + γ = 1. We used a linear regression to train the

weights for the combination. More details are provided in

the “Discussion” section.

cutCluster – our clustering algorithm

The goal of cutCluster, our clustering algorithm, is to cat-

egorize a set of keys into a set of disjoint clusters, denoted

by C1,C2, . . . ,Cn, whereby some measure, the cohesion

between the keys in a cluster Ci is high, meanwhile the

coupling across different clusters Ci,Cj is low. Following

the conventional definition of clustering, we assumed that

all clusters together equals the complete set of keys, and

any two different clusters are mutually disjoint. Our intu-

ition that underpins cleaning by clustering is that, dividing

keys into different clusters resolves the scalability issues

for data observation and cleaning, and keys in the same

cluster with duplicates and errors can easily be found.

We re-designed the agglomerative (bottom-up) clus-

tering algorithm [14, 15], which is a scalable hierar-

chical clustering algorithm for large ontology match-

ing. The pseudo code of the cutCluster is depicted

in Algorithm 1, which accepts as input a set of keys

and returns a set of clusters. Initially, it establishes

a singleton cluster for each key, and sets its cohe-

sion equal to 1 (Line 6). The coupling between any

two keys is set to their overall similarity (Line 8).

During each iteration, it selects the cluster set C∗ with

the greatest cohesion (Line 12), and finds the cluster pair

(Cs,Ct) with the greatest coupling (Line 13). After merg-

ing Cs and Ct into a new cluster Cp (Line 19), it updates

the cohesion of Cp as well as its coupling with other ones

(Lines 20–22). The time complexity of this algorithm is

O(|T|2), where T denotes the set of keys.

As compared with the previous algorithm [15], the

new termination condition depends on the threshold of

coupling rather than the maximum number of keys in

http://ws.nju.edu.cn/geo-clustering/
http://ws.nju.edu.cn/geo-clustering/
http://www.thesaurus.com
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Algorithm 1: cutCluster

Input: a set T of keys, the coupling threshold ǫ

Output: a set C of clusters

1 begin

// Initialization

2 foreach key ti ∈ T do

3 create cluster Ci for ti, and add it in C;

4 end

5 foreach cluster Ci ∈ C do

6 cohesion(Ci) = 1;

7 foreach cluster Cj ∈ C, i �= j do

8 coupling(Ci,Cj) = sim(ti, tj);

9 end

10 end

// Clustering

11 while cluster number > 1 do

12 C∗ = {Ck |cohesion(Ck) = max
Ci∈C

(cohesion(Ci))};

13 (Cs,Ct) = argmax
Ci∈C∗ ,Cj∈C, i�=j

(coupling(Ci,Cj));

// Termination condition

14 if cohesion(Cs) = 0 then

15 return C;

16 else if coupling(Cs,Ct) < ǫ then

17 cohesion(Cs) = 0;

18 // Merging and re-calculation

19 else

20 Cp = Cs ∪ Ct ;

21 cohesion(Cp) = coupling(Cs,Ct) +

cohesion(Cs) + cohesion(Ct);

22 foreach cluster Cl ∈ C, l �= p, s, t do

23 coupling(Cp,Cl) =

coupling(Cs,Cl) + coupling(Ct ,Cl);

24 end

25 C = C ∪ {Cp}\{Cs,Ct};

26 end

27 end

28 end

a cluster. Another main difference is that the distance

measure proposed in this paper is based on linguistic simi-

larities, while [15] leveraged structural proximities (which

are difficult to calculate here due to the plain hierarchy

between the keys).

For the criterion function, we proposed cut() to cal-

culate both cohesion and coupling, which measures the

cutting cost of two clusters by considering the aggregated

inter-connectivity of them. Formally, letCi,Cj be two clus-

ters. The cutting cost, denoted by cut(), of Ci,Cj is defined

as follows:

cut(Ci,Cj) =

∑

ti∈Ci

∑

tj∈Cj

sim(ti, tj)

|Ci| · |Cj|
, (2)

where sim() represents the overall similarity measure in

Eq. (1) and | | counts the number of keys in a cluster.

