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Abstract
Underwater imaging is important for scientific research

and technology, as well as for popular activities. We present

a computer vision approach which easily removes degrada-

tion effects in underwater vision. We analyze the physical ef-

fects of visibility degradation. We show that the main degra-

dation effects can be associated with partial polarization of

light. We therefore present an algorithm which inverts the

image formation process, to recover a good visibility image

of the object. The algorithm is based on a couple of images

taken through a polarizer at different orientations. As a by

product, a distance map of the scene is derived as well. We

successfully used our approach when experimenting in the

sea using a system we built. We obtained great improvement

of scene contrast and color correction, and nearly doubled

the underwater visibility range.

1 Underwater Vision

Underwater imaging is widely used in scientific research

and technology. Computer vision methods are being used

in this mode of imaging for various applications [3, 32, 36],

such as mine detection, inspection of underwater power and

telecommunication cables, pipelines [10], nuclear reactors,

and columns of offshore platforms [10]. Underwater com-

puter vision is commercially used to help swimming pool

life guards [18]. As in conventional computer vision, al-

gorithms are sought for navigation and control [37] of sub-

merged robots. In addition, underwater imaging is used for

research in marine biology [2, 7, 13, 36], archaeology [15]

and mapping [37]. Moreover, underwater photography [34]

is becoming more accessible to the wider public.

Underwater vision is plagued by poor visibility condi-

tions [11, 14, 32, 36]. According to Ref. [10], most com-

puter vision methods (e.g., those based on stereo triangu-

lation or on structure from motion) cannot be employed di-

rectly underwater. This is due to the particularly challenging

environmental conditions, which complicate image match-

ing and analysis. It is therefore important to alleviate these

visibility problems. What makes underwater imaging so

problematic? To understand the challenge, consider Fig. 1,

which shows an archaeological site ≈ 2.5m under the water

surface. It is easy to see that visibility degradation effects

underwater scene

Figure 1. An underwater Mediterranean archaeological site.

The visibility and colors quickly degrade as a function of dis-

tance. Courtesy of Yaakov Kahanov.

vary as distances to the objects increase [14]. Since objects

in the field of view are at different distances from the cam-

era, the causes for image degradation are spatially varying.

This situation is analogous to open-air vision in bad weather

(fog or haze), described in Refs. [5, 23, 24, 26]. Contrary

to this fact, traditional image enhancement tools, e.g., high

pass filtering and histogram equalization are typically spa-

tially invariant. Since they do not model the spatially vary-

ing distance dependencies, traditional methods are of lim-

ited utility in countering visibility problems, as has been

demonstrated in experiments [24, 26].

In this work we develop a physics-based approach for re-

covery of visibility when imaging underwater scenes in nat-

ural illumination. Since it is based on the image formation

model, the method automatically accounts for dependencies

on object distance, and estimates a distance map of the scene

as a by-product. The approach relies on raw images taken

through different states of a polarizing filter.1 These raw

images have slight photometric differences. These differ-

ences serve as initial cues for an algorithm that factors out

turbidity effects. Interestingly, note that marine animals use

polarization for improved vision [7, 27, 35, 36].

Some methods improve underwater visibility by using

specialized active radiation hardware [11, 14, 19]. In con-

trast, we deal with a passive computer vision approach, ex-

ploiting natural illumination. Other prior methods are based

either on a simple subtraction of images that are differ-

1Polarization has been used in various computer vision algorithms deal-

ing with reflections [9, 25, 28, 30, 36]. These methods evolved along with

developments of polarimetric imaging devices [8, 36].



ently polarization filtered [8, 11], or display the degree of

polarization (DOP) [27, 32]. They assume that polariza-

tion is associated with the object radiation, rather than the

causes which degrade this signal. However, this assump-

tion becomes invalid as distances increase [22]. Our ap-

proach is based on a contrary fact [17, 21]: in natural il-

lumination, underwater polarization is associated with the

prime visibility disturbance which we wish to delete (termed

backscatter). Our approach inverts the physical model, thus

the recovered image is similar to clear visibility appearance,

contrary to methods which merely attempt image enhance-

ment [8, 11, 27, 32].

