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ABSTRACT

Motivation: Next-generation sequencing techniques have facilitated a

large-scale analysis of human genetic variation. Despite the advances

in sequencing speed, the computational discovery of structural vari-

ants is not yet standard. It is likely that many variants have remained

undiscovered in most sequenced individuals.

Results: Here, we present a novel internal segment size based ap-

proach, which organizes all, including concordant, reads into a read

alignment graph, where max-cliques represent maximal contradiction-

free groups of alignments. A novel algorithm then enumerates all

max-cliques and statistically evaluates them for their potential to re-

flect insertions or deletions. For the first time in the literature, we com-

pare a large range of state-of-the-art approaches using simulated

Illumina reads from a fully annotated genome and present relevant

performance statistics. We achieve superior performance, in particu-

lar, for deletions or insertions (indels) of length 20–100 nt. This has

been previously identified as a remaining major challenge in structural

variation discovery, in particular, for insert size based approaches. In

this size range, we even outperform split-read aligners. We achieve

competitive results also on biological data, where our method is the

only one to make a substantial amount of correct predictions, which,

additionally, are disjoint from those by split-read aligners.

Availability: CLEVER is open source (GPL) and available from
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Contact: as@cwi.nl or tm@cwi.nl

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on March 2, 2012; revised on September 10, 2012;

accepted on September 17, 2012

1 INTRODUCTION

The International HapMap Consortium (2005) and The 1000
Genomes Project Consortium (2010) have, through globally con-

certed efforts, provided the first systematic view on the gamut

and prevalence of human genetic variation, including larger gen-

omic rearrangements. A staggering 8% of the general human

population have copy number variants (CNVs) affecting regions

larger than 500 kb (Itsara et al., 2009). The technology enabling

this advance was next-generation sequencing and the reduction

in costs and increases of sequencing speeds it brought along

(Bentley et al., 2008; Eid et al., 2009). The analysis of structural

variation, however, has not kept up with the advances in sequen-

cing insofar as genotyping of human structural variation has not

yet become a routine procedure (Alkan et al., 2011). Indeed, it is

likely that existing datasets contain structural variations indisco-

verable by current methods. These limitations are likewise an

obstacle to personalized genomics.
Here, we target deletions or insertions (indels) between 20 and

50 000bp. In particular, the discovery of indels smaller than

500bp is still challenging (Alkan et al., 2011; Mills et al., 2011),

even in non-repetitive areas of the genome. That the majority of

structural variants resides in repetitive areas complicates the prob-

lem further due to the resulting read-mapping ambiguities.
Categorization of our and prior work. A (paired-end) read is a

fragment of DNA in which both ends have been sequenced. We

refer to the sequenced ends of the read as (read) ends and to the

unsequenced part of the fragment between the two ends as in-

ternal segment or insert. An alignment A of a paired-end read is a

pair of alignments of both ends. We say that a read has been

multiply mapped if it aligns at several locations in the reference

genome and uniquely mapped in case of only one alignment.

Existing approaches for structural variant discovery can be clas-

sified into three broad classes: first, those based on the read

alignment coverage, that is, the number of read ends mapping

to a location (Abyzov et al., 2011; Alkan et al., 2009; Campbell

et al., 2008; Chiang et al., 2009; Sudmant et al., 2010; Yoon et al.,

2009), second, those analyzing the paired-end read internal seg-

ment size (Chen et al., 2009; Hormozdiari et al., 2009; Korbel

et al., 2009; Lee et al., 2009; Quinlan et al., 2010; Sindi et al.,

2009) and third, split-read alignments (Mills et al., 2006; Ye

et al., 2009). Refer to Medvedev et al. (2009) as well as to

Alkan et al. (2011) for reviews. A major difference is that the

first two classes align short reads by standard read mappers, such

as BWA (Li and Durbin, 2009), Mr and MrsFast (Alkan et al.,

2009; Hach et al., 2010) and Bowtie (Langmead et al., 2009).

However, split-read aligners compute custom alignments that

span breakpoints of putative insertions and deletions. They usu-

ally have advantages over insert size based approaches on smaller

indels while performing worse in predicting larger indels.
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It is common to many library protocols that internal segment
size follows a normal distribution with machine- and protocol-
specific mean � and standard deviation �. On a side remark, we
would like to point out that our approach does not depend on this

assumption and that we also accommodate arbitrary internal seg-
ment size distributions (which may result from preparing libraries
without a size selection step, as one example) to the user. One

commonly defines concordant and discordant alignments: an align-
ment with interval length I(A) (see Fig. 1) is concordant iff
jIðAÞ � �j � K� and discordant otherwise. The constant K can

vary among the different approaches. A concordant read is defined
to concordantly align with the reference genome, that is, it should
give rise to at least one concordant alignment.

