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Clearance of Nonlinear Flight Control Laws Using
Hybrid Evolutionary Optimization
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Abstract—The application of two evolutionary optimization
methods, namely, differential evolution and genetic algorithms, to
the clearance of nonlinear flight control laws for highly augmented
aircraft is described. The algorithms are applied to the problem of
evaluating a nonlinear handling quality clearance criterion for a
simulation model of a high-performance aircraft with a delta ca-
nard configuration and a full-authority flight control law. Hybrid
versions of both algorithms, incorporating local gradient-based
optimization, are also developed and evaluated. Statistical com-
parisons of computational cost and global convergence properties
reveal the benefits of hybridization for both algorithms. The
differential evolution approach in particular, when appropriately
augmented with local optimization methods, is shown to have sig-
nificant potential for improving both the reliability and efficiency
of the current industrial flight clearance process.

Index Terms—Evolutionary algorithms, flight control, nonlinear
systems, robustness analysis, simulation.

I. INTRODUCTION

MODERN high-performance aircraft are often designed to
be naturally unstable due to performance reasons and,

therefore, can only be flown by means of a flight control system
which provides artificial stability. As the safety of the aircraft is
dependent on the controller, it must be proven to the clearance
authorities that the controller functions correctly throughout the
specified flight envelope in all normal and various failure con-
ditions, and in the presence of all possible parameter variations.

This task is a very lengthy and expensive process, partic-
ularly for high-performance aircraft, where many different
combinations of flight parameters (e.g., large variations in
mass, inertia, centre of gravity positions, highly nonlinear aero-
dynamics, aerodynamic tolerances, air data system tolerances,
structural modes, failure cases, etc.) must be investigated so
that guarantees about worst case stability and performance can
be made [1].

The aircraft models used for clearance purposes describe
the actual aircraft dynamics, but only within given uncertainty
bounds. One reason for this is the limited accuracy of the aero-
dynamic data set determined from theoretical calculations and
wind tunnel tests. These parameters can even differ between
two aircraft of the same type, due to production tolerances.
Moreover, the employed sensor, actuator, and hydraulic models
are usually only approximations, where the nonlinear effects
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are not fully modeled because they are either unknown or
would make the model unacceptably complex.

The goal of the clearance process is to demonstrate that a
set of selected criteria expressing stability and handling require-
ments are fulfilled. Typically, criteria covering both linear and
nonlinear stability, as well as various handling and performance
requirements are used for the purpose of clearance. The clear-
ance criteria can be grouped into four classes: 1) linear stability
criteria; 2) aircraft handling/pilot induced oscillation (PIO) cri-
teria; 3) nonlinear stability criteria; and 4) nonlinear handling
criteria. This paper focuses on the evaluation of a nonlinear han-
dling criterion, which is described in detail in the next section.
Details of the other clearance criteria can be found in [1].

In the clearance process, for each point of the flight enve-
lope, for all possible configurations and for all combinations of
parameter variations and uncertainties, violations of the clear-
ance criteria and the worst case result for each criterion must be
found. Based on the clearance results, flight restrictions are im-
posed where necessary. Faced with limited time and resources,
the current flight clearance process employed by the European
aerospace industry uses a gridding approach, whereby the var-
ious clearance criteria are evaluated for all combinations of the
extreme points of the aircraft’s uncertain parameters [1]. This
process is then repeated over a gridding of the aircraft’s flight
envelope. Clearly, the effort involved in the resulting clearance
assessment increases exponentially with the number of uncer-
tain parameters. Another difficulty with this approach is the fact
that there is no guarantee that the worst case uncertainty com-
bination has in fact been found, since 1) it is possible that the
worst case combination of uncertain parameters does not lie on
the extreme points and 2) only a few selected points in the air-
craft’s flight envelope can be checked. This paper presents a new
approach to the clearance problem based on the use of hybrid
optimization techniques, which will be shown to have the capa-
bility to significantly improve both the reliability and efficiency
of the current flight clearance process.

