
Cleaning Uncertain Data with Quality Guarantees

Reynold Cheng Jinchuan Chen Xike Xie
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

{csckcheng,csjcchen,csxxie}@comp.polyu.edu.hk

ABSTRACT
Uncertain or imprecise data are pervasive in applications like
location-based services, sensor monitoring, and data collec-
tion and integration. For these applications, probabilistic

databases can be used to store uncertain data, and querying
facilities are provided to yield answers with statistical confi-
dence. Given that a limited amount of resources is available
to “clean” the database (e.g., by probing some sensor data
values to get their latest values), we address the problem of
choosing the set of uncertain objects to be cleaned, in order
to achieve the best improvement in the quality of query an-
swers. For this purpose, we present the PWS-quality metric,
which is a universal measure that quantifies the ambiguity of
query answers under the possible world semantics. We study
how PWS-quality can be efficiently evaluated for two ma-
jor query classes: (1) queries that examine the satisfiability
of tuples independent of other tuples (e.g., range queries);
and (2) queries that require the knowledge of the relative
ranking of the tuples (e.g., MAX queries). We then propose
a polynomial-time solution to achieve an optimal improve-
ment in PWS-quality. Other fast heuristics are presented
as well. Experiments, performed on both real and synthetic
datasets, show that the PWS-quality metric can be evalu-
ated quickly, and that our cleaning algorithm provides an
optimal solution with high efficiency. To our best knowl-
edge, this is the first work that develops a quality metric for
a probabilistic database, and investigates how such a metric
can be used for data cleaning purposes.

1. INTRODUCTION
Traditionally, a database assumes that the values of the

data stored are exact or precise. In many emerging applica-
tions, however, the database is inherently uncertain. Con-
sider a habitat monitoring system where data like temper-
ature, humidity, and wind speed are acquired from sensors.
Due to the imperfect nature of the sensing instruments, the
data obtained are often contaminated with noises [14]. As
another example, in the Global-Positioning System (GPS),

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

the location values collected have some measurement er-
ror [16, 32]. In biometric databases, the attribute values
of the feature vectors stored are not exact [5]. Integration
and record linkage tools also associate confidence values to
the output tuples according to the quality of matching [12].
To deal with the increasing need of handling uncertainty,
researchers have recently proposed to consider uncertainty
as a “first-class citizen”, by managing data in an “uncertain
database” [1, 3, 9, 12].

In these databases, queries can be evaluated to produce
imprecise answers with probabilistic guarantees. The am-
biguity of a query answer constitutes the notion of query

quality, which describes “how good” a query answer is [9].
In this paper, we address the issue of how to improve query
quality, through the means of reducing the ambiguity of the
database. Data impreciseness can be alleviated in different
ways. For example, in a sensor monitoring application, a
database system is used to store the current values of thou-
sands of sensors deployed in a geographical region. Due to
limited resources, the system may not be able to capture
the sensor information at every point of time; instead, it
uses the stored values to estimate the current sensor read-
ings [9, 14]. To reduce the error of estimation, the system
can “probe” a sensor, which responds to the system with its
newest value. As another example, consider a database that
captures the movie ratings, based on the fusion of the IMDB
movie information and the user ratings obtained from the
Netflix challenge [23]. The database contains the customers’
ratings of each movie, represented as a probability distribu-
tion. The uncertainty about these ratings can be “sanitized”
by contacting the respective customers for clarification. The
resulting database, which is less uncertain than before, could
then provide a higher-quality service.

Ideally, the whole database should be cleaned. In reality,
this may not be feasible, since cleaning data can be costly.
A sensor monitoring system, for example, may only probe
a small portion of sensors, partly due to the limited band-
width in the wireless network, and partly due to the scarce
battery power of the sensing devices. As for the movie rat-
ing database, it may be difficult to validate the ratings of
all the customers who are involved in the movie evaluation.
Generally, a cleaning operation is constrained, for instance,
by a fixed “budget”, which describes the maximal amount
of effort that can be invested for cleaning the data. The
cleaning budget for a sensor monitoring system can be the
maximum amount of bandwidth that can be used for sensor
probing. For the movie-rating database, such a budget can
be the maximum number of man-hours allowed for verifying

722

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

the movie-ratings.
In this paper, we address the problem of cleaning uncer-

tain data for achieving better query or service quality, un-
der a limited budget. Despite the importance of uncertain
database cleaning, relatively little work has been done in
the area (e.g., [2, 6, 14, 18, 25]). Our main idea is to make
use of the query information to decide the set of data items
to be cleaned. By operating on these data, the quality of
the answers returned to the user can attain the highest im-
provement. We develop our solution based on the probabilis-

tic database [3, 12], a widely-studied uncertain data model.
The main challenges that we address include: (1) define
a sound and general quality metric over query results; (2)
develop efficient methods to compute this metric; and (3)
devise efficient and optimal cleaning algorithms.

To illustrate, Figure 1 shows a relation in a probabilis-
tic database, which stores the quotations of four products
(with IDs a, b, c and d), collected from webpages by using
some automatic schema matching methods. An attribute
called existential probability (Prob. in short) is used to indi-
cate the confidence of the existence of each tuple. A tuple is
also associated with an “x-tuple” [1], which represents a dis-
tribution of alternatives. For example, product a has a 0.7
chance for offering a price of $120, and a 0.3 chance for hav-
ing a quotation of $80. Now consider a MAX query: “Return
the tuple with the highest price”. Due to data imprecision,
this query can produce imprecise answers. Table 2 shows
the query result, which contains the IDs of the tuples, and
their non-zero probabilities (or qualification probabilities) for
being the correct answers. These queries, which produce
answers with statistical guarantees, are generally known as
probabilistic queries [1, 9, 12].

Product ID Tuple ID Price ($) Prob.

a a1 120 0.7
a a2 80 0.3
b b1 110 0.6
b b2 90 0.4
c c1 140 0.5
c c2 110 0.3
c c3 100 0.2
d d1 10 1

Table 1: Uncertain database example.

Tuple Qualification Probability

a1 0.35
b1 0.09
c1 0.5
c2 0.09
c3 0.024

Table 2: Results of the MAX query on Table 1.

Based on the answer probabilities, a real-valued “quality
score” can be defined to capture the degree of ambiguity of
a query answer. For example, the score of the MAX query
result (Table 2) is -1.73 (according to our quality metric).
Suppose Table 1 is partially cleaned (e.g., by consulting the
companies about the actual prices of the products). Table 3
shows one possible scenario, where the uncertainties associ-
ated with x-tuples a and c are removed. In this table, only
one tuple exists for each of a and c, and the existential prob-
ability of this tuple is equal to one. The new result of the

MAX query is shown in Table 4, with a lower ambiguity, or
an improved quality score of -0.97. In the extreme, if all the
x-tuples are cleaned, the quality score becomes the highest
(a value of zero with our metric).

Product ID Tuple ID Price ($) Prob.

a a2 80 1
b b1 110 0.6
b b2 90 0.4
c c3 100 1
d d1 10 1

Table 3: A partially-cleaned instance of Table 1.

Tuple Qualification Probability

b1 0.6
c3 0.4

Table 4: Results of the MAX query on Table 3.

How should such a query quality metric be defined? Al-
though some quality measures have been proposed before,
they are either catered for specific types of queries (e.g.,
[9, 10, 14, 29]), or not designed for use in a probabilistic
database (e.g., [13, 17]). To solve these problems, we pro-
pose the PWS-quality. This metric provides a universal mea-

sure of query quality (i.e., can be used by any queries) for
the probabilistic database. It is essentially an entropy func-
tion [28], which returns a real-valued score for conveniently
indicating the amount of impreciseness in query answers.
The PWS-quality also enables efficient data cleaning solu-
tions, as we will show in this paper.

Another salient feature of PWS-quality is that it assumes
the Possible-World Semantics (or PWS in short). The PWS
provides a formal interpretation of the probabilistic data
model [14], where a database is viewed as a set of deter-
ministic database instances (called possible worlds), each of
which contains a set of tuples extracted from each x-tuple.
An example possible world for Table 1 contains the tuples
{a1, b2, c3, d1}. Query evaluation algorithms for a probabilis-
tic database should follow the notion of PWS, i.e., the results
produced should be the same as if the query is evaluated on
all the possible worlds [14]. Analogously, the PWS-quality
score is calculated based on the query results obtained from
all the possible worlds.

