
CleanM: An Optimizable Query Language
for Unified ScaleOut Data Cleaning

Stella Giannakopoulou† Manos Karpathiotakis† Benjamin Gaidioz† Anastasia Ailamaki†‡

†Ecole Polytechnique Fédérale de Lausanne
firstname.lastname@epfl.ch

‡RAW Labs SA

ABSTRACT

Data cleaning has become an indispensable part of data analysis

due to the increasing amount of dirty data. Data scientists spend

most of their time preparing dirty data before it can be used for

data analysis. At the same time, the existing tools that attempt to

automate the data cleaning procedure typically focus on a specific

use case and operation. Still, even such specialized tools exhibit

long running times or fail to process large datasets. Therefore, from

a user’s perspective, one is forced to use a different, potentially

inefficient tool for each category of errors.

This paper addresses the coverage and efficiency problems of

data cleaning. It introduces CleanM (pronounced clean’em), a lan-

guage which can express multiple types of cleaning operations.

CleanM goes through a three-level translation process for optimiza-

tion purposes; a different family of optimizations is applied in each

abstraction level. Thus, CleanM can express complex data cleaning

tasks, optimize them in a unified way, and deploy them in a scaleout

fashion. We validate the applicability of CleanM by using it on top

of CleanDB, a newly designed and implemented framework which

can query heterogeneous data. When compared to existing data

cleaning solutions, CleanDB a) covers more data corruption cases,

b) scales better, and can handle cases for which its competitors are

unable to terminate, and c) uses a single interface for querying and

for data cleaning.

1. INTRODUCTION
Today’s ever-increasing rate of data volume and variety opens

multiple opportunities; crawling through large-scale datasets and

analyzing them together reveals data patterns and actionable in-

sights to data analysts. However, the process of gathering, storing,

and integrating diverse datasets introduces several inaccuracies in

the data: Analysts spend 50%-80% of their time preparing dirty

data before it can be used for information extraction [34]. There-

fore, data cleaning is a major hurdle for data analysis.

Data cleaning is challenging because errors arise in different

forms: Syntactic errors involve violations such as values out of

domain or range. Semantic errors are also frequent in non-curated

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 21508097/17/07.

datasets; they involve values which are seemingly correct, e.g., Bei-

jing is located in the US. In addition, the presence of duplicate en-

tries is a typical issue when integrating multiple data sources. Be-

sides requiring accurate error detection and repair, the aforemen-

tioned data cleaning tasks also involve computationally intensive

operations such as inequality joins, similarity joins, and multiple

scans of each involved dataset. Thus, it is difficult to build general-

purpose tools that can capture the majority of error types and at the

same time perform data cleaning in a scalable manner.

Existing data cleaning approaches can be classified into two main

categories: The first category includes interactive tools through

which a user specifies constraints for the columns of a dataset or

provides example transformations [25, 38]. User involvement in

the cleaning process is intuitive and interactive, yet specifying all

possible errors involves significant manual effort, especially if a

dataset contains a large number of discrepancies. The second cat-

egory comprises semi-automatic tools which enable several data

cleaning operations [14, 19, 29, 43]. Both categories lack a uni-

versal representation for users to express different cleaning scripts,

and/or are unable to optimize different cleaning operations as one

unified task because they treat each operation as a black-box UDF.

Therefore, there is need for a higher-level representation for data

cleaning that serves a purpose similar to that of SQL for data man-

agement in terms of expressivity and optimization: First, SQL al-

lows users to manage data in an organized way and is subjective to

how each user wants to manipulate the data. Similarly, data clean-

ing is a task which is subjective to the user’s perception of cleanli-

ness and therefore requires a language that allows users to express

their requests in a simple yet efficient way. Second, SQL is backed

by the highly optimizable relational calculus; data cleaning tasks

require an optimizable underlying representation as well.

This paper introduces CleanM, a declarative query language for

expressing data cleaning tasks. Based on SQL, CleanM offers prim-

itives for all popular cleaning operations and can be extended to ex-

press more operations in a straightforward way. CleanM follows a

three-level optimization process; each level uses a different abstrac-

tion to better suit the optimizations to be applied. First, all cleaning

tasks expressed using CleanM are translated to the monoid com-

prehension calculus [18]. The monoid calculus is an optimizable

calculus which is inherently parallelizable and can also represent

complex operations between various data collection types. Then,

comprehensions are translated into an intermediate algebra which

allows for inter-operator optimizations and detection of work shar-

ing opportunities. Finally, the algebraic operators are translated

into a physical plan which is then optimized for factors such as

data skew. In summary, regardless of how complex a cleaning task

is, whether it internally invokes complex operations such as clus-

tering, and what the underlying data representation is (relational,

1466

JSON, etc.), the overall task will be treated as a single query, opti-

mized as a whole, and executed in a distributed, scale-out fashion.

We validate CleanM by building CleanDB, a distributed data

cleaning framework. CleanDB couples Spark with a CleanM fron-

tend and with a cleaning-oriented optimizer which applies the three-

level optimization process described above. The end result is a sys-

tem that combines data cleaning and querying, all while relying on

optimizer rewrites and abundant parallelism to speed up execution.

Motivating Example. Consider a dataset comprising customer

information. Suppose that a user wants to validate customer names

based on a dictionary, check for duplicate entries, and at the same

time check whether a functional dependency holds. We will be

using this compound cleaning task to reflect the capabilities of

CleanM and CleanDB: For example, CleanM enables name vali-

dation via token filtering [24] – a common clustering-based data

cleaning operation – by representing it as a monoid. Also, Cle-

anDB identifies a rewriting opportunity to merge the duplicate elim-

ination and functional dependency checks in one step.

Contributions: Our contributions are as follows:

• We introduce CleanM, an all-purpose data cleaning query lan-

guage. CleanM models both straightforward cleaning operations

such as syntactic checks, as well as complex cleaning build-

ing blocks such as clustering algorithms, all while being nat-

urally extensible and parallelizable. We also present a three-

level optimization process that ensures that a query expressed

in CleanM results in an efficient distributed query plan.

• We implement CleanDB, a scale-out data cleaning framework

that serves as a testbed for users to try CleanM. CleanDB sup-

ports a multitude of data cleaning operations (e.g., duplicate

elimination, denial constraint checks, term validation) over mul-

tiple different types of data sources (e.g., binary, CSV, JSON,

XML), executed in a distributed fashion using the Spark runtime.

• We show that CleanDB outperforms state-of-the-art solutions in

synthetic and real-world workloads. CleanDB scales better than

Spark SQL [6] and a dedicated scale-out data cleaning solution,

offers a wider variety of operations, and cleans datasets that its

competitors are unable to process due to performance issues.

In summary, current data cleaning technology lacks a universal

representation that can be general and also guarantee scalability

out-of-the-box for all the cleaning operations it supports. This pa-

per provides a solution through an algebraic abstraction, which al-

lows rich features to be embedded in a declarative, optimizable, and

parallelizable language. The user can thus intertwine analytics and

cleaning using a unified interface over a scale-out system.

2. RELATED WORK
This section surveys related work ([3, 11, 21, 23, 25, 29, 38, 43,

44]) and highlights how CleanM pushes the state of the art further.

Interactive Data Cleaning. Potter’s Wheel [38], OpenRe-

fine [44], and Trifacta – the commercial version of Data Wran-

gler [25] – are established interactive data cleaning systems. Pot-

ter’s Wheel [38] provides an interface via which the user gradu-

ally repairs her dataset. The user performs transformations, such

as merging columns, and at the same time, a background daemon

detects potential syntactic errors. For the daemon to detect any er-

rors, a user has to specify a set of domains to which data entries

must belong, and the constraints of each domain. Knime [1] al-

lows for more complex operations, but relies on black box UDFs.

CleanM and CleanDB opt for a declarative approach to data clean-

ing compared to the manual “cleaning by example” of the previous

systems, and also expose a superset of their functionality.

(Semi-)Automatic Cleaning. Besides interactive cleaning toolk-

its, other systems attempt to detect and repair data errors automati-

cally, asking a human for guidance when necessary.

DataXFormer [3] tackles semantic transformations, such as map-

ping a column containing company names to a column with the

stock symbols of those companies, by exploiting information from

the Web or from mapping tables. Tamr [43] resolves data dupli-

cates; it relies on training classifiers and feedback from experts to

make deduplication suggestions. Dedoop [31] allows specifying

entity resolution workflows through a web-based interface and then

translates them into MapReduce jobs. Contrary to the unified opti-

mization process of CleanM, each Dedoop operator is a standalone,

black-box UDF. SampleClean [46] and Wisteria [22] extract a sam-

ple out of a dataset, employ users to clean it, and utilize this sample

to answer aggregate queries; their focus is on data transformations,

deduplication, and denial constraints – a subset of CleanM .

NADEEF [12, 14] manages a set of denial constraints, and tries

to update erroneous values in a way that all the rules are satis-

fied [12]. BigDansing [29] ports the insights of NADEEF in a

distributed setting by extending MapReduce-like frameworks with

support for duplicate elimination and denial constraints. BigDans-

ing’s logical-level optimizations focus on projection push down

and on grouping the tuples based on a specific attribute in order

to prune the number of required comparisons. BigDansing also

employs physical-level optimizations, such as a custom join im-

plementation. CleanDB incorporates such physical and logical op-

timizations, but also allows for optimizations in all levels of the

query translation process, such as language level simplification of

expressions and coalescing of different operations.