With only one exception (Lee et al., 2009, MoDIL), all prior
approaches discard concordant reads. In this article, we present
clique-enumerating variant finder (CLEVER), a novel insert size
based approach that takes all, including concordant, reads into

consideration. Although a single discordant read is significantly
likely to testify the existence of a structural variant, a single con-
cordant read only conveys a weak variant signals if any.

Ensembles of consistent concordant alignments, however, can pro-
vide significant evidence of usually smaller variants. The major
motivation of this study is to systematically take advantage of

such groups of alignments to not miss any significant variant
signal among concordant reads.
We employ a statistical framework, which addresses deviations

in insert size, alignment quality, multiply mapped reads and

coverage fluctuations in a principled manner. As a result, our
approach outperforms all prior insert size approaches on both
simulated and biological data and also compares favorably with

two state-of-the-art split-read aligners. Beyond its favorable re-
sults, our tool predicts a substantial amount of correct indels as
the only tool (e.g. more than 20% of true deletions of 20–49 bp in

the simulated data). Overall, CLEVER’s correct calls beneficially
complement those of the split-read aligner considered (Ye et al.,
2009, PINDEL).

Moreover, we need �8h on a single CPU for a 30� coverage
whole-genome dataset with �1 billion reads, which compares
favorably with the estimated 7000 CPU hours needed by
MoDIL, the only method that also takes all reads into

consideration.

1.1 Approach and related work

1.1.1 Graph-based framework Our approach is based on orga-
nizing all read alignments into a read alignment graph, whose

nodes are the alignments and edges reflect that the reads behind

two overlapping alignments are, in rigorous statistical terms,

likely to stem from the same allele. Accordingly, maximal

cliques (max-cliques) reflect maximal consistent groups of align-

ments that are likely to stem from the same location in a donor

allele. Because we do not discard alignments, the number of nodes

in our read alignment graph is large. We solve instances with

more than 109 nodes. We determine all max-cliques in this

graph by means of a specifically engineered, fast algorithmic

procedure.

The idea to group alignments into location-specific, consistent

ensembles, such as max-cliques here, is not new. In fact, it has

been employed in the vast majority of previous insert size based

approaches. We briefly discuss related concepts of the three most

closely related approaches by Hormozdiari et al. (2009,

VariationHunter [VH]), Sindi et al. (2009, GASV) and Quinlan

et al. (2010, HYDRA). Although not framing it in rigorous stat-

istical terms, HYDRA is precisely based on the same concept of

max-clique as our approach. After constructing the read align-

ment graph from discordant reads alone, they employ a heuristic

algorithm to find max-cliques. Because no theoretical guarantee

is given, it remains unclear whether HYDRA enumerates them

all. The definition of a ‘valid cluster’ in VH (Hormozdiari et al.,

2009) relaxes our definition of a clique in a subtle, but decisive

aspect. As a consequence, each of our max-cliques forms a valid

cluster, but the opposite is not necessarily true. The reduction in

assumptions, however, allows VH to compute valid clusters as

max-cliques in interval graphs in a nested fashion, which yields a

polynomial run-time algorithm. Sindi et al. (2009, GASV) use a

geometrically motivated definition that allows application of an

efficient plane-sweep style algorithm. A closer look reveals that

each geometric arrangement of alignments inferred by GASV

constitutes a max-clique in our sense, but not necessarily vice

versa, even if a max-clique is formed by only discordant read

alignments. We recall that GASV, HYDRA and VH do not

consider concordant read data and hence consider read align-

ment graphs of much reduced sizes.

Fig. 1. Left panel: two read alignments. Assuming IðAÞ4�4IðBÞ, where � is the mean of the true insert size distribution, alignment A is likely to

indicate a deletion while alignment B may indicate an insertion. Right panel: Read alignment graph for seven closely located read alignments. Note that

1=3ðIðA5Þ þ IðA6Þ þ IðA7ÞÞ41=3ðIðA1Þ þ IðA2Þ þ IðA3Þ. Assuming that all alignments have equal weight, C2 is more likely to indicate a deletion than C1

through a hypothesis test as in Equations (3) and (2). Note that we have not marked cliques ðA3,A4Þ and ðA4,A5Þ. See Figure 2 for definition of edges
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Finding max-cliques is NP-hard in general graphs. On the
basis of the idea that the read alignment graph we consider

still largely resembles an interval graph, we provide a specifically
engineered routine that computes and tests all max-cliques in a

reasonable time—about 1 h on a current eight-core machine for a

whole human genome sequenced to 30� coverage—despite that
we do not discard any reads.