One apparent problem about the PWS-quality is that it
is inefficient to calculate. This is because evaluating this
measure requires examining all possible worlds, the number
of which can be exponentially large [3, 12]. Interestingly,
we observe that it is not often necessary to examine all the
database instances; the PWS-quality can, in fact, be com-
puted by using the query answers returned to the user. This
is true for a broad class of queries known as the entity-based

query [9]. This kind of query has the property that the
final answer returned to the user contains the IDs of the
tuples that satisfy it, as well as their qualification probabil-
ities (e.g., Table 2). We study two representative examples
of entity-based queries, namely, the range query and the MAX
query. Both queries are used in many applications. For ex-
ample, in a sensor-monitoring application, a range query can
be: “Return the IDs of the sensors whose temperature val-
ues are within [10oC, 20oC]”. In the movie database, a MAX

query can be: “Return the ID of the movie-viewer whose

723

rating is the highest”. We show that the PWS-quality of
these two queries can be quickly computed by using query
answer information. Our methods are effective because a
query answer can be efficiently generated by existing query
evaluation and indexing algorithms, and the complexity of
our technique is linear to the size of the query answer.

The PWS-quality also serves as a useful tool for solving
the data cleaning problem. Given the set of x-tuples to
be cleaned, we prove that there is always a monotonic in-
crease in the expected value of PWS-quality. This helps
us to formulate the data cleaning problem as: choose the
subset X of x-tuples such that (1) the increase in the ex-
pected quality of cleaning the x-tuples in X is the highest;
and (2) the total cost of cleaning X does not exceed a given
budget. This problem is challenging because calculating the
expected quality improvement of X requires the processing
of all combinations of the tuples in X. Moreover, a näıve
approach of finding the optimal set X requires the testing of
different combinations of x-tuples in the database, rendering
an exponential time complexity. To solve these problems, we
convert the PWS-quality expression into an “x-form” – a lin-
ear function of the probability information of the x-tuples.
The x-form allows us to compute the expected quality im-
provement for cleaning a set of x-tuples easily. Moreover, it
has the same format for both the range and the MAX queries
(with different parameters), so that only a single solution is
needed to support both queries. To find the optimal solution
without testing all combinations of x-tuples from the whole
database, we show that it is only necessary to select the
x-tuples whose tuples appear in a query answer. We then
model the cleaning task as an optimization problem, and
develop a dynamic-programming-based algorithm, in order
to deduce the optimal set of x-tuples in polynomial time.
We also propose other approximate heuristics (such as the
greedy algorithm). Our algorithms serve both the range and
the MAX queries. They also support databases that contain
tuples with the same attribute value.

We have performed detailed experimental evaluation to
examine our approaches. For both real and synthetic datasets,
the results show that PWS-quality can be efficiently com-
puted. Moreover, x-tuples can be quickly selected to achieve
an optimal improvement in expected quality. Among the
heuristics, the greedy algorithm provides a close-to-optimal
performance with the highest efficiency.

Figure 1 illustrates a system design that incorporates our
solution. The query engine, upon receiving a user’s request,
produces a probabilistic query answer. This information is
passed to the quality manager. Inside this module, the qual-

ity evaluator computes the PWS-quality score. It then sends
the necessary information to the data cleaning algorithm,
which derives the optimal set of x-tuples to be cleaned (or
“cleaning set”), with the available budget considered. The
cleaning manager is responsible for performing the sanitiza-
tion activity (e.g., requesting the selected sources to report
their updated values). The query, when executed again, will
then have an improvement in the expected quality. 1 No-
tice that the quality manager is decoupled from the query
engine, since it only requires the probability information of
the answer tuples. Another issue is that the PWS-quality
score is also sent to the user. This real-valued rating pro-
vides an intuitive way for the user to understand the degree

1When the query is re-run on the refreshed database, a full
evaluation is not needed, as explained in Appendix C.

of ambiguity in his results, without interpreting the numer-
ous probability values that may appear in his query answers.
In this paper, we focus on the design of the quality evaluator
and the data cleaning algorithm.

Probabilistic

Database

Query

Engine

Query
Answer

User

Quality

Evaluator

Data Cleaning

Algorithm

Quality Manager

PWS-quality

score

Cleaning
Budget

External Data
Sources

Cleaning

Manager

Cleaning

Set
 Cleaning
request

Data
update

Query
request

Figure 1: The framework of our solution.

The rest of this paper is organized as follows. In Section 2
we present the related works. Section 3 discusses the data
and query models. In Section 4 we present the formal notion
of the PWS-quality, and efficient methods for evaluating it.
Section 5 describes the quality-based cleaning method and
other heuristics. We present our experimental results in Sec-
tion 6. The paper is concluded in Section 7. In Appendix A
we detail the proof of finding the x-form for PMaxQ. Ap-
pendix B presents a dynamic programming algorithm for
the cleaning problem. We also discuss how a query can be
efficiently evaluated on a cleaned database in Appendix C.

2. RELATED WORK
Querying uncertain databases. Due to its sim-

plicity and clarity in semantics, the probabilistic database
model [3, 12] has received plenty of attention. Particularly,
the notion of x-tuples [1] has been commonly adopted as
a formal model for representing the uncertainty of tuples.
Dalvi et al. [12] demonstrated that evaluating queries using
the notion of PWS can be inefficient, since an exponentially
large number of possible worlds needs to be examined. Thus,
researchers have proposed to modify the query semantics.
For example, efficient solutions for different variants of top-
k queries are studied in [27, 33, 36]. Another well-studied
data model is the “attribute uncertainty”, where attribute
values are characterized by a range and a probability distri-
bution function (pdf) [9, 32]. For this data model, efficient
evaluation and indexing algorithms have been proposed, in-
cluding range queries [34], nearest-neighbor [7,19], MIN/MAX
queries [9,14], skylines [26] and reverse skylines [20]. In [30],
efficient query algorithms for uncertainty of categorical data
are studied. Recently, a formal model for attribute uncer-
tainty based on the PWS has been proposed [31]. In [4], the
ULDB model is presented, which combines the properties
of probabilistic and lineage databases. Although our work
is based on probabilistic databases, the idea can potentially
be extended to support other data models.

Quality metrics for uncertain data. A number
of quality measures have been studied. In [10, 14], if the

724

qualification probability of a result is higher than a user-
defined threshold, then the query result is considered to be
satisfactory. In [29], the quality of a top-k query is given
by the fraction of the true top-k values contained in the
query results. In [9], different metrics are defined for range
queries, nearest-neighbor queries, AVG and SUM queries. In
these works, quality metrics are designed for specific query
types. The PWS-quality, on the other hand, provides a
general notion of quality that can be applied to any kind of
queries. Thus, PWS-quality can provide a fair comparison of
quality among the answers from different queries. Another
quality metric, called the query reliability, is defined in [13,
17]. However, this metric was not studied in the context of
probabilistic databases. Moreover, it is not clear how they
can be applied to the problem of data cleaning.

Cleaning uncertain data. In [6, 14, 21, 25], efficient
methods for probing fresh data from stream sources and sen-
sor networks have been considered. In [18], integrity con-
straints are used to clean dirty data. In [2], the authors
examine the detection and merging of duplicate tuples in
inconsistent databases. Complementary to these works, we
study how the PWS-quality metric can be used to facilitate
the cleaning of a probabilistic database.

3. DATA AND QUERY MODELS
We now describe the probabilistic data model (Section 3.1),

and the types of queries studied in this paper (Section 3.2).

3.1 The Probabilistic Database Model
A probabilistic database D contains m entities known as

the “x-tuples” [1, 3, 14]. We denote the k-th x-tuple by τk,
where k = 1, . . . , m. We also assume that the x-tuples are
independent of each other. Each x-tuple is a set of tuples ti,
which represent a distribution of values within the x-tuple.
There are a total of n tuples in D. Each tuple has four
attributes: (IDi, vi, ei, xi). Here IDi is an unique identifier
of ti, and vi is a real-valued attribute used in queries (called
the querying attribute). For simplicity, we assume vi is one-
dimensional, but our solutions can generally be extended
to support multi-dimensional attributes. The attribute ei

is the existential probability of ti – the probability that ti

exists in the real world. Each tuple belongs to one of the
x-tuples, and xi = {k|k = 1, . . . , m} denotes that ti belongs
to the k-th x-tuple.

Within the same x-tuple, the existence of tuples is mutu-
ally exclusive. We also assume that the sum sk of all ei’s
of the tuples in the same x-tuple τk is equal to 1. If sk is
less than 1, we conceptually augment a “null” tuple to τk,
whose querying attribute has a value equal to −∞, and ex-
istential probability equal to 1− sk. This null tuple is only
used for completeness in proofs; they do not exist physically.
In Table 1, for example, there are four x-tuples (a, b, c, d).
The “Price” and “Prob.” columns represent the querying
attribute and existential probability respectively.