When Ci,Cj refer to the same cluster, cut() calculates the

cohesion of this cluster, i.e., cohesion(Ci) = cut(Ci,Ci);

Otherwise, it computes the coupling between them, i.e.,

coupling(Ci,Cj) = cut(Ci,Cj). Using this uniform cri-

terion function simplified our clustering algorithm and

made those previously-calculated distances reusable in

the next iterations.

Running example To help understand, we show a run-

ning example in Fig. 3. Given five keys involving “age” in a

dataset, “age (mouse)”, “mouse age”, “age (in month)”, “age

(month)” and “age (date)”, the dendogram of our cluster-

ing result is depicted in the figure. Specifically, “age (in

month)” and “age (month)” are likely to be duplicates, and

month is related to date in some sense according to www.

thesaurus.com.

Results

In this section, we present the clustering results and their

interpretations and with the evaluation along with the

metrics.

Results

By using cutCluster, our agglomerative clustering algo-

rithm and setting the coupling threshold ǫ to 0.5, 18

clusters were generated, containing all the 355 keys in the

gold standard. The average number of keys in a cluster

is 20, and the standard deviation is 20.34. The maximum

and minimum numbers of keys in a cluster are 78 and 3,

respectively. All the results are available on our website

and listed in Table 1.

Fig. 3 Running example showing the different variants of the key “age”

www.thesaurus.com
www.thesaurus.com
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Table 1 Clustering results on six keys: (i) age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi) treatment with the number of keys

No. of keys Key

Age

25 Age unit, age group, age_years, age (y), age in years, donor_age, age (months), age (years), age (yrs), patient age, age at diagnosis,
age at diagnosis (years), age at sample (months), patient age (yrs), tumor stage, age.brain, age (weeks), stage, gestational age
(weeks), age.blood, sample age, age at surgery, age, age months, age(years)

5 Pathological_stage, growth/development stage, growth stage, pathological stage, development stage

Cell line

12 Cell line name, cell line source age, cell line type, cell lines, cell line background, cell lineage, cell line/clone, cell line source gender,
cell line source ethnicity, cell line, cell line passage, cell line source

3 Origin of a cell line, source cell line, growth pattern of cell line

14 Tissue/cell line, cell line source tissue, dendritic cell lineages, coriell cell line repository identifier, cell line tissue source, parental cell
line, tumor cell line, donor cell line, tissue/cell lines, injected cell line, tumour cell line used for conditioning medium, insect cell
line, cell line origin, primary cell line

Disease

5 Subject’s disease state, primary disease, histology (disease state), advanced disease stage, advanced disease state

22 Disease-state, meibomian gland disease state, disease, disease/treatment status, disease status of patient, disease progression,
disease stage, disease subtype, status of disease, clinical characteristic/disease status, patient disease status, disease development,
disease phase, diseased, disease/cell type, extent of disease, disease state, disease state (host), disease severity, disease_state,
disease model, disease type

7 Disease_specific_survival_years, disease status, diseasestatus, disease_specific_survival_event, disease outcome, disease exposure,
disease_status

16 Disease-free survival (dfs), disease-free interval (months), disease free interval (days), disease specific survival (years), stage of disease
(inss), disease relapse (event), disease_free_survival_event, disease-free survival (dfs) event, disease_free_survival_years, disease
progression (event), stage of disease, disease free interval (months), age at disease onset, duration of disease, disease free survival
in months, disease free survival time (months)

Strain

22 Background mouse strain, background/strain, background strains, strain, strain/accession, strain or line, strain/background,
strain/genotype, strain/ecotype, strains, strain number, strain [background], strain phenotype, strain/line, strain description, strain
source, strain fgsc number, strain background (bloomington stock number), strain (donor)

3 Toxoplasma parasite strain, infection (virus strain), human cytomegalovirus strain

16 Bacteria strain, siv strain, viral strain, recipient strain, substrain, parent strain, parental strain, host strain, parasite strain, host strain
background, maternal strain, virus strain, scanstrain, mice strain, mouse strain, plant strain