1.1.2 Significance evaluation
Commonly concordant and discordant reads: Testing whether

jIðAÞ � �j � K � �, to determine whether a single alignment is

concordant, is equivalent to performing a Z-test at significance
level pK :¼ 1��ðKÞ, where � is the standard normal distribu-

tion function. However, when determining whether m consistent
alignments (such as a clique of sizem) with mean interval length �I

are commonly concordant, a Z-test for a sample of size m is

required, which translates to

1��ð
ffiffiffiffi
m
p
�
j �I� �j

�
Þ � pK ,

ffiffiffiffi
m
p
� j �I� �j � K � �: ð1Þ

Due to the factor
ffiffiffiffi
m
p

, already smaller deviations j �I� �j turn out

to render the alignments commonly discordant. In our approach,
we rigorously expand on this idea. Roughly speaking, each

max-clique undergoes a Inequality-(1)-like hypothesis test.

Multiply mapped reads: Although we approach the idea of not
‘overusing’ multiply mapped reads in an essentially different

fashion, our routine serves analogous purposes as the set-cover
routines of VH and HYDRA. The difference is that we statis-

tically control read-mapping ambiguity but do not aim at resol-

ving it.
Following Li et al. (2008), we compute each alignment’s prob-

ability of being correctly placed. In case of a max-clique consist-
ing of alignments A1, . . . ,An (all from different reads) with

probabilities p1, . . . , pn, let AJ, J � f1, . . . , ng be the event that

precisely the alignments Aj, j 2 J are correct. We compute
PðAJÞ ¼

Q
j2J pj

Q
j 62J ð1� pjÞ. Let H0 be the null hypothesis

that the allele in question that—we recall that max-cliques just
represent groups of alignments likely to be from the same allele—

coincides with the reference genome. In correspondence to

Inequality (1), we compute

PHo
ðAJÞ :¼ 1��ð

ffiffiffiffiffiffi
jJj

p j �IJ � �j

�
Þ ð2Þ

with �IJ ¼
1P
j2J

pj

P
j2J pjIðAjÞ, which is the probability of obser-

ving Aj, j 2 J when assuming the null hypothesis, given AJ. We

further compute

PH0
ðA1, . . . ,AnÞ ¼

X

J�f1, ..., ng

PðAJÞPH0
ðAJÞ ð3Þ

as the probability that max-clique A1, . . . ,Am does not support
an indel variant. We further correct PH0

ðA1, . . . ,AnÞ with a local

Bonferroni factor to adjust for coverage-mediated fluctuations in

the number of implicitly performed tests. If the corrected
PH0
ðA1, . . . ,AnÞ is significantly small, it is likely that (at least)

one allele in the donor is affected by an indel at that location. See

Section 2 for details. In a last step, we apply the Benjamini–
Hochberg procedure to correct for multiple hypothesis testing

overall. Note that, among the prior approaches, only MoDIL

(Lee et al., 2009) addresses to correct for multiple hypothesis

testing (also using Benjamini-Hochberg), although many others

either explicitly (e.g. Chen et al., 2009) or implicitly

(e.g. Hormozdiari et al., 2009; Korbel et al., 2009; Quinlan

et al., 2010) perform multiple hypothesis tests.
Among the statistically motivated approaches, Lee et al.

(2009), after clustering, use Kolmogorov–Smirnov tests in com-

bination with bimodality assumptions, whereas Chen et al.

(2009) measure both deviations from Poisson-distribution

based assumptions (BreakdancerMax) and use Kolmogorov–

Smirnov (BreakdancerMin) tests to discover copy number

changes.

2 METHODS

2.1 Notations, definitions and background

2.1.1 Reads and read alignments Let R be a set of paired-end

reads, stemming from a donor (genome) that has been aligned against

a reference (genome). We write A for a paired-end alignment, that is a

pair of alignments of the two ends of a read (Fig. 1) and AðRÞ for the set

of correctly oriented alignments that belong to read R. We neglect incor-

rectly oriented alignments and write A ¼ [RAðRÞ for the set of all align-

ments we consider. We assume that jAðRÞj � 1; that is, each read we

consider give rise to at least one well-oriented alignment. We do not

discard any reads.

We write xA for the rightmost position of the left end and yA for the

leftmost position of the right end. We write ½xA þ 1, yA � 1	 and call this

the interval of alignment A (in slight abuse of notation: intervals here only

contains integers) and IðAÞ :¼ yA � xA � 1 for the (alignment) interval

length. When referring to alignment intervals, we sometimes call xA, yA
the left and right endpoint. See Figure 1 for illustrations.

2.1.2 Internal segment size statistics We write I(R) for the in-

ternal segment (or insert) size of paired-end read R, i.e. the distance be-

tween the 30 ends—the inner ends of the sequenced reads. Note that the

distance between the 50 outer ends is an equally common definition for

insert size in the literature. In the datasets treated here, I(R) can be

assumed normally distributed with a given mean � and standard

deviation � (Hormozdiari et al., 2009; Lee et al., 2009; Li and Durbin,

2009; Li et al., 2008), i.e. IðRÞ � N ð�, �Þ. Estimation of mean � and

standard deviation � from the alignments A of reads R poses the chal-

lenge that statistics on alignment insert size I(A) (further denoted as PEmp)

do not immediately reflect statistics on I(R) because alignment insert size

I(A) statistics already reflect the structural variants in the dataset. As a

result, statistics on I(A) are fat-tailed and multimodal, even if library

protocols determine statistics on I(R) as normal. Here, we rely on

robust estimation routines, as implemented by BWA (Li and Durbin,

2009). Note that, in general, we allow to deal with arbitrary internal

segment size statistics.