This paper is organized as follows. Section II describes the
aircraft simulation model and flight clearance criterion used in
this study. Section III considers the use of local gradient-based
optimization methods for the problem of flight clearance. In
Section IV, the results of applying two evolutionary algorithms
to the flight clearance problem are described. Hybrid versions
of both algorithms are developed and applied in Section V.
Some conclusions are presented in Section VI. Preliminary
results from this study were first presented in [2].

II. AERO-DATA MODEL IN A RESEARCH ENVIRONMENT

(ADMIRE)—AIRCRAFT MODEL

The aircraft model used in the present study is the Aero-Data
Model in a Research Environment (ADMIRE) [3], a nonlinear,

1089-778X/$20.00 © 2006 IEEE
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TABLE I
AIRCRAFT MODEL UNCERTAIN PARAMETERS [5]

Fig. 1. ADMIRE—Aircraft model and control surfaces (not to scale).

six degree-of-freedom simulation model developed by the
Swedish Aeronautical Research Institute (FOI) using aero data
obtained from a generic single seated, single engine fighter
aircraft with a delta-canard configuration. A (not to scale)
schematic of the aircraft is shown in Fig. 1. ADMIRE is aug-
mented with a full-authority flight control system and includes
engine dynamics and detailed nonlinear actuator models. The
model includes a large number of uncertain aerodynamic,
actuator, sensor, and inertia parameters, whose values, within
specified ranges, can be set by the user.

The aircraft dynamics are modeled as a set of twelve first
order coupled nonlinear differential equations, given as follows:

(1a)

(1b)

where is the state vector with 12 components, i.e., velocity,
angle-of-attack (AoA or ), sideslip angle, and angular rate, at-
titude, and position vectors. represents the uncertain aircraft
parameters—Table I shows the uncertain parameters considered
in this study. is the output vector, and is the con-
trol input vector, whose components are left and right canard
deflection angle, left and right inboard/outboard elevon deflec-
tion angle, leading edge flap deflection angle, rudder deflection
angle, landing gear status (extract/retract), and vertical and hor-
izontal thrust vectoring. The control input is determined by

(2)

Fig. 2. Pitch stick pull command.

where is an industry standard flight control law, which
is provided with the ADMIRE model, and is the ref-
erence demand that consists of the pilot inputs, i.e., pitch stick
demand, roll stick demand, rudder pedal demand, and thrust de-
mand. Equations (1) and (2) together represent the closed loop
dynamics of the aircraft with the flight control law in the loop.

The augmented ADMIRE operational flight envelope is de-
fined up to Mach 1.2 and altitude 6000 meters [3]. The longi-
tudinal control law is gain scheduled over the whole flight en-
velope with respect to Mach and altitude variations and is de-
signed to ensure robust stability and handling performance over
the entire flight envelope. The model also contains rate limiting
and saturation blocks [4], as well as nonlinear stick shaping el-
ements in its forward path.

A. Nonlinear Clearance Criterion

The clearance criterion considered in this study is the AoA
limit exceedence criterion [1], [5], [6]. For this criterion, it is
required to identify the flight cases where, for the pull-up ma-
noeuvre defined in Fig. 2, the maximum overshoot occurs in
AoA. In particular, the combination of uncertainties that yields
the largest exceedence of the defined limits must be identified.
The test aims to assess the effectiveness of the AoA limiting
scheme in the flight control system, in terms of the peak over-
shoot in AoA that occurs in response to the specified manoeuvre.
Fig. 2 shows the specified pitch stick command, a rapid pull in
longitudinal stick to a defined level (40 N) at a 640 N/s stick rate
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TABLE II
RESULTS FOR LOCAL OPTIMIZATION ALGORITHM

with stick hold for 10 s. The present analysis aims to estimate
the clearance criterion [1]

(3)

for all possible combinations of aircraft parametric uncertainty.