3.2 Queries
We study two types of entity-based queries: non-rank-

based and rank-based [9]. In a non-rank-based query, a tu-
ple’s qualification probability is independent of the existence
of other tuples. For example, queries whose selection clauses
involve only the attributes of a single tuple belong to this
query class. Another good example is the range query:

Notation Description

Data model
D A probabilistic database
τk An x-tuple of D, with k = 1, . . . , m
ti A tuple of D with i = 1, . . . , n

IDi A unique identifier of ti

vi Querying attribute of ti

ei Existential probability of ti

xi The ID of the x-tuple (k) that contains ti

Query model
Q A probabilistic query
pi Qualification prob. of ti for Q
Pk Qualification prob. of τk for Q

Quality Metrics
rj A distinct PW-result (j = 1, . . . , d)
qj Prob. of occurrence of rj

S(D, Q) PWS-quality of Q on database D

Data Cleaning
C Cleaning budget for Q
ck Cost of cleaning τk

X Set of x-tuples to be cleaned
I(X, D, Q) Quality improvement of cleaning X

Table 5: Symbols used in this paper.

Definition 1. Probabilistic Range Query (PRQ).

Given a closed interval [a, b], where a, b ∈ ℜ and a ≤ b,

a PRQ returns a set of tuples (ti, pi), where pi, the qual-

ification probability of ti, is the non-zero probability that

vi ∈ [a, b].

For a rank-based query, a tuple’s qualification probabil-
ity is dependent on the existence of other tuples. Exam-
ples of this class include the MAX/MIN query and the nearest-
neighbor query. We study the MAX query in this paper.

Definition 2. Probabilistic Maximum Query (PMaxQ).

A PMaxQ returns a set of tuples (ti, pi), where pi, the qual-

ification probability of ti, is the non-zero probability that

vi ≥ vj, where j 6= i ∧ j = 1, . . . , n.

Although the answers returned by both queries have the
same form, their PWS-quality scores are computed in a dif-
ferent way, as illustrated in the next section. We will also
discuss how PWS-quality can be computed for other entity-
based queries (e.g., nearest-neighbor queries). Table 5 shows
the symbols used in this paper.

Let us now briefly explain how PRQ and PMaxQ can be
evaluated efficiently (without consulting the possible worlds).
A PRQ can be computed by examining each tuple ti, and
testing whether its querying attribute, vi, is within [a, b]. If
this is not true, then ti’s qualification probability, pi, must
be zero. Otherwise, pi = ei, its existential probability. The
probability of ti for satisfying the PMaxQ is the product of
(1) its existential probability and (2) the probability that
x-tuples other than the one that ti belongs to do not have
a tuple with value larger than vi. Indexing solutions (e.g.,
B-tree and R-tree) can be built on the querying attributes
in order to improve the query performance.

Also, as mentioned in Section 1, a query may need to be
re-evaluated after cleaning is done. However, this round of
query evaluation can be done more efficiently. In particular,
only the x-tuples whose tuples appear in the query answer of
the first evaluation round need to be considered. We explain
these details in Appendix C.

725

4. THE PWS-QUALITY
To understand this metric, let us review how the possible

world semantics (PWS) are used to evaluate a query. As
shown in Figure 2, a probabilistic database is expanded to
a set of possible worlds (Step 1). The query is then issued
on each possible world, producing answers that we call PW-

results (Step 2). In Step 3, the PW-results are combined
to produce the final query answer. For example, a possible
world in Table 1 is the set W of tuples whose IDs are a1, b2,
c3 and d1. If a MAX query is issued on price, the PW-result
of W is a1 (it has the largest price), with a probability
of 0.7 × 0.4 × 0.2 × 1 = 0.056. In the final query answer,
the qualification probability of a1 is equal to the sum of the
probabilities that a1 is the answer in all possible worlds, i.e,
0.35.

Probabilistic

DB

Possible

World
Possible

World

Query Query

PW-

Result

PW-

Result

Final Query

Answer

PWS-

Quality

A

B

1

2

3

Figure 2: PWS and PWS-Quality.

The PWS-quality is essentially a function of the PW-
results (computed in Step A in Figure 2). Since the form
of the queries for computing the PW-results is not speci-
fied, the PWS-quality can be applied to any type of queries.
The major problem of this approach is that there can be an
exponentially large number of possible worlds [3, 12], so as
the PW-results. Computing PWS-quality can thus be very
costly. To address this problem, we show how PWS-quality
can be evaluated by using the tuple information in the fi-
nal query answers, instead of the PW-results (Step B), for
PRQ and PMaxQ. Since the number of tuples in the query
answer set is much smaller than that of the possible worlds,
the computation efficiency of PWS-quality is also better.

We now examine the definition of PWS-quality (i.e., Step
A) in Section 4.1. Then we propose a better method (i.e.,
Step B) in Section 4.2. Sections 4.3 and 4.4 outline the
proofs of the new method for PRQ and PMaxQ.

4.1 Evaluating the PWS-Quality
The PWS-quality is essentially the entropy [28] of the PW-

results produced in Step 2 of Figure 2. Let {r1, . . . , rd}
be the set of d distinct PW-results. Also, let qj be the
probability that rj is the actual answer (we call qj the PW-

result probability of rj).

Definition 3. The PWS-quality of a query Q evalu-

ated on a database D, denoted by S(D, Q), is:

S(D, Q) =

d∑

j=1

qj log qj (1)

Notice that the base of the log() function is 2. Moreover,
the sum of the PW-result probabilities must be equal to
one (i.e.,

∑d

j=1 qj = 1). By using this fact and comparing

with the entropy function [28], it can be shown that the
PWS-quality (Equation 1) is the negated value of the en-
tropy of the PW-results. The entropy, a popular function
for measuring uncertainty in the information theory litera-
ture, is adopted here to quantify the impreciseness of query
answers. The value of the PWS-quality score ranges from
− log d (i.e., the most ambiguous result) to zero (i.e., a single
PW-result).

The problem of computing PWS-quality in this way is
that we need to know all the PW-result probabilities. This
may represent a performance bottleneck, since the number
of PW-result possibilities, derived from possible worlds, can
be exponentially large. This is true for a PRQ, where each
PW-result contains a unique set of tuples whose querying
attributes are inside the query range. For a PMaxQ, the
number of PW-results can also be combinatorial, if more
than one tuple contain the same querying attribute value.
For instance, in Table 1, tuples b1 and c2 have the same
price (i.e., $110). We then have 22 − 1 = 3 PW-results
that contain one or more of these tuples as the answer (i.e.,
{b1}, {c2}, {b1, c2}), derived from the possible worlds where
all tuples with price above $110 are excluded. Let us inves-
tigate how PWS-quality can be evaluated more efficiently
for these queries.

4.2 The x-Form of the PWS-Quality
The PWS-quality can in fact be computed by using the

probability information of the tuples in the query answer
(Step B of Figure 2). In particular, the PWS-quality (for
both PRQ and PMaxQ) can be converted to an expression
known as the x-form. An x-form is essentially a sum of some
function g evaluated on each x-tuple τk, and g can be com-
puted efficiently based on the probability information of the
tuples in τk. For notational convenience, we use Y (x) to
denote the function x log x. We also let Pk be the qualifica-
tion probability of τk (i.e., its probability for satisfying the
query). Since tuples belonging to the x-tuple are mutually
exclusive, we have

Pk =
∑

ti∈τk

pi (2)

The following lemma presents an alternative formula of PWS-
quality.

Lemma 1. The x-form of the PWS-quality is given by:

S(D, Q) =

m∑

k=1

g(k, D, Q) (3)

For PRQ,

g(k, D, Q) =
∑

ti∈τk

pi log ei + Y (1− Pk) (4)

For PMaxQ, let the i-th tuple of τk be tk,i, sorted in de-

scending order of vk,i. If tk,i has existential probability ek,i

726

and qualification probability pk,i, then,

g(k, D, Q) =

|τk|∑

i=1

(pk,i log ek,i + ωk,i log(1−
i∑

j=1

ek,j)) (5)

where

ωk,i =

{
(1−

∑i

j=1 ek,j)(
pk,i

ek,i
−

pk,i+1

ek,i+1
) i < |τk|

0 i = |τk|
(6)

Lemma 1 states that PWS-quality is the sum of some
function g for k = 1, . . . , m. Each g is a function of ex-
istential and qualification probabilities of tuples of x-tuple
τk. Interestingly, even though PRQ and PMaxQ have dif-
ferent semantics, their PWS-quality has the same form (i.e.,
Equation 3). Evaluating the x-form of PMaxQ needs some
preprocessing, by sorting the tuples belonging to the same
x-tuple with the querying attributes. An example of tuples
sorted in this way is shown in Table 1.

Given that the values of g(k, D, Q) are available, the x-
form of both queries can be computed by iterating on the
whole table of x-tuples, in O(m) times. For PMaxQ, an
additional average cost of O(m log n

m
) may be needed to

sort the tuples. This is still faster than using an exponen-
tial number of PW-result probability values to evaluate the
PWS-quality. The x-form is also useful to solve the data
cleaning problem, to be presented in Section 5. We next
show a useful fact.