2.1.3 Alignment scores and probabilities As described by Li et al.

(2008), we determine log10 PPhðAÞ :¼ �
P

j Qj=10, where j runs over all

mismatches in both read ends and Qj is the Phred score for position j, i.e.

10�ðQj=10Þ is the probability that the nucleotide at position j reflects a

sequencing error. Hence, PPhðAÞ is the probability that the substitutions

in alignment A are due to sequencing errors. The greater PPhðAÞ the more

likely that A is correct, so PPhðAÞ serves as a statistical quality assessment

of A. Note that to neglect single-nucleotide polymorphism (SNP) rates

and indels reflects common practice (Li and Durbin, 2009; Li et al., 2008),

which is justified as in Illumina reads substitution error rates are higher

than SNP rates, indel sequencing error rates and deletion/insertion
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polymorphism (DIP) rates by orders of magnitude (Bravo and Irizarry,

2010; Albers et al., 2011).

Following Li et al. (2008) and Li and Durbin (2009), we integrate the

empirical interval length distribution PEmpðIðAÞÞ into an overall score

S0ðAÞ :¼ PPhðAÞ � PEmpðIðAÞÞ and obtain as the probability that A is

the correct alignment for its read, by application of Bayes’ formula

P0ðAÞ ¼
S0ðAÞP

~A2AðRÞ

S0ð ~AÞ
: ð4Þ

2.1.4 The read alignment graph We arrange all scored read align-

ments A in the form of an undirected, weighted graph G ¼ ðA,E,wÞ.

Because we identify nodes with read alignments from A, we use these

terms interchangeably. We draw an edge between alignments A,B 2 A if

we cannot reject the hypothesis that, in case they are both correct, their

reads can stem from the same allele. See the subsequent paragraph for

details. The weight function w : A! ½0, 1	 is defined by wðAÞ :¼ P0ðAÞ.

We further label nodes by r : A! f1, . . . ,Ng, where rðAÞ ¼ n iff

A 2 AðRnÞ that is alignment A is due to read Rn.

As usual, we write �ðAÞ :¼ jfB 2 AjðA,BÞ 2 Egj for the degree of node

A. A clique C � A is defined as a subset of mutually connected nodes, i.e.,

ðA,BÞ 2 E for all A,B 2 C. A max-clique C is a clique, such that for every

node A 2 A n C there is B 2 C : ðA,BÞ 62 E. Note that by our definition of

edges, a clique is a group of alignments that can be jointly assumed to be

associated with the same allele, or, in other words, to jointly support the

same local phenomenon in the donor genome. Max-cliques are obviously

particularly interesting: although all alignments in the clique are likely to

support the same local phenomenon, joining any other overlapping align-

ment may lead to conflicts.

2.1.5 Edge computation See Figure 2 for illustrations of the fol-

lowing. Let A, B be two alignments. We define:

– �ðA,BÞ :¼ jIðAÞ � IðBÞj is the absolute difference of interval length.

– OðA,BÞ :¼ minðyA, yBÞ �maxðxA, xBÞ � 1, where in case of

OðA,BÞ � 0 we refer to all positions between maxðxA, xBÞ and

minðyA, yBÞ as their common interval.

– �IðA,BÞ :¼ ðIðAÞ þ IðBÞÞ=2 is the mean interval lengths.

– UðA,BÞ :¼ �IðA,BÞ �OðA,BÞ is the difference of mean interval

length and overlap. To motivate this quantity, note that, in case A

and B overlap [hence, the length of common interval OðA,BÞ40]

and are from the same allele, a deletion at that location can only

happen to take place in their common interval. If U(A, B) is large,

then �IðA,BÞ significantly deviates from � and the common interval is

not large enough to explain this by a large-enough deletion. Hence, it

is unlikely that A,B are from the same allele.

Let X be N ð0, 1Þ-distributed and, as above, �, � be the mean and variance

of the insert size distribution. We draw an edge between alignments A, B

in the read alignment graph iff the reads of A and B are different,

OðA,BÞ � 0 and

PðjXj �
1ffiffiffi
2
p

�ðA,BÞ

�
Þ � 0:05 and ð5Þ

PðX �
ffiffiffi
2
p ðUðA,BÞ � �Þ

�
Þ � 0:05 ð6Þ

Inequality (5) is a two-sided two sample Z-test to measure statistically

compatible insert size. Inequality (6) reflects a one-sided one-sample Z-test

for statistically consistent overlap (Wasserman, 2004). If two alignments

A, B with OðA,BÞ � 0 pass these tests, we have no reason to reject the

hypothesis that the alignments are from the same allele, so we draw an

edge.