B. Optimization Based Flight Clearance

In this paper, the flight clearance problem defined above
is formulated as an optimization problem and solved using
a number of different approaches. The optimization problem
itself is to find the combination of real parametric uncertainties
that gives the worst value of the criterion defined in (3). Since
this and many other clearance criteria must be checked over a
huge number of envelope points and aircraft configurations, it is
imperative to find the most computationally efficient approach
to the problem. Previous efforts to apply optimization methods
to this problem [1, Ch. 7] have revealed that the nonlinear
optimization problems arising in flight clearance, while having
relatively low order, often have multiple local optima and
expensive function evaluations. Therefore, the issue of whether
to use local or global optimization, and the associated impact
on computation times is a key consideration for this problem.

In [1, Ch. 21], local optimization methods such as Se-
quential Quadratic Programming (SQP), and limited memory
Broyden–Fletcher–Goldfarb–Shanno method with bounded
constraints (L-BFGS-B) were used to evaluate a range of linear
clearance criteria for the High Incidence Research Model
(HIRM+) aircraft model. In [1, Ch. 22], global optimization
schemes such as genetic algorithms (GA), adaptive simulated
annealing (ASA), and multicoordinate search (MCS) were also
applied to evaluate nonlinear clearance criteria for the same
aircraft model. In [5] and [6], global optimization methods
such as GA and ASA were applied to the ADMIRE model
with a different flight clearance criterion. The contributions
of this paper are as follows. We demonstrate conclusively, for
a realistic, industry-standard aircraft simulation model, the
necessity of using global optimization approaches in order to
avoid getting trapped in local solutions to the flight clearance
problem. We also show, however, that incorporation of local
optimization methods into global algorithms using hybrid
switching schemes can drastically reduce computation times
and improve convergence to the true global solution. Finally,
we compare the performance of two evolutionary optimization
algorithms (and their hybrid versions) on a realistic problem
which is of significant interest to the aerospace industry.

All the results presented in this paper were generated with the
ADMIRE model trimmed at Mach 0.4 and altitude 3000 meters
in straight and level flight. Once the trim is achieved, the pull-up

manoeuvre shown in Fig. 2 is applied and the cost function is
given by (3), i.e., maximum AoA.

III. LOCAL OPTIMIZATION

A local optimization method based on SQP is first consid-
ered to solve the above problem. The implementation provided
in [7] (specifically the function “fmincon”) was used to find
the constrained minimum of a scalar function of several vari-
ables starting at an initial estimate. A medium scale optimiza-
tion scheme is chosen, where the gradients are estimated by the
function itself using the finite difference method [7].

Local optimization methods can, of course, get locked into
local optima in the case of multimodal surfaces, however, they
are also much more computationally efficient than global op-
timization approaches. Whether a local method converges to a
local optimum or not completely depends on the initial starting
point in the search space. Crucially however, in typical flight
clearance problems, very little information is available as to
where to start the optimization—the number of uncertain pa-
rameters and strong nonlinearity of the system mean that even
advanced knowledge of flight mechanics provides little insight
into how to choose initial values for the uncertain parameters.
In the present analysis, constraints are due only to the upper and
lower bounds of the uncertainty in the variables.

The starting point for “fmincon” could be simply the nom-
inal values of the uncertain parameters. The optimization al-
gorithm calls the simulation model to evaluate the cost func-
tion for a particular point over the search space. The uncer-
tain parameter values are supplied by the optimization algo-
rithm at each iteration and the cost function is evaluated and
returned. The iterations continue until the specified termination
criterion is met. Typical calculation results for our problem are
shown in Table II—note that in Table II the last column shows
the total number of simulations, i.e., the number of cost func-
tion (fitness) evaluations. Later, it will be shown, via exhaustive
global optimization trials, that the parameter combination in the
second row is (as far as can be established) the global solution.
As expected, however, for each different initial guess for the
values of the uncertain parameters, the local optimization algo-
rithm converges to a different point in the uncertain parameter
space. These results show, therefore, that using local optimiza-
tion methods in isolation allows very little confidence to be es-
tablished that the true worst case violation of the clearance cri-
terion has been found.