To demonstrate the approach, we built an underwater po-

larization imaging system. We describe the considerations

for selecting the system components. We used the approach

by experimenting in the sea. Significant improvements of

contrast and color are obtained. The recovered range map

indicates that the visibility range has been approximately

doubled, thanks to the approach.

2 Modelling the Image Formation

Imaging conditions underwater are quite different than in

the open air. In the open air, on clear days the sun is a dom-

inant source, which lies low in mornings and afternoons. It

lies low throughout the day in high geographic latitudes. Al-

ternatively, on a cloudy day natural lighting may come from

the entire hemisphere. In contrast, underwater natural light-

ing comes from a limited cone above the scene, as depicted

in Fig. 2. This phenomenon is caused by refraction of the

illuminating rays through the water surface, and is termed

the optical manhole or Snell’s window [6, 13]. Once in

the water, the natural illumination undergoes a strong color-

dependent attenuation. As a result, it typically becomes pre-

dominantly green-blue [34], resulting in images having this

hue. Then, part of this light interacts the viewed scene.

As depicted in Fig. 3, when imaging underwater we sense

two sources. The first source is the scene object at distance

z, whose radiance is attenuated by absorption and scatter-

ing in the water. It is also somewhat blurred. The image

corresponding to this degraded source is the signal. The

second source is the ambient illumination. Part of that light

is scattered towards the camera by the particles in the water.

It is termed backscattered light [14, 20, 21]. This section

describes each of these components.

2.1 The Signal

2.1.1 Direct Transmission

The signal is composed of two components, termed direct

transmission and forward scattering [14, 20, 21]. As a light

ray progresses from the object towards the camera, part of

its energy is lost due to scattering and absorption. The frac-

tion reaching the camera is the direct transmission2

2There is a proportion factor between the scene radiance and image

irradiance that depends on the imaging system, but does not depend on the

Figure 2. The optical manhole. Due to refraction at the wa-

ter surface, natural underwater lighting comes from above.

D = Lobjecte
−ηz , (1)

where η is the attenuation coefficient. Here Lobject is the

object radiance we would have sensed, had there been no

scattering and absorption along the line of sight (LOS).

The attenuation coefficient is given by η = α + β, where

α is the absorption coefficient and β is the total scattering

coefficient of the water. The scattering coefficient β ex-

presses the ability of an infinitesimal water volume to scatter

flux in all directions. Integrating over all solid angles �Θ,

β =

∫

�Θ

β(�Θ)dΩ =2π

∫ π

0

β (θ) sin (θ) dθ , (2)

where θ is the scattering angle relative to the propagation

direction, and β(θ) is the angular scattering coefficient.

The variables α, β(θ), η and Lobject are all functions of the

wavelength λ.

2.1.2 Forward Scattering

The forward scattering component is similar to the direct

transmission. However, it represents light scattered forward

at small angles relative to LOS. This creates image blur

given by the convolution

F = D ∗ gz , (3)

where D is given by Eq. (1) and gz is a point spread function

(PSF). The PSF is parameterized by the distance z, since the

farther the object, the wider the support of the blur kernel.

There are several models in the literature for the form of

the underwater PSF [20, 33]. Since the PSF depends on the

hydrsols suspended in the water, the models are typically

parameterized by various empirical constants. For example,

the model in Refs. [14, 20] is of the form

gz =
(
e−γz − e−ηz

)
F−1 {Gz} where Gz = e−Kzω (4)

while K > 0 and γ are empirical constants, F−1 is the in-

verse Fourier transform, and ω is the spatial frequency in

the image plane. The filter Gz is low pass. Its effective

frequency “width” is inversely proportional to z. This ex-

presses the increase of spatial blur for distant objects. The

constant γ is limited to |γ| ≤ η [20]. Note that the mod-

els of the PSF obtained empirically and through numerical

simulations [20, 33] do not conserve energy as light propa-

gates in z. This is clearly the case in Eq. (4). Thus forward

scattering is a blurred and attenuated version D.

medium and its characteristics. We thus leave this factor out.