Declarative Cleaning. The FUSE BY [9] operator is a proposed

extension of SQL that resolves duplicates by allowing various con-

flict resolution strategies, such as choosing the most common value

or preferring one source over another. FRAQL [40] follows a similar

approach by providing SQL extensions that allow transformations,

duplicate elimination, and outlier detection. All conflict resolu-

tion operations in FRAQL are expressed in the form of standalone,

opaque UDFs. QuERy [5] integrates deduplication with query pro-

cessing by focusing on the optimizations that allow cleaning only

the parts of the data that are needed by a given query. Therefore,

QuERy addresses a different dimension of the scalability issue of

data cleaning than CleanM does, i.e., it avoids cleaning the whole

dataset. Ajax [19] separates the logical and physical level of the

data cleaning process. At the logical level, Ajax uses a data flow

graph to represent the steps of a cleaning operation. Then, at the

physical level, each logical operator gets translated into an opti-

mized implementation. Like FRAQL, Ajax provides a UDF for each

operator, and therefore treats each data cleaning task as a black box.

On the contrary, CleanM comprises composable operations, which

it optimizes both on their own and as a whole.

Quantitative Data Cleaning (QDC). QDC [7, 15] discovers the

best data repairing strategy using statistical methods, such as the

cost of each strategy, the quality of the resulting dataset, and the

statistical distortion against the original dataset. QDC differs from

CleanM in that it focuses on discovering the optimal repair method

given a set of detected errors, whereas CleanM focuses on the de-

tection of the errors. Statistics are also employed to measure the

accuracy of error detection methods and how each method behaves

in the existence of multiple types of errors; whether a method fails

to detect an error due to the presence of another type of error [8].

SQL for cleaning. SQL can express some cleaning tasks, e.g.,

the ones that correspond to first order logic statements [16]. SQL,

however, is overall inappropriate and insufficient for data cleaning:

First, SQL lacks first-class support for rich data types (e.g., JSON);

1467

one might need to convert a dataset to another format in order to

clean it. A change in the intended format can be inconvenient for

the user, or might complicate the cleaning process, e.g., flattening a

dataset can increase data volume. In addition, relational algebra –

the backend of SQL – lacks first-class support for operations from

the machine learning and data mining domains.

It typically takes a combination of vanilla SQL, UDFs, ex-

tra operators, and external programs to express rich operations in

SQL [13]. UDFs, however, increase complexity; each UDF ap-

pears as a black-box to the system optimizer, which is unable to

optimize the entire task as a whole. Adding extra operators in the

database core [37] requires coding in an operator per algorithm,

which is a tedious process. As for frameworks such as Spark [48],

which support both relational and iterative processing, they apply

only relational optimizations [6]. The reason is that the “relational

part” of Spark is engineered similarly to a DBMS with columnar

storage and is equipped with an optimizer, whereas the “procedural

part” executes arbitrary code over BLOB-like data (RDDs [48]).

Given the split Spark architecture, the Spark SQL Catalyst op-

timizer treats the procedural parts of an analysis script as black

boxes. In summary, both for traditional RDBMS and modern scale-

out frameworks, while a relational optimizer can perform rewrites

based on the physical properties of the extra operators, it is non-

trivial to reason about them on an algebraic level, because they fall

outside of the relational logic based on which the system has been

engineered. Our running example highlights two ways in which

systems engineered based on “vanilla SQL” are unsuitable for data

cleaning: First, the term validation operation creates bags of values,

which RDBMS typically treat as BLOB-like opaque data types,

thus hurting performance. Second, an RDBMS query would treat

each of the three cleaning operations as standalone; as we will see

in Section 5, however, two of these operations can share work.

In conclusion, SQL is designed to manipulate relational data,

and is unable to express domain-specific optimizations required for

data cleaning. On the contrary, CleanM is specifically designed to

express complex cleaning operations over complex data types.

3. A UNIFIED REPRESENTATION
Data cleaning is a computationally intensive process which typ-

ically involves multiple iterations over the same dataset and nu-

merous pairwise comparisons of the data records. In fact, many

data cleaning tasks would benefit from machine learning operations

such as clustering in order to split a dataset into manageable subsets

and minimize the number of required pairwise comparisons. There-

fore, a data cleaning language must be coupled with a calculus that

can support and optimize such operations. At the same time, said

calculus must be able to reason about multiple cleaning operations

as a whole, and identify inter- and intra-operation optimizations.

Besides involving complex operations, data cleaning tasks are typ-

ically applied over a variety of data sources and formats. Data that

requires curation may be i) relational or not, ii) stored in a DBMS

or kept in files [4, 27], etc. Therefore, a data cleaning language and

calculus must be able to handle data heterogeneity. Finally, given

the ever-increasing data volumes, explicit support of parallelism is

a prerequisite. This section presents i) the cleaning operations that

CleanM supports, and ii) the rationale behind a three-level transla-

tion of said cleaning operations into executable code.

3.1 Data cleaning operations
In the following we present the data cleaning operations that

CleanM supports, and what is required to optimize each operation.

Denial Constraints (DC)

The family of denial constraints [16] contains universally quanti-

fied first order language sentences that represent data dependencies,

such as functional dependencies and conditional functional depen-

dencies. DCs have the following form: ∀t1, ..., tk¬(p(x1)∧ p(x2)∧
...p(xn)). If a dataset contains one or more tuples for which the

predicates p(x1)...p(xn) hold, it is considered to be inconsistent.

Optimization Requirements. DC checks involve a selection

or a self-join that detects tuples, pairs of tuples, or groups of tu-

ples that violate the rule. Self-joins are expensive because they

involve multiple traversals of the input. Also, as DCs contain arbi-

trary predicates, such as inequalities, theta-joins might be required.

Finally, the rules need to handle non-exact matches, and thus simi-

larity joins are also required. Similarity joins are costly operations

because they involve multiple passes over a dataset, as well as a

computationally expensive similarity check per candidate pair.

Duplicate Elimination

Duplicate elimination involves the discovery of tuples that refer to

the same real-world entity [32]. The most straightforward way to

detect similar tuples is a self-join that discovers identical tuples.

A lighter duplicate detection form is to consider an attribute or a

set of attributes that should be unique; if two tuples have the same

values for that particular set of attributes, then they are considered

to be duplicates. A more challenging scenario involves the case

where a dataset does not contain completely identical pairs of tu-

ples/attribute sets, but might contain similar pairs. In this case, the

self-join predicate needs to calculate similarity instead of equality.

Optimization Requirements. Similar to a subset of denial con-

straints, deduplication involves a similarity self-join to identify po-

tentially duplicate records [23].

Transformations & Term Validation

Transformations involve applying a formula to a set of values, or

mapping values to a set of semantically related values [3]. Seman-

tic transformations are challenging because they require consulting

auxiliary data. Term validation is a popular category of semantic

transformations: It focuses on detecting values that are seemingly

correct, but fail to adhere to a specific terminology because of, for

example, a misspelling. A common technique for detecting mis-

spellings is using a dictionary for validation. The dictionary can

be, among others, a dictionary of english words or scientific terms.

Optimization Requirements. Semantic transformations involve

an equi-join or a similarity join with auxiliary data. Specifically,

term validation requires the discovery of the most similar words

from the dictionary for each word of the dataset. Thus, term vali-

dation relies on the efficient computation of similarity checks.

Summary. After surveying a range of data cleaning operations, we

identify that efficient handling of self-, theta-, and similarity joins

can accelerate multiple cleaning tasks. Besides accelerating stan-

dalone operations, having a unified representation for all operations

can help in detecting common patterns and work sharing opportuni-

ties. Finally, having a principled way to simplify an arbitrary data

cleaning script (e.g., unnest nested sub-tasks) makes detection of

optimization opportunities over the script more straightforward.

3.2 From data cleaning operations to code
This work uses three different abstraction levels to reason about

and optimize data cleaning tasks. In the first level, CleanM maps

cleaning operations to the monoid comprehension calculus [18].

As a result, the operations are first-class citizens of the language

instead of black-box UDFs. Such composability means that opera-

tions can be explicitly used and stacked with each other in monoid

1468

comprehensions. Transforming the input dataset between different

types and manipulating multiple data types is also possible, a fea-

ture exploited by engines that access raw data [26, 28]. Monoid

comprehensions are inherently parallelizable and lend themselves

perfectly to scale-out execution – a fact that has led existing scale-

out approaches to adapt monoids as a core abstraction for data ag-

gregation and incremental query processing [10, 17]. Section 4

elaborates on how cleaning operations are mapped to CleanM.

The second abstraction level involves lowering a comprehension

into an algebraic form [18], the nested relational algebra. Nested

relational algebra operators resemble relational operators and are

amenable to relational-like optimizations, yet they also explicitly

handle complex data types and queries. For example, a user can

issue a query combining relational and hierarchical data, and rely

on the algebraic translation process to simplify the physical query

plan and remove all forms of query nesting. In addition, the alge-

braic form enables inter-operator rewrites, which coalesce different

cleaning operations into a single one and thus reduce the overall

cost. Section 5 discusses the algebraic rewrites.

The final level specializes the algebraic expression to the under-

lying execution engine. CleanM currently assumes that Spark [48]

is the underlying engine; still, it is pluggable to any scale-out sys-

tem. This physical level focuses on the particularities of cleaning

operations such as the presence of expensive theta joins. Also, the

physical level addresses the absence of uniform distribution in the

values of real-world datasets – a fact that can cause load imbalance

during data cleaning. Section 6 discusses how to generate physical

plans that consider both these complications.

4. CLEANING DATA USING MONOIDS
CleanM supports multiple cleaning operations, which it internally

maps to monoid comprehensions. Still, although a unified repre-

sentation is important for user convenience, it is also important to

optimize each of the operations. In addition, despite the elegance

of comprehensions, the goal of CleanM is to serve as a SQL-like

higher-level representation that masks the comprehension syntax,

given that most users are more familiar with SQL. The syntax of

CleanM extends SQL with constructs that express data cleaning

operations and handle non-relational data types such as hierarchies;

this work focuses on the data cleaning operations.