IV. GLOBAL OPTIMIZATION

The global optimization methods to be applied to the flight
clearance problem in this paper belong to the class of evolu-
tionary optimization algorithms [8]. Genetic algorithms (GAs)
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are amongst the best known and most widely used evolutionary
optimization algorithms in the field of control engineering [9],
[10]. An interesting new subclass of this method, differential
evolution (DE) [11], is also investigated in this study, as results
in the recent literature indicate that DE can offer improved con-
vergence and reduced computational overheads, and these is-
sues are of particular interest for the problem of flight clear-
ance. Many other powerful optimization algorithms based on
evolutionary principles exist, e.g., particle swarm optimization
[12], ant colony optimization [13], and self organizing migrating
algorithms (SOMA) [14], and their suitability for flight clear-
ance problems could certainly be profitably investigated in fu-
ture studies.

A. Genetic Algorithms (GAs)

The first global optimization method we consider in this
study is GA, which are general purpose stochastic search and
optimization procedures, based on genetic and evolutionary
principles [15]. This approach assumes that the evolutionary
process observed in nature can be simulated on a computer to
generate a population of fittest candidates. In a genetic search
technique, a randomly sourced population of candidates under-
goes a repetitive evolutionary process of reproduction through
selection for mating according to a fitness function, and recom-
bination via crossover with mutation. A complete repetitive
sequence of these genetic operations is called a generation. To
use this evolutionary method, it is necessary to have a method
of encoding the candidate as an artificial chromosome as well
as a means of discriminating between the fitness of candidates.
A fitness function is defined to assign a performance index to
each candidate—this function is specific to the problem and
is formed from the knowledge domain. GA have become a
popular, robust search, and optimization technique for prob-
lems with large as well as small parameter search spaces. The
recent survey paper [9] reports that GAs have also become a
very popular search and optimization technique for problems
in control engineering. Due to their stochastic nature, global
optimization schemes such as GA can be expected to have a
much better chance of converging to a global optimal. The price
to be paid for this improved performance is a dramatic increase
in computation time when compared with local methods. In
the sequel, the genetic operators employed to generate and
handle the population in the GA for the clearance problem are
described. The reader is referred to [15] for more details of
different operators, binary coding schemes, and the theory of
genetic search.

1) Variable Representation: The genetic representation, i.e.,
the chromosome, for the clearance problem considered here, is
the real uncertain parameter set. Each of the uncertainties corre-
sponds to one gene. A binary coded string is generated to repre-
sent the chromosome, where each of the parametric uncertain-
ties is bounded as shown in Table I. The level of accuracy for
each parameter was chosen to be 10 , so that a change in the
least weighted bit will give an accuracy level of 10 to each
uncertain parameter. The number of bits required to represent a
variable depends on the upper and lower bounds of the optimiza-
tion variables and the accuracy level required. All the variables

are represented in a binary vector format. The length of the chro-
mosome is 105 bits, consisting of 5 genes each of 21 bits. The
binary values for each uncertain parameter are converted into
real values and these real values are assigned to the respective
uncertain parameter variables in the ADMIRE model immedi-
ately after the trim condition is achieved, and prior to applying
the stick command shown in Fig. 2. After simulation, each chro-
mosome is assigned a fitness value, and the fitness function is
the nonlinear response criterion given in (3).

2) Initialization: The GA search starts from an initial random
number of candidates of a given size . For the present study,
the number is kept fixed at 50. If the population size is
reduced below a certain level, the population loses diversity over
the search space [15] and the quality of the final solution falls
or takes longer to compute.