2



natural

illum
ination

us

y

aw e

x

cfrt e
a

r

B

S

objectL

signal

camera

polarizing
filter

distance z

backscattered
light

radiance

scattering

object

Figure 3. Underwater imaging of a scene, e.g., a reef, through a polarizing filter. [Dashed rays] Light coming from a source is

backscattered towards the camera by particles in the water. The backscatter increases with the distance z to the object. [Solid ray]

Light emanating from the object is attenuated and somewhat blurred as z increases, leading to the signal S. Without scattering and

absorption along the line of sight (LOS), the object radiance would have been Lobject.

Accounting for both the direct transmission (1) and the

forward scattering (3), we define the signal as

S = D + F . (5)

We define an effective object radiance Leffective
object as

Leffective
object = Lobject + Lobject ∗ gz . (6)

It is a somewhat blurred version of Lobject. From

Eqs. (1,3,5), the signal is

S = e−ηz Leffective
object . (7)

2.2 Backscattered Light

Backscatter does not originate from the object on the

LOS. Rather, light coming from ambient illumination

sources is scattered into the LOS and towards the camera by

suspended particles (Fig. 3). Before integrating all the con-

tributions to the illumination of the LOS, let us first analyze

the effect of a single distant source. The source illuminates

the particles on the LOS from direction �r = (θ, ϕ) relative

to the LOS, with intensity I source. Following Refs. [14, 20],

the contribution of this source to the backscatter is

B (�r) =

∫ z

0

β (θ) Isource (�r) e−ηl[1 − f/(l + l0)]
2dl (8)

where f is the focal length of the camera and l0 is the dis-

tance between the lens and the underwater housing window.

This integral accounts for scattering into the LOS at some

distance l, followed by attenuation until reaching the cam-

era. It also accounts for geometric projection of the irradi-

ance on the detector, via the ratio f/(l + l0).
The exponent in Eq. (8) sets a typical attenuation dis-

tance of l ∼ η−1 in the water. We exploit this observa-

tion to make a practical simplification of Eq. (8): typically

f/(η−1 + l0) ≪ 1, making the effect of the f/(l + l0)
term very small. Consider typical ranges of values as

η−1 ∈ [3m, 10m] (according to [21]), f ∈ [20mm, 50mm],

l0 ≈ 80mm, and object distance in the order of meters. We

assessed the integrals numerically. It can be shown that to

an accuracy of 99%, we can write Eq. (8) as

B(�r) ≈ κ(f)β(θ)Isource(�r)

∫ z

0

e−ηldl (9)

where κ(f) is a constant parameterized by the focal length

of the camera lens. A focal length of f = 20mm corre-

sponds to κ = 1.06. Eq. (9) is solved as

B(�r) = B∞(�r)
(
1 − e−ηz

)
, (10)

where
B∞(�r) ≡ κIsource(�r)β(θ)/η (11)

is the backscatter in a LOS which extends to infinity in the

water. Summing up the contribution from light sources at

all directions, the total backscatter is

B =

∫

�r

B(�r)d(�r) = B∞

(
1 − e−ηz

)
, (12)

where

B∞ ≡

∫

�r

B∞(�r)d�r (13)

is a scalar which depends on λ.

It is simple to show that a similar expression is obtained

when generalizing to non-distant light sources (as particles

in the water volume). This happens under the assumption

that lighting does not vary along the LOS, or that such vari-

ations are practically integrated out. We believe that this is

a reasonable assumption when imaging approximately hor-

izontally. The reason is that natural underwater light comes

from a limited light cone directly above [6, 13] (See Fig. 2),

and is thus typically unobscured along the LOS.

