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Abstract

Clickjacking attacks are an emerging threat on the web.

In this paper, we design new clickjacking attack variants

using existing techniques and demonstrate that existing

clickjacking defenses are insufficient. Our attacks show

that clickjacking can cause severe damages, including

compromising a user’s private webcam, email or other

private data, and web surfing anonymity.

We observe the root cause of clickjacking is that an

attacker application presents a sensitive UI element of a

target application out of context to a user (such as hiding

the sensitive UI by making it transparent), and hence the

user is tricked to act out of context. To address this root

cause, we propose a new defense, InContext, in which

web sites (or applications) mark UI elements that are sen-

sitive, and browsers (or OSes) enforce context integrity

of user actions on these sensitive UI elements, ensuring

that a user sees everything she should see before her ac-

tion and that the timing of the action corresponds to her

intent.

We have conducted user studies on Amazon Mechani-

cal Turk with 2064 participants to evaluate the effective-

ness of our attacks and our defense. We show that our at-

tacks have success rates ranging from 43% to 98%, and

our InContext defense can be very effective against the

clickjacking attacks in which the use of clickjacking is

more effective than social engineering.

1 Introduction

When multiple applications or web sites (or OS princi-

pals [44] in general) share a graphical display, they are

subject to clickjacking [13] (also known as UI redress-

ing [28, 49]) attacks: one principal may trick the user

into interacting with (e.g., clicking, touching, or voice

controlling) UI elements of another principal, triggering

actions not intended by the user. For example, in Like-

jacking attacks [46], an attacker web page tricks users

into clicking on a Facebook “Like” button by transpar-

ently overlaying it on top of an innocuous UI element,

such as a “claim your free iPad” button. Hence, when

the user “claims” a free iPad, a story appears in the user’s

Facebook friends’ news feed stating that she “likes” the

attacker web site. For ease of exposition, our description

will be in the context of web browsers. Nevertheless, the

concepts and techniques described are generally applica-

ble to all client operating systems where display is shared

by mutually distrusting principals.

Several clickjacking defenses have been proposed and

deployed for web browsers, but all have shortcomings.

Today’s most widely deployed defenses rely on frame-

busting [21, 37], which disallows a sensitive page from

being framed (i.e., embedded within another web page).

Unfortunately, framebusting is fundamentally incompat-

ible with embeddable third-party widgets, such as Face-

book Like buttons. Other existing defenses (discussed

in Section 3.2) suffer from poor usability, incompatibil-

ity with existing web sites, or failure to defend against

significant attack vectors.

To demonstrate the insufficiency of state-of-the-art de-

fenses, we construct three new attack variants using ex-

isting clickjacking techniques. We designed the new at-

tack scenarios to be more damaging than the existing

clickjacking attacks in the face of current defenses. In

one scenario, the often-assumed web-surfing-anonymity

can be compromised. In another, a user’s private data and

emails can be stolen. Lastly, an attacker can spy on a user

through her webcam. We have conducted the first click-

jacking effectiveness study through Amazon Mechanical

Turk and find that the aforementioned attacks have suc-

cess rates of 98%, 47%, and 43%, respectively.

Learning from the lessons of existing defenses, we set

the following design goals for our clickjacking defense:

• Widget compatibility: clickjacking protection

should support third-party widgets.

• Usability: users should not be prompted for their

actions.

• Backward compatibility: the defense should not

break existing web sites (e.g., by disallowing exist-



ing functionality).

• Resiliency: our defense should address the root

cause of clickjacking and be resilient to new attack

vectors.

The root cause of clickjacking is that an attacker ap-

plication presents a sensitive UI element of a target ap-

plication out of context to a user and hence the user gets

tricked to act out of context. For example, in the afore-

mentioned Likejacking attack scenario, an attacker web

page presents a false visual context to the user by hiding

the sensitive “Like” button transparently on top of the

“claim your free iPad” button.

To address the root cause and achieve the above goals,

our defense, called InContext, lets web sites mark their

sensitive UI elements and then lets browsers enforce the

context integrity of user actions on the sensitive UI ele-

ments. The context of a user’s action consists of its visual

context and temporal context.

• Visual context is what a user should see right before

her sensitive action. To ensure visual context in-

tegrity, both the sensitive UI element and the pointer

feedback (such as cursors, touch feedback, or NUI

input feedback) need to be fully visible to a user. We

refer to the former as target display integrity and to

the latter as pointer integrity.

• Temporal context refers to the timing of a user ac-

tion. Temporal integrity ensures that a user action

at a particular time is intended by the user. For ex-

ample, an attack page can compromise temporal in-

tegrity by launching a bait-and-switch attack by first

baiting the user with a “claim your free iPad” button

and then switching in a sensitive UI element right

before the anticipated time of user click.