3) Selection: The manner in which the candidates in the cur-
rent iteration (generation) are qualified for producing the suc-
cessive generations depends on the selection scheme. There are
many different selection schemes available [15], [16]. In this
analysis, use is made of the roulette wheel selection scheme.
Parents are selected according to their fitness. The fitter the chro-
mosomes are, the more chance they have to be selected. This is
analogous to a roulette wheel containing all the chromosomes
in the population. The size of a section in the roulette wheel is
proportional to the value of the fitness function of each chromo-
some. The selection depends on the probability factor of selec-
tion which is assigned a value 0.6 in this study.

4) Crossover: Crossover is a recombination operator that en-
sures the mixing up of the information content in two binary
coded chromosomes. Usually, two parent chromosomes are se-
lected randomly to interchange the information content, and
thereby produce new offspring that contain information con-
tent from both the parents. A probability of crossover is defined
which determines the maximum allowed number of pairs for
crossover operation. In general, the probability of crossover is
kept high. A simple single-point crossover scheme is employed
in this study with a probability of 0.9. The information between
the parents is exchanged at a randomly chosen crossover point
over the length of bits.

5) Mutation: Mutation introduces random variations in the
population over the search space, by randomly flipping a bit
value in the case of binary coded GA. In this study, the operation
is done with a very low probability of 0.005. A binary uniform
mutation scheme is used, which randomly selects an individual
and sets it to a random value by flipping a randomly selected
single bit.

6) Replacement Strategy: An elitist strategy is followed such
that over each generation the best candidate in the current pop-
ulation moves into the new generation population by replacing
the worst candidate of the population. This ensures the presence
of a better candidate in the new generation and thereby increases
the average fitness of the population over generations.

7) Termination Criterion: Many different termination cri-
teria can be employed. In the present study, an adaptive termina-
tion criterion is used that is dependent on improvement in the so-
lution accuracy over a finite number of successive generations.
The algorithm terminates the search if there is no improvement
on the best solution achieved (above a defined accuracy level,
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TABLE III
GLOBAL OPTIMIZATION COMPARISON STATISTICS: NUMBER OF SIMULATIONS

Fig. 3. GA—Number of fitness evaluations versus best fitness.

Fig. 4. GA results histogram.

here chosen as 10 ) for a defined successive number of gener-
ations. This number of generations is fixed at 15.

8) Results: Fig. 3 shows the number of fitness evaluations
versus the best fitness for 100 GA trials. The statistics of the re-
sults, from the 100 independent trials, are given in Table III. The
number of fitness evaluations corresponds to the number of sim-
ulations, which, for consistency is used to compare the computa-
tional overheads of the different algorithms. The left histogram
of Fig. 4 shows the percentage distribution of the maximum
value of AoA achieved over the 100 trials. The right histogram
of Fig. 4 shows the percentage distribution of the total number
of fitness evaluations required to obtain the solution over the 100
independent trials. A large number of fitness evaluations, an av-
erage of 4485 simulations in this case, is required to obtain the

global, or near global solution. The probability of success in at-
taining the true global solution is also rather low, at only 65%.
The global solution found in this example is the following:

(4)

and is 36.0908 . Note that four of the uncertain param-
eters in this case are on their upper bounds and is inside
its bound. A sensitivity analysis is performed about the solu-
tion and is shown in Fig. 5, where the axis is normalized. As
different allowable minimum and maximum bounds are defined
for each of the uncertain parameters, for the purposes of com-
parison the uncertain parameters are normalized to have a varia-
tion between 1 and 1 in the sensitivity plots. As shown in the
figure, the uncertain parameter has many local maxima.

Tuning GA optimization parameters, such as the different
GA-operator probabilities may, of course, improve the above re-
sults to a certain extent. However, there are few available guide-
lines as to how to do this tuning. Another possible approach
would be to use alternate selection schemes and scaling and
ranking procedures, such as those described in [15, Ch. 4]. How-
ever, for the present problem the advantage to be gained from
these techniques is not expected to be significant. Finally, we
note that in the context of the current flight clearance process,
the computational cost of the number of fitness evaluations re-
quired by the above approach would be likely to prove pro-
hibitive to its widespread adoption by industry [1, Ch. 1].