We now discuss the significance of backscatter in image

degradation. The total image irradiance is

Itotal = S + B = e−ηz Leffective
object + B . (14)

To gain intuition about the contribution of each component,

we performed a simulation of underwater imaging, whose
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Figure 4. Simulating underwater imaging. The bottom part

of the scene is set to be 0.5 meters away. The distance linearly

changes to 3.5 meters at the top. We rendered the scene as if it

is underwater, accounting for attenuation, blur (forward scat-

tering) and backscatter. The latter effect is the prime cause

for contrast degradation.

results are shown in Fig. 4. The effects of water are simu-

lated using a model for oceanic water [21] with a low con-

centration of chlorophyll and a moderate concentration of

hydrosols. Fig. 4 shows a colorful set of objects with radi-

ance Lobject. Then it shows Leffective
object , which accounts for

blur by forward scattering. Note that the colors change a

little due to forward scattering, since Eq. (4) includes an at-

tenuation factor, which is implicitly wavelength dependent.

We simulated the effects of varying distances by setting a

distance map to the scene: the distance linearly increases

from 0.5m at the bottom of the image to 3.5m at its top.

The visibility strongly deteriorates at the image I total,

which incorporates backscatter3 and attenuation effects.

Now, even objects at moderate distances are swamped in a

veiling blue light and become obscured. Backscatter affects

the color and contrast of even the close objects. This obser-

vation is consistent with analogous conclusions regarding

visual degradation in the atmosphere: ambient light scat-

tered into the LOS is the most important contributor to aerial

image degradation [12], rather than blur [26]. It has also

been observed in psychophysical studies [1] that human per-

ception of an “atmosphere” is attributed to the additive con-

tribution which we associate with backscatter. A similar

conclusion applies underwater: backscatter is the dominant

contributor to image degradation.

2.3 Polarization

Underwater scattering involves polarization effects. We

exploit these effects to compensate for underwater visibility

3The larger the object albedo, the stronger the signal is, relative to

backscatter. Based on empirical studies of typical terrestrial objects [12],

we set the average albedo to 0.2 .

degradation, as we describe in the following sections. First,

however, we describe the models for these effects. Consider

a narrow source, which illuminates the scattering particles

residing on the LOS. A plane of incidence is formed by a ray

from the source to the LOS and by the LOS itself (Fig. 3).

The backscattered light is partially polarized perpendicular

to this plane. Recall that the natural illumination direction

lies within a cone [6, 13] around the vertical axis (Fig. 2).

For this reason, typically underwater natural backscatter is

partially polarized horizontally [6, 13, 17, 35].

In order to sense the different polarization components

we image the scene through a polarizing filter (Fig. 3). Since

natural backscatter is partially polarized, then its intensity

depends on the filter’s orientation around the optical axis.

There are two orthogonal orientations of the polarizer for

which its transmittance of the backscattered light reaches

extremum values Bmax and Bmin. These are the two linear

polarization components of the backscatter, i.e.,

B = Bmax + Bmin , (15)

where B is given by Eq. (12). The backscatter DOP is

p ≡
(
Bmax − Bmin

)
/B . (16)

We assume that the effect of the signal S on the measured

scene polarization is insignificant relative to the backscatter,

since

1) Rough surfaces reflect depolarized light.

2) Polarization due to specular reflections is weaker [7] than

in air. The reason is that the refraction index of water is

closer to that of the reflecting material.

3) The signal polarization decreases as the distance to the

camera increases. This is caused by multiple scattering

along the LOS [22].

4) Even if the signal reaches the camera with substantial po-

larization, its influence is typically smaller than that of the

backscatter. The reason is that the signal decreases (Eq. 7)

while the backscatter (Eq. 12) increases with distance. Thus

backscatter and the polarization of its electric field dominate

the measurements as distance increases. Therefore, the va-

lidity of the assumption increases at distant objects, which

are most affected by visibility degradation.

Nevertheless, note that this assumption may not hold at very

close distances in a relatively good visibility, if the object

strongly polarizes light as in [7, 27, 36].

3 Image Acquisition

When a polarizer is mounted, the sensed intensity at each

image pixel changes as a cosine function of the filter orien-

tation angle. Similarly to backscattered light, there are two

orthogonal polarizer angles corresponding to extrema of the

intensity, Imax and Imin, where

Itotal = Imax + Imin , (17)

while Itotal is given by Eq. (14). Since we assume that the

signal polarization is insignificant, the polarizer modulates

4
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Figure 5. The Aqua-Polaricam. [Left] With the polarizer

mount separated, the dome and lens are visible. [Right] The

complete system mounted on a tripod.

only the backscatter. Therefore, the raw images correspond-

ing to the extrema of the intensity measurements are

Imax = S/2 + Bmax and Imin = S/2 + Bmin . (18)

Note that Imin is the image taken at the “best state” of the

polarizer, where the disturbing backscatter is minimal [35].

