
UC Irvine
ICS Technical Reports

Title
Cleanroom software development : an empirical evaluation

Permalink
https://escholarship.org/uc/item/11q2t17z

Authors
Selby, Richard W.
Basili, Victor R.
Baker, F. Terry

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11q2t17z
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
.... no.^G'O)

may be protected

by Copyright Law
(Title 17 U.S.C.)

CLEANROOM Software Development:

An Empirical Evaluation

Richard W. Selby, ^ Victor R. Basili, ^

and F. Terry Baker ^

^ Department of Information and Computer Science
University of California

Irvine, CA 92717

(714) 856-7403

ey

Department of Computer Science

University of Maryland

College Park, Maryland 20742

(301) 454-2002

May 1986

KEYWORDS:

software development methodology, off-line software review, software testing, soft
ware measurement, methodology evaluation, software management, empirical study

Rt^Sfarch in pan by the Air Forc-^ Otfice if Srieritific Rt^sf^arcn C<)nrraci: AFOSR-F49C20-8(VC-001 to the University
of Maryland and the U'niversiry of California Faeuit)- Research Fellowship Pr'ifram. Computer •jiippcrr pr-H-uied in part by che

C'linpiit-^r 5cien*'e <.'enter at the University ..f Maryl ui 1

ABSTRACT

The Cleanroom software development approach is Intended to produce highly reli
able software by integrating formal methods for specification and design, nonexecutlon-
based program development, and statistically-based independent testing. In an empiri
cal study, 15 three-person teams developed versions of the same software system (800 —
2300 source lines); ten teams applied Cleanroom, while five applied a more traditional
approach. This analysis characterizes the effect of Cleanroom on the delivered product,
the software development process, and the developers.

The major results of this study are the following, (l) Most of the developers were
able to apply the techniques of Cleanroom effectively (six of the ten Cleanroom teams
delivered at least 91% of the required system functions). (2) The Cleanroom teams'
products met system requirements more completely and had a higher percentage of suc

cessful operationally generated test cases. (3) The source code developed using Clean
room had more comments and less dense control-flow complexity. (4) The more success
ful Cleanroom developers modified their use of the implementation language; they used

more procedure calls and IF statements, used fewer CASE and WHILE statements, and
had a lower frequency of variable reuse (average number of occurrences per variable).
(5) All ten Cleanroom teams made all of their scheduled intermediate product deliveries,
while only two of the five non-Cleanroom teams did. (6) Although 86% of the Clean
room developers indicated that they missed the satisfaction of program execution to
some extent, this had no relation to the product quality measures of implementation

completeness and successful operational tests. (7) Eighty-one percent of the Cleanroom
developers said that they would use the approach again.

Table of Contents

1 Introduction 1

2 Cleanroom Development I

2.1 Cleanroom Software Development 1

2.1.1 Software Life Cycle of Executable Increments 2

2.1.2 Formal Methods for Specification and Design 2

2.1.3 Development without Program Execution 3

2.1.4 Statistically-Based, Independent Testing 3

2.2 Introducing Cleanroom into a Development Environment 5

2.3 Cleanroom vs. Prototyping 5

2.4 Tool Use in Cleanroom 6

3 Investigation Goals 6

4 Empirical Study Using Cleanroom 7

4.1 Subjects 7

4.2 Project Developed 8

4.3 Cleanroom Development Approach vs. Traditional Approach 8

4.4 Project Milestones 9

4.5 Operational Testing of Projects 10

4.6 Project Evaluation 11

5 Data Analysis and Interpretation 11

5.1 Characterization of the Effect on the Product Developed 11

5.1.1 Operational System Properties 12

5.1.2 Static System Properties 14

5.1.3 Contribution of Programmer Background 17

5.1.4 Summary of the Effect on the Product Developed 17

5.2 Characterization of the Effect on the Development Process 18

5.2.1 Summary of the Effect on the Development Process 20

5.3 Characterization of the Effect on the Developers 20

5.3.1 Summary of the Effect on the Developers 22

5.4 Distinction Among Teams 22

6 Conclusions 23

7 Acknowledgement 27

8 Appendix A 27

9 References 28

1. Introduction

The need for discipline in the software development process and for high quality

software motivates the Cleanroom software development approach. In addition to im

proving the control during development, this approach is intended to deliver a product

that meets several quality aspects; a system that conforms with the requirements, a sys

tem with high operational reliability, and source code that is easily readable.

Section II describes the Cleanroom approach and Section III presents a framework

of goals for characterizing its effect. Section IV describes an empirical study using the

approach. Section V gives the results of the analysis comparing projects developed us

ing Cleanroom with those of a control group. The overall conclusions appear in Section

VI.

2. Cleanroom Development

The following sections describe the Cleanroom software development approach, dis

cuss its introduction to an environment, describe the relationship of Cleanroom to soft

ware prototyping, and explain the role of software tools in Cleanroom development.

2.1. Cleanroom Software Development

The IBM Federal Systems Division (FSD) 'Dyer &: Mills 81! 'Dyer 82; Dyer k.

Mills 82; [Dyer 85i iCurrit et al. 86i presents the Cleanroom software development

method as a technical and organizational approach to developing software with

certifiable reliability. The idea is to deny the entry of defects during the development of

software, hence the term "•Cleanroom." The focus of the method, which is an extension

of the FSD software engineering program [Dyer et al. 80] , is imposing discipline on the

development process by integrating formal methods for specification and design,

nonexecution-based program development, and statistically-based independent testing.

These components are intended to contribute to a software product that has a high pro

bability of zero defects and consequently a high measure of operational reliability.

2.1.1. Software Life Cycle of Executable Increments

In the Cleanroom approach, software development is organized around the incre

mental development of the software product [Currit et al. 86] . Instead of considering

software design, implementation, and testing as sequential stages in a software life cycle,

software development is considered as a sequence of executable product increments.

The increments accumulate over the development life cycle and result in a final product

with full functionality.

2.1.2. Formal Methods for Specification and Design

In order to support the life cycle of executable increments, Cleanroom developers

utilize "structured specifications'' to divide the product functionality into deeply nested

subsets that can be developed incrementally. The mathematically-based design method

ology in Cleanroom jDyer et al. 80] incorporates the use of both structured specifications

and state machine models Ferrentino Mills 77: . A systems engineer introduces the

structured specifications to restate the system requirements precisely and organize the

complex problems into manageable parts iParnas 72; . The specifications determine the

"system architecture" of the interconnections and groupings of capabilities to which

state machine design practices can be applied. System implementation and test data

formulation can then proceed from the structured specifications independently.