Lemma 2. g(k, D, Q) < 0 if and only if there exists ti ∈
τk such that pi ∈ (0, 1). Otherwise, g(k, D, Q) = 0.

Given an x-tuple τk, the above states that g(k, d, Q) is
less than zero if there exists a tuple ti ∈ τk, such that its
qualification probability, pi, is neither zero nor one. 2. More
importantly, an x-tuple whose tuples’ qualification proba-
bilities are either zero or one does not need to be included
in computing the PWS-quality (Equation 3). Thus, we do
not need to examine the whole database. Instead, we can
just pick the x-tuples that satisfy the conditions stated in
Lemma 2. This is exactly the set of x-tuples whose tuples
in the final query answer have qualification probabilities not
equal to one. If we are given the query answer (which are
produced by the query engine), then the set of x-tuples re-
quired to compute the PWS-quality can be derived easily.

We remark that the x-forms for PRQ and PMaxQ can
also be used by other entity-based queries. Particularly, the
x-form of PRQ can be used by other non-rank-based queries,
whose selection conditions only involve the attributes of a
single tuple. The x-form of the PMaxQ can also be used
by MIN and nearest-neighbor queries, by using a different
sorting criterion on the query attribute. Next, we explain
briefly how the x-form is obtained for PRQ and PMaxQ.

4.3 Deriving the x-Form for PRQ
We now outline the proof of the x-form expression for

PRQ. Here, a distinct PW-result rj is essentially a set of
tuples ti’s that satisfy the PRQ (i.e., vi ∈ [a, b]) in one or
more possible worlds. Note that rj cannot possess more than
one tuple from the same x-tuple, since each possible world

2The proof of this fact is simple and can be found in our
technical report [8].

only contains one of the tuples selected from each x-tuple.
The probability qj of getting rj is then equal to:

qj =
∏

ti∈rj

ei

∏

τk∩rj=∅

(1− Pk) (7)

Equation 7 is the product of: (1) the probability all tuples
ti’s that satisfy the PRQ are in rj (i.e.,

∏
ti∈rj

ei), and (2)

the probability that other x-tuples satisfy the PRQ but do
not appear in rj(i.e.,

∏
τk∩rj=∅(1−Pk)). We then substitute

this into Equation 1. We further observe that the qualifica-
tion probability pi (of tuple ti) can be obtained by summing
up the distinct PW-result probabilities (qj ’s), where result
rj contains ti. That is,

pi =

d∑

j=1∧ti∈rj

qj (8)

This is an important equation because it allows us to replace
all qj ’s with pi’s in the expression. Since there are at most
m pi’s in the final query answer, the PWS-quality can be
computed faster than using qj ’s, the number of which is
exponential. Finally, by using the property that log(ab) =
log a + log b (where the log() function is used in the PWS-
quality metric), we obtain a “sum-of-product” expression,
as shown by Equation 4.

Notice that our proof still holds for other queries that
involve different selection constraints, by replacing the con-
dition that a tuple is included in a possible result (i.e., “vi ∈
[a, b]”) with the required conditions (e.g., “vi < a∨vi > b”).
That is, the x-form of PRQ can be generalized to a non-rank-
based query, which tests whether a tuple satisfies it based
on the tuple’s own attributes. For details of the proof, the
reader is referred to our technical report [8].

4.4 Deriving the x-Form for PMaxQ
The derivation of the x-form for PMaxQ is similar to that

of PRQ, with the following major differences: (1) all tuples
in an x-tuple are assumed to be sorted in descending order,
and (2) the PW-result probability qj has a different formula.
Our solution also handles the scenario where more than one
tuple with the same querying attribute value exist.

For convenience, let the i-th tuple of τk be tk,i, sorted
in descending order of vk,i. A distinct PW-result rj for
PMaxQ is then a set of tuples ti’s that have the same max-
imum value, in one or more possible worlds. Let rj .v be the
attribute value shared by the tuples in rj . The probability
qj of getting rj is then equal to:

qj =
∏

ti∈rj

ei

∏

τk∩rj=∅

Pr(τk < rj .v) (9)

where Pr(τk < rj .v) is the probability that τk has a tuple
with querying attribute value smaller than rj .v. Equation 9
is the product of: (1) the probability that all tuples ti’s in rj

exist (i.e.,
∏

ti∈rj
ei), and (2) the probability that all other

x-tuples have at least a tuple with a value smaller than rj .v

(i.e.,
∏

τk∩rj=∅ Pr(τk < rj .v)). Moreover, since all tuples

of an x-tuple are sorted in descending order, we can rewrite
Pr(τk < rj .v) as:

Pr(τk < rj .v) = 1−

s(j,k)∑

l=1

ek,l (10)

727

where s(j, k) is some integer inside [1, |τk|], such that vk,s(j,k)

is the smallest value not smaller than rj .v.
We then substitute Equations 9 and 10 into the PWS-

quality definition (Equation 1), and derive the final result
(Equation 5). These details are explained in Appendix A.

We can easily adapt the x-form of PMaxQ to other rank-
based queries. For example, for MIN queries, we can sort
the tuples within an x-tuple in ascending order, and change
the comparison signs accordingly. As another example, the
x-form for the nearest-neighbor query can be derived by or-
dering the tuples according to the Euclidean distance of their
querying attributes from the query point.

5. CLEANING UNCERTAIN DATA
Let us now discuss how the PWS-quality can be used to

facilitate the cleaning of uncertain data. Section 5.1 presents
the formal definition of this problem. In Sections 5.2 and
5.3, we describe an efficient solution that can be applied
to the queries under study. Several heuristics that provide
efficient solutions are presented in Section 5.4.

5.1 Problem Definition
Recall that our goal is to select the most appropriate set

of x-tuples to be cleaned, under a stringent budget, in or-
der to achieve the highest expected quality improvement.
Formally, let us define an operation called clean(τk):

Definition 4. Given an x-tuple τk, clean(τk) replaces τk

with an x-tuple that contains a single tuple: {IDi, vi, 1, k},
such that IDi and vi are the corresponding identifier and

querying attribute value of some tuple ti that belongs to τk.

Essentially, τk becomes “certain” after clean(τk) is per-
formed. Only one of the tuples in the original x-tuple is
retained, with existential probability changed to one. The
value of the new tuple depends on the cleaning operation. In
Table 1, for example, after clean(a) is performed, a contains
a single tuple {a2, 80, 1, a}, derived from a2, with a price of
$80 and existential probability of 1.

Cleaning an x-tuple may involve a cost. For example, if
an x-tuple represents a sensor reading in a sensor monitoring
application, then the cost of cleaning this x-tuple (by prob-
ing the sensor to get the latest value) can be the amount of
battery power required for that sensor’s value to be shipped
to the base station. We use ck, a natural number, to cap-
ture the cost of performing clean(τk). We also assume that
a query Q is associated with a budget of C units, where C is
a natural number. This value limits the maximum amount
of cleaning effort that can be used to improve the quality
of Q. In sensor monitoring, C can be the total amount of
energy allowed for probing the sensors. The value of C may
be based on the amount of system resource available, or the
priority of the query user.

Our goal is to obtain the set of x-tuples that, under a
given budget, yields the most significant expected improve-
ment in PWS-quality. This set of x-tuples is then selected
to be cleaned. Specifically, let X be any set of x-tuples
chosen from database D. Without loss of generality, let
X = {τ1, . . . , τ|X|}. Also, let ~t be a “tuple vector” of |X|

dimensions, where the k-th dimension of ~t is a tuple that be-
longs to the k-th x-tuple of X. For example, if X = {τ1, τ2},
where τ1 = {t0, t3} and τ2 = {t2, t5}, then two possible val-
ues of ~t are {t0, t5} and {t3, t2}.

Now, let D′(~t) be the new database obtained, after clean(τk)
is performed on each x-tuple τk in X, which produces tuples
described in ~t. The expected quality of cleaning a set X of
x-tuples is then equal to:

E(S(D′(~t), Q)) =
∑

~t∈τ1×...×τ|X|

Πti∈~tei · S(D′(~t), Q) (11)

For every tuple vector in τ1 × . . .× τ|X|, Equation 11 calcu-

lates the probability that the new database D′(~t) is obtained
(i.e., Πti∈~tei) and the PWS-quality score of query Q evalu-

ated on D′(~t) (i.e., S(D′(~t), Q)).

Definition 5. The quality improvement of cleaning a set

X of x-tuples is

I(X, D, Q) = E(S(D′(~t), Q))− S(D, Q) (12)

Our problem can now be formulated as follows:

Definition 6. The Data Cleaning Problem. Given

a budget of C units, choose a set X of x-tuples from D such

that I(X, D, Q) attains the highest value.

A straightforward way of solving this problem is to obtain
the powerset of all x-tuples in D. For each element (a set X

of x-tuples) of the powerset, we test whether the total cost
of cleaning the x-tuples in X exceeds the budget C. Among
those that do not, we select the set of x-tuples whose quality
improvement is the highest.