We implemented a prototype of InContext on Internet

Explorer 9 and found that it is practical to use, adding at

most 30ms of delay for verifying a click. We evaluated

InContext through Amazon Mechanical Turk user stud-

ies, and our results show that InContext is very effective

against attacks in which the use of clickjacking is vital to

attack effectiveness.

2 Threat Model

The primary attacker against which InContext defends

is a clickjacking attacker. A clickjacking attacker has

all the capabilities of a web attacker [17]: (1) they own

a domain name and control content served from their

web servers, and (2) they can make a victim visit their

site, thereby rendering attacker’s content in the victim’s

browser. When a victim user visits the attacker’s page,

the page hides a sensitive UI element either visually or

temporally (see Section 3.1 for various techniques to

achieve this) and lure the user into performing unin-

tended UI actions on the sensitive element out of context.

We make no attempt to protect against social engineer-

ing attackers who can succeed in their attacks even when

the system is perfectly designed and built. For example,

a social engineering attacker can fool users into clicking

on a Facebook Like button by drawing misleading con-

tent, such as images from a charity site, around it. Even

though the Like button is not manipulated in any way,

a victim may misinterpret the button as “liking” charity

work rather “liking” the attacker web site, and the vic-

tim may have every intention to click on the button. In

contrast, a clickjacking attacker exploits a system’s in-

ability to maintain context integrity for users’ actions and

thereby can manipulate the sensitive element visually or

temporally to trick users.

3 Background and Related Work

In this section, we discuss known attacks and defenses

for clickjacking, and compare them to our contributions.

Below, we assume a victim user is visiting a clickjack-

ing attacker’s page, which embeds and manipulates the

target element residing on a different domain, such as

Facebook’s Like button or PayPal’s checkout dialog.

3.1 Existing clickjacking attacks

We classify existing attacks according to three ways of

forcing the user into issuing input commands out of con-

text: (1) compromising target display integrity, the guar-

antee that users can fully see and recognize the target el-

ement before an input action; (2) compromising pointer

integrity, the guarantee that users can rely on cursor

feedback to select locations for their input events; and

(3) compromising temporal integrity, the guarantee that

users have enough time to comprehend where they are

clicking.

3.1.1 Compromising target display integrity

Hiding the target element. Modern browsers support

HTML/CSS styling features that allow attackers to visu-

ally hide the target element but still route mouse events to

it. For example, an attacker can make the target element

transparent by wrapping it in a div container with a CSS

opacity value of zero; to entice a victim to click on it,

the attacker can draw a decoy under the target element

by using a lower CSS z-index [13]. Alternatively, the

attacker may completely cover the target element with an

opaque decoy, but make the decoy unclickable by setting

the CSS property pointer-events:none [4]. A vic-

tim’s click would then fall through the decoy and land on

the (invisible) target element.

Partial overlays. Sometimes, it is possible to visually

confuse a victim by obscuring only a part of the target

element [12, 41]. For example, attackers could over-

lay their own information on top of a PayPal checkout

iframe to cover the recipient and amount fields while

leaving the “Pay” button intact; the victim will thus have
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incorrect context when clicking on “Pay”. This over-

laying can be done using CSS z-index or using Flash

Player objects that are made topmost with Window Mode

property [2] set to wmode=direct. Furthermore, a tar-

get element could be partially overlaid by an attacker’s

popup window [53].

Cropping. Alternatively, the attacker may crop the target

element to only show a piece of the target element, such

as the “Pay” button, by wrapping the target element in a

new iframe that uses carefully chosen negative CSS po-

sition offsets and the Pay button’s width and height [41].

An extreme variant of cropping is to create multiple 1x1

pixel containers of the target element and using single

pixels to draw arbitrary clickable art.

3.1.2 Compromising pointer integrity

Proper visual context requires not only the target ele-

ment, but also all pointer feedback to be fully visible

and authentic. Unfortunately, an attacker may violate

pointer integrity by displaying a fake cursor icon away

from the pointer, known as cursorjacking. This leads

victims to misinterpret a click’s target, since they will

have the wrong perception about the current cursor lo-

cation. Using the CSS cursor property, an attacker can

easily hide the default cursor and programmatically draw

a fake cursor elsewhere [20], or alternatively set a custom

mouse cursor icon to a deceptive image that has a cursor

icon shifted several pixels off the original position [7].