2.2 CLEVER: algorithmic workflow

(1) Enumerating max-cliques: We compute all max-cliques in the read

alignment graph.

(2) We assign two P-values, pDðCÞ, pIðCÞ to each max-clique C, which

are the probabilities that the alignments participating in C do not

commonly support a deletion or insertion. So the lower pDðCÞ or

pIðCÞ, the more likely it is that C supports a deletion or insertion,

respectively.

(3) For the thus-computed P-value, we control the false discovery rate

at 10% by applying the standard Benjamini–Hochberg procedure

separately for insertions and deletions. All cliques remaining after

this step are deemed significant and processed further.

(4) Determining parameters: We parameterize deletions D by their left

breakpoint DB and their length DL, which denotes that reference

nucleotides of positions DB, . . . ,DB þDL � 1 are missing in the

donor. We parameterize insertions I by their breakpoint IB and

their length IL, such that before position IB in the reference there

has been a sequence of length IL inserted in the donor. Depending

on whether C represents a deletion or insertion, we determine,

defining wðCÞ :¼
P

A2C wðAÞ,

1

wðCÞ

X

A2C

wðAÞðIðAÞ � �Þ respectively
1

wðCÞ

X

A2C

wðAÞð�� IðAÞÞ ð7Þ

as the length DL of the deletion, respectively, IL of the insertion. We

determine breakpoints DB or IB such that the predicted deletion or in-

sertion sits right in the middle of the intersection of all internal segments

of alignments in C.

2.2.1 Enumerating max-cliques We identify nodes of the read

alignment graph with the intervals of the corresponding alignments.

We first sort the 2m endpoints of these intervals, m :¼ jAj, in ascending

order of their positions. We then scan this list from left to right. We

maintain a set of active cliques that could potentially be extended by a

subsequent interval, which initially is empty. If the current element ‘ of

the list is a left endpoint, we extend the set of active cliques according to

the following rules. For the sake of simplicity, let us assume that a unique

interval starts at ‘, corresponding to a vertex A in the read alignment

graph G. Let N(A) be the open neighborhood of A. If C \NðAÞ ¼ ; for

all active cliques C, add a singleton clique fAg to the set of active cliques.

Otherwise, for each active clique C,

(i) if C \NðAÞ ¼ C, then C :¼ C [ fAg, otherwise

(ii) if C \NðAÞ 6¼ ;, add ðC \NðAÞÞ [ fAg to the set of active cliques.

Finally, duplicates and cliques that are subsets of others are removed.

If the current element ‘ of the list is a right endpoint, we output all

cliques that contain at least one interval ending at ‘. These cliques go out

of scope and are thus maximal. We remove intervals ending at ‘ from

active cliques. Cliques that become empty are removed from the set of

active cliques.

2.2.2 Run-time analysis Let k be an upper bound on local align-

ment coverage, c be the maximum number of active cliques and s be the

size of the output. The detailed run-time analysis of Section A in the Sup-

plementary Material gives a total running time of Oðmðlogmþ kc2Þ þ sÞ.

Despite these rather moderate worst-case guarantees, our algorithm is

very fast in practice. See the Supplementary Material, Section A, for an

analysis of the corresponding reasons.

2.2.3 P-values for cliques We proceed as outlined in the Section

1.1.2. Let C be a max-clique in the read alignment graph and let

wðCÞ :¼
P

A2C wðAÞ ¼
P

A2C P0ðAÞ be the weight of the clique. Let
�IðCÞ :¼ 1

wðCÞ �
P

A2C wðAÞ � IðAÞ be the weighted mean of alignment interval
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length of the clique. Let � be the standard normal distribution function.

Let �ðCÞ be the number of alignments that are at the genomic location of

the clique. For example, in Figure 1, �ðC1Þ ¼ �ðC2Þ ¼ 7 is just the

number of alignments that overlap with one another at this position of

the reference. We compute

pðCÞD :¼ 2�ðCÞ
X

J�C

PH0
ðAJÞ½1��ð

ffiffiffiffiffiffi
jJj

p �IðCÞ � �

�
Þ	 ð8Þ

pðCÞI :¼ 2�ðCÞ
X

J�C

PH0
ðAJÞ½�ð

ffiffiffiffiffiffi
jJj

p �IðCÞ � �

�
Þ	 ð9Þ

just as in Equations (3) and (2) with the difference that we distinguish

between cliques, which give rise to deletions and insertions. 2�ðCÞ is the

number of subsets of alignments one can test at this location, that is the

virtual number of tests which we perform, so multiplying by 2�ðCÞ is a

Bonferroni-like correction. This correction accounts for coverage

fluctuations.

If pðCÞD is significantly small then �IðCÞ is significantly large; hence, the

alignments in C are deemed to commonly support a deletion.