2.1.3. Development without Program Execution

The right-the-first-time programming methods used in Cleanroom are the ideas of

functionally based programming in Mills 72b{ [Linger, Mills & Witt 79] . The testing

process is completely separated from the development process by not allowing the

developers to test and debug their programs. The developers focus on the techniques of

code reading by stepwise abstraction Linger, Mills & Witt 79] , code inspections iFagan

76] , group walkthroughs [Myers 761 , and formal verification [Hoare 69] [Linger, Mills

Witt 79] [Shankar 82] [Dyer 83l to assert the correctness of their implementation. These

nonexecution-based methods are referred to as "'off-line software review techniques" in

this paper. These constructive techniques apply throughout all phases of development,

and condense the activities of defect detection and isolation into one operation. Empiri

cal evaluations have suggested that the software review method of code reading by step-

wise abstraction is at least as effective in detecting faults as execution-based methods

[Basili & Selby 85: iSelby 86; . The intention in Cleanroom is to impose discipline on

software development so that system correctness results from a coherent, readable

design rather than from a reliance on execution-based testing. The notion that "Well,

the software should always be tested to find the faults'' is eliminated.

2.1.4. Statistically-Based, Independent Testing

In the statistically based testing strategy of Cleanroom, independent testers simu

late the operational environment of the system with random testing. This testing pro

cess includes defining the frequency distribution of inputs to the system, the frequency

distribution of different system states, and the expanding range of developed system

capabilities. Test cases then are chosen randomly and presented to the series of product

increments, while concentrating on functions most recently delivered and maintaining

the overall composite distribution of inputs. The independent testers then record ob

served failures and determine an objective measure of product reliability. Since software

errors tend to vary widely in how frequently they are manifested as failures [Adams 84] ,

operational testing is especially useful to assess the impact of software errors on product

reliability. In addition to the statistical testing approach, the independent testers sub

mit a limited number of test cases to ensure correct system operation for situations in

which a software failure would be catastrophic. It is believed that the prior knowledge

that a system will be evaluated by random testing will affect system reliability by en

forcing a new discipline into the system developers.

The independent testing group operationally tests the software product increments

from a perspective of reliability assessment, rather than a perspective of error detection.

The responsibility of the test group is, therefore, to certify the reliability of the incre

ments and final product rather than assist the development group in getting the product

to an acceptable level of quality. One approach for measuring the reliability of the in

crements is through the use of a projected mean-time-between-failure (MTTF). MTTF

estimations, based on user representative testing, provide both development managers

and users with a useful, readily interpretable product reliability measure. Statistical

models for calculating MTTF's projections include Littlewood & Verrall 73: Musa 75

jLittlewood 81; [Shanthikumar 81' Currit 83j jGoel 831 'Currit et al. 86i .

2.2. Introducing Cleanroom into a Development Environment

Before introducing the Cleanroom methodology into a software production environ

ment, the developers need to be educated in the supporting technology areas. The tech

nology areas consist of the development techniques and methods outlined in the above

sections describing the components of Cleanroom. Potential Cleanroom users should

also understand the goals of the development approach and be motivated to deliver high

quality software products. One fundamental aspect of motivating the developers is to

convince them that they can incorporate error prevention into the software process and

actually produce error-free software. This "error-free perspective" is a departure from a

current view that software errors are always present and error detection is the critical

consideration.

2.3. Cleanroom vs. Prototyping

The Cleanroom methodology and software prototyping are not mutually exclusive

methods for developing software — the two approaches may be used together. The

starting point for Cleanroom development is a document that states the user require

ments. The production of that requirement document is an important portion of the

software development process. Software prototyping is one approach that may be used

to determine or refine the user requirements, and hence, produce the system require

ments document 'Kerola k. Freeman 81 Zelkowitz k Branstad 82; . After the produc

tion of the requirements document, the prototype would be discarded and the Clean

room methodology could be applied.

2.4. Tool Use in Cleanroom

Since Cleanroom developers do not execute their source code, does that mean that

Cleanroom prohibits the use of tools during development? No —software tools can play

an important role in the Cleanroom development approach. Various software tools can

be used to help construct and manipulate the system design and source code. These

tools can also be used to detect several types of errors that commonly occur in the sys

tem design and source code. The use of such tools facilitates the process of reviewing

the system design and source code prior to submission for testing by the independent

group. Some of the tools that may assist Cleanroom developers include various static

analyzers, data flow analyzers, syntax checkers, type checkers, formal verification check

ers, concurrency analyzers, and modeling tools.

3. Investigation Goals

Some intriguing aspects of the Cleanroom approach include (1) development

without testing and debugging of programs, (2) independent program testing for quality

assurance (rather than to find faults or to prove "correctness" Howden 76;), and (3)

certification of system reliability before product delivery. In order to understand the

effects of using Cleanroom, we proposed the following three goals: (l) characterize the

effect of Cleanroom on the delivered product. (2) characterize the effect of Cleanroom on

the software development process, and (3) characterize the effect of Cleanroom on the

developers. An application of the goal;question/metric paradigm 'Basili & Selby 84;

^Basili & Weiss 84- lead to the framework of goals and questions for this study which

appears in Figure 1. The empirical study executed to pursue these goals is described in

6

the following section. |
I

4. Empirical Study Using Cleanroorn

This section describes an empirical study comparing team projects developed using

i

Cleanroom with those using a more conventional approach.
i

i

4.1. Subjects I

. •

Subjects for the empirical study caime from the "Software Design and Develop-

V. R. Basili at the University of Maryland in

the Falls of 1982 and 1983. The initial segment of the course was devoted to the presen

tation of several software development methodologies, including top-down design, modu

lar specification and design, PDL, chief programmer teams, program correctness, code

reading, walkthroughs, and functional and structural testing strategies. For the latter

part of the course, the individuals were divided into three-person chief programmer

teams for a group project .'Baker 72] [Mills 72ai [Baker 8ll . We attempted to divide

the teams equally according to professional experience, academic performance, and im

plementation language experience. The subjects had an average of 1.6 years professional

experience and were university computer science students with graduate, senior, or

junior standing. The subjects' professional experience predominantly came from govern

ment organizations and private software contractors in the Washington, D.C. area. Fig

ure 2 displays the distribution of the subjects' professional experience.

ment" course taught by F. T. Baker and

4.2. Project Developed

A requirements document for an electronic message system (read, send, mailing

lists, authorized capabilities, etc.) was distributed to each of the teams. The project was

to be completed in six weeks and was expected to be about 1500 lines of Simpl-T source

code iBasili &: Turner 76j . ^ The development machine was a Univac 1100/82 running

EXEC VIII, with 1200 baud interactive and remote access available.

4.3. Cleanroom Development Approach vs. Traditional Approach

The ten teams in the Fall 1982 course applied the Cleanroom software development

approach, while the five teams in the Fall 1983 course served as a control group (non-

Cleanroom). All other aspects of the developments were the same. The two groups of

teams were not statistically different in terms of professional experience, academic per

formance, or implementation language experience. If there were any bias between the

two times the course was taught, it would, be in favor of the 1983 (non-Cleanroom)

group because the modular design portion of the course was presented earlier. It was

also the second time F. T. Baker had taught the course.