B. Differential Evolution (DE)

The second global optimization method considered in this
study is DE, a relatively new global optimization method, in-
troduced by Storn and Price in [11]. This method belongs to
the same class of evolutionary global optimization techniques as
GA, but unlike GA it does not require either a selection operator
or a particular encoding scheme. Essentially, a subtype of GA,
despite its apparent simplicity, the quality of the solutions com-
puted using this approach has been claimed to be often better
than that achieved using other evolutionary algorithms, both in
terms of accuracy and computational overhead [11].

The DE method has recently been applied to several prob-
lems in different fields of engineering design, with promising
results. In [17], for example, it was applied to find the optimal
solution for a mechanical design example formulated as a mixed
integer discrete continuous optimization problem. In [18], DE
was successfully applied in system design application, in partic-
ular, handling the nonlinear design specification constraints. In
[10], the DE method was applied and compared with other local
and global optimization schemes in an aerodynamic shape opti-
mization problem for an aerofoil. The DE method consists of the
following four main steps: 1) random initialization; 2) mutation



694 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 6, DECEMBER 2006

Fig. 5. Sensitivity plots about the global solution.

3) crossover; and 4) evaluation and selection. There are different
schemes of DE available based on the operators. The one used in
the present studies is referred as “ .” The steps
of this scheme will be described in detail in the sequel.

1) Random Initialization: Like other evolutionary al-
gorithms, DE works with a fixed number, , of potential
solution vectors, initially generated at random according to

(5)

where and are the upper and lower bounds of the param-
eters of the solution vector and is a vector of random numbers
in the range [0 1]. is fixed at 12 in the current study. Each
consists of elements , which are the uncertain
parameters defined in Table I. The dimension of the optimiza-
tion problem considered is, therefore, 5. The fitness of each of
these solution vectors is evaluated using the cost function
given in (3).

2) Mutation: The scaled difference vector between
two random solution vectors and is added to another ran-
domly selected solution vector to generate the new mutated
solution vector , i.e.,

(6)

where is the mutation scale factor, a real valued number in
the range [0, 1], (fixed at 0.8 in this study), and represents
the iteration number. Fig. 6 shows a simple two-dimensional
example of the mutation operation used in the DE scheme. The
difference vector determines the search direction and
determines the step size in that direction from the point .

3) Crossover: During crossover, each element of the th so-
lution vector of the new iteration , is reproduced from the
mutant vector and a chosen parent individual as given
in (7)

otherwise
(7)

where and . Note that
has elements and has elements

. is the crossover factor, which
is fixed at 0.8 in the present study.

4) Evaluation and Selection: After crossover, the fitness of
the new candidate is evaluated using (3). If the new can-
didate has a better fitness than the parent candidate ,
then is selected to become part of the next iteration. Oth-
erwise, is selected and subsequently identified as .

5) Termination Criterion: The same termination criterion as
that chosen for the GA trials was used.

6) Results: Fig. 7 shows the number of fitness evaluations
versus the best fitness for 100 DE trials. 90 trials converged
to the true global solution given in (4), giving the maximum
AoA overshoot. Seven trials converged to solutions very close
to the global solution, and three trials gave different solutions.
Compared with the GA results, DE can be seen to offer sig-
nificantly improved convergence properties, while the reduced
number of initial random starting points (only 12 initial random
points against 50 random initial points for the GA) means that
the total number of fitness evaluations required in each trial was
also significantly reduced. Table III provides the statistics of the
results obtained from the 100 trials of the DE algorithm, and
also compares them to those from the GA. The average number
of fitness evaluations required for DE, 3086 in this case, is 31%
less than required by the GA. The probability of success of the
DE algorithm is also much higher, at 90%. The left subplot in
Fig. 8 shows the distribution of the maximum value of AoA
achieved. The right subplot shows the distribution of the number
of fitness evaluations over 100 independent trials of the DE al-
gorithm. Note that, in addition to the improved results, another
advantage of this method compared with that of GA is the re-
duced number of optimization parameters that must be adjusted
by the user.
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Fig. 6. DE mutation strategy.