On the other hand, Imax is the image taken at the “worst

state” of the polarizer, where the backscatter is maximal.

In order to acquire such images we built a custom sys-

tem for underwater polarimetric imaging, which we term

the Aqua-Polaricam [16]. Several specifications determined

its design, as described in the Appendix. Based on that, we

built the system shown in Fig. 5. The housing is manufac-

tured by Sealux and is commercially available. For the rea-

sons explained in the Appendix, we close the housing with

a dome port made of glass, while a circular polarizer is at-

tached externally to it. The surrounding water flows to the

space between the external polarizer and the dome, through

several openings in the housing’s interface to the polarizer

mount. We use the Nikon D100 digital SLR camera, which

allows for raw output data having a linear response (i.e., no

gamma correction) without white balancing.4

We scuba-dived in Eilat (the Red-Sea) to a depth of 26

meters in an area containing coral reefs. We took images at

the two states of the polarizer. The raw images have a very

low contrast, as shown5 in Fig. 6. Yet, their slight differ-

ences provide the key for substantial visibility improvement

by a mathematical algorithm, described in Sec. 4.

3.1 Naive Attempt for Color Correction

As mentioned in Sec. 1, space-invariant enhancement

methods do not model the spatially varying distance depen-

dencies of visibility problems. Thus, they are of limited util-

ity. As an example of a naive space-invariant enhancement,

4We verified the linear response of the system using different exposures

of the MacBeth ColorChecker calibration chart.
5For clarity of display, the brightness of the displayed pictures in this

paper underwent the same standard contrast enhancement (stretching),

while their hue and color saturation were untouched. The recovery algo-

rithms, of course, have used the raw (not brightness enhanced) images.

minmaxworst polarization state best polarization state II

Figure 6. A scene 26m deep under the water surface. The

images were taken using horizontal and vertical polarizer ori-

entations. Both color images are contrast stretched, yet their

visibility is poor. Their difference is hardly noticeable. For

high resolution color images, link to Ref. [29].

consider a simplistic method to compensate for the strong

blue hue in any of the frames shown in Fig. 6. Recall that

the images were taken in the water depths, where much of

the red portion of the illumination spectrum had been ab-

sorbed by the water [34] while light had propagated down.

We know that the sand in the diving site shown in Fig. 6

is rather white. Suppose that we normalize the raw image

color by the color of a sandy patch in the field of view.

That multiplicative normalization does not compensate for

the additive spatially varying backscatter. Hence the result

does not perform a proper color compensation at varying

distances, and certainly does not remove turbidity effects,

as shown on the left part of Fig. 7.

4 Clear Underwater Visibility

Our algorithm for visibility recovery overcomes the

“veiling” effect [4, 35] caused by backscatter. We thus use

the adjective unveiled to describe the resulting image. After

unveiling by compensation for the effects occurring along

the LOS, we address the underwater illumination color bias.

Assume for a moment that we have an estimate of the

global parameters B∞ and p. From Eqs. (15,16,18), we es-

timate the backscatter as

B̂ = (Imax − Imin)/p . (19)

Inserting this estimate into Eqs. (12,14,17), we obtain an

estimate for the “unveiled” object radiance

L̂effective
object = (Itotal−B̂)/t̂ where t̂ = 1−B̂/B∞ . (20)

Here t̂ is the estimated water transmittance, which is related

to the object distance z by

t̂ = exp(−ηz) . (21)

We process each color channel independently this way.

The unveiled image is an estimate of Leffective
object . We there-

fore do not compensate for image blur, but only for the veil-

ing effect of backscatter and for attenuation. At this point

we make do with this estimate. The reason stems from the

discussion in Sec. 2.2: backscatter is the prime reason for

image contrast degradation, hence overcoming backscatter,

5



rather than blur, is the prime step for recovering visibility.