The Cleanroom teams entered their source code on-line, used a syntax-checker (but

did not do automated type-checking across modules), and were not able to execute their

programs. The Cleanroom teams relied on the techniques of code reading, structured

^ Simpl-T is a structured language that supports several string and file handling
primitives, in addition to the usual control flow constructs available, for example, in
Pascal. If Pascal or FORTRAN had been chosen, it would have been very likely that

some individuals would have had e.xtensive experience with the language, and this would
have biased the comparison. .\lso. restricting access to a compiler that produced exe
cutable code would have been verv difficult.

walkthroughs, and inspections to prepare their evolving systems before submission for

independent testing. The non-Cleanroom teams were able to execute and debug their

programs and applied several modern programming practices: modular design, top-down

development, data abstraction, PDL, functional testing, design reviews, etc. The non-

Cleanroom method was intended to reflect a software development approach that is

currently in use in several software development organizations. Note that the non-

3
Cleanroom method was roughly similar to the "disciplined team" development method-

I
ology examined in an earlier study :Basili &: Reiter 81j .

• l!

-J One issue to consider when comparing a "newer" approach with an existing one is

j

whether one group will try harder just because they are using the newer approach. This

I
!; effect is referred to as the Hawthorne effect. In order to combat this potential effect, we

S
decided to have all the members of one course apply the same development approach.'

P In order to diffuse any of the Cleanroom developers from thinking that they were being
compared relative to a previously applied approach, we decided that Cleanroom would

be used in the earlier (1982) course. Therefore, there was no obvious competing ar-

H rangement In terms of approaches that were newer versus controlled.

1 4.4. Project Milestones

jj The objective for all teams from both groups was to develop the full system

V'; described in the requirements document. The first document every team in either group

<1 turned in contained a system specification, composite design diagram, and implementa-

" This decision also happened to result in the two groups not being as close in terms
of size as thev could have been.

tion plan. The implementation plan was a series of milestones chosen by the individual

teams which described when the various functions within the system would be available.

At these various dates — minimum one week apart, maximum two — teams from the

groups would then submit their systems for independent testing. Note that both the

Cleanroom and non-Cleanroom teams had the benefit of the independent testing

throughout development. An independent party would apply statistically-based testing

to each of the deliveries and report to the team members both the successful and unsuc

cessful test cases. The unsuccessful test cases would be included in a team's next test

session for verification. The following section briefly describes the operationally based

testing process applied to all projects by the independent tester.

4.5. Operational Testing of Projects

The testing approach used in Cleanroom is to simulate the developing system's en

vironment by randomly selecting test data from an "operational profile," a frequency

distribution of inputs to the system Thayer, Lipow Sz Nelson 78j SDuran & Ntafos 81' .

The projects from both groups were tested interactively by an independent party (i.e.,

R. W. Selby) at the milestones chosen by each team. A distribution of inputs to the

system was obtained by identifying the logical functions in the system and assigning

each a frequency. This frequency assignment was accomplished by polling eleven well-

seasoned users of an University of Maryland Vax 11/780 mailing system. Then test

data were generated randomly from this profile and presented to the system. Recording

of failure severity and times between failure took place during the testing process. The

operational statistics referred to later were calculated from fifty user-session test cases

10

run on the final system release of each team. For a complete explanation of the opera

tionally based testing process applied to the projects, including test data selection, test

ing procedure, and failure observation, see iSelby 85] .

4.6. Project Evaluation

All team projects were evaluated on their use of the particular software develop

ment techniques, the independent testing results, and a final oral interview. Both

groups of subjects were judged to be highly motivated during the development of their

systems. One reason for their motivation was their being graded based on the evalua

tion of their team projects. Information on the team projects was also collected from a

background questionnaire, a postdevelopment attitude survey, static source code

analysis, and operating system statistics.

5. Data Analysis and Interpretation

The analysis and interpretation of the data collected from the study appear in the

following sections, organized by the goal areas outlined earlier. In order to address the

various questions posed under each of the goals, some raw data usually will be presented

and then interpreted. Figure 3 presents the number of source lines, executable state

ments, and procedures and functions to give a rough view of the systems developed.

5.1. Characterization of the Effect on the Product Developed

This section characterizes the differences between the products delivered by the two

development groups. Researchers have delineated numerous perspectives of software

product quality McCall et al. 77 Cavano McCall 78 Bowen et al. 85j . and the fol-

11

lowing sections examine cispects of several of these perspectives. Initially we examine

some operational properties of the products, followed by a comparison of some of their

static properties.

5.1.1. Operational System Properties

In order to contrast the operational properties of the systems delivered by the two

groups, both completeness of implementation and operational testing results were exam

ined. A measure of implementation completeness was calculated by partitioning the re

quired system into sixteen logical functions (e.g., send mail to an individual, read a

piece of mail, respond, add yourself to a mailing list, ...). Each function in an imple

mentation was then assigned a value of two if it completely met its requirements, a

value of one if it partially met them, or zero if it was inoperable. The total for each sys

tem was calculated; a maximum score of 32 was possible. Figure 4 displays this subjec

tive measure of requirement conformance for the systems. Note that in all figures

presented, the ten teams using Cleanroom are in upper case and the five teams using a

more conventional approach are in lower case. A first observation is that six of the ten

Cleanroom teams built very close to the entire system. While not all of the Cleanroom

teams performed equally well, a majority of them applied the approach effectively

enough to develop nearly the whole product. More importantly, the Cleanroom teams

met the requirements of the system more completely than did the non-Cleanroom teams.

To compare testing results among the systems developed in the two groups, fifty

random user-session test cases were executed on the final release of each system to simu

late its operational environment. If the final release of a system performed to expecta-

12

tions on a test case, the outcome was called a "success;" if not, the outcome was a

"failure." If the outcome was a "failure" but the same failure was observed on an earlier

test case run on the final release, the outcome was termed a "duplicate failure." Figure

5 shows the percentage of successful test cases when duplicate failures are not included.

The figure displays that Cleanroom projects had a higher percentage of successful test

cases at system delivery. ^ When duplicate failures are included, however, the better

performance of the Cleanroom systems is not nearly as significant (MW = .134). ^ This

is caused by the Cleanroom projects having a relatively higher proportion of duplicate

failures, even though they did better overall. This demonstrates that while reviewing

the code, the Cleanroom developers focused less than the other group on certain parts of

the system. The more uniform review of the whole system makes the performance of

the system less sensitive to its operational profile. Note that operational environments

of systems are usually difficult to define a priori and are subject to change.

In both of the product quality measures of implementation completeness and opera

tional testing results, there was quite a variation in performance.^ A wide variation may

^ Although not considered here, various software reliability models have been pro
posed to forecast system reliability based on failure data (see Statistically-Based, In
dependent Testing).

^ To be more succinct, MW will sometimes be used to abbreviate the significance
level of the Mann-Whitney statistic.

^ An alternate perspective includes only the more successful projects from each
group in the comparison of operational product quality. When the best 60% from each
approach are examined (i.e., removing teams 'd,' 'e,' 'A,' 'E,' 'F,' and T'), the Mann-
Whitney significance level for comparing implementation completeness becomes .045 and
the significance level for comparing successful test cases (without duplicate failures) be
comes .034. Thus, comparing the best teams from each approach increases the evidence
in favor of Cleanroom in both of these product quality measures.