Tissue

14 Sample tissue of origin, cell line source tissue, cell/tissue type, original tissue, source tissue, cell line, tissue source, organ/tissue,
original tissue source, primary tissue, sample tissue type, sample type, cell tissue, source tissue type, organ/tissue type

3 Age of ffpe tissue, day of tissue dissection, age at tissue collection (days)

78* Tissue separation, tissue & age, tissuer type, tissue_detail, tumor tissue source, tissue/tumor subtype, tissue derivation, tissue,
tissue origination, tissue site, tissue_mg, tissue/cell lines, tumor/tissue type, tissue subtype, tissue_biological, tissue processing,
tissue/development stage, harvested tissue type, tissue and developmental stage, tissue isolated

Treatment

67* Pretreatment drug & dose, pre-treatment, treatment2_in vivo treatment, treatment stage, treatments, treatment agent,
treatment_molecule, lighttreatment, drug treatment time point, treatment result, treatment_2, treatment_1, tissue treatment,
cactus host treatment, inducer treatment, sirna treatment group, treatment/exposure, maternal treatment group, treatment_dose,
treatment dosage

12 l-dopa treatment, patient treatment plan, nrti treatment status, culture conditions/treatment, tamoxifen-citrate treatment,
disease/treatment status, globin treatment, experimental treatment, dopamine-agonists treatment, oxygen treatment, tap
treatment, lenolidamide treatment

31 Time of treatment, treatment time, tissue/treatment id, treatment period, days after treatment, treatment duration, pre-treatment
psa, treatment time (rhgaa), weeks of treatment, tnfa treatment time point, treatment_time, treatment length, time (days
post-treatment), order of treatment, bl treatment level, treatment-time, time after treatment, day of dss treatment, time post
treatment, time of tamoxifen treatment, h2o2 treatment level, days of ddc treatment, weeks after treatment, post-treatment time,
length of treatment, duration of il-6 treatment, treatment start age, duration of treatment, days of treatment, time post-treatment,
treatment age

*Due to space constraints, only the first 20 keys are reported in this table for the “age” cluster with 78 keys and the “treatment” cluster with 67 keys, respectively. All results are

available on our website
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Upon further analysis of the clusters themselves, we

found that there were keys that were identified correctly to

be related to that particular clusters, but there were keys

which were incorrectly clustered as they belong to another

key cluster or in some cases belong to more than one clus-

ter. For example, the two clusters for the characteristic key

“age” are depicted in Fig. 4. On one hand, in Fig. 4a, “age

(years)”, “age (months)” and “age (weeks)” were clustered

together correctly. On the other hand, in Fig. 4b, “growth

stage”, “development stage” and “pathological stage” are

clustered together, which do not belong correctly to the

“age” cluster but are classified in this cluster due to the

stem “age” occurring in the keys.

Similarly, for the key “strain” (as depicted in Fig. 5),

there were three clusters containing 3, 22 and 16 keys

respectively. In Fig. 5a, the keys “toxoplasma parasite

strain”, “human cytomegalovirus strain” and “infection

(virus strain)” were correctly clustered together as they

are all related to virus strains. In Fig. 5b, the keys related

to “strain” were clustered together. Additionally, “bacte-

ria mouse strain”, “background/strain” and “background

strains” were group together where “bacteria mouse

strain” did not belong to the cluster but was included due

to the stem “bac” in it, which was matched to “back” from

the other two keys. In Fig. 5c, the keys related to bacterial,

parasite or virus strains were correctly clustered together.

Fig. 4 Two clusters for the key “age”, see panels (a) and (b),

respectively

Fig. 5 Three clusters for the key “strain”, see panels (a), (b) and (c),

respectively

However, it was difficult to determine which cluster the

key “strain/cell line background” best belonged to as the

value was a PubMed ID.

For the “cell line” cluster, there were 4 keys that were

incorrectly grouped into these clusters: “cell line source

age”, “cell line source tissue”, “cell line source gender”

as they belonged to another cluster namely, “age”, “tis-

sue” and “gender” respectively. However, for the key “cell

line/genotype” with the value “by4741 (wt)”, it was unclear

which cluster this key best belonged to.