Fig. 7. DE—Number of fitness evaluations versus best fitness.

V. HYBRID OPTIMIZATION

Global optimization methods based on evolutionary princi-
ples are generally accepted as having a high probability of con-
verging to the global or near global solution, if allowed to run
for a long enough time with sufficient initial candidates and rea-
sonably appropriate probabilities for the evolutionary optimiza-
tion parameters. As shown by the preceding results, however,
the rate of convergence can be very slow, and moreover, there
is still no guarantee of convergence to the true global solution.
Local optimization methods, on the other hand, can very rapidly
find optimal solutions, but the quality of those solutions entirely
depends on the starting point chosen for the optimization rou-
tine. In order to try to extract the best from both schemes, sev-
eral researchers have proposed combining the two approaches
[16], [19], [20]. In such hybrid schemes, there is the possibility

Fig. 8. DE results histogram.

of incorporating domain knowledge, which gives them an ad-
vantage over a pure blind search based on evolutionary princi-
ples. In [2], a hybrid GA (HGA) scheme was developed using a
switching strategy originally proposed in [20], and applied to a
nonlinear flight clearance problem. In the next section, we com-
pare the performance of this HGA scheme with a novel hybrid
DE (HDE) scheme developed for this study. For a recent com-
prehensive overview of similar other approaches to hybrid op-
timization (also known as memetic algorithms), the reader is
referred to [21].

A. Hybrid GA (HGA)

The HGA scheme is based on the idea of associating with
both the global and local methods, a reward or gain. The re-
ward associated with a method is a measure of how well the
method helped in providing a solution which is better than the
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TABLE IV
HYBRID OPTIMIZATION COMPARISON STATISTICS: NUMBER OF SIMULATIONS

TABLE V
HYBRID GENETIC ALGORITHM

one previously found. The reward associated to each optimiza-
tion scheme will determine the probability for that optimization
scheme to be chosen at each iteration. The reward for each opti-
mization scheme thus keeps varying depending on how well it is
performing. A simple way to assign a reward is with a weighted
geometric average. The following equation is used to update the
weighted reward for each optimization scheme [20]:

(8)

where and are the weighted reward and the improve-
ment in the solution at the iteration , respectively, and is a
constant in [0, 1]. is computed based on the improvement in
the best solution attained over each iteration/generation. In case
no improvement occurs, the value of is set equal to zero.
If one knows at each time step which optimization method is
going to give most improvement toward the global solution, that
particular method can be chosen to accelerate the convergence.
When it is not known beforehand, a decision has to be taken
based on the previous reward and by calculating the associated
probability. The algorithm for the hybrid switching scheme is
summarized in Table V.

Due to the frequent occurrence of local maxima in flight clear-
ance problems, it is desirable that, initially, the GA should have
a higher probability of being chosen than the local algorithm.
Hence, initially the weights for GA and the local algorithm are
given as 0.9 and 0.1, respectively. The local algorithm used in
the present study is the implementation of the SQP method [7],
described in Section III.

Due to the improved convergence properties of the HGA al-
gorithm (see below), it was possible to reduce the size of the ini-
tial population to 40 candidates. The initial guess for the local

algorithm is taken from the population depending on the calcu-
lation mode. There are two modes in the algorithm, search and
confirm. In search mode, the initial guess is chosen from the
two best in the population. In confirm mode, the initial guess is
chosen from a subset of the population, chosen to be far away
from the current best. From here onwards the decision-making is
done based on probability matching depending on the rewards
associated with each of the optimization schemes. The proba-
bility of selecting the GA at any iteration can be calculated from
the following equation [20]:

(9)

A random number generator simulates a coin toss and de-
pending on the result one of the optimization schemes is
chosen. If the scheme chosen is global optimization, it proceeds
with only one generation. If the local scheme is chosen, then
the optimization runs until it either converges or reaches the
defined maximum number of cost function evaluations. At the
end of a run of either of the optimization schemes, the im-
provement achieved above the value of the best solution prior
to the optimization run is checked. The reward for a particular,
local or global, optimization is assigned, the probabilities are
updated and the sequence is repeated until no improvement
occurs from either of the two methods.