This section presents i) monoid comprehensions (the underlying

calculus of CleanM), ii) the optimizations that comprehensions al-

low, iii) the expressive power of CleanM by showing how to map

the building blocks of data cleaning operations to monoids, and

iv) the syntax and semantics of CleanM .

4.1 The monoid comprehension calculus
CleanM translates data cleaning tasks into expressions of the

monoid comprehension calculus. A monoid is an algebraic struc-

ture which captures aggregate and collection operators. A primitive

monoid m models aggregate operators. It is accompanied by an as-

sociative merge operation ⊕ and an identity/zero element Z⊕. For

example, the max operation over positive integers corresponds to

the monoid (max,0), because computing the max is an associative

operation, with 0 being its zero element. A collection monoid com-

prises a merge operation, a zero element, and a unit function U⊕

to construct singleton values of a monoid type. For example, a list

collection can be modeled as a monoid, because the list append op-

eration ++ is associative, the empty list [] is its zero element, and

the function a→ [a] is its unit function.

A monoid comprehension of the form ⊕{e|q1, ...,qn}, n≥ 0 de-

scribes operations between monoids. q1, ...,qn form the compre-

hension body; each of them is either a filter predicate, or a generator

of the form var← col that iterates through an instance of a monoid

collection type, and assigns the currently visited element to a vari-

able. e is the head of the comprehension, indicating the expression

to be computed for every value combination of the bound variables.

Finally, the ⊕ symbol is the merge operation of the output monoid,

indicating how to aggregate the instantiations of e.

Example. The comprehension +{x|x← [1,2,10],x < 5} com-

putes the sum of the elements that are smaller than 5 for a given list,

and the comprehension set{(x,y)|x←{1,2},y←{3,4}} produces

the cross product of two data collections. This paper uses Scala-like

comprehension syntax which is equivalent to the one presented,

representing a comprehension as f or{q1, ...,qn}yield ⊕ e.

4.2 Optimizations at the monoid level
As discussed in Section 3.2, CleanM follows a layered design

approach. Even in its topmost layer, CleanM distinguishes between

high- and low-level operations, both of which are first-class citizens

and are expressed using comprehensions. The separation aims for

user convenience: High-level operations, such as denial constraints,

map directly to a SQL-like, syntactic sugar representation. Low-

level operations are internal building blocks for the high-level ones,

and address the optimization requirements of Section 3.1. Both

high- and low-level operations go through a rewrite process that

applies general-purpose, domain-agnostic optimizations [18].

Domainagnostic optimizations: Normalization

Regardless of the processing that a comprehension performs, a nor-

malization algorithm [18] puts it into a “canonical” form. The nor-

malization also applies a series of optimization rewrites. Specifi-

cally, it applies filter pushdown and operator fusion. In addition, it

flattens multiple types of nested comprehensions [30]. It also re-

places any function call that appears in a comprehension, with the

call’s result (beta reduction); a function’s input can be an arbitrary

expression (e.g., a constant, a generator’s variable, etc.). In the case

of UDFs that are defined as comprehensions themselves, the rewrite

results in their unnesting, and facilitates optimizing the rewritten

comprehension as a whole. Also, it splits if-then-else expressions

in two comprehensions, so that each one of them can be further op-

timized. Similar to the SQL-based rewriting of the EXISTS clause,

normalization unnests existential quantifications. Finally, normal-

ization simplifies expressions that are statically known to evaluate

to true/false, and presences of empty collections.

The result of the normalization process is a simplified com-

prehension; Section 5 explains how this comprehension is further

rewritten into a form more suitable for efficient execution.

Domainspecific optimizations: Pruning comparisons

Besides domain-agnostic optimizations, the monoid calculus can

express operations that specifically target and accelerate data clean-

ing tasks. A common theme of all the data cleaning operations

mentioned in Section 3.1 is the need for fast pairwise comparisons.

The rest of this section discusses how to optimize CleanM expres-

sions on the comprehension level by pruning comparisons in the

cases of self-joins and similarity joins; we discuss the rest of the

optimization requirements of Section 3.1 in subsequent sections be-

cause they are a better match for lower abstraction levels.

Self-joins occur in denial constraints (DC) and duplicate elim-

ination. In the case of self-joins that involve equality conditions,

such as in functional dependencies (FD), CleanM avoids the self-

join by grouping the dataset’s entries based on the left hand side

of the FD, and then detects violations (i.e., whether a grouping key

is associated with more than one value). Section 6 discusses how

1469

CleanM handles the general case of DCs, which may involve non-

equality predicates, in its third abstraction level – the physical one.

Regarding similarity joins, a baseline method to evaluate them

would compute the cartesian product and afterwards apply a filter

that removes the dissimilar pairs. The baseline approach, however,

is very costly, because both the cartesian product and the string

similarity computation are expensive tasks. Thus, CleanM uses a

filtering phase to prune the candidate pairs that need to be checked.

An indicative example of filtering is the use of a clustering algo-

rithm to create k clusters, each containing words that are similar.

Then, the cleaning operation only has to perform intra-cluster com-

parisons. The pre-processing filtering phase must be lightweight

enough to avoid adding an overhead that reaches the cost of an un-

optimized implementation. Thus, CleanM considers variations of

the approaches suggested in [24, 39], namely k-means and token

filtering, because different clustering/filtering techniques are more

suitable for different use cases; their efficiency in the context of

data cleaning depends on several factors, such as the string length

of a dataset’s words and the similarity metric used. Still, to use any

technique, we must be able to express it as a monoid.

4.3 Expressive Power: Mapping cleaning
building blocks to the monoid calculus

Expressing an operation over type T as a monoid involves ei-

ther mapping the operation to an existing monoid, or proving three

properties: First, specifying an identity/zero element Z⊕ such that

for any element x of type T, x⊕Z⊕ =Z⊕⊕x = x. Second, specify-

ing a unit function that turns an element into a singleton value of T.

Third, showing that the associative property ⊕ holds for it. Mul-

tiple operations over collections such as lists, bags, sets, arrays,

vectors, etc., are provably mappable to the monoid calculus [18].

Also, monoid comprehensions are sufficient to represent OQL and

SQL queries [18]. The rest of this section elaborates on how to

map clustering and filtering algorithms – which CleanM relies on

to refine similarity joins – to the monoid calculus.

Clustering as a monoid

Clustering algorithms can be divided into partitional and hierarchi-

cal. Below, we map each category to the monoid calculus.

Single-pass partitional algorithms. Partitional algorithms split

the input into a number of clusters. Each element of the dataset

might belong to exactly one (strict) or more clusters (overlapping).

The assignment of a value to a cluster depends on certain crite-

ria, such as the distance from the cluster center (k-means) or the

distance from the other elements of the cluster (DBSCAN). In the

following, we provide the mapping of k-means – the most popu-

lar partitional algorithm – to the monoid calculus; mapping other

partitional algorithms to the monoid calculus is straightforward by

mapping different cluster assignment criteria.

K-means assigns each input element to the cluster which con-

tains values that are similar to it; thus, when used in the context of

similarity joins, only intra-cluster comparisons take place. CleanM

by default uses a variation of k-means inspired by ClusterJoin [39].

The k-means variation selects k random centers, and then assigns

each word of the dataset to all centers whose distance is minimum

(or minimum plus a delta to favor multiple assignments). The orig-

inal k-means requires multiple iterations before converging to an

optimal set of clusters, which hurts scalability. The k-means varia-

tion avoids scalability issues by only iterating once over the input,

while also achieving a “good-enough” grouping of similar words.

Mapping the k-means single-pass operation over bag collections

to the monoid calculus requires expressing the center initialization

and the center assignment steps as monoid operations; the latter

step is the one performing the actual clustering/partitioning.

We express center initialization by parameterizing the function

composition monoid [18] instead of defining a new monoid. The

function composition monoid can compose functions that propa-

gate a state during an iteration over a collection, as long as the com-

posed functions are associative. The “propagated state” at the end

of the iteration comprises the centers for k-means. We parameterize

the function composition monoid to apply randomized algorithms,

such as reservoir sampling [45], to extract k centers. A straightfor-

ward parameterization is: ◦{λ(x, i).(i f i = N/k, 2N/k, ..., N, then

[x]++y, i−1)|y← Y}. The formula extracts the N/k,2N/k, ...,N
items as centers. x accumulates the result, and the initial value of i

is the length of the original list. Extracting items using a fixed step

is an associative operation because it appends specific elements to

a bag collection in each iteration, thus the overall parameterization

of the composition monoid is a monoid operation too.

Center assignment takes as a parameter the list of centers com-

puted in the first step and discovers the closest center for each data

item. This operation maps to the Min monoid [18].

Multi-pass partitional algorithms. Representing multi-pass

partitional algorithms (e.g., the original k-means, canopy cluster-

ing [35], correlation clustering [42], etc.) as monoids is straightfor-

ward: The representation of iterative clustering algorithms implies

n equivalent monoid comprehensions, where n is the number of it-

erations. Each iteration stores the result of the comprehension into

a state which is then transferred to the next iteration. Alternatively,

an iteration monoid can act as syntactic sugar in place of the n com-

prehensions; its behavior will resemble foldLeft, and it will update

some state in each iteration.

Hierarchical clustering. Hierarchical clustering generates clus-

ters that can have sub-clusters. Executing hierarchical clustering in-

volves a set of iterations which gradually build the resulting clusters

by merging or splitting items. In the monoid representation of hi-

erarchical clustering, each iteration gets as input the previous state

or the initial dataset, and computes the items whose distance from

each other is minimum; this operation maps to the Min monoid.