For the “disease” keys cluster, there were 18 keys that

were incorrectly grouped into this cluster as they belonged

to the “time” category (e.g. “disease free interval (days)”,

“disease-free interval (months)”, “disease duration (yrs)”).

However, for the key “code disease-specific survival” with
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the values “0” and “1”, it was unclear which cluster this key

best belonged to.

For the “age” keys cluster, the keys indicating a stage

(e.g. “growth stage”, “tissue stage”, “lyme disease stage”)

were incorrectly grouped in the “age” cluster but belonged

to the “time” cluster as their values indicated a time

point. The key “8 weeks. tissue” belonged to the “tissue”

cluster and the key “sexual maturity” belonged to the “gen-

der” cluster. Keys that belonged to more than one cluster

were: (i) “age and tissue”, which belonged to both “age”

and “tissue” and (ii) “age(years)/gender”, (iii) “age/sex”, (iv)

“age/gender”, (v) “gender and age”, which belonged to both

“age” and “gender” clusters.

For the “tissue” keys category, there were keys that

belonged to the “time” cluster (e.g. “# of tissue = 36

tissue”, “age of ffpe tissue”, “day of tissue dissection”,

“8 weeks. tissue”). Additionally, there were keys that

belonged to the “genotype”, “cell type” clusters (e.g. “tis-

sue genotype/variation”, “tissue/cell line”). However, “tis-

sue/treatment id” could also belong to the “treatment”

group. But, since the values of this key were 4, 3, 2, it was

difficult to determine the best fit.

For the “treatment” keys category, there were 23 keys

whose values denoted a time point (e.g. “length of treat-

ment (days)”, “treatment stage”, “age (at the end of treat-

ment)”) and thus belonged to the “time” cluster.

From our analysis, we observed that even though we

are able to correctly detect keys and their variants, which

belong to one cluster (key type), there are cases which

require human verification (e.g. via crowdsourcing) to

choose the best fit by analyzing the values.

Evaluation

Metrics We chose three well-known metrics for clus-

tering evaluation [16]: the F-Score, denoted by FS(), the

entropy, denoted by E(), and the Rand index, denoted by

RI(), to assess the algorithmic clusters against the refer-

ence ones (i.e. gold standard) that were manually built

beforehand.

For calculating the first two metrics, two operators,

namely precision and recall, denoted by P() and R()

respectively, were employed to compare a cluster with

another. Formally, given the computed cluster set C and

the reference cluster set R, let Ci be a computed cluster

in C (1 ≤ i ≤ N), and Rj be a reference cluster in R

(1 ≤ j ≤ M). Ci ∩ Rj computes the common keys shared

by Ci and Rj, while | | counts the number of keys in a clus-

ter. The precision and recall of Ci w.r.t. Rj are defined as

follows:

P(Ci,Rj) =
|Ci ∩ Rj|

|Ci|
, (3)

R(Ci,Rj) =
|Ci ∩ Rj|

|Rj|
. (4)

The clustering-based F-Score is defined as the combina-

tion of precision and recall, whose value is in [ 0, 1] range,

and a higher value indicates a better clustering quality.

The clustering-based F-Score of C w.r.t. R is defined as

follows:

FS (C,R) =

∑N
i=1 FS (Ci,R) · |Ci|

∑N
i=1 |Ci|

, (5)

FS (Ci,R) = max
1≤j≤M

2 · P(Ci,Rj) · R(Ci,Rj)

P(Ci,Rj) + R(Ci,Rj)
. (6)

The entropy measures the distribution of keys between

clusters and indicates the overall clustering quality. A

lower entropy value implies a better clustering quality.

The best possible entropy value is 0, while the worst is 1.