Analogously, if pðCÞI is significantly small, then C is supposed to support

an insertion. Refer to Supplementary Material, Section B, for details on

how the exponential sums in Equations (8) and (9) can be computed

efficiently.

3 RESULTS AND DISCUSSION

3.1 Simulation: Craig Venter reads

We downloaded the comprehensive set of annotations of both

homozygous and heterozygous structural variants (also including

inversions and all other balanced rearrangements) for Craig

Venter’s genome, as documented by Levy et al. (2007) and intro-

duced them into the reference genome, thereby generating two

different alleles. If nested effects lead to ambiguous interpret-

ations, we opted for an order that respects the overall predicted

change in copy number. We used UCSC’s SimSeq (https://

github.com/jstjohn/SimSeq) as a read simulator to simulate

Illumina paired-end reads with read end length 100, insert size

mean � ¼ 112 (we recall: distance between the inner ends of the

sequenced reads) and standard deviation � ¼ 15, which reflects

many biological datasets (see below). See Section J in the Sup-

plementary Material for performance rates on � ¼ 500, � ¼ 50

that highlights the limitations of insert size based approaches.

Coverage 15� for each of the two alleles yields 30� sequence

coverage overall.

3.2 Biological data: NA18507

We were further provided with reads of the genome of an indi-

vidual from the Yoruba in Ibadan, Nigeria, by Illumina. Reads

were sequenced on a GAIIx and are now publicly available (ftp://
ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/). Read ends are

of length 101. Read coverage is 30� , furthermore

� 
 112,� 
 15 (see the following paragraph). For benchmark-

ing purposes, we used annotations from Mills et al. (2011,

Gen.Res.) merged with NA18507 ‘DIP’ annotations from the

HGSV Project (http://hgsv.washington.edu/general/download/
SNPs_DIPs) database, lifted to hg18.

3.3 Reference genome and alignments

As a reference genome, we used version hg 18, as downloaded

from the UCSC Genome Browser. All reads considered were
aligned using BWA (Li and Durbin, 2009) with the option to

allow 25 alignments per read end, which amounts to a maximum

of 252 alignments per paired-end read. BWA determined mean

insert size � 
 112 and standard deviation � 
 15 for both simu-

lated and NA18507 reads. Note that we are aware that realign-

ment of discordant reads with a more precise (but time
consuming!) alignment tool, such as Novoalign (http://www

.novocraft.com/main/index.php) (as suggested by Quinlan

et al., 2010), can lead to subsequent resolution of much mis-

aligned sequence and hence to improved results for all tools

considered.

3.4 Experiments

For benchmarking, we considered five different state-of-the-art

insert size based approaches, four of which are applicable for a

whole-genome study: GASV (Sindi et al., 2009), VH (Hormoz-

diari et al., 2009, v3.0), Breakdancer (Chen et al., 2009) and
HYDRA (Quinlan et al., 2010). We ran MoDIL (Lee et al.,

2009) only on Chromosome 1 of the simulated data which, on

our machines, required several hundred CPU hours. In contrast,

we process Chromosome 1 in less than 1h. We also consider the

split-read aligners PINDEL (Ye et al., 2009) and SV-seq2 (Zhang

et al., 2012). Details on program versions and on how we ran
each method are given in Supplementary Material, Section C. In

case of deletions, we define a hit as a pair of a true deletion and a

predicted deletion that overlap and whose lengths do not differ

by more than 100bp, which roughly is the mean of internal

Fig. 2. Four scenarios of two overlapping alignment pairs A and B. In the read alignment graph, two alignments are connected by an edge if they are

compatible, i.e. they support the same phenomenon. (1) Alignment A has an insert length about the expected insert length �, suggesting that there is no

variation present but alignment B has an insert length much larger than � suggesting a deletion. Hence, A and B are not compatible. (2) Both alignments

have similar insert lengths larger than �, both suggesting a deletion of size IðAÞ � � 
 IðBÞ � �, but the overlap O(A, B) is too small to harbor a deletion

of this size. Thus, they are incompatible. (3) Both alignments do not suggest any variation and are therefore compatible. (4) Similar to Case (2), but now

the overlap is large enough to contain the putative deletion
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segment size. We say that a true insertion ðB0,L0Þ and a pre-

dicted insertion ðB1,L1Þ, where B is for breakpoint, L is for

length, hit each other if the intervals ½B0 þ 1, . . . ,B0 þ L0	 and

½B1 þ 1, . . . ,B1 þ L1	 overlap. This ‘overlap criterion’ precisely

parallels the one for deletions: if one views deletions in the ref-

erence as insertions in the donor, then the deletions in the refer-

ence (relative to reference coordinates) hit if and only if the

insertions in the donor hit (relative to donor coordinates).