This solution is inefficient for two reasons. First, given
a set X of x-tuples, computing Equation 12 requires the
consideration of all tuple vectors of X, which are the com-
binations of tuples selected from the x-tuples in X. Second,
the number of sets of x-tuples to be examined is exponen-
tial. We tackle the first problem in Section 5.2. The second
problem is addressed in Section 5.3.

5.2 Evaluating Quality Improvement
Equation 12 can be computed more easily by using the

x-form of PWS-quality, as shown by the following lemma.

Lemma 3. The quality improvement of cleaning a set X

of x-tuples is:

I(X, D, Q) = −

|X|∑

k=1

g(k, D, Q) (13)

where g(k, D, Q) is given by Equations 4 and 5, for PRQ

and PMaxQ respectively.

Proof. By using the x-form (Equation 3), we can rewrite
E(S(D′(~t), Q)) as

|X|∑

k=1

E(g(k, D
′(~t), Q)) +

m∑

k=|X|+1

E(g(k, D
′(~t), Q)) (14)

For both PRQ and PMaxQ, we claim that:

g(k, D
′(~t), Q)) = 0, for k = 1, . . . , |X| (15)

E(g(k, D
′(~t), Q)) = g(k, D, Q), for k = |X|+1, . . . , m (16)

By using Equations 15 and 16, Equation 14 can be written as∑m

k=|X|+1 g(k, D, Q). Together with Equations 12 and 3, we

728

can see that Equation 13 is correct. The following sketches
the proof of Equations 15 and 16 for PRQ and PMaxQ.

PRQ: First, notice that the new database D′(t) contains
a single tuple for every τk ∈ X, whose existential probability
is 1, and qualification probability is either 0 or 1. Using this
fact and Equation 4, we can see Equation 15 is true for every
k ∈ [1, |X|]. For Equation 16, observe that g(k, D′(~t), Q) is
just some function (Equation 4) of pi’s and ei’s for ti ∈ τk,
where τk /∈ X. As discussed in Section 3.2, the value of
pi for PRQ is either ei or zero. Since these values of pi’s
and ei’s are not changed by any cleaning operations on the
x-tuples in X, Equation 16 holds for k = |X|+ 1, . . . , m.

PMaxQ: Let the existential and qualification probabili-
ties of each tuple ti,k for the new database D′(~t) be e′k,i(~t)

and p′
k,i(~t) respectively. Then, After clean(τk), only one

tuple (tk,1) in τk can exist in D′(~t). Since ωk,1 = 0 (Equa-
tion 5), we have g(k, D′(~t), Q) = p′

k,1(~t) log e′k,1(~t). More-

over, e′k,1(~t) = 1. Thus, g(k, D′(~t), Q) = 0 and the proof for
Equation 15 is complete.

To prove Equation 16, note that by using Equation 5,
E(g(k, D′(~t), Q)) can be written as:

|τk|∑

i=1

(E(p′
k,i(~t)) log ek,i+(

E(p′
k,i(~t))

ek,i

−
E(p′

k,i+1(~t))

ek,i+1
)Y (1−

i∑

j=1

ek,j))

(17)
Next, we claim that

E(p′
k,i(~t)) = pk,i, ∀k > |X| (18)

In order to compute E(p′
k,i(~t)) directly, p′

k,i(~t) needs to be

evaluated for every vector ~t ∈ τ1 × . . .× τ|X|. Furthermore,

computing each p′
k,i(~t) involves querying on every possible

world in D′(~t). Thus, E(p′
k,i(~t)) is just some function of

all the PW-result probabilities queried on D, and this is
the same function for pk,i. Thus, Equation 18 is correct.
Finally, by substituting Equation 18 into Equation 17, we
obtain Equation 16.

Equation 13 reveals three important facts. First, the qual-
ity improvement, I(X, D, Q), is non-negative (since g(k, D, Q)
is non-positive). This implies that the expected quality
monotonically increases with the performance of the clean(τk)

operation. Second, the task of computing I(X, D, Q) is
made easier (compared with Equation 12), since g(k, D, Q)
can be computed in polynomial time. If these g values
have been stored (e.g., in a lookup table) during the process
of computing the x-form of the PWS-quality (Equation 3),
then I(X, D, Q) can be evaluated by a table lookup. Third,
Equation 13 can be applied to both PRQ and PMaxQ, since
g(k, D, Q) have been derived for both queries in Section 4.2.
Let us see how these results can be used to develop an effi-
cient data cleaning algorithm.

5.3 An Optimal and Efficient Data Cleaning
Algorithm

We now address the second question: to find out the set
B of x-tuples that leads to the optimal expected quality im-
provement in PWS-quality, is it possible to avoid enumerat-
ing all the combinations of x-tuples in the whole database?
To answer this, we first state the following lemma:

Lemma 4. For any x-tuple τk ∈ B, τk must satisfy the

condition: there exists ti ∈ τk such that (ti, pi) appears in

the final answer of Q, with pi ∈ (0, 1).

Proof. Consider an x-tuple τj , whose tuples’ qualifica-
tion probabilities are either zero or one. We can show that
τj does not need to be included in B. Suppose by contra-
diction that τj ∈ B. According to Lemma 2, g(j, d, Q) = 0.
By using Lemma 3, we can see that including τj in B has
no effect on the quality improvement i.e., I(B, D, Q). Thus,
it is unnecessary to include τj in B.

In fact, by excluding τj , the remaining x-tuples that we
need to consider for cleaning are those that contain at least
a tuple ti with the following conditions: (1) ti appears in
the final query answer, and (2) pi ∈ (0, 1).

For example, for the MAX query evaluated on Table 1, the
optimal set B can be derived from the result of the MAX query
(Table 2), which contains the tuples from x-tuples a,b, and c,
but not d. Correspondingly, B is the subset of the x-tuples
{a, b, c}. Thus, Lemma 4 reduces the search space to the
x-tuples whose tuples appear in the query answer. It also
means that the input of our data cleaning algorithm can be
the tuples contained in the query answer (c.f. Figure 1).

We now focus on the x-tuples that satisfy the conditions
of Lemma 4. Let Z be the number of these x-tuples. We
use τk (where k = 1, ..., Z) to denote these x-tuples.

An Optimization Problem. We now present an ef-
ficient algorithm that provides an optimal solution to the
data cleaning problem. This algorithm can be applied to
entity-based queries, including PRQ and PMaxQ. We as-
sume the values of g(k, D, Q) have been obtained for all
values of k = 1, . . . , Z. For notational convenience, we also
use gk to represent g(k, D, Q) (since D and Q are constant
parameters). Then, Definition 6 can be reformulated as an
optimization problem P (C, M), where M = {τ1, . . . , τZ} is
the set of candidates to be considered, and C is the budget
assigned to the query:

Maximize
Z∑

k=1

bk · gk (19)

Subject to

Z∑

k=1

bk · ck ≤ C (20)

Here {bk|k = 1, . . . , Z, bk = 0|1) is a bit vector of length Z,
encoding the IDs of x-tuple(s) chosen from M to be cleaned.
Particularly, bk = 1 if x-tuple τk is selected, and bk = 0
otherwise. Equation 19 is the total quality improvement
for cleaning a set of x-tuples (where τk is chosen if bk =
1), which is the same as Equation 13. The optimization
constraint is described in Equation 20, which requires that
the total cost of cleaning the set of x-tuples cannot be more
than C. Note that since Equation 19 (or Equation 13) is
true for PRQ and PMaxQ, the solution to this problem can
be applied to both queries.

We further note that P (C, M) is essentially a variant of
the 0/1 knapsack problem [11], which can be solved by using
dynamic programming techniques. The details of this algo-
rithm are presented in Appendix B. The time and space
complexities of this solution are respectively O(CZ) and
O(CZ2).

5.4 Heuristics for Data Cleaning
To further improve the efficiency of data cleaning, we have

developed three other heuristics:

729

1. Random: This is the simplest heuristic, where x-tuples
are selected randomly until the query budget is exhausted.
2. MaxQP: Compute the qualification probability Pk for
each x-tuple τk, using Equation 2. Then, choose the x-tuples
in descending order of Pk (where Pk 6= 1) until the total
cost exceeds C. The rationale is that selecting x-tuples with
higher qualification probabilities may have a better effect on
the PWS-quality than those with small values.
3. Greedy: Let fk = gk

ck
. Select x-tuples with the highest

values of fk such that the maximum total cost is less than C.
Intuitively, fk is the quality improvement of clean(τk) per
unit cost. The choice of x-tuples is decided by the amount
of quality improved and the cost required.