An alternative metric based on the information theory is

NMI (Normalized Mutual Information). Given the com-

puted cluster set C and the reference cluster set R, the

entropy of C w.r.t. R is defined as follows:

E(C,R) =

∑N
i=1 E(Ci,R) · |Ci|

∑N
i=1 |Ci|

, (7)

E(Ci,R) = −

∑M
j=1 P(Ci,Rj) · logP(Ci,Rj)

logM
. (8)

The Rand index measures the similarity between two

clustering results by penalizing both false positive and

false negative decisions. The value of Rand index is in

[ 0, 1], and a higher value indicates a better clustering

quality. The Rand index of C w.r.t. R is defined as follows:

RI(C,R) =
TP + TN

(

|T|
2

)
, (9)

where TP denotes the number of key pairs that are in the

same cluster in C and in the same cluster in R, while TN

denotes the number of key pairs that are in different clus-

ters in C and in different clusters in R. T denotes the set

of keys in R.

Comparative clustering algorithms. We selected four

off-the-shelf clustering algorithms for comparison. We

briefly describe them as follows:

• K-medoid [17] is a partition clustering algorithm

related to K-means, with the differences of choosing

“real” data points as centers (calledmedoids), and
working with an arbitrary metric of distances

between data points.
• DBSCAN [18] is one of the most common

density-based clustering algorithm, which groups

together points that are closely packed, marking as

outliers points that stay alone in low-density regions.
• APCluster [8] allows for determining typical cluster

members (called exemplars), and applies affinity

propagation to exemplar-based agglomerative
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clustering, which has gained increasing popularity in

bioinformatics.

• StdHier represents the standard hierarchical

clustering algorithm implemented in

clusterMaker—a multi-algorithm clustering plug-in

for Cytoscape [19]. Cytoscape implements the

Standard Hierarchical clustering in Java, in which the

average-linkage method is used [20].

We re-implemented the K-medoid and DBSCAN algo-

rithms, and tuned parameters to obtain best performance.

K-medoid got two clusters for “age” and “treatment”, three

clusters for “cell line” and “disease”, six clusters for “strain”

and 13 clusters for “tissue”. For DBSCAN, eps was tuned

from 0 to 1 step by 0.01, while minPts was tuned from 0

to 100 step by 1. Parameters were varied of different keys.

For StdHier and DBSCAN, we used (1 − similarity) as

their distance function to calculate the distance between

any two terms.We adopted default parameters of APClus-

ter and StdHier which were implemented in the clustering

plug-in for Cytoscape.

Table 2 shows the comparison results between our

agglomerative clustering algorithm, cutCluster, and the

four other comparative algorithms. From this table, we

can see that our algorithm significantly outperformed

the other algorithms in most characteristic keys (except

“cell line”) and achieved the best average F-Score (0.63),

entropy (0.58) and Rand index (0.64), which demonstrate

better consistency between our algorithm and human

experts.

Additionally, Table 2 shows the weights of α,β and γ

for achieving the best similarity combination, which varies

between the characteristic keys. Due to the small amount

of the keys involving each characteristic key, we did not

conduct n-fold cross-validation in this evaluation. Table 3

shows the F-Scores of comparing the result of clustering

each characteristic key separately with the clustering of all

keys as a whole dataset. Note that it is inappropriate to

compare them using entropy or Rand index, because these

two measures are dominantly affected by the number of

clusters, e.g. M in Eq. (8) and TN in Eq. (9). From the

table, we observe that the F-Scores are much better if

the characteristic keys are separated, because a unified

set of parameters is not suitable for different keys, espe-

cially when the numbers of keys in different clusters are

highly imbalanced. This verifies the effectiveness of our

workflow by first dividing dataset into small keyword cat-

egories using keywords and regular expressions, and then

conducting clustering on each category. Figure 6 shows

the change of performance with respect to different α, β

and γ values. Note that α + β + γ = 1. The figure shows

the different F-Scores for the “age” category. We can see

that the actual performance for a range of weighting fac-

tors is not far from the best. For the other five categories

(Table 2), we observed similar results, which indicated

that, although we cannot achieve the best result by clus-

tering the whole dataset, there is a range of choices that

make the result acceptable on each keyword category in

practice (also demonstrated by Table 3). That is, although

a gold standard may not always be available, there are still

many choices that can be made to achieve a good result.