(Token) filtering as a monoid

Token filtering [24] is the preferred way to reduce the number of

similarity comparisons when comparing strings of small length,

whereas clustering-based filtering is suitable for more generic use

cases. Token filtering groups the words based on their tokens in

order to avoid comparing all pairs exhaustively. Specifically, token

filtering splits each word into tokens of length q, and then asso-

ciates each token with the groups of words that contain said token.

Thus, similarity checks only take place within each group.

The monoid representation of token filtering resembles that of

k-means, in that k-means groups values based on their common

“center”, whereas token filtering groups them based on a common

token. Below, we provide the mapping of token filtering into the

monoid calculus. [stri,str j,strk] denotes that at least one of the

three strings will be part of the set of values that contain the token.

Z⊕ : {}, Unit : str→{(tokeni,{str}),(token j,{str})...}

Associative property : tokenize(stri, tokenize(str j,strk)) =

{(tokeni,{[stri,str j,strk]}),(token j,{[stri,str j,strk]})...}=

tokenize(tokenize(stri,str j),strk)

Extensibility and scope of CleanM

Extending CleanM with any operation that obeys the monoid prop-

erties is straightforward. Besides k-means clustering and token

filtering, CleanM can represent any filtering approach that groups

1470

SELECT [ALL|DISTINCT] <SELECTLIST> <FROMCLAUSE>
[WHERECLAUSE][GBCLAUSE[HCLAUSE]][FD|DEDUP|CLUSTER BY]*

FD=FD(attributesLHS, attributesRHS)
DEDUP=DEDUP(<op>[,<metric>, <theta>][,<attributes>])
CLUSTERBY=CLUSTER BY(<op>[,<metric>,<theta>],<term>)

Listing 1: The syntax of CleanM.

words into clusters of similar contents (e.g., filtering based on the

length of the words). Other filtering approaches such as applying

transitive closure in order to build the similar pairs can be also rep-

resented using the monoid calculus.

Future work includes examining operations which lack an asso-

ciative property (e.g., median), and which have traditionally been

handled by scale-out systems via exponential algorithms or approx-

imation. Finally, this work focuses on violation detection with min-

imal user effort; cleaning-oriented topics such as i) data repairing

techniques and ii) techniques that rely on classification using an

offline training phase and pre-existing training data are orthogonal

extensions to our declarative language proposal.

4.4 The CleanM language
Having defined the necessary low-level operations, we describe

the high-level cleaning operations of CleanM. CleanM extends SQL

with data cleaning operators; its syntax is shown in Listing 1. The

symbols ([]), (*) and (|) denote optional elements, elements that

can appear multiple times, and option between elements, respec-

tively. The symbol (|) implies arbitrary order between the options.

When multiple cleaning operations appear in the CleanM query,

then the semantics of the query correspond to an outer join that

takes as input the violations of each cleaning operator that appears

in the query, and outputs the entities that contain at least one viola-

tion. Except for the [FD|DEDUP|CLUSTER BY] part, the syntax and

semantics of the operators are equivalent to that of SQL.

We now analyze the syntax of each cleaning operator and present

the semantics of CleanM using the monoid calculus. We also go

through the motivating example of the introduction, which checks

the rule address→ pre f ix(phone), detects duplicate customers us-

ing Levenshtein distance (LD) as similarity metric, and validates

customer names using token filtering and a dictionary. The corre-

sponding CleanM query is the following:

SELECT c.name,c.address, *
FROM customer c, dictionary d
FD(c.address, prefix(c.phone))
DEDUP(token filtering, LD, 0.8, c.address)
CLUSTER BY(token filtering, LD, 0.8, c.name)

Denial Constraints. The general category of denial constraints is

expressible using vanilla SQL, thus CleanM reuses SQL syntax to

express them. CleanM makes an exception for functional depen-

dencies – the most popular sub-category of denial constraints – and

uses the FD operator shown in Listing 1. The query result contains

the entities that violate the FD rule. LHS and RHS correspond to

the left and right-hand side of the rule. Both LHS and RHS can

involve more than one attribute. The semantics of the FD operator

correspond to the following comprehension:

groups:=for(d<-data) yield filter(d.term,algo),
for(g<-groups,g.count>1) yield bag g

The comprehension groups the input dataset using the filter monoid

based on a term attribute and then returns the groups containing

more than one item. The FD: address → pre f ix(phone) of the

running example corresponds to the following comprehension:

groups:=for(c<-cust)yield filter(prefix(c.phone)),
for(g<-groups,g.count>1) yield bag g

Duplicate Elimination. The DEDUP operator of Listing 1 com-

prises the <op> field that represents the filtering operation to

use for the similarity join, <metric>, which is the distance met-

ric to be used (e.g., Jaccard, Euclidean), and <theta>, which is

the similarity threshold. The <attributes> field represents the

set of attributes that determine whether two entities are equal.

<attributes>, <metric> and <theta> are optional – a default value

is set if they are missing.

The query result contains the duplicate entities. The semantics

of the DEDUP operator correspond to the following comprehension:

groups:=for(d <- data) yield filter(d.terms,algo),
for(g<-groups,p1<-g.partition,p2<-g.partition),

similar(metric,p1.atts,p2.atts,θ))
yield bag(p1, p2)

The filter monoid groups the data based on the specified attributes

or by building clusters based on that attributes. Then, the entries

within each group are compared against each other using a similar-

ity metric. The comprehension outputs pairs of records that are po-

tential duplicates. partition is a built-in field that represents the

set of records that correspond to each group. The comprehension

of the deduplication part of the running example is the following:

groups:=for(c<-cust) yield filter(c.address,tf),
for(g<-groups,p1<-g.partition,p2<-g.partition),
LD(p1.atts,p2.atts)>0.8) yield bag(p1, p2)

Term Validation. The CleanM syntax for term validation requires

the CLUSTER BY operator of Listing 1, which resembles DEDUP. The

<term> field stands for the attribute(s) based on which the simi-

larity is measured. CLUSTER BY requires also an additional table in

the <FROMCLAUSE> that represents the dictionary.

The query result couples each dirty term with the set of dictio-

nary terms that are similar to it. The similar dictionary terms cor-

respond to the suggested repair of the invalid term. The semantics

of CLUSTER BY correspond to the following comprehension:

dataGroup:=for(d<-data) yield filter(d.term,algo),
dictGroup:=for(d<-dict) yield filter(d.term,algo),
similarTerms:=for(d1<-dataGroup, d2<-dictGroup,

d1.key = d2.key,
similar(metric,d1.term,d2.term,θ))

yield list(d1.term, d2.term)

First, the input is clustered based on a term attribute whose values

potentially contain inconsistencies. The same process is followed

for the entries of the dictionary. Then, the comprehension tries

to find similar data-dictionary pairs by comparing only the clusters

that correspond to the same grouping key. The respective validation

of the customer name in the running example is the following:

dataGroup:=for(c<-cust) yield filter(c.name,tf),
dictGroup:=for(d<-dict) yield filter(d.name,tf),
similarTerms:=for(d1<-dataGroup, d2<-dictGroup,
d1.key = d2.key,LD(d1.name,d2.name)>0.8)
yield list(d1.name, d2.name)

Transformations. CleanM differentiates between syntactic and se-

mantic transformations. Syntactic transformations are lightweight

repair operations such as splitting an attribute, and thus can be ex-

pressed using vanilla SQL. Semantic transformations require an

auxiliary table that contains value mappings. Thus, they reuse the

term validation constructs, with the difference that the projection

list contains the desirable attribute from the auxiliary table as a sug-

gested repair. For example, one could map airports to cities using

an auxiliary table that contains airport-to-city mappings.

Summary. CleanM exposes users to a SQL-like extension: Each

operator extends the syntax of SQL based on the functionality it re-

sembles. Every operator is deeply integrated in CleanM instead of

1471

Operator
Name

Select (Outer)
Join

Reduce Nest (Outer)
Unnest

Operator

Symbol

σp(X) X ✶p Y

X ✶p Y

∆
⊕/e
p Γ

⊕/e/ f
p µ

path
p (X)

µ
path
p (X)

Superscript p: Filtering Expression e: Output Expression

& Subscript f : Groupby Expression path: Field to unnest

⊕: Output Type / Monoid

Table 1: The operators of the nested relational algebra.

being treated as a black-box UDF; all operators end up translated

to the monoid comprehension calculus. Thus, CleanM treats clean-

ing operations as inherently parallelizable, offers operation com-

posability, and can operate over non-relational data. The monoid

representation allows for high-level optimizations, influenced by

data mining techniques, that avoid the computation of cross prod-

ucts during data cleaning. The next two sections will present repre-

sentations that are more suitable for additional optimization tasks.

5. UNIFIED ALGEBRAIC OPTIMIZATION
The result of the optimizations at the monoid comprehension ab-

straction level is a rewritten comprehension. While the comprehen-

sion has undergone optimizations such as filter pushdown and par-

tial unnesting, there are still opportunities for optimizing the over-

all cleaning task. Therefore, the second abstraction level translates

a comprehension into a nested relational algebra expression [18],

which is more suitable for the next round of CleanM optimizations.

The full algorithm for rewriting a comprehension to an algebraic

plan is presented in [18]; the result is a logical plan that uses the

operators of Table 1. Select and join resemble the relational alge-

bra synonymous operators. The unnest operators explicitly handle

nested data values. The reduce and nest operators overload the rela-

tional projection and grouping operators; they are also responsible

for reasoning in terms of different monoid types, and transform-

ing inputs of a specific monoid type (e.g., the k-means monoid) to

output of a potentially different monoid type (e.g., a bag / multiset).