13

have been expected with an unfamiliar development technique, but the developers using

a more traditional approach had a wider range of performance than did those using

Cleanroom in both of the measures — even with there being twice as many Cleanroom

teams. All of the above differences are magnified by recalling that the non-Cleanroom

teams did not develop their systems in one monolithic step, they (also) had the benefit

of periodic operational testing by independent testers. Since both groups of teams had

independent testing of all their deliveries, the early testing of deliveries must have re

vealed most faults overlooked by the Cleanroom developers. '

These comparisons suggest that the non-Cleanroom developers focused on a "per

spective of the tester," sometimes leaving out classes of functions and causing a less

completely implemented product and more (especially unique) failures. Off-line software

review techniques, however, are more general and their use contributed to more com

plete requirement conformance and fewer failures in the Cleanroom products. In addi

tion to examining the operational properties of the product, various static properties

were compared.

5.1.2. Static System Properties

The first question in this goal area concerns the size of the final systems. Figure 3

showed the number of source lines, executable statements, and procedures and functions

for the various systems. The projects from the two groups were not statistically

different (MVV > .10) in any of these three size attributes. Another question in this goal

area concerns the readability of the delivered source code. Although readability is not

equivalent to maintainability, modifiability, or reusability, it is a central component of

14

each of these software quality aspects. Two aspects of reading and altering source code

are the number of comments present and the density of the "complexity." In an at

tempt to capture the complexity density, syntactic complexity [Basili &: Hutchens 83i

was calculated and normalized by the number of executable statements. In addition to

control-flow complexity, the syntactic complexity metric considers nesting depth and

prime program decomposition [Linger, Mills Witt 79] . The developers using Clean-

room wrote code that was more highly commented (MW = .089) and had a lower com

plexity density (MW = .079) than did those using the traditional approach. A calcula

tion of either software science effort IHalstead 77] , cyclomatic complexity [McCabe 76] ,

or syntactic complexity without any size normalization, however, produced no

significant differences (MW > .10). This seems as expected because all the systems were

built to meet the same requirements.

Comparing the data usage in the systems, Cleanroom developers used a greater

number of non-local data items (MW = .071). Also, Cleanroom projects possessed a

higher percentage of assignment statements (MW = .056). These last two observations

could be a manifestation of teaching the Cleanroom subjects modular design later in the

course (see Case Study Description), or possibly an indication of using the approach.

One interpretation of the Cleanroom developers' use of more non-local data could be

that the resulting software would be less reusable and less portable. In fact, however,

the increased use of non-local data by some Cleanroom developers was because of their

use of data abstraction. In order to incorporate data abstraction into a system imple

mented in the Simpl-T programming language, developers may create independently

compilable program units that have retained, non-local data and associated accessing

15

routines.

Some interesting observations surface when the operational quality measures of just

the Cleanroom products are correlated with the usage of the implementation language.

Both percentage of successful test cases (without duplicate failures) and implementation

completeness correlated with percentage of procedure calls (Spearman R = .65, signif. =

.044, and R = .57, signif. = .08, respectively) and with percentage of IF statements (R

= .62, signif. = .058, and R = .55, signif. = .10, respectively). However, both of these

two product quality measures correlated negatively with percentage of CASE statements

(R = -.86, signif. = .001, and R = —.69, signif. = .027, respectively) and with percen

tage of WHILE statements (R = -.65, signif. = .044, and R = —.49, signif. = .15,

respectively). There were also some negative correlations between the product quality

measures and the average software science effort per subroutine (R = —.52, signif. = .12,

and R = —.74, signif. = .013, respectively) and the average number of occurrences of a

variable (R = —.54, signif. = .11, and R = —.56, signif. = .09, respectively). Consider

ing the products from all teams, both percentage of successful test cases (without dupli

cate failures) and implementation completeness had some correlation with percentage of

IF statements (R = .48, signif. = .07, and R = .45, signif. = .09, respectively) and some

negative correlation with percentage of CASE statements (R = -.48, signif. = .07, and

R = -.42, signif. = .12, respectively). Neither of the operational product quality meas

ures correlated with percentage of assignment statements when either all products or

just Cleanroom products were considered. These observations suggest that the more

successful Cleanroom developers simplified their use of the implementation language;

i.e., they used more procedure calls and IF statements, used fewer CASE and WHILE

16

statements, had a lower frequency of variable reuse, and wrote subroutines requiring less

software science effort to comprehend.

5.1.3. Contribution of Programmer Background

When examining the contribution of the Cleanroom programmers' background to

the quality of their final products, general programming language experience correlated

with percentage of successful operational tests (without duplicate failures: Spearman R

= .66, signif. = .04; with duplicates: R = .70, signif. = .03) and with implementation

completeness (R = .55; signif. = .10). No relationship appears between either operation

al testing results or implementation completeness and either professional® or testing ex

perience. These background/quality relations seem consistent with other studies [Curtis

83i . •

5.1.4. Summary of the Effect on the Product Developed

In summary, Cleanroom developers delivered a product that (1) met system re

quirements more completely, (2) had a higher percentage of successful test cases, (3) had

more comments and less dense control-flow complexity, and (4) used more non-local

data items and a higher percentage of assignment statements. The more successful

Cleanroom developers (1) used more procedure calls and IF statements, (2) used fewer

CASE and WHILE statements, (3) reused variables less frequently, (4) developed sub

routines requiring less software science effort to comprehend, and (5) had more general

programming language experience.

®In fact, there are very slight negative correlations between years of professional ex
perience and both percentage of successful tests (without duplicate failures: R = -.46.
signif. = .18) and implementation completeness (R = —.47, signif. = .17).

17

5.2. Characterization of the Effect on the Development Process

In a postdevelopment attitude survey, the developers were asked how effectively

they felt they applied off-line software review techniques in testing their projects (see

Figure 6). This was an attempt to capture some of the information necessary to answer

the first question under this goal (question II.A). In order to make comparisons at the

team level, the responses from the members of a team are composed into an average for

the team. The responses to the question appear on a team basis in a histogram in the

second part of the figure. Of the Cleanroom developers, teams 'A,' 'D,' 'E,' 'F,' and T

were the least confident in their use of the off-line review techniques and these teams

also performed the worst in terms of operational testing results; four of these five teams

performed the worst in terms of implementation completeness. Off-line review

effectiveness correlated with percentage of successful operational tests (without duplicate

failures) for the Cleanroom teams (Spearman R = .74; signif. = .014) and for all the

teams (R = .76; signif. = .001); it correlated with implementation completeness for all

the teams (R = .58; signif. = .023). Neither professional nor testing experience correlat

ed with off-line review effectiveness when either all teams or just Cleanroom teams were

considered.

The histogram in Figure 6 shows that the Cleanroom developers felt they applied

the off-line review techniques more effectively than did the non-Cleanroom teams. The

non-Cleanroom developers were asked to give a relative breakdown of the amount of

time spent applying testing and off-line review techniques. Their aggregate response

was 39% off-line review, 52% functional testing, and 9% structural testing. From this

18

breakdown, we observe that the non-Cleanroom teams primarily relied on functional

testing to prepare their systems for independent testing. Since the Cleanroom teams

were unable to rely on testing methods, they may have (felt they had) applied the off

line review techniques more effectively.