Our empirical experience is that, the weights for name

and value similarities (α and γ , respectively) are broadly

effective, while the weight for core concept similarity (β)

depends on features of the characteristic keys.

Application to other most frequent keys We applied

our agglomerative clustering algorithm on five character-

istic keys that had the highest frequency, excluding the

ones that have already been evaluated in Table 2. Our clus-

tering results are shown in Table 4, which demonstrate the

feasibility of our algorithm on various large-scale data.

Scalability In order to determine the scalability of our

method, we simulated the performance as depicted in

Fig. 7. The simulation was performed on a personal work-

station with an Intel Xeon E3 3.2 GHz CPU and 16 GB

memory. We observe that our similarity computation and

agglomerative clustering can both deal with large-scale

datasets.

Table 2 Comparison on F-Score (FS), Entropy (E) and Rand Index (RI)

Key (ref. cluster number)
Weights Our algorithm K-medoid DBSCAN APCluster StdHier

α β γ FS E RI FS E RI FS E RI FS E RI FS E RI

Age (2) .44 .01 .55 .94 .34 .87 .86 .51 .67 .87 .43 .69 .68 .59 .54 .81 .60 .63

Cell line (4) .65 .11 .24 .46 .78 .56 .60 .78 .54 .49 .78 .40 .59 .70 .64 .52 .82 .43

Disease (4) .15 .18 .67 .58 .55 .65 .64 .58 .61 .63 .69 .36 .67 .63 .52 .61 .58 .63

Strain (4) .85 .00 .15 .58 .69 .62 .43 .68 .61 .50 .76 .35 .42 .68 .46 .48 .78 .35

Tissue (9) .80 .00 .20 .43 .73 .37 .41 .69 .56 .49 .77 .27 .35 .74 .58 .40 .68 .45

Treatment (4) .57 .00 .43 .78 .41 .74 .69 .58 .67 .76 .69 .47 .68 .69 .50 .81 .58 .66

Average .63 .58 .64 .61 .64 .61 .62 .69 .42 .57 .67 .54 .60 .67 .52

A higher F-Score, a higher Rand Index or a lower entropy indicates a better quality, and the best ones are formatted as bold
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Table 3 F-Score (FS) comparison between dividing the dataset based on characteristic keywords and taking it as a whole

cutCluster K-medoid DBSCAN APCluster StdHier

Average [Min, Max] 0.63 [0.43, 0.94] 0.61 [0.41, 0.86] 0.62 [0.49, 0.87] 0.57 [0.35, 0.68] 0.6 [0.4, 0.81]

As a whole dataset 0.43 0.4 0.37 0.34 0.4

Discussion

The clustering results that we have presented allow us

to make the following observations about cutCluster’s

strengths and weaknesses. By looking at the generated

clusters in detail, we found that hierarchical clustering is

suitable for biomedical metadata cleaning. That is, it helps

in clustering keys which are similar to one another. Let us

take the key category “disease” as an example. The keys

“disease free interval (months)” and “disease-free inter-

val (months)” were grouped together, which are probably

duplicates of each other and thus can be easily identi-

fied. Furthermore, our agglomerative clustering algorithm

can make clusters at different granularities. For instance,

“disease free interval” and “disease free survival” were

assigned in the same cluster at a higher layer, but sepa-

rated into different clusters at a lower layer of the tree (in

the case of hierarchical clustering).

Our agglomerative clustering algorithm followed a

bottom-up approach and preferred to merge smaller clus-

ters into larger ones. However, we found that it did not

perform very well on skewed clustering, which means

that some clusters possessed a large amount of keys while

the others had few. For example, the numbers of keys

in the two gold standard clusters for key cell line are

32 and 5 respectively. Furthermore, we compared our

algorithm with four representative competitors, but there

exist numerous hierarchical algorithms, thus it is hard,

if not impossible, to compare all of them for biomedical

metadata cleaning.