Fig. 9 shows the number of fitness evaluations versus the best
fitness for 100 trials of the HGA. Table IV provides the statis-
tical results. The average number of cost function evaluations re-
quired was 2011, an improvement of 55% when compared with
the standard GA. The success rate in finding the true global so-
lution is also dramatically improved, from 65% to 92%. The left
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TABLE VI
HYBRID DIFFERENTIAL EVOLUTION

Fig. 9. HGA—Number of fitness evaluations versus best fitness.

Fig. 10. HGA histogram.

and right subplots of Fig. 10 show the histogram distributions of
maximum AoA obtained and the number of fitness evaluations
taken, respectively, over the 100 independent trials.

Fig. 11. HDE—Number of fitness evaluations versus best fitness.

B. Hybrid DE (HDE)

In [22], the conventional DE methodology was augmented
by combining it with a downhill simplex local optimization
scheme. This hybrid scheme was applied to an aerofoil shape
optimization problem and was found to significantly improve
the convergence properties of the method. At each iteration,
local optimization was applied to the best individual in a current
random set. The hybrid DE scheme employed in this study ap-
plies gradient-based local optimization, again using “fmincon”,
to a solution vector randomly selected from the current set—for
our problem, this was seen to give better results than using
the best solution vector, as proposed in [22]. When the local
scheme is chosen, the optimization starts from the given initial
condition and continues until it either converges or reaches a
defined maximum number of cost function evaluations. The
algorithm is simple, and tries to search for the global optimum
in a “greedy” way, demanding improvement in the achieved
optimum value in every iteration. A pseudocode for the hybrid
DE algorithm is given in Table VI.

Fig. 11 shows the number of fitness evaluations (function
evaluations) versus the best fitness for 100 trials of the HDE
algorithm. Table IV provides the statistical results and com-
pares them with the results of the HGA. The average number of
cost function evaluations required was 1106, an improvement
of 64% when compared with the standard DE algorithm, and
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Fig. 12. HDE results histogram.

45% when compared with the HGA. The success rate in finding
the true global solution is also extremely high, at 98%. The left
and right subplots of Fig. 12 show the histogram distributions of
maximum AoA obtained and the number of fitness evaluations
taken, respectively, over the 100 independent trials.

VI. CONCLUSION

This paper has compared the performance of two different
evolutionary optimization algorithms, namely, GAs and DE, on
a nonlinear flight control law clearance problem. The necessity
of using global optimization methods for flight clearance was
clearly demonstrated by the very different results returned by
gradient-based optimization starting from different initial points
in the parameter space. The GA method, on the other hand, con-
verged to the exact global solution in 65 out of 100 different
trials, while the DE algorithm converged in 90 out of 100 trials.
Particularly, striking is the fact that DE achieves this improved
accuracy in tracking the global solution with a reduced compu-
tational overhead—taking an average of 3086 simulations, 31%
faster than the average of 4485 simulations required by GA.

Hybrid versions of both algorithms incorporating local gra-
dient-based optimization were shown to offer significant ad-
vantages in terms of both reduced computational complexity
and improved global convergence properties. The hybrid ver-
sion of the GA employing the SQP local optimization scheme
converged to the global solution in 92 out of 100 individual
trials, with an average of 2011 simulations. The hybrid version
of the DE method outperformed all other schemes considered
in this study by converging to the global solution in 98 out of
100 independent trials with an average of only 1106 simula-
tions—45% faster than the hybrid GA. These results indicate
that the recently introduced DE approach in particular, when ap-
propriately augmented with local optimization methods, has sig-
nificant potential to improve both the reliability and efficiency
of the current industrial flight clearance process.
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