Another variant of cursor manipulation involves the

blinking cursor which indicates keyboard focus (e.g.,

when typing text into an input field). Vulnerabilities

in major browsers have allowed attackers to manipulate

keyboard focus using strokejacking attacks [50, 52]. For

example, an attacker can embed the target element in a

hidden frame, while asking users to type some text into a

fake attacker-controlled input field. As the victim is typ-

ing, the attacker can momentarily switch keyboard focus

to the target element. The blinking cursor confuses vic-

tims into thinking that they are typing text into the at-

tacker’s input field, whereas they are actually interacting

with the target element.

3.1.3 Compromising temporal integrity

Attacks in the previous two sections manipulated visual

context to trick the user into sending input to the wrong

UI element. An orthogonal way of achieving the same

goal is to manipulate UI elements after the user has de-

cided to click, but before the actual click occurs. Humans

typically require a few hundred milliseconds to react to

visual changes [34, 54], and attackers can take advantage

of our slow reaction to launch timing attacks.

For example, an attacker could move the target ele-

ment (via CSS position properties) on top of a decoy

button shortly after the victim hovers the cursor over the

decoy, in anticipation of the click. To predict clicks more

effectively, the attacker could ask the victim to repeti-

tively click objects in a malicious game [1, 3, 54, 55]

or to double-click on a decoy button, moving the tar-

get element over the decoy immediately after the first

click [16, 33].

3.1.4 Consequences

To date, there have been two kinds of widespread click-

jacking attacks in the wild: Tweetbomb [22] and Like-

jacking [46]. In both attacks, an attacker tricks victims

to click on Twitter Tweet or Facebook Like buttons us-

ing hiding techniques described in Section 3.1.1, causing

a link to the attacker’s site to be reposted to the victim’s

friends and thus propagating the link virally. These at-

tacks increase traffic to the attacker’s site and harvest a

large number of unwitting friends or followers.

Many proof-of-concept clickjacking techniques have

also been published. Although the impact of these at-

tacks in the wild is unclear, they do demonstrate more

serious damages and motivate effective defenses. In one

case [38], attackers steal user’s private data by hijack-

ing a button on the approval pages of the OAuth [10]

protocol, which lets users share private resources such

as photos or contacts across web sites without handing

out credentials. Several attacks target the Flash Player

webcam settings dialogs (shown in Figure 1), allowing

rogue sites to access the victim’s webcam and spy on the

user [1, 3, 9]. Other POCs have forged votes in online

polls, committed click fraud [11], uploaded private files

via the HTML5 File API [19], stolen victims’ location in-

formation [54], and injected content across domains (in

an XSS spirit) by tricking the victim to perform a drag-

and-drop action [18, 40].

3.2 Existing anti-clickjacking defenses

Although the same-origin policy [35] is supposed to pro-

tect distrusting web sites from interfering with one an-

other, it fails to stop any of the clickjacking attacks we

described above. As a result, several anti-clickjacking

defenses have been proposed (many of such ideas were

suggested by Zalewski [51]), and some have been de-

ployed by browsers.

3.2.1 Protecting visual context

User Confirmation. One straightforward mitigation for

preventing out-of-context clicks is to present a confirma-

tion prompt to users when the target element has been

clicked. Facebook currently deploys this approach for

the Like button, asking for confirmation whenever re-

quests come from blacklisted domains [47]. Unfortu-

nately, this approach degrades user experience, espe-

cially on single-click buttons, and it is also vulnerable to

double-click timing attacks of Section 3.1.3, which could

trick the victim to click through both the target element
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and a confirmation popup.

UI Randomization. Another technique to protect the

target element is to randomize its UI layout [14]. For

example, PayPal could randomize the position of the Pay

button on its express checkout dialog to make it harder

for the attacker to cover it with a decoy button. This

is not robust, since the attacker may ask the victim to

keep clicking until successfully guessing the Pay button’s

location.

Opaque Overlay Policy. The Gazelle web browser [45]

forces all cross-origin frames to be rendered opaquely.

However, this approach removes all transparency from

all cross-origin elements, breaking benign sites.

Framebusting. A more effective defense is frame-

busting, or disallowing the target element from

being rendered in iframes. This can be done

either with JavaScript code in the target element

which makes sure it is the top-level document [37],

or with newly added browser support, using fea-

tures called X-Frame-Options [21] and CSP’s

frame-ancestors [39]. A fundamental limitation of

framebusting is its incompatibility with target elements

that are intended to be framed by arbitrary third-party

sites, such as Facebook Like buttons.1 In addition,

previous research found JavaScript framebusting unreli-

able [37], and in Section 4.2, we will show attacks that

bypass framebusting protection on OAuth dialogs using

popup windows. Zalewski has also demonstrated how

to bypass framebusting by navigating browsing history

with JavaScript [55].