Fig. 6 Change of cutCluster’s performance w.r.t. different α,β , γ

values

We selected the threshold by referencing the gold stan-

dard built by human experts. However, it is difficult

to know an appropriate clustering granularity without

a gold standard. Moreover, the weights for combining

name, core concept and value similarities varied between

characteristic keys, and we have not found an optimal

method to automatically determine them to achieve the

best clustering quality. It is worth noting that creating ref-

erence clusters as gold standard is a time-consuming and

subjective process. This is why we designed our work-

flow (Fig. 1) such that we first divided the datasets into

smaller chunks (by selecting keys using keywords and

regular expressions) and performed clustering on each

part. We manually created the gold standard on this

small part to validate our approach and then apply cut-

Cluster to another set of keys, where no gold standard

is present. The experimental results demonstrated that

this workflow can improve accuracy. Specifically, it shows

the strength of our approach in using hierarchical clus-

tering as a means to cluster similar keys and enabling

the user to choose the level at which the clusters are

best formed.

Additionally, unlike evaluating ontology/schema map-

pings using precision and recall, we cannot directly eval-

uate the quality of the three similarity measures based

on the reference clusters. The three similarity measures

were selected based on our previous experience and we

observed that they all contributed to the distance function

for clustering. However, there exist quite a lot of sim-

ilarity measures and some of them may be effective as

well. Systematically comparing them will be one of our

future work.

Conclusion

We designed cutCluster, a scalable agglomerative cluster-

ing algorithm to address data quality issues in biomedical

Table 4 Clustering results on other most frequent keys

Keys Key frequency Cluster number
Max. Min. Avg.

Key number per cluster

Gender 188,277 4 17 2 11

Cell type 137,192 5 14 1 6

Genotype 100,876 5 28 20 22

Time 100,462 14 241 3 29

Sex 67,529 4 16 4 8

Key frequency denotes the number of key-value pairs that include that particular key
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Fig. 7 Simulation depicting scalability of the similarity computation

and agglomerative clustering

metadata. We have shown that our approach works espe-

cially in those cases when it is unknown how many differ-

ent categories are present and also when there is no gold

standard available.We selected a total of 359 keys from the

GEO dataset for this experiment. These keys were cho-

sen based on six characteristics (categories of keys): (i)

age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi)

treatment. We manually created a gold standard to com-

pare our results against which consisted of 27 clusters.

By using cutCluster, 18 clusters were generated, contain-

ing all the 355 GEO keys (four clusters with only one key

were excluded). In the 18 clusters, there were 342 keys

that were identified correctly to be related to that cluster

and thus similar to one another, but 13 keys were iden-

tified which were not related. Our algorithm identified

keys that were similar based on (i) name, (ii) core con-

cept and (iii) value similarities, to each other and grouped

them together. Our algorithm also performed better than

four other clustering algorithms. Also, we showed that

our methodology is applicable to other keys and scalable.

By using this method of clustering similar keys together,

we are able to find keys which are related to each other

even if they use different terms as well as duplicate and

inconsistent keys in the dataset. That is, since metadata

keys which are similar to one another are in one clus-

ter, this helps address the problem for researchers to find

related studies using a particular metadata keyword. This

in turn will enable researchers to perform meta-analysis

and systematic reviews using the GEO dataset.

As future work, we intend to improve our algorithm by

more sophisticated measures for term similarity and clus-

ter distance in order to help detect even further smaller

clusters of related keys. Also, we plan to extend our work

to find clusters of similar values. Moreover, after detecting

the similar key-value pairs, we aim to use crowdsourcing

methodologies to help verify, find and potentially fix these

quality issues, especially those that can be easily detected

by humans but not by machines. Ultimately, we aim to

make the clean metadata values available directly with the

existing GEO data to help enhance the re-usability of the

dataset.

Endnotes
1Statistics derived from http://www.ncbi.nlm.nih.gov/

geo/, Last accessed June 20, 2016.
2Available at http://gbnci.abcc.ncifcrf.gov/geo/index.

php (version January 23, 2016, 07:23:09, 264.5 MB).
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