The unveiled image is a result of inversion of the image for-

mation process. It therefore represents a recovery of the ob-

ject, in contrast to methods which apply ad-hoc expressions

of the DOP [4] for grayscale image enhancement.

To perform this recovery we need estimates of the global

parameters B∞ and p. These are intrinsic parameters of the

water and lighting. This estimation is similar to methods

which had been developed for open-air imaging [23]. We

obtain these estimates by measuring pixels corresponding to

objects “at infinity”, i.e., which are so distant inside the wa-

ter, that their signals are negligible due to attenuation.6 Af-

ter measuring p, we slightly increase it using the operation

p → ǫp, where 1 ≤ ǫ ≤ 1/p, before using p in Eqs. (19,20).

According to Eqs. (19,20), this operation increases (biases)

t̂. Thus, it stabilizes the recovery at areas corresponding to

very distant objects, where t → 0. We used ǫ = 1.13.

Compensating for the Illumination Color Imbalance

Eqs. (19-21) invert the spatially varying visibility degrada-

tion effects. This enables proper compensation for the color

bias of the illumination. Similarly to Sec. 3.1, we use a patch

of sand, which we know should be white, if it were not for

the illumination color. Yet, contrary to Sec. 3.1, we perform

the compensation using the recovered image L̂effective
object .

The result of the full scene recovery algorithm (unveil-

ing and color compensation) is shown in the right part of

Fig. 7. Compare this result to the left part of Fig. 7 in which

no unveiling was attempted. Clearly, the recovered image

has a much improved contrast and color. The ability to see

objects in such hues under natural illumination at such an

underwater depth is remarkable, considering the common

knowledge [34]. The recovered image shows details unseen

in the input images, and better shows the far objects. Results

of recovering other underwater scenes are given in Ref. [29].

5 How Far Do We See?

We are interested in a quantitative estimate for the vis-

ibility improvement. A common criterion is the visibility

range, i.e., the distance at which we may still observe certain

details. Therefore, in this section we deal with the aspects of

this criterion. As a by-product of the radiance recovery pro-

cess, we get an estimate of the distance map of the scene.

From Eq. (21) the distance z is estimated as a function of

(x, y) up to a global scale factor η . It is given by

η̂z(x, y) = − ln[1 − B̂(x, y)/B∞] (22)

and shown in Fig. 8. We do not know what the attenuation

coefficient η is. Nevertheless, we can quantitatively deter-

mine the relative distances in the scene. For example, when

comparing two image regions, we can determine that one of

them is, say, three times as distant from the camera as the

6The visibility range underwater is very short. Therefore, there are usu-

ally plenty of horizontal viewing directions in which no object is visible.

recovered image

best polarization state

best polarization state

recovered image

*

*

Figure 7. Comparison between the best raw image and the

recovered image. These images underwent white balanc-

ing based on a white sand patch. In the raw image this

process quickly loses its effectiveness as objects become

more distant. In the unveiled image colors are recovered to

large distances. For high resolution color images, link to

Ref. [29]; The regions around the marked points have the

same contrast in their respective images. However, the point

in the recovered image part is twice as distant as the one in

the raw image part, indicating the increase of visibility range.

other one. This indicates the ratio of improvement of the

visibility range, which is achieved by the recovery method.

To calculate the ratio of visibility ranges, we should com-

pare the appearance of the same object at different distances.

For a rough estimate, we selected from the scene two re-

gions which have the following characteristics:

• Both regions have a similar object content.

• The contrast level of one region in the raw image, matches

the contrast of the second region in the recovered image.

The selected pair of regions are around the marked points

in Fig. 7. Both regions contain the same type of objects:

chunks of the coral reef. We therefore assume that the in-

trinsic object properties are the same in these two regions.