There are three major benefits from the algebraic representa-

tion: First, there exist rules, which remove any leftover query nest-

ings [18]. Query unnesting is useful in data cleaning, since query

and data nestings are inherent in cleaning operations. Second, by

expressing all different monoid types into a common, confined al-

gebra, it becomes possible to detect opportunities for intra-operator

and inter-operator optimizations, such as work sharing between op-

erators. The running example depicted in Figure 1 shows the first

two benefits. Finally, by translating comprehensions into an alge-

braic form, the optimization techniques that have been proposed in

the context of the established relational algebra become applicable

over an unnested, simplified query representation.

Optimizations at the algebra level

CleanM queries benefit from many expression simplifications that

are possible at query rewrite time [18]. After having removed the

nestings of the query, apart from the relational algebra optimiza-

tions, the optimizer can detect common patterns and enable work

sharing between operators. In the following we present the simpli-

fications that the query of our running example goes through.

The query checks for invalid terms, duplicates, and functional

dependency violations. A baseline approach would treat each

cleaning operation as a separate task which traverses the input and

detects violations. Treating each operation on its own results in the

plans A, B, C of Figure 1. Plan A performs term validation via to-

ken filtering: It unnests the list of names in order to compute the

tokens of each name, then groups by token to detect similar names.

By injecting explicit unnest operators, CleanM avoids having to

access repeating BLOB-like tuples of the form (tokeni,{names})

𝐶𝑢𝑠𝑡
Δ

Γ𝑐𝑜𝑢𝑛𝑡>1𝑎𝑑𝑑𝑟𝑒𝑠𝑠
Plan B

𝐶𝑢𝑠𝑡
Δ

Γ𝑠𝑖𝑚>0.8𝑎𝑑𝑑𝑟𝑒𝑠𝑠
Plan C

𝐶𝑢𝑠𝑡
Δ

Γ(𝑐𝑛𝑡>1∧𝑠𝑖𝑚>0.8)𝑎𝑑𝑑𝑟𝑒𝑠𝑠
Plan BC

𝜇𝑡𝑟𝑢𝑒𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒)𝐶𝑢𝑠𝑡 𝐷𝑖𝑐𝑡𝜇𝑡𝑟𝑢𝑒𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒)Γ𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒) Γ𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒)⋈Δ𝑠𝑖𝑚𝑖𝑙𝑎𝑟Plan A

𝑔. 𝑡𝑜𝑘 = 𝑡𝑜𝑘𝑒𝑛(𝑑.𝑛𝑎𝑚𝑒) Δ

𝐶𝑢𝑠𝑡

Overall Plan

A BC

⟗
Figure 1: Algebraic plans for our running example, and optimized

rewritten plans that coalesce operators and share work.

Operator Spark Equivalent

σp filter

∆e
p map→ filter

µ
path
p flatmap(x→path.filter(y→ p(x, y)).map(y→(x,y)))

µ
path
p

flatmap(x→r=path.filter(y→ p(x, y)),
if(r.empty) (x, null) else r.map(y→(x,y)))

Γ
⊕/e/ f
p aggregateByKey→ mapPartitions

✶ f (A)=g(B) join

✶ f (A) θ g(B) theta join→ filter

✶ f (A)=g(B) left outer join

✶ f (A) θ g(B) theta join→ map

Table 2: Translation of algebraic operators to Spark operators.

Bold parts introduce new Spark operators or deviate from the trans-

lation that Spark SQL would have performed.

for each element of a nested collection to be processed; it operates

over smaller (tokeni,name j) tuples instead [26]. Plan B checks the

functional dependency: it computes groups of address, and outputs

the groups containing more than one phone prefix. Plan C checks

for duplicates by again building groups of address and checking

within each group for entities that are more than 80% similar.

The algebraic rewriter of CleanM detects the commonalities of

Plan B and C, and instead produces Plan BC, which coalesces the

two grouping passes into one, and applies both filters at once. In

addition, given that all the sub-plans scan the same table, the alge-

braic rewriter produces a DAG-like overall plan, which scans the

dataset once, performs the cleaning operations in parallel, and then

joins the violating entries of each side using an outer join. In sum-

mary, translating cleaning operations into a unifying algebraic form

enables, among others, powerful forms of query and data unnest-

ing, coalescing operators, and reducing duplicate work.

6. EXECUTING DATA CLEANING TASKS
The result of optimizations at the algebraic abstraction level of

CleanM is a succinct logical plan. The last step of the rewriting

process generates a physical plan that is compatible with the exe-

cution engine that will perform the data cleaning tasks. This work

uses Spark [48] as the scale-out execution substrate, therefore the

algebraic plan gets translated to the operators of the Spark API.

Why not Spark SQL? Given that Spark is the current execution

engine for CleanM queries, an alternative approach would be to di-

rectly map CleanM to the Spark SQL module of Spark [6], which

exposes declarative query capabilities and introduces Catalyst, an

optimizer over Spark. The Catalyst optimizer, however, assumes

tabular data and only considers relational rewrites; it is thus unable

to reason about and perform the optimizations suggested so far by

this work. Also, the physical Spark plans that Catalyst generates are

agnostic to characteristics of real-world data cleaning tasks, namely

the facts that i) there is significant skew in the data touched, and

that ii) the tasks executed typically require the computation of ex-

pensive theta joins. On the contrary, in the final, third abstraction

1472

level, CleanM queries get translated into a physical execution plan

which both considers data skew and explicitly handles theta joins.

From nested algebra to Spark operators. Table 2 lists the

mapping from the nested relational algebra to Spark operators.

The mapping of the selection and reduce operators is straightfor-

ward. The unnest operators iterate through a dataset’s elements and

through a specific nested field of each element. The Nest operator,

which resembles a SQL Group By, is translated into a combination

of operators: First, aggregateByKey groups data records based on

a key. Then, mapPartitions applies a function over each partition.

Nest optionally evaluates a binary predicate (an equivalent func-

tionality to SQL HAVING). In this case, a filter operation also takes

place per partition. Finally, the Join operator gets translated into the

respective Spark equi-join operator. The handling of other types of

joins is more nuanced: By default, Spark SQL and Spark resort to a

cartesian product followed by a filtering operation. Given the high

frequency of theta joins in the domain of data cleaning, we instead

implement an alternative, statistics-aware theta join [36].

Optimizations at the physical level

When translating nested relational algebra operators into a Spark

plan, we explicitly consider the presence of i) skew in the data, and

ii) theta joins as part of the cleaning process.

Handling data skew. Value distribution in real-world data is

rarely uniform. In addition, certain data values can be more sus-

ceptible to errors. A cleaning solution must therefore remain unaf-

fected by data skew. In the context of scale-out processing, skew

handling is reflected by how one shuffles data in the context of

operations such as aggregations. Spark SQL performs sort-based

aggregation: it sorts the dataset based on a grouping key, differ-

ent data ranges of which end up in different data nodes. Then,

Spark SQL performs any subsequent computations locally on each

node. When, however, some values occur more frequently, the par-

titions created are imbalanced. Thus, the overloaded nodes lag be-

hind and delay the overall execution. On the contrary, as Table 2

shows, CleanM uses the aggregateByKey Spark operator which per-

forms the aggregate locally within each node and then merges the

partial results. Thus, CleanM i) minimizes cross-node traffic by

forwarding already grouped values, and ii) is more resilient to skew

since popular values have already been partially grouped together.

Handling theta joins. In the general case of a join with an in-

equality predicate, Spark SQL generates a plan involving a carte-

sian product followed by a filter condition. The result is suboptimal

performance when executing theta joins – one of the most frequent

operators in data cleaning. We thus implement a custom theta join

operator based on the approach of [36]. The new operator repre-

sents the cartesian product as a matrix, which it partitions into N

uniform partitions. First, the operator computes statistics about the

cardinality of the two inputs, which it then uses to populate value

histograms. Then, assuming the presence of N nodes, the operator

consults the observed value distributions to partition the matrix into

N equi-sized rectangles, and assigns each partition to a Spark node.

As a result, the operator ensures load balancing; each node checks

separately the condition on the partition for which it is responsible.

7. CleanDB: A DATA CLEANING SYSTEM
We validate the three-level design of CleanM by implementing

CleanDB, a unified cleaning and querying engine. We build Cle-

anDB by extending RAW [27], an adaptive query engine that op-

erates over raw data. Specifically, we extend the commercial ver-

sion of RAW [2], which operates over the Spark runtime. Cle-

anDB serves as a replacement layer of Spark SQL [6]; it exposes

the expressive power of CleanM without the compromises that

Parquet CSV JSON

XML ... DBMS

CleanM

Query

Monoid
Optimizer

Plan
Rewriter

Code
Generator

Monoid
Rewriter

Comprehension
Nested
Algebra

Physical
PlanAST

Spark
Runtime

Parser

Spark
Script

Figure 2: The architecture of CleanDB.

Spark SQL makes. CleanDB optimizes the cleaning operations in

a unified way and executes them in a scale-out fashion; the final

physical plan is equivalent to handwritten Spark code. The end re-

sult is a system that can both query and clean input data. In the

following, we present the components of CleanDB which extend

the respective components of RAW.

The architecture of CleanDB. Figure 2 presents the compo-

nents of CleanDB. When receiving a query, the CleanM parser

rewrites it into an abstract syntax tree (AST). Then, the Monoid

Rewriter “de-sugarizes” the AST into a monoid comprehension,

also considering the monoids presented in Section 4. The Monoid

Optimizer first applies rewrites over the input comprehension in

order to simplify it, push down any filtering expressions, flat-

ten nested comprehensions, unnest existential quantifications, etc.