The MaxQP and Greedy heuristics can be extended to
support large query answer sets. Specifically, if the number
of x-tuples to be considered by the data cleaning algorithm
is too large to be stored in the main memory, disk-based
algorithms (e.g., [24]) can be used to sort the x-tuples. Then,
the x-tuples that rank the highest can be retrieved. In our
experiments, since the main memory is large enough to hold
the tuples returned to a user, our data cleaning algorithms
are executed on the main memory.

As a sidenote, consider a query evaluated on the database
before cleaning is performed. After the database is cleaned,
the re-running of this query does not require the examina-
tion of the whole database. This is because only the tuples
that appear in the query result of the pre-cleaned database
need to be handled. We explain this “incremental processing
technique” in Appendix C.

6. RESULTS
We now discuss the experimental results. In Section 6.1

we describe the experiment settings. We present our findings
in Section 6.2.

6.1 Experimental Setup
We have used a synthetic dataset in our experiments. This

dataset contains 10K objects (e.g., products), each of which
has a 1D attribute y (as a price collected automatically from
web pages), in the domain [0, 10, 000]. The value of y follows
attribute uncertainty described in [9, 35], where y has two
components: “uncertainty interval” y.L and “uncertainty
pdf” y.U . The center of y.L is uniformly distributed in the
domain, and the range of y.L is uniformly distributed in the
range of [60, 100]. The uncertainty pdf y.U is a Gaussian
distribution defined on y.L, with the mean equal to the cen-
ter of y.L, and the variance of 100 units. To store these
objects in a probabilistic database, we discretize y.U by ob-
taining its histogram representation, where the probabilities
of 10 equal “histogram bars” within y.L are computed. Each
object is then treated as an x-tuple, under which 10 tuples
are created, whose querying attributes are the mean val-
ues of the histogram bars, and the existential probabilities
are the probabilities computed for the histogram bars. Our
synthetic database thus has 10K x-tuples, or 100K tuples.

We also perform experiments on a real dataset [23], which
contains some uncertainty in the viewers’ ratings for specific
movies. The table has 4, 999 x-tuples, or 10, 037 tuples. It
has five attributes: <movie-id,customer-id,date,rate,

confidence>, where <movie-id,customer-id> is the key of
the x-tuple, and confidence records the existential proba-
bility of a tuple.

To model the data cleaning problem, for both datasets we

attach a “cleaning cost” attribute to each x-tuple. This cost
is an integer, uniformly distributed in the range of [1, 10].
The query budget has a default value of 30 units.

We have implemented both PRQ and PMaxQ for the syn-
thetic dataset. For PRQ, the query range has a width of
20 units, and its position is evenly distributed in the do-
main. For the real dataset, the PRQs use <date,rate> as
a 2D querying attribute. We also implement a probabilis-
tic nearest-neighbor query (PNNQ) with a random 4D query
point q on the dimensions <movie-id,customer-id,date,rate>.
Notice that a PNNQ is essentially a PMaxQ by ranking on
the Euclidean distance of each data point from q. Thus our
algorithms can also be used by a PNNQ.

We have used an R-tree based on the codes in [22] to index
the querying attributes, in order to improve the efficiency of
computing the query answers. The two primary metrics used
for evaluation are: (1) PWS-quality score; and (2) quality
evaluation time. Notice that metric (2) does not include the
time required for evaluating the query answer.

Each data point is the average of 100 queries. Unless
stated otherwise, the results are based on the synthetic dataset.
Our codes, implemented in J2SE 1.5.0 09, are run on a PC
with an Intel T2400 CPU of 1.83GHz and 1GB memory.

6.2 Results
Section 6.2.1 investigates the expressiveness of PWS-quality.

Section 6.2.2 examines the x-forms of PWS-quality, and Sec-
tion 6.2.3 presents the results on data cleaning. We report
the results on a real dataset in Section 6.2.4.

6.2.1 Expressiveness of PWS-Quality
We first investigate how well PWS-quality can quantify

the ambiguity of query results. We use z to denote the
number of distinct tuples in the query answer, whose quali-
fication probabilities are non-zero. Figure 3 shows the qual-
ity score of PRQ (S) under a wide range of z. We see that
the quality score decreases (i.e., a degradation in quality)
when z increases. Intuitively, the larger the value of z, the
more tuples are in the query answers, implying a more un-
certain answer. Thus, the PWS-quality naturally reflects
the vagueness in a query answer.

In the same graph, we present the PWS-quality for two
different uncertainty pdfs (y.U) of the attribute y in our
dataset. As we can see, the uniform pdf generally demon-
strates a lower quality score than its Gaussian counterpart.
This is not surprising, since a uniform pdf has a larger en-
tropy (i.e., more uncertain) than a Gaussian pdf. Conse-
quently, the query answer becomes more ambiguous, as il-
lustrated by the lower quality scores.

Next, we compare the quality scores of PRQ and PMaxQ
in five different databases. For fairness, we compare the
scores only for the queries that produce the same number of
tuples (with a 1% difference) in their answers in the same
database. As shown in Figure 4, PRQ scores lower than
PMaxQ across all the database samples. The reason is that
the PWS-quality is an entropy function of PW-result proba-
bilities (Equation 1). On average, the PRQ (which finds tu-
ple(s) with querying attribute(s) in a specified range) yields
more PW-results than PMaxQ (which finds tuple(s) that
gives the maximum value). Hence, the answer of PRQ is
also more uncertain than PMaxQ, as shown by our results.

6.2.2 Evaluation of PWS-Quality

730

0 500 1000 1500 2000
−6000

−5000

−4000

−3000

−2000

−1000

0

z

S

Gaussian
Uniform

Figure 3: Quality vs. z.

20 50 100 150 200
−50

−40

−30

−20

−10

0

Size of Database(K)

S

PMaxQ
PRQ

Figure 4: Quality vs. Database Size.

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

10
3

z

tim
e

(m
s)

Original
X−Form

Figure 5: The x-Form (PRQ).

Sanity Check. We first verify the correctness of the x-
form by running several experiments. We found that the
relative difference between the x-form and the original defi-
nition of PWS-quality (Equation 1) is in the order of 10−4 or
less. For PRQ, at z = 3.18, the relative difference is 2.08e−6.
For PMaxQ, that difference is 3.99e − 6 at z = 77.46. The
slight difference is due to the precision loss at computing
small probability values.

Evaluation Time. Figure 5 compares the time required
for calculating the x-form and the original definition of PWS-
quality for PRQ. The amount of time for both methods in-
creases with z, since more result probabilities have to be
considered. However, the x-form needs much shorter time
to evaluate than the original definition. This follows from
the fact that the x-form (Equation 4) runs in polynomial
time, whereas the original definition (Equation 1) requires
an exponential time complexity.

Figure 6 shows the time required to compute the x-form
for PRQ, and the query evaluation time. We notice that the
former needs no more than 10% of the time required by the
latter. The quality evaluation time for PMaxQ, not shown
here, requires an average of 0.16 ms, or 1.6% of the query
evaluation time. The difference in the evaluation time of a
query and its quality may actually be larger, since in these
experiments we have constructed indexes to speed up the
query evaluation. Thus computing PWS-quality adds little
overhead to the query evaluation process.

Effect of duplicate tuples. We also study the ef-
fect of “duplicate tuples” on computing the PWS-quality
of PMaxQ. These are the tuples whose querying attribute
values are the same. We modify the synthetic database by
treating attribute values within a range of ±1 as a single
value. As a result, each querying attribute value is associ-
ated with an average of 6.33 tuples. We found that comput-
ing PWS-quality with the original definition takes 259.58
ms to complete, while x-form can finish the job in 3.48 ms.
The huge difference (98.6% improvement) is due to the fact
that the original definition has to consider a large number of
PW-results due to the duplicate tuples, but the x-form only
needs to iterate over the x-tuples in the answer once. We
also test with other databases; since the results are similar,
they are not reported here.

6.2.3 Data Cleaning
Next, we examine the results for data cleaning. We as-

sume that the quality of the queries being tested has been
obtained. Moreover, prior to cleaning, all the values of
g(D, k, Q), computed during the evaluation of the x-forms,
have been stored in a lookup table. We first compare the

performance of the “enhanced” method in calculating qual-
ity improvement (Equation 13), with its “original” defini-
tion (i.e., Definition 5). Figure 7 shows the results for both
methods on a given set X of x-tuples, with |X| = 1, . . . , 5.
The time required by the original definition increases sharply
with |X|. The enhanced method just needs to sum up the
g(D, k, Q) values for the x-tuples τk ∈ X, and these values
can be retrieved from the lookup table. Thus, its execution
time is much less. Thus, the enhanced method will be used
in our subsequent experiments.