Again, we also require jL0 � L1j � 100. We also offer results

on alternative hit criteria which, instead of overlap, depend on

fixed thresholds on breakpoint distance and differences of indel

length in Supplementary Material, Section F. As usual, re-

call¼TP/(TPþFN), where TP (¼ true positives) is the

number of true deletions being hit and FN (¼ false negatives)

is the number of true deletions not being hit. For Preci-

sion¼TP/(TPþFP), TP is the number of predicted indels

being hit and FP is the number of predicted indels not

being hit. We relate recall and precision to one another and

also display the F-measure, F¼ 2*Recall*Precision/(Recallþ

Precision), as a common overall statistic for performance

evaluation. We refer to Exc. (¼ exclusive) as the percentage

of true annotations, which were exclusively (and correctly)

predicted by the method in question. Because the annotations

for the biological dataset are obviously still far from complete,
a false positive may in fact be due to a missing annotation.

We therefore call the ratio TP/(TPþFP) relative precision

(RPr.). For recall on the biological data, note that a good

amount of existing annotations may be of limited reliability.

Therefore, the F-measure is meaningless for these data and we

refrain from displaying it. Last but not least, we present aver-

age deviation of breakpoint placement and differences in

length for all tools in the Supplementary Material, Section

G. In Supplementary Material, Section H, we present CLE-

VER’s results on simulated data when including true align-

ments in the BAM files, or even using only true alignments

so as to analyze its behavior relative to removal of external

sources of errors.

3.5 Results

See Table 1 for performance figures. See also Section E in

the Supplementary Material for a further subdivision of the

100–50 000bp part. Boldface numbers designate the best ap-

proach, and italic numbers the best insert size based approach

(if not the best approach overall). Comparing absolute numbers

of true indels in the biological data with the simulated data

points out immediately that the vast majority of annotations is

Table 1. Benchmarking results for simulated (Venter) and biological data (NA18507)

Dataset Venter insertions Venter deletions NA18507 insertions NA18507 deletions

Prec. Rec. Exc. F Prec. Rec. Exc. F RPr. Rec. Exc. RPr. Rec. Exc.

Length range 20–49 (8786 true ins., 8502 true del.) (2295 true ins., 2192 true del.)

CLEVER 62.5 53.0 20.4 57.4 60.4 66.8 15.9 63.4 7.7 24.1 8.4 8.9 44.7 6.6

BreakDancer — 5.1 0.1 — 75.5 7.5 0.0 13.6 — 0.3 0.0 8.2 5.8 0.0

GASV NA NA NA NA 5.4 25.8 1.8 8.9 NA NA NA 1.0 20.1 2.0

HYDRA 0.0 0.0 0.0 — — 0.1 0.0 — 0.0 0.0 0.0 — 0.0 0.0

VH 32.4 8.4 0.2 13.4 66.3 8.0 0.3 14.3 0.8 3.8 0.4 4.6 4.6 0.3

PINDELa 66.1 44.9 18.7 53.5 49.5 55.8 12.1 52.5 13.1 40.0 25.3 9.3 64.9 26.3

SV-seq2a NA NA NA NA 96.0 1.2 0.0 2.3 NA NA NA 15.2 1.6 0.2

Length range 50–99 (2024 true ins., 1822 true del.) (303 true ins., 294 true del.)

CLEVER 60.4 86.6 7.3 71.2 72.7 80.7 6.8 76.5 1.6 70.3 6.9 5.5 79.6 12.2

BreakDancer 86.5 56.5 0.2 68.3 87.3 48.1 0.3 62.0 6.4 15.5 0.0 9.8 44.2 0.7

GASV NA NA NA NA 46.1 35.0 1.5 39.8 NA NA NA 2.3 34.7 1.0

HYDRA 0.0 0.0 0.0 — — 5.2 0.0 — 0.0 0.0 0.0 — 2.4 0.0

VH 55.8 76.6 1.4 64.5 66.5 65.8 1.5 66.1 1.4 62.7 2.3 4.3 57.1 1.4

PINDELa 77.5 20.5 0.3 32.5 72.5 37.5 0.4 49.4 10.8 29.7 1.3 8.3 43.9 0.3

SV-seq2a NA NA NA NA 83.6 19.8 0.2 32.0 NA NA NA 9.9 28.6 0.3

Length range 100–50 000 (3101 true ins., 2996 true del.) (165 true ins., 414 true del.)