Then, the optimizer rewrites the comprehension into a nested rela-

tional algebra, and performs additional rewrites and optimizations

over it, such as coalescing multiple operators into a single one.

The output of the Optimizer is a nested relational algebra ex-

pression, which the Physical Plan Rewriter translates to a plan of

physical operators. We plan to extend this level with more low-

level “building blocks”. Finally, the Code Generator dynamically

generates the Spark script that represents the input query to reduce

the interpretation overhead that hurts the performance of pipelined

query engines [33]. After the generation of the Spark script, the

Spark Executor deploys the final script in scale-out fashion.

Interestingly, Spark by default associates the result of the exe-

cution with the DAG of operations that produced it. We aim to

use this built-in data lineage support to incorporate additional data

cleaning functionality in future work [20].

8. EXPERIMENTAL EVALUATION
The experiments examine how CleanDB performs compared to

the state of the art, while demonstrating the benefits stemming from

the three optimization levels of CleanM.

Experimental Setup. We compare CleanDB against BigDans-

ing1 [29] because it is, to our knowledge, the only currently avail-

able scale-out system that explicitly targets data cleaning2. We also

compare CleanDB against an implementation on top of Spark SQL.

Spark SQL uses a relational optimizer to produce query plans,

whereas CleanDB uses a monoid-aware, three-level optimizer; we

can thus gauge the quality of the CleanM rewrites.

All experiments run on a cluster of 10 nodes equipped with 2

× Intel Xeon X5660 CPU (6 cores per socket @ 2.80GHz), 64KB

of L1 cache and 256KB of L2 cache per core, 12MB of L3 cache

shared, and 48GB of RAM. On top of the cluster runs Spark 1.6.0 –

the latest version for which BigDansing is intended. Spark launches

10 workers, each using 4 cores and 40GB of memory.

The workload we use involves i) denial constraint checks, ii) du-

plicate elimination, iii) term validation, and iv) syntactic trans-

formations. Denial constraints are a concept directly related to

database design, thus we evaluate them over the TPC-H dataset.

We use TPC-H for syntactic transformations as well. We use scale

factors 15, 30, 45, 60, and 70 of the lineitem table. Each of the five

versions comprises 90M, 180M, 270M, 360M, and 420M records

1We thank the authors of [29] for giving us access to a binary executable.
2SampleClean [46] only operates over query-specific samples.

1473

Type Parameter(s) Precision Recall F-score

tf q = 2 100% 97% 98.5%

tf q = 3 100% 96.8% 98.3%

tf q = 4 99.9% 95.9% 97.9%

K-means k = 5 99.9% 95.7% 97.8%

K-means k = 10 99.9% 94.8% 97.3%

K-means k = 20 99.9% 94% 96.9%

Table 3: Accuracy of term validation ap-

proaches over the DBLP dataset.

0

50

100

150

200

250

300

350

tf

q=2

tf

q=3

tf

q=4

kmeans

k=5

kmeans

k=10

kmeans

k=20

T
im

e
 (

m
in

u
te

s)

Term Validation: DBLP
Grouping

Similarity

Figure 3: Different configurations of

term validation.

85

90

95

100

20% 30% 40%

A
cc

u
ra

cy
 (

%
)

Noise percentage

Term Validation: DBLP - Accuracy
kmeans k=5

kmeans k=10

kmeans k=20

tf q=2

tf q=3

tf q=4

Figure 4: Accuracy of term validation as

the noise increases.

respectively. The final dataset size is 11GB, 22GB, 34GB, 45GB,

and 52GB respectively. We shuffle the order of the tuples and pro-

duce two different datasets by adding noise to 10% of the entries of

the orderkey and discount column respectively. We pick the tuples

to edit from the domain of the SF15 version, so that we increase the

skew as we increase the dataset size.

We perform duplicate elimination and term validation over the

DBLP bibliography hierarchical dataset, because these error cate-

gories occur frequently in semi-structured data. We use a subset of

DBLP that contains information about articles; each entity contains

at most 13 attributes. We add noise to 10% of the author names by

a factor of 20%, and scale up the dataset by adding extra entities;

we construct new publications by permuting the words of existing

titles and by adding authors from the active domain. The end re-

sult is a 1GB, a 5GB, and a 10GB XML dataset. We also use the

customer table of TPC-H because the implementation of duplicate

elimination in BigDansing is a UDF that is specific to customer.

We add duplicate records for 10% of customer entries, where the

number of duplicates for each record is a random value generated

using Zipf’s distribution; the number of duplicates belongs to the

intervals [1-50] and [1-100]; respectively. We create the duplicate

records by randomly editing the name and phone values. The size

of the datasets is 2.2GB and 3.1GB; respectively. We also use the

Microsoft Academic Graph (MAG) [41], which is a database of sci-

entific publications stemming from all research areas. We evaluate

duplicate elimination over the original version of MAG, since its

main issue is the existence of duplicate publications; the same pub-

lication may appear multiple times, with variations in the title and

DOI fields, or with missing fields. We build MAG by joining the

Paper, Author and PaperAuthorAffiliation datasets. The resulting

dataset contains 7 columns and has size 33GB.

We use response time and accuracy (when applicable) as metrics.

Response time includes the time taken to read the input, perform a

cleaning task, and store the detected violations. In the case of term

validation, the output includes both detected violations and sug-

gested repairs. We measure accuracy by verifying the correctness

of the repairs against a sanitized version of the dataset.

The rest of this section uses the aforementioned cleaning tasks

to visit the CleanM optimization levels, and examines how each of

them contributes to the fast and accurate responses of CleanDB.

8.1 Optimizations at the monoid level
CleanDB is the only scale-out data cleaning system that supports

term validation; Spark SQL computes the cross product of the input

dataset and a dictionary, using a UDF to compute the similarity of

each (record, dictionary value) pair, and prune non-similar entries.

The overall Spark SQL script was non-interactive in our experi-

ments. This section demonstrates the benefits of the monoid-level

optimizations and the importance of calibrating data cleaning tasks

in the context of term validation; we examine clustering and filter-

ing operations, and show the effect of calibrating each operation

based on dataset characteristics.

Term Validation

Term validation is a challenging operation for CleanDB, because it

is very resource-intensive. The next experiment measures the re-

sponse time and the accuracy of the CleanDB term validation using

different filtering algorithms and different parameters for them.

The experiment validates the author names of the flat Parquet

version of DBLP that contains 6.4M entities using the Levenshtein

distance metric. The dictionary that CleanDB consults in order to

repair the author names comprises 200K names. The experiment

launches different k-means configurations by changing the number

of centers (k) which it obtains from the dictionary. The same exper-

iment also launches different token filtering configurations using a

different token length parameter (q).

Runtime. Figure 3 presents the time taken to clean the author

names using k-means and token filtering as pruning methods, while

also using different parameters for each method. Each bar com-

prises the time taken to filter/block the data, and the time to perform

the similarity check within the groups. In the case of k-means, us-

ing more centers leads to fewer elements in each cluster. Thus, the

number of similarity checks decreases. In the case of token filter-

ing, as q increases, performance improves because the tokenization

phase produces fewer groups with fewer elements in each one, and

thus the number of checks decreases. The token filtering configura-

tions are faster than the k-means ones, except when q=2; the token

size proves to be too small and results in too many groups.

Regarding the pre-filtering step, since the tokenization process

is expensive, grouping by center is more lightweight than grouping

by token. However, the average length of author names in DBLP is

12.8, which is short enough for the tokenization to proceed without

significant overhead. Regarding similarity checks, token filtering

produces a larger number of smaller-sized groups compared to k-

means, thus the total number of pairwise comparisons is smaller.

K-means is more sensitive to the statically specified centers.

Accuracy. Table 3 measures the accuracy of the suggested re-

pairs for the term validation task examined. The experiment con-

siders precision (i.e., correct updates/total updates suggested),

recall (i.e., correct updates/total errors) and F-score as metrics.

The token filtering configurations are more accurate, because

they check the similarity of two author names whenever they have

at least one common token. Thus, even if a name is dirty, it will

contain at least one clean token that will match a token of the cor-

rect name in the dictionary. Increasing q does not hurt accuracy

noticeably. K-means becomes less accurate as the number of clus-

ters increases, because similar words end up in different clusters

and therefore are not checked for similarity. Still, all the term vali-

dation variations of CleanDB exhibit high accuracy.

Figure 4 examines the accuracy of term validation as we vary the

noise on the name attribute from 20% to 40%. To obtain a fair com-

parison, we lower the similarity threshold as we increase the noise,

so that we isolate the accuracy of the pruning algorithm and avoid

missing results that fail to pass the similarity threshold. The results

1474

0

5

10

15

20

25

30

35

CleanDB SparkSQL BigDansing
T

im
e

 (
m

in
u

te
s)

Unified data cleaning: Customer

FD2 FD1 DEDUP DEDUP+FD1+FD2

Figure 5: CleanDB rewrites three cleaning operations into a single

one, and avoids duplicate work.

show that accuracy drops slightly as we add more noise. The drop

stems from both having lower precision and lower recall. Precision

drops because some incorrect matches now pass the low similarity

threshold; recall drops because by increasing the noise, two similar

words are more likely to get assigned to different groups. However,

the drop in accuracy is negligible in all cases but the ones where

we have a bigger parameter set for token length q=4 or number of

centers k=20; these configurations are more prone to inaccuracies

because they produce clusters with fewer items.