Since the role of the computer is more controlled when using Cleanroom, one would

expect a difference in on-line activity between the two groups. Figure 7 displays the

amount of connect time that each of the teams cumulatively used. A comparison of the

cpu-time used by the teams was less statistically significant (MW = .110). Neither of

these measures of on-line activity related to how effectively a team felt they had used

the off-line review techniques when either all teams or just Cleanroom teams were con

sidered. Although non-Cleanroom team 'd' did a lot of on-line testing and non-

Cleanroom team 'e' did little, both teams performed poorly in the measures of opera

tional product quality discussed earlier. The operating system of the development

machine captured these system usage statistics. Note that the time the independent

party spent testing is included. ' These observations exhibit that Cleanroom developers

spent less time on-line and used fewer computer resources. These results empirically

support the reduced role of the computer in Cleanroom development.

Schedule slippage continues to be a problem in software development. It would be

interesting to see whether the Cleanroom teams demonstrated any more discipline by

maintaining their original schedules. All of the teams from both groups planned four

releases of their evolving system, except for team 'C which planned five. Recall that at

^ When the time the independent tester spent is not included, the significance levels
for the non-parametric statistics do not change.

19

each delivery an independent party would operationally test the functions currently

available in the system, according to the team's implementation plan. In Figure 8, we

observe that all the teams using Cleanroom kept to their original schedules by making

all planned deliveries; only two non-Cleanroom teams made all their scheduled

deliveries.

5.2.1. Summary of the Effect on the Development Process

Summarizing the effect on the development process, Cleanroom developers (I) felt

they applied off-line review techniques more effectively, while non-Cleanroom teams

focused on functional testing; (2) spent less time on-line and used fewer computer

resources; and (3) made all their scheduled deliveries.

5.3. Characterization of the Effect on the Developers

The first question posed in this goal area is whether the individuals using Clean

room missed the satisfaction of executing their own programs. Figure 9 presents the

responses to a question included in the postdevelopment attitude survey on this issue.

As might be expected, almost all the individuals missed some aspect of program execu

tion. As might not be expected, however, this missing of program execution had no re

lation to either the product quality measures mentioned earlier or the teams' profession

al or testing experience. Also, missing program execution did not increase with respect

to program size (see Figure 10).

Figure 11 displays the replies of the developers when they were asked how their

design and coding style was affected by not being able to test and debug. At first it

would seem surprising that more people did not modify their development style when

20

applying the techniques of Cleanroom. Several persons mentioned, however, that they

already utilized some of the ideas in Cleanroom. Keeping a simple design supports rea

dability of the product and facilitates the processes of modification and verification.

Although some of the objective product measures presented earlier showed differences in

development style, these subjective ones are interesting and lend insight into actual pro

grammer behavior.

One indicator of the impression that something new leaves on people is whether

they would do it again. Figure 12 presents the responses of the individuals when they

were asked whether they would choose to use Cleanroom again as either a software de

velopment manager or as a programmer. Even though these responses were gathered

(immediately) after course completion, subjects desiring to "please the instructor" may

have responded favorably to this type of question regardless of their true feelings. Prac

tically everyone indicated a willingness to apply the approach again. It is interesting to

note that a greater number of persons in a managerial role would choose to always use

it. Of the persons that ranked the reuse of Cleanroom fairly low in each category, four

of the five were the same people. Of the six people that ranked reuse low, four were

from less successful projects (one from team 'A', one from team 'E' and two from team

T), but the other two came from reasonably successful developments (one from team

'C and one from team 'J'). The particular individuals on teams 'E,' T,' and 'J' were

the four that rated reuse fairly low in both categories.

21

5.3.1. Summairy of the Effect on the Developers

In summary of the effect on the developers, most Cleanroom developers (l) partial

ly modified their development style, (2) missed program execution, and (3) indicated

that they would use the approach again.

5.4. Distinction Among Teams

In spite of efforts to balance the teams according to various factors (see Case Study

Description), a few differences among the teams were apparent. Two separate Clean-

room teams, 'H' and T,' each lost a member late in the project. Thus at project comple

tion, there were eight three-person and two two-person Cleanroom teams. Recall that

team 'H' performed quite well according to requirernent conformance and testing results,

while team T' did poorly. Also, the second group of subjects did not divide evenly into

three-person teams. Since one of those individuals had extensive professional experience,

non-Cleanroom team 'e' consisted of that one highly experienced person. Thus at pro

ject completion, there were four three-person and one one-person non-Cleanroom teams.

Although team 'e' wrote over 1300 source lines, this highly experienced person did not

do as well as the other teams in some respects. This is consistent with another study in

which teams applying a "disciplined methodology" in development outperformed indivi

duals ;Basili & Reiter 8li . Appendix A contains the significance levels for the results of

the analysis presented when team 'e,' when teams 'H' and 'I,' and when teams 'e,' 'H,'

and T' are removed from the analysis. Removing teams 'H' and T has little effect on

the significance levels, while the removal of team 'e' causes a decrease in all of the

significance levels except for executable statements, software science effort, cyclomatic

22

complexity, syntactic complexity, connect-time, and cpu-time.

6. Conclusions

This paper describes "Cleanroom" software development — an approach intended

to produce highly reliable software by integrating formal methods for specification and

design, nonexecution-based program development, and statistically-based independent

testing. The goal structure, experimental approach, data analysis, and conclusions are

presented for a replicated-project study examining the Cleanroom approach. This is the

first investigation known to the authors that applied Cleanroom and characterized its

effect relative to a more traditional development approach.

The data analysis presented and the testimony provided by the developers suggest

that the major results of this study are the following. (1) Most of the developers were

able to apply the techniques of Cleanroom effectively (six of the ten Cleanroom teams

delivered at least 91% of the required system functions). (2) The Cleanroom teams'

products met system requirements more completely and had a higher percentage of suc

cessful operationally generated test cases. (3) The source code developed using Clean

room had more comments and less dense control-flow complexity. (4) The more success

ful Cleanroom developers modified their use of the implementation language; they used

more procedure calls and IF statements, used fewer CASE and WHILE statements, and

had a lower frequency of variable reuse (average number of occurrences per variable).

(5) All ten Cleanroom teams made all of their scheduled intermediate product deliveries,

while only two of the five non-Cleanroom teams did. (6) Although 86% of the Clean

room developers indicated that they missed the satisfaction of program execution to

23

some extent, this had no relation to the product quality measures of implementation

completeness and successful operational tests. (7) Eighty-one percent of the Cleanroom

developers said that they would use the approach again.

Based on the experience of applying Cleanroom in this study, some potential areas

for improving the methodology are as follows. (1) As mentioned above, several Clean

room developers tended to miss the satisfaction of program execution. In order to cir

cumvent a potential long-term psychological effect, a method for providing such satisfac

tion to the developers would be useful. One suggestion would be for developers to wit

ness, but not influence, program execution by the independent testers. (2) Several of

the persons applying the Cleanroom approach mentioned that they had some difficulty

visualizing the user interface, and hence, felt that the systems suffered in terms of

"user-friendliness." One suggestion would be to prototype the user interfaces as part of

the requirement determination phase, and then describe the interfaces in the require

ments document, possibly using an interactive display specification language 'Bass 8oi .