We then study the time required to compute the quality
improvement, using the methods presented in Sections 5.3
and 5.4. Here, the Basic method means the quality im-
provement of each member of the powerset of all x-tuples is
examined, and then the set of x-tuples that yields the high-
est improvement is chosen. Figure 8 examines the amount of
time (in log scale) for different methods under a wide range
of query budgets used by the PMaxQ. We see that Basic

performs the worst. The DP method provides an optimal
solution in polynomial time, and so it is faster than Basic.
However, its time is higher than other heuristics (i.e., Ran-

dom, MaxQP and Greedy). The results for PRQ are similar
and so they are skipped here.

Figures 9 and 10 examine the quality improvement (I)
for PRQ and PMaxQ respectively. Since both Basic and
DP give the optimal solution, for clarity we only show the
result for DP. Although DP performs the best, it is worth
notice that both Greedy and MaxQP come close to it. This
is because Greedy selects the x-tuple according to the cost
and the benefit of cleaning it, while MaxQP gives priority to
x-tuples with higher qualification probabilities. These fac-
tors are important to deciding the optimal solution. More-
over, the data cleaning problem is a variant of the knapsack
problem [11], and it has been shown in [15] that the average
performance of a greedy solution is close to the optimal one.
Random does not consider any of these factors at all, and
thus it performs the worst. Observe that MaxQP is bet-
ter in PMaxQ than in PRQ. In PMaxQ, by considering a
x-tuple with the highest qualification probability, the tuple
that remains in that x-tuple may have a chance to give the
highest value than all other tuples, yielding a high-quality
result; and so the expected improvement in quality is also
higher than the case of PRQ.

We also compare the quality improvement (I) of PRQ and
PMaxQ, relative to their original quality (S). We assume
the DP algorithm is used to obtain the x-tuples. The re-
sults, shown in Figure 11, reveal that under a fixed query
budget and answer size, the relative quality improvement
(I/|S|) for PMaxQ is consistently higher than that of PRQ.

731

0 0.5 1 1.5 2
x 10

4

0

20

40

60

80

100

120

z

tim
e

(m
s)

Query Evaluation
Quality Caculation

Figure 6: Query vs. Quality Evalua-

tion Time.

1 2 3 4 5
0

500

1000

1500

2000

|x|

tim
e

(m
s)

Original
Enhanced

Figure 7: Evaluation Time of Quality

Improvement.

10
0

10
1

10
2

10
310

−2

10
−1

10
0

10
1

10
2

10
3

C

tim
e

(m
s)

Basic
Random
MaxQP
DP
Greedy

Figure 8: Time for selecting x-tuples

(PMaxQ).

0 20 40 60 80 100
0

5

10

15

20

25

30

35

C

I

Random
MaxQP
DP
Greedy

Figure 9: I vs. C (PRQ).

10 20 30 40 50
0.5

1

1.5

2

2.5

3

C

I

Random
MaxQP
DP
Greedy

Figure 10: I vs. C (PMaxQ).

20 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Size of Database(K)

I
/

|S
|

PMaxQ
PRQ

Figure 11: PRQ vs. PMaxQ (I/|S|).

Note that PMaxQ has fewer distinct PW-results than PRQ
(Section 6.2.1). Thus there are less tuples in the answer
of a PMaxQ than that of a PRQ. Cleaning an x-tuple for
PMaxQ then has more impact. In environments where mul-
tiple queries are concurrently executed, a system can thus
choose to place more effort on PMaxQ than on PRQ.

6.2.4 Results on the Real Dataset
We now present selected results for the real dataset. Fig-

ure 12(a) shows the quality of PRQ under different values of
z. Similar to Figure 3, the quality of PRQ worsens as z in-
creases. On the other hand, PNNQ has an average score of
−0.86. The reason for the high quality obtained by PNNQ
is that the dataset also has a high quality: on average, each
x-tuple has 2 tuples, and 33% of the x-tuples have no un-
certainty (i.e., they only have one single tuple). Thus, it is
easy to obtain an unambiguous answer for PNNQ.

We also observe that the PWS-quality scores of the queries
in the real dataset are generally higher than those obtained
for the synthetic dataset. To understand why, for each x-
tuple, we have measured the entropy of the existential prob-
abilities of all tuples in a x-tuple. We found that the average
of these entropy values over the real dataset is 0.78, which
is lower than that of the synthetic dataset (1.85). Thus, the
real dataset is generally less uncertain than the synthetic
one, and the PWS-quality scores for the real dataset are
also better.

Finally, Figure 12(b) shows the quality improvement of
PRQ under different query budgets. The results are similar
to those for the synthetic data (Figure 9). We have also
measured the quality improvement for the PNNQ. Since its
original quality score is high, the data cleaning algorithms
does not have much effect on the quality. Thus, we do not
show their results here.

0 200 400 600 800 1000 1200 1400
−800

−700

−600

−500

−400

−300

−200

−100

0

z

S

PRQ

(a) Quality vs. z.

0 20 40 60 80 100
0

5

10

15

C

I

Random
MaxQP
DP
Greedy

(b) Quality Improvement vs. C.

Figure 12: Results on Real Data Set

7. CONCLUSIONS
The management of uncertain and probabilistic databases

has become an important topic in emerging applications.
In this paper, we investigated a cleaning problem for these
databases, with the goal of optimizing the expected quality
improvement under a limited budget. To accomplish this
task, we designed the PWS-quality metric to quantify query
answer ambiguities. We showed how PWS-quality can be

732

efficiently computed for common entity-based queries (PRQ
and PMaxQ). We also illustrated that it is possible to de-
velop optimal and efficient solutions around this metric.

We plan to extend our solutions to support other kinds of
queries, e.g., top-k query. We will also examine other clean-
ing models, e.g., a cleaning request that may not be immedi-
ately accomplished. We can also investigate how to perform
optimal cleaning where an x-tuple, after cleaning, becomes
a set of tuples with arbitrary distributions. It is also in-
teresting to study how cleaning can be done on databases
where the uncertainty of attributes is given by a continuous
distribution (e.g., [16,32]).

Acknowledgments
This work was supported by the Research Grants Council
of Hong Kong (Project No. PolyU 5133/07E), and the Ger-
many/HK Joint Research Scheme (Pro ject No. G HK013/06).
We also thank Prof. Charles Ling (U. of Western Ontario)
and the reviewers for their insightful suggestions.

8. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,

S. Nabar, T. Sugihara, and J. Widom. Trio: A system
for data, uncertainty, and lineage. In VLDB, 2006.

[2] P. Andritsos, A. Fuxman, and R. Miller. Clean
answers over dirty databases: A probabilistic
approach. In ICDE, 2006.

[3] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. 4(5), 1992.

[4] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. In
VLDB, 2006.

[5] C. Böhm, A. Pryakhin, and M. Schubert. The
gauss-tree: Efficient object identification in databases
of probabilistic feature vectors. In ICDE, 2006.

[6] J. Chen and R. Cheng. Quality-aware probing of
uncertain data with resource constraints. In SSDBM,
2008.

[7] R. Cheng, J. Chen, M. Mokbel, and C. Chow.
Probabilistic verifiers: Evaluating constrained
nearest-neighbor queries over uncertain data. In
ICDE, 2008.

[8] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain
data with quality guarantees (technical report). In
http://www2.comp.polyu.edu.hk:8080/~csjcchen/quality.pdf.

[9] R. Cheng, D. Kalashnikov, and S. Prabhakar.
Evaluating probabilistic queries over imprecise data.
In ACM SIGMOD, 2003.

[10] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S.
Vitter. Efficient indexing methods for probabilistic
threshold queries over uncertain data. In VLDB, 2004.

[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2001.

[12] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[13] M. de Rougemont. The reliability of queries. In
PODS, 1995.

[14] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In VLDB, 2004.

[15] G. Diubin. The average behaviour of greedy
algorithms for the knapsack problem: general
distributions. Mathematical Methods of Operations

Research, 57(3), 2003.

[16] D.Pfoser and C. Jensen. Capturing the uncertainty of
moving-objects representations. In SSDBM, 1999.

[17] E. Gradel, Y. Gurevich, and C. Hirsch. The
complexity of query reliability. In PODS, 1998.

[18] N. Khoussainova, M. Balazinska, and D. Suciu.
Towards correcting input data errors probabilistically
using integrity constraints. In MobiDE, 2006.

[19] H. Kriegel, P. Kunath, and M. Renz. Probabilistic
nearest-neighbor query on uncertain objects. In
DASFAA, 2007.

[20] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In
SIGMOD, 2008.

[21] Z. Liu, K. Sia, and J. Cho. Cost-efficient processing of
min/max queries over distributed sensors with
uncertainty. In ACM SAC, 2005.

[22] M.Hadjieleftheriou. Spatial index library 0.44.2b.
http://u-foria.org/marioh/spatialindex/index.html.

[23] A. moving rating database.
http://infolab.stanford.edu/trio/code/index.html#examples.

[24] M. Nodine and J. Vitter. Greed sort: An optimal
sorting algorithm for multiple disks. JACM, 42(4),
1995.