The contrast of the marked left region in the raw image

is the same as the contrast of the marked right region in the

recovered image. To make this claim, we use a general-

ized definition of contrast at a region. Contrast between two

points v = 1, 2 is usually defined by |I1 − I2|/|I1 + I2|,
where Iv is the intensity at v. In a region having N pixels,

we use
c = STD{Iv}/

(
ΣN

v=1Iv

)
, (23)

where STD{Iv} is the standard deviation of the N inten-

sity values. In order to minimize the contribution of noise,

Eq. (23) was estimated only in the blue channel, for which
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Figure 8. The estimated range map. Longer distances are

displayed at darker graylevels. The distance to some points

is written in units of the attenuation distance η−1.

the signal to noise ratio is greatest.

To conclude, both regions have a similar object content.

The contrast level of one region at a certain distance in the

raw image matches the contrast of a farther region in the re-

covered image. Using Eq. (22), the range ratio between the

points is 1.8. We therefore conclude that the method demon-

strated an approximate doubling of the visibility range. We

plan to follow up with more controlled experiments using

standard calibration targets.

6 Conclusions

We presented an approach for overcoming degradation

effects occurring in underwater vision. It is based on simple

analysis of images acquired through a polarizer. The method

is physics-based, hence it also recovers information about

the scene structure (distances). We believe that it can lead

to useful tools in underwater photography, underwater re-

search, and underwater technological applications. See [29]

for additional results and experiments.

Appendix : Building an Underwater Polaricam

As mentioned in Sec. 3, there are several specifications

needed for the underwater imaging system. They arise since

we make quantitative photometric measurements with the

polarizer. The considerations are explained in detail in

Ref. [16]. To make the current paper more self-contained,

we briefly describe these issues here.

The camera should have a linear radiometric response

and low noise. Its watertight housing should withstands the

pressures in the depths at which we work. In addition, there

should be full control of the camera parameters (exposure

time, aperture, etc.). Therefore, the housing should couple

to all the camera controls.

Optical Considerations

We use a polarizer to analyze the scene. However, we

would like the rest of the optical system components to have

minimal effects or sensitivities related to polarization. We

achieve this by making the following decisions:

A dome port, or a flat port? The camera lens views the

scene through a port, i.e., a transparent window in the hous-

ing [34]. Typical ports are flat or spherical. Suppose that we

use a flat port. Then, consider the chief ray from an off-axis

scene point. Since the chief ray is off axis, it is incident at

an angle (i.e., not normal) to the flat port [16]. Therefore,

at the interfaces of the port the transmittance depends on

the polarization of the passing light [31]. This polarization

dependence distorts the intensity readout values.

To alleviate this problem, we use a dome port. If the

dome’s center coincides with the center of projection of the

camera, then the chief ray from an object point to the detec-

tor is normal to the dome interface. At normal incidence the

transmittance is independent of polarization [31].

Minimizing photoelasticity consequences. Stress in the

transparent port’s material changes the polarization of the

light it transmits. This effect is called the photoelastic ef-

fect [31]. Due to inhomogeneities in the material, this po-

larization effect is spatially varying. This spatially varies

the transmittance though the polarizer [31], if the polarizer

is placed inside the housing.

To alleviate this problem, we decided to place the polar-

izing filter outside the housing. The filter is thus the first

optical component the light from the scene encounters as

it enters the imaging system (See Fig. 5). The space be-

tween the polarizer and the dome is filled with water coming

from the surroundings [16]. The photoelastic visible effects

are indeed greatly diminished. Residual effects may per-

sist, though. To further minimize them, we opted for a glass

dome, since glass has a much smaller photoelasticity than

polycarbonate materials (plastics) [31].

A circular or linear polarizer? In practice, the dome may

not be precisely concentric with the center of projection.

In non-normal incidence, different polarization components

are differently transmitted by the port. To reduce this ef-

fect, we use a circular polarizer: it filters the linear polar-

ization of its input (scene) while it outputs circular polar-

ization [16, 31] to the dome. In this case, the dome trans-

mittance is invariant to the polarizer angle. We note that

circular polarizers are tuned to normal incidence and to a

narrow spectral band. Light outside that band or off axis

creates elliptical polarization. The port transmittance of el-

liptical polarization is still less variant to the polarizer angle,

than when light is partially linearly polarized.
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