Summary. CleanDB can use token filtering and clustering monoids

to reduce term validation checks. Both methods avoid false posi-

tives, and thus the resulting precision is close to 100%. Calibrat-

ing the algorithm parameters enables trading performance for ac-

curacy; still, the accuracy remains above 90% in most cases.

8.2 Optimizations at the algebra level
This section demonstrates the benefits of the algebraic optimiza-

tions that CleanDB performs. We focus on how CleanDB optimizes

different cleaning operations as a single task.

Unified data cleaning

This experiment resembles our rolling example, and measures the

cost of detecting duplicates and functional dependency violations

through a single query on the customer dataset; we replace the term

validation part of the example with an extra functional dependency,

because CleanDB is the only scale-out system supporting term val-

idation. The query in question examines the rules FD1 :address→
pre f ix(phone), FD2 : address → nationkey and also checks for

duplicate customers given that they appear with the same address.

We run the query as i) separate sub-queries and ii) as a single task

that also combines the partial results. Figure 5 presents the results.

Results. CleanDB detects that the tasks share a grouping on the

address field, and thus performs all operations using a single ag-

gregation step. Unifying the cleaning tasks reduces the execution

time for CleanDB. BigDansing can only apply one operation at a

time, and lacks support for values not belonging to the original at-

tributes (i.e., the result of prefix() in FD1). Spark SQL is unable

to detect the opportunity to group the tasks into one. It starts the

cleaning tasks in parallel since they share a common data scan, but

then performs a full outer join to combine the output of each op-

eration; unified execution ends up being more expensive than the

standalone one. Still, even considering the separate execution, Cle-

anDB outperforms the other systems because of its explicit skew

handling when performing FD checks and deduplication.

Transformations

This experiment measures the cost of applying syntactic transfor-

mations over the SF70 Parquet version of TPC-H. The experiment

examines the added cost when performing lightweight cleaning

tasks compared to a traversal of the dataset that projects all its at-

tributes. We consider filling missing values and splitting dates. We

fill empty values of the quantity attribute using the average value of

0

10

20

30

15 25 35 45 55 65

T
im

e
 (

m
in

)

Scale Factor

Denial Constraints: TPC-H CSV

BigDansing SparkSQL CleanDB

(a)

0

2

4

6

15 25 35 45 55 65

T
im

e
 (

m
in

)

Scale Factor

Denial Constraints: TPC-H

Parquet

SparkSQL CleanDB

(b)

Figure 6: Cost of checking for violations of functional dependen-

cies over TPC-H.

the existing quantities. We split the receipt date into day, month,

and year fields. We also measure the cost of applying the afore-

mentioned operations using a single CleanM query.

Operation Slowdown

Split date 1.15×
Fill values 1.15×

Split date & Fill values (two steps) 2.3×
Split date & Fill values (one step) 1.19×

Table 4: Overhead introduced by performing syntactic transfor-

mations in a plain query. The optimizer of CleanDB applies both

operations in one go and reduces overhead by ∼ 2×.

Results. Table 4 shows the slowdown that each cleaning task in-

curs compared to executing the plain query. The individual costs of

splitting the dates and filling missing values are almost masked by

the query cost. When applying each cleaning operation one after

the other, the overall slowdown is computed by adding the overall

running times for each dataset traversal. However, CleanDB is able

to apply both cleaning operations in one go: The overall cost is then

similar to the cost of only applying a single operation, because the

execution plan computes the average quantity and then performs

both the replacement of missing values and the splitting of the re-

ceipt column in a single dataset pass. In summary, CleanDB can

intertwine analytics and lightweight cleaning operations, while re-

lying on its optimizer to identify and prune duplicate work.

Summary. Instead of treating each type of cleaning operation

as a standalone, black-box implementation, CleanDB optimizes a

data cleaning workflow as a whole, identifying optimization oppor-

tunities even across different operations. CleanM enables such op-

timizations because it uses a single abstraction to express all clean-

ing tasks, and an optimizable algebra as its backend.

8.3 Optimizations at the physical level
This section shows how the physical-level optimizations of Cle-

anDB that focus on handling skew and non-equality predicates ac-

celerate denial constraint and duplicate elimination tasks.

Denial Constraints

This experiment measures the cost of validating two rules. Rule

φ is a functional dependency which states that the order informa-

tion of an item determines its supplier. Rule ψ is a general denial

constraint stating that an item cannot have a bigger discount than a

more expensive item; the filter on price has a selectivity of 0.01%.

φ : orderkey, linenumber→ suppkey and

ψ :∀t1, t2 t1.price < t2.price & t1.discount > t2.discount

& t1.price < [X]
The straightforward way to detect functional dependency viola-

tions using (Spark) SQL is a self-join query. However, traversing

a dataset twice hurts performance. Thus, we benchmark rule φ in

Spark SQL using a query which groups the data in a way similar

1475

to CleanM. In order to collect all the distinct l suppkey values of

each group, we implement a user-defined aggregate function that

behaves similar to GROUP CONCAT.

FD Results. Figures 6(a), 6(b) present the time taken to detect

violations of φ as we increase the size of TPC-H. We present the re-

sults for both CSV (Figure 6(a)) and Parquet (Figure 6(b)). Parquet

is only supported by CleanDB and Spark SQL; we omit BigDans-

ing in Figure 6(b). The response times of Figure 6(b) are shorter

than those of Figure 6(a) because Parquet is a binary columnar op-

timized data format which also supports compression.

CleanDB is faster than BigDansing and Spark SQL regardless

of the underlying format. BigDansing performs hash-based ag-

gregation: it shuffles the data based on a hash function to create

blocks that share the same orderkey and linenumber, and then it-

erates through each block to check for violations. Spark SQL per-

forms sort-based aggregation: it sorts the entire dataset based on

the (orderkey, linenumber) pair, and different data ranges end up

in different data nodes. Then, it performs the aggregate compu-

tations locally on each node. Spark SQL outperforms BigDans-

ing because the sort-based shuffle implementation of Spark is more

efficient than the hash-based one [47]: The hash-based approach

stresses the overall system memory and causes a lot of random I/O,

whereas the sort-based approach uses external sorting to alleviate

these issues. CleanDB considers data skew when creating the phys-

ical query plan: It performs the aggregate operation locally within

each data node and then merges the partial results, thus minimiz-

ing cross-node traffic. Therefore, CleanDB outperforms the other

systems because it translates the query into a set of Spark operators

that do not require data exchange until the final merge phase.

Scale Factor 15 30 45 60 70

Time (min) 1.7 2 3.7 4.9 5.65

Table 5: Denial constraints involving inequalities as the dataset

size increases. All systems beside CleanDB fail to terminate.

DC Results. The detection of violations of rule ψ involves a

self-join that checks the inequality conditions. Table 5 shows that

only CleanDB was able to successfully complete the data constraint

check. Spark SQL was unable to compute the expensive cross

product to evaluate the conditions. BigDansing and CleanDB rely

on a custom theta join operator each. The theta join implementa-

tion of BigDansing attempts to prune the pairwise comparisons in-

volved in the computation of an inequality join by first partitioning

the data, then computing min-max values per partition, and then

only cross-comparing partitions whose min-max ranges overlap.

The number of avoidable checks, however, is not guaranteed to be

high, unless the partitioning of the first step can be fully aligned

with the fields involved in the DC; indeed, excessive data shuffling

makes BigDansing non-responsive for rule ψ. On the contrary, Cle-

anDB spends more effort to obtain global data statistics, and does a

better job balancing the theta join load among the Spark executors.

Duplicate Elimination

The following experiments evaluate duplicate detection over

DBLP, MAG and TPC-H customer table; the duplicate detection

implementation of BigDansing is specific to the customer table.

We demonstrate the importance of being able to handle heteroge-

neous datasets by considering multiple different representations for

DBLP: We consider i) a JSON version, which has become the most

popular data exchange format, ii) a Parquet version that preserves

data nestings, iii) a “flat” CSV version, and iv) a “flat” Parquet ver-

sion. We obtain the last two versions by flattening the entities of the

nested input, that is, if a publication has more than one author, then

0

10

20

30

40

50

CleanDB SparkSQL

T
im

e
 (

m
in

u
te

s)

Duplicate Elimination:

DBLP 5GB

JSON Parquet

CSV_flat Parquet_flat

(a)

0

10

20

30

40

50

CleanDB SparkSQL

T
im

e
 (

m
in

u
te

s)

Duplicate Elimination:

DBLP 10GB

JSON Parquet

CSV_flat Parquet_flat

(b)

Figure 7: Duplicate elimination over different representations of

DBLP. We simplified the dataset for Spark SQL to terminate.

0

5

10

15

20

25

customers 50 customers 100

T
im

e
 (

m
in

u
te

s)

Duplicate Elimination: Customer

CleanDB BigDansing SparkSQL

(a)

0
100
200
300
400
500
600

MAG2014 MAGtotal

T
im

e
 (

m
in

u
te

s)

Duplicate Elimination: MAG

CleanDB SparkSQL

>10h

(b)

Figure 8: Duplicate elimination over Customer and MAG.

the publication appears in multiple records – one for each author;

a common practice followed by relational systems. We compare

the response time of CleanDB against Spark SQL. We consider two

DBLP publications to be duplicates if they appear on the same jour-

nal, have the same title, and the similarity of their attributes exceeds

80% – we assume that the title and journal attributes are “cleaner”

than the rest. Both CleanDB and Spark SQL create blocks based on

the journal and title values to reduce pairwise comparisons. Sim-

ilarly, two MAG publications are duplicates if they appear on the

same year, have the same author id, and are more than 80% similar.