[25] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data streams.
In SIGMOD, 2003.

[26] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In VLDB, 2007.

[27] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In ICDE, 2007.

[28] C. Shannon. The Mathematical Theory of

Communication. University of Illinois Press, 1949.

[29] A. Silberstein, R. Braynard, C. Ellis, K. Munagala,
and J. Yang. A sampling-based approach to optimizing
top-k queries in sensor networks. In ICDE, 2006.

[30] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and
S. Hambrusch. Indexing uncertain categorical data. In
ICDE, 2007.

[31] Singh et al. Database support for pdf attributes. In
ICDE, 2008.

[32] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Querying the uncertain position of moving objects. In
Temporal Databases: Research and Practice. Springer
Verlag, 1998.

[33] M. Soliman, I. Ilyas, and K. Chang. Top-k query
processing in uncertain databases. In ICDE, 2007.

[34] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In
VLDB, 2005.

[35] O. Wolfson, A. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile
units. Distributed and Parallel Databases, 1999.

[36] K. Yi, F. Li, D. Srivastava, and G. Kollios. Efficient
processing of top-k queries in uncertain databases. In
ICDE, 2008.

733

APPENDIX

A. THE PWS-QUALITY OF PMAXQ
We now show the proof that the x-form of PWS-quality

for PMaxQ is given by Equation 5.
By substituting Equation 9 into log qi, Equation 1 be-

comes:

S(D, Q) =

d∑

j=1

qj(

n∑

i=1∧ti∈rj

log ei +

n∑

k=1∧τk∩rj=∅

log(Pr(τk < rj .v)))

(21)
Similar to the proof in Section 4.3, we have

d∑

j=1

n∑

i=1∧ti∈rj

qj log ei =

n∑

i=1

pi log ei (22)

Next we prove that

d∑

j=1

n∑

k=1∧τk∩rj=∅

qj log(Pr(τk < rj .v))

=

n∑

k=1

|τk|∑

i=1

ωk,i log(1−
i∑

j=1

ek,j) (23)

By substituting Equation 10 into log Pr(τk < rj .v), the
left part of Equation 23 becomes:

d∑

j=1

n∑

k=1∧τk∩rj=∅

qj log(1−

s(j,k)∑

l=1

ek,l) (24)

By swapping the summation orders and noticing that s(j, k)
is just some number in [1, |τk|], Equation 24 can be simplified
to the form of Equations 3 and 5.

The rest is to show that ωk,i is equivalent to Equation 6.
First, notice that ωk,i is just a sum of qj ’s (for PW-results
rj). In particular,

ωk,i =
∑

vk,i+1<rj .v≤vk,i

qj (25)

This is because the value i in the term log(1−
∑i

j=1 ek,j) of
Equation 5 represents the i-th position of the tuple in the x-
tuple τk (i.e., tk,i) which has the smallest querying attribute
larger than rj .v, which must be between (vk,i+1, vk,i], or
else i cannot be the position where rj .v is just larger than
vk,i. Notice that if i = |τk|, no tuples th,l can satisfy this
condition, and so ωk,|τk| = 0.

Next, we claim that

∑

rj .v≤vk,i

qj = (1−
i∑

l=1

ek,l) ·
pk,i

ek,i

(26)

To prove Equation 26, note that its left side is the prob-
ability that the answer to PMaxQ has a querying attribute
value smaller than vk,i. This is equal to the product of
the occurrence probabilities of two events: E1, the event
that all tuples that do not belong to τk and whose val-
ues are larger than vk,i do not exist; E2, the event that
none of the tuples {tk,1, . . . , tk,i} exist. The probability
that E1 is true (Pr(E1)) can be derived by using the fact

that pk,i = Pr(E1) · ek,i. Thus, Pr(E1) =
pk,i

ek,i
. Since

Pr(E2) = 1−
∑i

j=1 ek,j , Equation 26 can be obtained.
Finally, Equation 25 can be written as

∑

vh,l≤vk,i

ph,l − pk,i+1 −
∑

vh,l≤vk,i+1

ph,l (27)

By substituting Equation 27 with the result of Equation 26,
we prove that Equation 6 is correct.

B. A DYNAMIC PROGRAMMING SOLU-
TION

The problem P (C, M) obeys the optimal substructure prop-
erty, which enables dynamic programming [11]. Let W , a
set of x-tuples, be the optimal solution to P (C, M). Con-
sider the problem P (C − ca, M − {τa}), where τa is some
x-tuple in M . Let W ′ = W − {τa}. Then, W ′ must also
be an optimal solution to P (C − ca, M −{τa}). To see this,
suppose W ′′ (where W ′′ 6= W ′) is the optimal solution to
P (C − ca, M − {τa}). Then W# = W ′′ ∪ {τa} is also a so-
lution to P (C, M). Since W ′′ is better than W ′, the quality
improvement for W# (obtained by adding ga to the qual-
ity improvement of W ′′ using Equation 19) must also be
higher than W . This violates the assumption that W is the
optimal solution to P (C, M). Therefore, W ′ must be the
optimal solution to P (C − ca, M − {τa}).

We consider the subproblem P (c, Mk), where 0 ≤ c ≤ C

is the current budget available to the query. Also, Mk =
{τ1, . . . , τk|1 ≤ k ≤ Z} is the set of x-tuples that can be
selected (Mk = ∅ for k = 0). For each subproblem P (c, Mk),
we use a Z-bit vector array, s[c, k], to store the optimal set
of x-tuples, where s[c, k][j] has a value of 1 if τj is chosen
in the solution. Another C × Z array h is used to store
the quality improvement for cleaning with the set encoded
by s[c, k]. For the cases of c = 0 or k = 0, we initialize
the values of s and h to zero. Figure 13 shows the DP

algorithm. As we can see, all the problem instances are
scanned once (Steps 1 and 2). For each problem P (c, Mk),
we test whether the current x-tuple being examined (τk)
yields a higher quality improvement than the current set
(Step 3). If that is true, Steps 7-9 adds τk to the solution
and updates s and h. Otherwise, both s[c, k] and h[c, k]
use the solution without τk (Steps 4-5). Finally, s[C, Z] is
returned as an optimal solution to P (C, M). The time and
space complexities of this algorithm are respectively O(CZ)
and O(CZ2).

C. INCREMENTAL QUERY PROCESSING
Consider a query Q which has just been evaluated on the

database D. Let D′ be the new database after cleaning is
done. We now show that rerunning Q on D′ does not require
the examination of all tuples in D′. In particular, let R(D)
be the set of tuples appearing in the answer of Q on D.
We claim that the tuples that are included in the answer
of Q being evaluated on D′, i.e., R(D′), must be a subset
of R(D). We term this incremental query processing, since
the evaluation of Q on D′ can be based upon the answer set
R(D), instead of the whole database D′.

To see this, let u be a tuple which does not appear in
R(D). Then, u must not satisfy Q in any possible worlds
generated from D. Now, consider a possible world W that
appears in D. After cleaning (Definition 4) is completed,

734

Input

Cost (c1, . . . , cZ)
Quality improvement (g1, . . . , gZ)
Budget (C)

1. for k ← 1 to Z do

2. for c← 1 to C do

3. if ck > c or h[c, k − 1] > h[c− ck, k − 1] + gk

4. s[c, k]← s[c, k − 1];
5. h[c, k]← h[c, k − 1];
6. else

7. s[c, k]← s[c− ck, k − 1];
8. s[c, k][k]← 1;
9. h[c, k]← h[c− ck, k − 1] + gk;
10. return s[C, Z];

Figure 13: The DP algorithm.

two cases can occur: (1) W consists of the same set of tu-
ples; or (2) W is eliminated, where one or more tuples that
belong to W are removed due to cleaning. Hence, the set of
possible worlds of D′ must be a subset of those in D. This
implies u still cannot satisfy Q in any possible world of D′.
Consequently, u must not be in R(D′). Hence, in the sec-
ond round of query evaluation, we only need to examine the
tuples that appear in R(D), instead of D′. This can reduce
the effort of evaluating a query on D′ significantly.

Next, let us investigate how PRQ and PMaxQ on D′ make
use of the above observation.

PRQ: We only need to re-evaluate the probabilities of
the tuples belonging to the x-tuples in the cleaning set, since
these x-tuples are chosen from the answer set R(D) (accord-
ing to Lemma 2). Qualification probabilities of tuples that
do not appear in the cleaning set remain unchanged.

PMaxQ: Let tm be the tuple that consists of the maxi-
mum attribute value among all the cleaned tuples. We claim
that only tuples whose values larger than or equal to vm

need to be considered. Note that after cleaning, the exis-
tential probability of tm becomes one. Thus all tuples with
attribute values smaller than vm, which has no chance to
be the maximum object, can be removed from R(D). The
remaining tuples are inserted to R(D), with qualification
probabilities recomputed.

735