(3) A few of the Cleanroom developers said that they did not feel subjected to a "full

test." Recall that the reliability certification component of the Cleanroom approach

stands on the premise that operationally-based testing is sufTicient to assess system relia

bility. One suggestion may be to augment the testing process with methods that en

force increased coverage of the system requirements, design, and implementation and/or

methods that utilize frequent error profiles.

Overall, it seems that the ideas in Cleanroom help attain the goals of producing

high quality software and increasing the discipline in the software development process.

The complete separation of development from testing appears to cause a modification in

24

the developers' behavior, resulting in increased process control and in more effective use

of methods for software specification, design, off-line review, and verification. It seems

that system modification and maintenance would be more easily done on a product

developed in the Cleanroom method, because of the product's thoroughly conceived

design and higher readability. Facilitating the software modification and maintenance

tasks results in a corresponding reduction in associated costs to users. The amount of

development effort required by the Cleanroom approach was not gathered in this study

because its purpose was to examine the feasibility of Cleanroom and to characterize its

effect. However, even if using Cleanroom required additional development effort, it

seems that the potential reduction in maintenance and enhancement costs may result in

an overall decrease in software life cycle cost. Thus, achieving high requirement confor

mance and high operational reliability coupled with low maintenance costs would help

reduce overall costs, satisfy the user community, and support a long product lifetime.

Other studies which have compared software development methodologies include

iBasili &: Reiter 8ll and [Boehm et al. 84i . ^ In :Basili & Reiter 8l| three software de

velopment approaches were compared: a disciplined-methodology team approach, an ad

hoc team approach, and an ad hoc individual approach. The development approaches

were applied by advanced university students comprising seven three-person teams, six

three-person teams, and six individuals, respectively. They separately built a small (600

— 2200 line) compiler. The disciplined-methodology team approach significantly re

duced the development costs as reflected in program changes and runs. The resulting

^ For a survey of controlled, empirical studies that have been conducted in software
engineering, see 'Basili, Selby &: Hutchens 86 .

25

designs from the disciplined-methodology teams and the ad hoc Individuals were more

coherent than the disjointed designs developed by the ad hoc teams. In fBoehm et al.

84| two software development approaches were compared: prototyping and specifying.

Seven two- and three-person teams, consisting of university graduate students,

developed .separate versions of the same (2000 —4000 line) application program. The

systems developed by prototyping were smaller, required less development effort, and

were easier to use. The systems developed by specifying had more coherent designs,

more complete functionality, and software that was easier to integrate.

Future possible research directions include (1) assessment of the applicability of

Cleanroom to larger software developments (note that aspects of the Cleanroom ap

proach are being used in a 30,000 source line project [Dyer 85j [Currit et al. 86j); (2)

empirical evaluation of the effect of Cleanroom from additional software quality perspec

tives, including reusability and modifiability; and (3) further characterization of the

number and types of errors that occur when Cleanroom is or is not used.

This empirical study is intended to advance the understanding of the relationship

between introducing discipline into the development process, as in Cleanroom, and

several aspects of product quality: conformance with requirements, high operational reli

ability, and easily readable source code. The results given were calculated from a set of

teams applying Cleanroom development on a relatively small project — the direct extra

polation of the findings to other projects and development environments is not implied.

26

7. Acknowledgement

The authors are grateful to D. H. Hutchens and R. W. Reiter for the use of their

static analysis program in this study.

8. Appendix A.

Figure 13 presents the measure averages and the significance levels for the above

comparisons when team 'e,' when teams 'H' and T,' and when teams 'e,' 'H,' and T are

removed. The significance levels for the Mann-Whitney statistics reported are the pro

bability of Type I error in an one-tailed test.

27

9. References

[Adams 84]
E. N. Adams, Optimizing Preventive Service of Software Products, IBM
Journal of Research and Development 28, 1, pp. 2-14, Jan. 1984.

[Baker 721
F. T. Baker, Chief Programmer Team Management of Production Program
ming, IBM Systems J. 11, 1, pp. 131-149, 1972.

[Baker 811

F. T. Baker, Chief Programmer Teams, pp. 249-254 in Tutorial on Struc
tured Programming: Integrated Practices, ed. V. R. Basili and F. T. Baker,
IEEE, 1981.

iBasili & Hutchens 83j

V. R. Basili and D. H. Hutchens, An Empirical Study of a Syntactic Metric
Family, Trans. Software Engr. SE-9, 6, pp. 664-672, Nov. 1983.

Basili &: Reiter 81j
V. R. Basili and R. W. Reiter, A Controlled Experiment Quantitatively
Comparing Software Development Approaches, IEEE Trans. Software Engr.
SE-7, May 1981.

'Basili &: Selby 84]
V. R. Basili and R. W. Selby, Data Collection and Analysis in Software
Research and Management, Proceedings of the American Statistical Associa
tion and Biometric Society Joint Statistical Meetings, Philadelphia, PA, Au
gust 13-16, 1984.

Basili &: Selby 85|
V. R. Basili and R. W. Selby, Comparing the Effectiveness of Software Test
ing Strategies, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep.
TR-1501, May 1985. (submitted to the IEEE Trans. Software Engr.)

Basili, Selby & Hutchens 86i

V. R. Basili, R. W. Selby, and D. H. Hutchens, Experimentation in Software
Engineering, Trans. Software Engr. SE-12, 1, Jan. 1986. (to appear)

_Basili Sc Turner 76i
V. R. Basili and A. J, Turner, SIMPL-T: A Structured Programming
Language, Paladin House Publishers, Geneva, IL, 1976.

28

[Basili k Weiss 84]
V. R. Basili and D. M. Weiss, A Methodology for Collecting Valid Software

Engineering Data*, Trans. Software Engr. SE-10, 6, pp. 728-738, Nov. 1984.

[Bass 85]
L. J. Bass, An Approach to User Specification of Interactive Display Inter
faces, IEEE Trans. Software Engr. SE-11, 8, pp. 686-698, August 1985.

[Boehm et al. 84]
B. W. Boehm, T. E. Gray, and T. Seewaldt, Prototyping Versus Specifying:

A Multiproject Experiment, IEEE Trans. Software Engr. SE-10, 3, pp. 290-
303, May 1984.

[Bowen et al. 85]
T. P. Bowen, G. B. Wigle, and J. T. Tsai, Specification of Software Quality
Attributes, Rome Air Development Center, Griffiss Air Force Base, NY,

Tech. Rep. RADC-TR-85-37 (three volumes), Feb. 1985.

[Cavano k McCall 78]
J. P. Cavano and J. A. McCall, A Framework for the Measurement of Soft

ware Quality, Proc. Software Quality and Assurance Workshop, San Diego,
CA, pp. 133-139, Nov. 1978.