DBLP Deduplication Results. Spark SQL initially was unable

to complete the elimination task, even for an input size of 1GB, be-

cause it is sensitive to data skew. Therefore, we removed the most

frequently occurring titles from the dataset to obtain a more uni-

form version and enable the comparison against Spark SQL. The

size of the uniform dataset varies from 5GB to 10GB when stored

as XML, and the number of entries ranges from 6.4 to 64 million.

For the JSON, nested Parquet, “flat” CSV, and “flat” Parquet ver-

sions, the size reached 7GB, 2GB, 14GB, and 2.4GB respectively.

Figure 7 presents the response time of the systems that are able

to process DBLP. Both CleanDB and Spark SQL are faster when

running over the nested JSON and Parquet representations, because

flattening the data introduced many more tuples to be processed;

thus, being able to operate over the original, non-relational data

representation can be a significant asset for many use cases.

Regardless of format, Spark SQL exhibits lower response times

for the 5GB case, yet scales less gracefully and is slower than

CleanDB for the 10GB version. The explanation for this behav-

ior resembles the one for DCs: Spark SQL uses sort-based shuf-

fling based on the journal, title attributes to assign the records of

each group into the same partition and then computes the similar-

ity within each group. On the contrary, CleanDB aggregates data

locally, and then merges the partial results together. The physi-

cal rewrites of CleanDB reduce network traffic and are resilient to

skew. However, in the simplified dataset versions that we produced

to be able to use Spark SQL, data ends up following a uniform

distribution, thus favoring Spark SQL. Still, when the data size in-

creases, some of the values again occur more frequently than oth-

ers; Spark SQL creates imbalanced partitions which overload some

1476

nodes and thus delay the overall execution time because they have

to perform more similarity checks than other nodes.

Customer Deduplication Results. Figure 8(a) presents the re-

sponse time of all systems over the customer dataset. BigDansing

and Spark SQL perform poorly because of the suboptimal way in

which they construct the value blocks to be checked for duplicates;

instead of grouping values locally and then shuffling them to other

nodes, they shuffle the entire dataset. CleanDB scales better than

the other systems because of its explicit skew handling.

MAG Deduplication Results. Figure 8(b) presents the response

time of all systems over the MAG dataset. Spark SQL was unable

to execute the task for the whole dataset, thus we also consider a

6.3GB subset which contains publications from year 2014. MAG is

a real-world, highly skewed dataset; CleanDB uses skew-resilient

primitives, and thus significantly outperforms Spark SQL.

Summary. The physical-level optimizations, namely support for

data skew and theta joins, ensure that CleanDB scales gracefully,

and handles realistic datasets for which its competitors are unable

to terminate successfully. The experiments also show the impor-

tance of allowing data cleaning over the original, intended data for-

mat; cleaning nested data proved to be faster when considering the

original nested representation instead of flattening all entries.

9. CONCLUSION
Practitioners typically perform manual data cleaning or resort to

a number of different cleaning tools – one per error type. Being

forced to use multiple tools is inconvenient, makes it hard to ap-

ply data cleaning operations iteratively until the user considers data

quality to be satisfactory, and seldom guarantees that a cleaning

script will be efficiently optimized and executed as a whole.

This work introduces CleanM, a declarative query language that

allows users to express their different cleaning scripts. CleanM ex-

poses a wide variety of parameterizable data cleaning primitives

which a user can apply over her data. CleanM relies on a powerful,

parallelizable query calculus, and a three-level optimization pro-

cess; all the operations included in a cleaning script are translated

to the calculus, and then optimized as one unified task.

We implement CleanDB, a scale-out querying and cleaning frame-

work. CleanDB exposes the functionality of CleanM over multiple

types of data sources. CleanDB scales better than existing data

cleaning solutions, and handles cases that other systems lack sup-

port for / are unable to serve due to performance issues.

Acknowledgments. We would like to thank the reviewers for

their valuable comments and suggestions on how to improve the

paper. This work is partially funded by the EU FP7 programme

(ERC-2013-CoG), Grant No 617508 (ViDa).

10. REFERENCES
[1] KNIME. https://www.knime.org/.

[2] RAW Labs. http://www.raw-labs.com/.

[3] Z. Abedjan et al. DataXFormer: A robust transformation discovery system. In

ICDE, 2016.

[4] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb:

Efficient query execution on raw data files. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’12,

pages 241–252, New York, NY, USA, 2012. ACM.

[5] H. Altwaijry, S. Mehrotra, and D. V. Kalashnikov. QuERy: A Framework for

Integrating Entity Resolution with Query Processing. PVLDB, 9(3), 2015.

[6] M. Armbrust et al. Spark SQL: Relational Data Processing in Spark. In

SIGMOD, 2015.

[7] L. Berti-Équille, T. Dasu, and D. Srivastava. Discovery of complex glitch

patterns: A novel approach to quantitative data cleaning. In ICDE, 2011.

[8] L. Berti-Équille, J. M. Loh, and T. Dasu. A masking index for quantifying

hidden glitches. Knowledge and Information Systems, 44(2):253–277, Aug.

2015.

[9] J. Bleiholder and F. Naumann. Declarative data fusion – syntax, semantics, and

implementation. In ADBIS, 2005.

[10] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird: A Framework for

Integrating Batch and Online MapReduce Computations. PVLDB, 7(13), 2014.

[11] X. Chu et al. KATARA: Reliable Data Cleaning with Knowledge Bases and

Crowdsourcing. PVLDB, 8(12):1952–1955, 2015.

[12] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into

context. In ICDE, 2013.

[13] J. Cohen et al. MAD Skills: New Analysis Practices for Big Data. PVLDB,

2(2):1481–1492, 2009.

[14] M. Dallachiesa et al. NADEEF: A Commodity Data Cleaning System. In

SIGMOD, 2013.

[15] T. Dasu and J. M. Loh. Statistical distortion: Consequences of data cleaning.

CoRR, abs/1208.1932, 2012.

[16] W. Fan. Data quality: From theory to practice. SIGMOD Record, 44(3):7–18,

Dec. 2015.

[17] L. Fegaras. Incremental query processing on big data streams. TKDE,

28(11):2998–3012, 2016.

[18] L. Fegaras and D. Maier. Optimizing Object Queries Using an Effective

Calculus. TODS, 25(4):457–516, Dec. 2000.

[19] H. Galhardas. Data Cleaning and Transformation Using the AJAX Framework.

In GTTSE, 2005.

[20] H. Galhardas et al. Improving data cleaning quality using a data lineage facility.

In DMDW, 2001.

[21] F. Geerts et al. That’s all folks! LLUNATIC goes open source. PVLDB,

7(13):1565–1568, 2014.

[22] D. Haas et al. Wisteria: Nurturing scalable data cleaning infrastructure. VLDB,

8(12):2004–2007, 2015.

[23] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and

deduplication. Foundations and Trends in Databases, 5(4):281–393, 2015.

[24] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String Similarity Joins: An Experimental

Evaluation. PVLDB, 7(8):625–636, 2014.

[25] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive Visual

Specification of Data Transformation Scripts. In SIGCHI, 2011.

[26] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over

Heterogeneous Data Through Engine Customization. PVLDB, 9(12), 2016.

[27] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive query

processing on RAW data. PVLDB, 7(12):1119–1130, 2014.

[28] M. Karpathiotakis et al. Just-In-Time Data Virtualization: Lightweight Data

Management with ViDa. In CIDR, 2015.

[29] Z. Khayyat et al. BigDansing: A System for Big Data Cleansing. In SIGMOD,

2015.

[30] W. Kim. On Optimizing an SQL-like Nested Query. TODS, 7(3):443–469,

1982.

[31] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient Deduplication with Hadoop.

PVLDB, 5(12):1878–1881, 2012.

[32] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures

and algorithms. In SIGMOD, 2006.

[33] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query

evaluation. In ICDE, 2010.

[34] S. Lohr. For Big-Data Scientists, ’Janitor Work’ Is Key Hurdle to Insights, The

New York Times, 2014.

[35] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-

dimensional data sets with application to reference matching. KDD, 2000.

[36] A. Okcan and M. Riedewald. Processing Theta-joins Using MapReduce. In

SIGMOD, 2011.

[37] L. Passing et al. Sql-and operator-centric data analytics in relational

main-memory databases. EDBT, 2017.

[38] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interactive Data Cleaning

System. In PVLDB, pages 381–390, 2001.

[39] A. D. Sarma, Y. He, and S. Chaudhuri. ClusterJoin: A Similarity Joins

Framework using Map-Reduce. PVLDB, 7(12):1059–1070, 2014.

[40] K.-U. Sattler, S. Conrad, and G. Saake. Adding conflict resolution features to a

query language for database federations. AJIS, 8(1), 2000.

[41] A. Sinha et al. An Overview of Microsoft Academic Service (MAS) and

Applications. WWW ’15 Companion, New York, NY, USA, 2015. ACM.

[42] W. M. Soon, H. T. Ng, and C. Y. Lim. A Machine Learning Approach to

Coreference Resolution of Noun Phrases. Computational Linguistics,

27(4):521–544, 2001.

[43] M. Stonebraker et al. Data Curation at Scale: The Data Tamer System. In CIDR,

2013.

[44] R. Verborgh and M. D. Wilde. Using OpenRefine. Packt Publishing, 2013.

[45] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on

Mathematical Software, 11(1):37–57, Mar. 1985.

[46] J. Wang et al. A Sample-and-clean Framework for Fast and Accurate Query

Processing on Dirty Data. In SIGMOD, 2014.

[47] R. Xin. Made sort-based shuffle the default implementation, Spark Issue 3280,

2014.

[48] M. Zaharia et al. Resilient Distributed Datasets: A Fault-tolerant Abstraction

for In-memory Cluster Computing. In NSDI, 2012.

1477