CLEVER 66.2 23.8 2.0 35.1 87.6 69.9 4.1 77.7 0.5 31.5 1.8 4.8 70.3 2.7

BreakDancer 61.0 17.6 3.0 27.4 65.8 57.7 0.0 61.5 0.9 23.0 1.8 5.2 62.1 0.5

GASV NA NA NA NA 0.9 49.2 1.0 1.7 NA NA NA 0.1 57.7 2.4

HYDRA 0.0 0.0 0.0 — 72.8 56.8 0.4 63.8 0.0 0.0 0.0 2.0 65.5 0.5

VH 60.4 25.5 3.5 35.8 58.8 65.1 1.5 61.8 1.8 44.9 10.9 3.0 70.0 1.4

PINDELa — 1.9 0.0 — 84.7 39.5 0.1 53.9 — 0.6 0.0 5.9 51.9 0.2

SV-seq2a NA NA NA NA 81.6 37.5 0.3 51.3 NA NA NA 3.9 34.5 0.0

Performance rates as recall, precision, exclusive predictions (Exc. which are true predictions, uniquely predicted by that tool) and F-measure are grouped by different indel size

ranges. Dash and NA stands for ‘no prediction’ and ‘not applicable’, respectively. Insertions significantly exceeding the internal segment size (
 112 here) cannot be detected

by insert size based approaches. PINDEL does not detect such insertions either.
aSplit-read approach.
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still missing seemingly. Therefore, all results on the biological

data, in particular those on precision, can only reflect certain

trends. For the simulated data, all values reflect the ground

truth. As expected, performance rates greatly depend on the

size of the indels. For prediction of indels shorter than 20bp,

split-read based approaches and/or read alignment tools them-

selves are the option of choice.

20–49bp: CLEVER outperforms all other approaches on the

simulated data and is the best insert size based approach also

on the biological data. PINDEL achieves best rates on the bio-

logical data. Also, CLEVER makes a substantial amount of ex-

clusive calls in all categories. Tables in the Supplementary

Material, subsection F.2, points out that 80–90% of

CLEVER’s indel calls come significantly close to a real indel.

Further analyses (Supplementary Material, Section H) demon-

strate that 30% of CLEVER’s false positives are due to misalign-

ments and mapping ambiguities (see External sources of errors

below). Obviously many of those extremely close but not truly

hitting calls are due to external errors. Breakdancer makes little

and highly precise calls at the expense of reduced accuracy in

terms of indel breakpoint placement and length (see

Supplementary Material, Section G).

50–99bp: Here, CLEVER achieves substantially better recall and

more exclusive calls than PINDEL on the biological data. On the

simulated data, CLEVER again achieves best overall perform-

ance. In contrast to 20–49bp, however, Breakdancer and VH

already make significant contributions. Although VH achieves

good overall performance, Breakdancer mostly excels in preci-

sion. As before, when allowing a certain offset of breakpoints

(Supplementary Material, subsection F.2) or when integrating

correct alignments (Supplementary Material, Section H),

CLEVER’s precision substantially rises from 60–72% to

72–96% across the categories.

100–50 000 bp: Also, CLEVER is best while other tools

(Breakdancer, HYDRA, VH) also make decisive contributions.

This documents that the current challenges for indel discovery

are rather in the size range of 20–100bp. Note that none of the

tools makes predictions for insertions longer than 250bp, see

Section E in the Supplementary Material.

MoDIL: We compared MoDIL with all other tools on

Chromosome 1 alone because of the excessive run-time require-

ments of MoDIL (CLEVER is faster by a factor of �1000). See

Supplementary Material, Section I. Overall, MoDIL incurs cer-

tain losses in performance with respect to CLEVER across all

categories, but outperforms the other insert size based

approaches apart from larger indels (�100bp). It is noteworthy

that MoDIL makes a substantial amount of exclusive calls for

insertions of 50–99 bp.

Accuracy of breakpoint and length predictions: See Section G for

related numbers. The split-read based approaches outperform

the insert size based approaches. Among the latter, CLEVER

and GASV are most precise for 20–49 and 100–50 000bp. For

50–99bp calls, Breakdancer achieves favorable values.

External sources of errors: See Supplementary Material, Section

H, for related results and a detailed discussion on to what degree

misalignments and multiply mapped reads/alignment hamper

computational SV discovery.

Conclusion: We have presented a novel internal segment size

based approach for discovering indel variation from paired-end

read data. In contrast to all previous, whole-genome-applicable

approaches, our tool takes all concordant read data into ac-

count. We outperform all prior insert size based approaches on

indels of sizes 20–99bp and also achieve favorable values for

long indels. We outperform the split-read based approaches con-

sidered on medium-sized (50–99 bp) and larger (�100bp) indels.

In addition, our approach detects a substantial amount of vari-

ants missed by all other approaches, in particular, in the smallest

size range considered (20–49 bp). In conclusion, CLEVERmakes

substantial contributions to SV discovery, in particular, in the

size range of 20–99 bp.

Our approach builds on two key elements: first, an algorithm

that enumerates maximal, statistically contradiction-free ensem-

bles as max-cliques in read alignment graphs in short time and,

second, a sound statistical procedure that reliably calls max-

cliques that indicate variants. Our approach is generic with re-

spect to choices of variants; max cliques in the read alignment

graphs can also reflect other variants such as inversions or trans-

locations. For future work, we are planning to predict inversions

and to incorporate split read information as a unifying approach.
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