Currit 83]
P. A. Currit, Cleanroom Certification Model, Proc. Eight Ann. Software

Engr. Workshop, NASA/GSFC, Greenbelt, MD, Nov. 1983.

[Currit et al. 86]
P. A. Currit, M. Dyer, and H. D. Mills, Certifying the Reliability of Soft
ware, Trans. Software Engr. SE-12, 1, pp. 3-11, Jan. 1986.

[Curtis 83]

B. Curtis, Cognitive Science of Programming, Sixth Minnowbrook Workshop
on Software Performance Evaluation, Blue Mountain Lake, NY, July 19-22,
1983.

;Duran &: Ntafos 81]
J. W. Duran and S. Ntafos, A Report on Random Testing*, Proc. Fifth Int.
Conf. Software Engr., San Diego, CA, pp. 179-183, March 9-12, 1981.

•Dyer 82! • I
M. Dyer, Cleanroom Software Development Method, IBM Federal Systems
Division, Bethesda, MD, October 14, 1982.]

29

[Dyer 83]
M. Dyer, Software Validation in the Cleanroom Development Method, IBM-

FSD Tech. Rep. 86.0003, August 19, 1983.

[Dyer 85]
M. Dyer, Software Development Under Statistical Quality Control, Proc.
NATO Advanced Study Institute: The Challenge of Advanced Computing
Technology to System Design Methods, Durham, U. K., July 29 - August 10,
1985.

[Dyer et al. 80]
M. Dyer, R. C. Linger, H. D. Mills, D. O'Neill, and R. E. Quinnan, The
Management of Software Engineering, IBM Systems J. 19, 4, 1980.

[Dyer A: Mills 81]
M. Dyer and H. D. Mills, The Cleanroom Approach to Reliable Software De

velopment, Proc. Validation Methods Research for Fault-Tolerant Avionics
and Control Systems Sub-Working-Group Meeting: Production of Reliable
Flight-Crucial Software, Research Triangle Institute, North Carolina, No

vember 2-4, 1981.

IDyer &: Mills 82]
M. Dyer and H. D. Mills, Developing Electronic Systems with Certifiable Re
liability, Proc. NATO Conf., Summer, 1982.

jFagan 76]
M. E. Fagan, Design and Code Inspections to Reduce Errors in Program De
velopment, IBM Sys. J. 15, 3, pp. 182-211, 1976.

iFerrentino & Mills 77i

A. B. Ferrentino and H. D. Mills, State Machines and Their Semantics in

Software Engineering, Proc. IEEE COMPSAC, 1977.

iGoel 83]
A. L. Goel, A Guidebook for Software Reliability Assessment, Dept. Industri

al Engr. and Operations Research, Syracuse Univ., New York, Tech. Rep.

83-11, April 1983.

iHalstead 77]
M. H. Halstead, Elements of Software Science, North Holland, New York,

1977.

30

[Hoare 69]
C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Communi

cations of the ACM12, 10, pp. 576-583, Oct. 1969.

[Howden 76]
W. E. Howden, Reliability of the Path Analysis Testing Strategy, IEEE

Trans. Software Engr. SE-2, 3, Sept. 1976.

iKerola Freeman 81]
P. Kerola and P. Freeman, A Comparison of Lifecycle Models, Proc. 5th Intl.

Conf. Software Engr., pp. 90-99, March 1981.

[Linger, Mills &C Witt 79]
R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory

and Practice, Addison-Wesley, Reading, MA, 1979.

[Littlewood 81]
B. Littlewood, Stochastic Reliability Growth: A Model for Fault Renovation

Computer Programs and Hardware Designs, IEEE Trans. Reliability R-30,

4, Oct. 1981.

Littlewood & Verrall 73]
B. Littlewood and J. L. Verrall, A Bayesian Reliability Growth Model for

Computer Software, Applied Statistics 22, 3, 1973.

jMcCabe 76]
T. J. McCabe, A Complexity Measure. IEEE Trans. Software Engr. SE-2, 4,

pp. 308-320, Dec. 1976. :

[McCall et al. 77]
J. A. McCall, P. Richards, and G. Walters, Factors in Software Quality,

Rome Air Development Center, GrifFiss x\ir Force Base, NY, Tech. Rep.

RADC-TR-77-369, Nov. 1977.]

IMills 72a] . !
H. D. Mills, Chief Programmer Teams: Principles and Procedures, IB\I

Corp., Gaithersburg, MD, Rep. FSC 71-6012, 1972.

[Mills 72b] I
H. D. Mills, Mathematical Foundations for Structural Programming, IBM

Report FSL 72-6021, 1972.

31

[Musa 75]
J. D. Musa, A Theory of Software Reliability and Its Application, IEEE
Trans. Software Engr. SE-1, 3, pp. 312-327, 1975.

[Myers 76]
G. J. Myers, Software Reliability: Principles & Practices, John Wiley &
Sons, New York, 1976.

[Parnas 72]
D. L. Parnas, On the Criteria to be Used in Decomposing Systems into
Modules, Communications of the ACM 15, 12, pp. 1053-1058, 1972.

[Selby 85]
R. W. Selby, Evaluations of Software Technologies: Testing, CLEANROOM,
and Metrics, Dept. Com. Sci., Univ. Maryland, College Park, Ph.D. Disserta
tion, Tech. Rep. TR-1500, 1985.

[Selby 86]
R. W. Selby, Combining Software Testing Strategies: An Empirical Evalua
tion, Proc. Workshop on Software Testing, Banff, Alberta, Canada, July 15-
17, 1986.

[Shankar 82]
K. S. Shankar, A Functional Approach to Module Verification, IEEE Trans.
Software Engr. SE-8, 2, March 1982.

[Shanthikumar 81]
J. G. Shanthikumar, A Statistical Time Dependent Error Occurrence Rate

Software Reliability Model with Imperfect Debugging, Proc. 1981 National
Computer Conference, June 1981.

!Thayer, Lipow & Nelson 78]
R. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability, North-

Holland, Amsterdam, 1978.

•Zelkowitz & Branstad 82]
M. V. Zelkowitz and M. Branstad, Proc. ACM SIGSOFT Rapid Prototyping

Symp.. April 1982.

32

Figure 1. Framework of goals and questions for Cleanroom development
approach analysis. —

I

I. Characterize the effect of Cleanroom on the delivered product.
A. For intermediate and novice programmers building a small system, what

were the operational properties of the product?
1. Did the product meet the system requirements?
2. How did the operational testing results compare with those of a con

trol group?

B. What were the static properties of the product?
1. Were the size properties of the product any different from what

would be observed in a traditional development?

2. Were the readability properties of the product any different?
3. Was the control complexity any different?
4. Was the data usage any different?
5. Was the implementation language used differently?

C. What contribution did programmer background have on the final pro
duct quality?

II. Characterize the effect of Cleanroom on the software development process.
A. For intermediate and novice programmers building a small system, what

techniques were used to prepare the developing system for testing
submissions?

B. What role did the computer play in development?
C. Did the developers meet their delivery schedule?

III. Characterize the effect of Cleanroom on the developers.

A. When intermediate and novice programmers built a small system, did
the developers miss the satisfaction of executing their own pro
grams .

1. Did the missing of program execution have any relationship to pro
grammer background or to aspects of the delivered product?

B. How was the design and coding style of the developers affected by not
being able to test and debug?

C. Would the developers use Cleanroom again?

F
ig

u
re

2
.

S
u

b
je

c
ts

'
p

ro
fe

ss
io

n
a
l

e
x

p
e
ri

e
n

c
e

in
y

e
a
rs

.

X X X X X X -i
—

X X
X

x
x

x
x

x
x

x
x

x

X
X

X
X

X
X

X X X
X

X

X
X

X
X

X
X

X
X

X
X

X

F
ig

u
re

3
.

S
y

st
e
m

st
a
ti

st
ic

s.
1

T
e
a
m

C
le

a
n

r
o

o
m

S
o

u
r
c
e

E
x

e
c
u

ta
b

le
P

ro
c
e
d

u
re

s
&

L
in

e
s

S
ta

tm
e
n

ts
F

u
n

c
ti

o
n

s

A
y

e
s

1
6

8
1

8
1

3
5

5

B
y

e
s

1
6

2
6

7
1

7
4

2

C
y

e
s

1
1

1
8

5
7

3
4

2

D
y

e
s

1
0

4
6

4
7

7
3

0

E
y

e
s

1
0

8
7

6
2

4
3

2

F
y

e
s

1
2

1
3

4
4

0
3

5

G
y

e
s

1
1

9
6

5
8

1
'

3
1

H
y

e
s

1
8

7
6

5
5

0
5

1

I
y

e
s

i
1

3
0

5
6

0
8

2
3

J
y

e
s

:
1

0
5

2
6

5
8

;
2

4

a
n

o
:

8
2

4
4

1
0

2
6

b
n

o
:

1
4

2
9

6
3

3
1

8

c
n

o
i

2
2
6
4

9
9

9
4

6

d
n

o
1

6
2

9
1

6
2

6
6

7

e
n

o
1

3
1

0
!

4
5

9
4

3

Figure 4. Requirement conformance of the systems.

de

16

22 %

I FE A

b

)6 %

Mann-Whitney ^ signif. = .088

J D

B GC H

c a

32

91 % 100 %

Figure 5. Percentage of successful test cases during operational testing
(without duplicate failures').

E I

d e

58.0

Mann-Whitney signif. = .055

D J H

FA B G C

c

b a

100

^ The significance levels for the Mann-Whitney statistics reported are the
probability of Type I error in an one-tailed test.

Figure 6. Breakdown of responses to the attitude survey question, "Did you feel j
that you and your team members effectively used off-line review techniques in test- •
ing your project?". (Responses are from Cleanroom teams.) ^ J

14 - Yes, they were effective for testing all parts of the program
5,5 _ We used them but felt that they were only appropriate for certain parts of the pro- :

gram

8.5 —We used them occasionally, but they were not really a major contributing factor to '
the development

feeling of effective use of i

off-line review techniques; both groups i

(team 'e' does not appear because of lack of response) j

J 1
H

E I G

D F A C B

d c a
.

b

1

'

did not use effective for

all parts

Mann-Whitney signif. = .065

11
Figure 7. Connect time in hours during project development.
- -CT - U *

G

BE C I HF D JA
!

i e b c a d

0.0 155.0

Mann-Whitney signif. = .089

There are half-responses because an Individual checked both the second
and third choices. The responses total to 28, not 30, because two separate
teams lost a member late in the project. (See Distinction .A.mong Teams).

Non-Cleanroom team 'e' entered a substantial portion of its system on a
remote machine, only using the Univac computer mainly for compilation and
execution. Team 'e' was the only team that used any machine other than the
Univac. (See Distinction Among Teams.)

Figure 8. Number of system releases.

J

I

H

F

E

D

C

B

A

e c

d a b

Mann-Whitney signif. = .006

Figure 9. Breakdown of responses to the attitude survey question, "'Did
you miss the satisfaction ofexecuting your own programs?".

13 - Yes, I missed the satisfaction of program execution.
11 - I somewhat missed the satisfaction of program execution.

4 - No, I did not miss the satisfaction of program execution.

Figure 10. Relationship of program size vs. missing program execution.

10.0

Yes -

Mi s s ed |

Program

Eixecut ion '

Some -

4.0 —

921.0

No (3.0)

E

DJC

G B

H

2001.0

Source Lines

Spearman correlations: —.85 (signif. = .002) with source lines; —.70 (signif. =
.03) with number separately compilable modules; —.57 (signif. = .09)
with number procedures and functions.

Figure 11.

Breakdown of responses to the attitude survey question, ''How was your
design and coding style affected by not being able to test and debug?".

2 —Yes, my style was substantially revised.
I 15 - I modified some of my tendencies.
i 11 - It did not affect my style at all.

i Frequently mentioned responses include
—kept design simple, attempted nothing fancy
—kept readability of code in mind
—already was a user of off-line review techniques
—very careful scrutiny of code for potential mistakes
—prepared for a larger range of inputs

Figure 12.

Breakdown of responses to the attitude survey question, "Would you use
Cleanroom again?". (One person did not respond to this question.)

1As a software development manager?
8 - Yes, at all times

i 14 — Yes, but only for certain projects

I 5 - Not at all
i As a programmer?
I 4 - Yes, for all projects

I 18 — Yes, but not all the time

5 — Only if I had to
0 - I would leave if I had to

Figure 13. Summary of measure averages and significance levels
Measure Average Mann-Whitney

significance levels

Clean- Non- All With With With

room Clean- Teams out out out ;

Teams room Team Teams Teams ;

Teams e H,I e.H.I

Source lines 1320.0 1491.2 .196 .240 .153 .198 1

Executable stints 604.1 625.4 .500 .286 .442 .367 i
^Procedures ic 1

functions 36.5 40.0 .357 . .500 .3.30 .500 j

^Implementation
i
i

completeness 82.5 60.0 .088 .197 .093 .196 1
'^Successful tests (w/o

duplicate failures) 92.5 80.8 .055 .128 .053 .116 :

^Successful tests (w/ I i

duplicate failures) 78.7 . 59.2 .134 .285 .151 1 .304 i

^Comments 194.9 122.2 .089 .102 .190 ^ .198 1
j 1

Syntactic complexity/' • !

executable stmts 1.5 1.6 .079 .179 .082 1 .175 :
1

Software Science E 6728.6e3 7355.4e3 .451 .240 .442 i .248

Cyclomatic complexity 196.8 212.2 .250 .198 .255 j .248

Syntactic complexity 917.5 1017.0 .500 .286 .500 i .305

#Non-local data items 37.6 24.2 .071 .129 .053 ! .117

^Assignment stmts 34.2 ; 26.6 .056 .129 .040 I .087

Off-line effectiveness 3.2 2.5 .065 .065 .098 .098

Connect-time (hr.) 41.0 71.3 .089 .012 .121 I .021

Cpu-time (min.) 71.7 136.1 .110 .017 .072 .009

^Deliveries 4.1 2.6 .006 .015 .010 i .022