Visibility Detection on Click. Instead of completely

disallowing framing, an alternative is to allow rendering

transparent frames, but block mouse clicks if the browser

detects that the clicked cross-origin frame is not fully vis-

ible. Adobe has added such protection to Flash Player’s

webcam access dialog in response to webcam clickjack-

ing attacks; however, their defense only protects that di-

alog and is not available for other web content.

The ClearClick module of the Firefox extension No-

Script also uses this technique [23], comparing the

bitmap of the clicked object on a given web page to the

bitmap of that object rendered in isolation (e.g., without

transparency inherited from a malicious parent element).

Although ClearClick is reasonably effective at detect-

ing visual context compromises, its on-by-default nature

must assume that all cross-origin frames need clickjack-

ing protection, which results in false positives on some

sites. Due to these false positives, ClearClick prompts

users to confirm their actions on suspected clickjacking

attacks, posing a usability burden. An extension called

1X-Frame-Options and frame-ancestors both allow specify-

ing a whitelist of sites that may embed the target element, but doing

so is often impractical: Facebook would have to whitelist much of the

web for the Like button!

ClickIDS [5] was proposed to reduce the false positives

of ClearClick by alerting users only when the clicked el-

ement overlaps with other clickable elements. Unfortu-

nately, ClickIDS cannot detect attacks based on partial

overlays or cropping, and it still yields false positives.

Finally, a fundamental limitation of techniques that

verify browser-rendered bitmaps is that cursor icons are

not captured; thus, pointer integrity is not guaranteed.

To address this caveat, ClearClick checks the computed

cursor style of the clicked element (or its ancestors) to

detect cursor hiding. Unfortunately, cursor spoofing at-

tacks can still be effective against some users even if the

default cursor is visible over the target element, as dis-

cussed in Section 7.2.

3.2.2 Protecting temporal context

Although we’re not aware of any timing attacks used in

the wild, browser vendors have started to tackle these

issues, particularly to protect browser security dialogs

(e.g., for file downloads and extension installations) [34].

One common way to give users enough time to compre-

hend any UI changes is to impose a delay after displaying

a dialog, so that users cannot interact with the dialog un-

til the delay expires. This approach has been deployed in

Flash Player’s webcam access dialog, suggested in Za-

lewski’s proposal [51], and also proposed in the Gazelle

web browser [45]. In response to our vulnerability re-

port, ClearClick has added a UI delay for cross-origin

window interactions [24].

Unresponsive buttons during the UI delay have report-

edly annoyed many users. The length of the UI delay

is clearly a tradeoff between the user experience penalty

and protection from timing attacks. Regardless, UI delay

is not a complete answer to protecting temporal integrity,

and we construct an attack that successfully defeats a UI

delay defense in Section 4.3.

3.2.3 Access Control Gadgets

Access control gadgets (ACG) [30] were recently intro-

duced as a new model for modern OSes to grant appli-

cations permissions to access user-owned resources such

as camera or GPS. An ACG is a privileged UI which can

be embedded by applications that need access to the re-

source represented by the ACG; authentic user actions on

an ACG grant its embedding application permission to

access the corresponding resource. The notion of ACGs

is further generalized to application-specific ACGs, al-

lowing applications to require authentic user actions for

application-specific functionality. Application-specific

ACGs precisely capture today’s web widgets that de-

mand a clickjacking defense.

ACGs require clickjacking resilience. While Roesner

et al’s design [30] considered maintaining both visual

and temporal integrity, they did not consider pointer in-
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Fake cursor 

Real cursor 

Figure 1: Cursor spoofing attack page. The target Flash Player webcam settings dialog is at the bottom right of the page, with a

“skip this ad” bait link remotely above it. Note there are two cursors displayed on the page: a fake cursor is drawn over the “skip

this ad” link while the actual pointer hovers over the webcam access “Allow” button.

tegrity and did not evaluate various design parameters.

In this work, we comprehensively address these issues,

and we also establish the taxonomy of context integrity

explicitly.

3.2.4 Discussion

We can conclude that all existing clickjacking defenses

fall short in some way, with robustness and site compat-

ibility being the main issues. Moreover, a glaring omis-

sion in all existing defenses is the pointer integrity at-

tacks described in Section 3.1.2. In Section 5, we will

introduce a browser defense that (1) does not require user

prompts, unlike ClearClick and Facebook’s Likejacking

defense, (2) provides pointer integrity, (3) supports tar-

get elements that require arbitrary third-party embed-

ding, unlike framebusting, (4) lets sites opt in by indi-

cating target elements, avoiding false positives that exist

in ClearClick, and (5) is more robust against timing at-

tacks than the existing UI delay techniques.

3.3 Our contributions

The major contributions of this paper are in evaluating

the effectiveness of existing attack techniques as well as

designing and evaluating a new defense. Our evaluation

uses several new attack variants (described in Section 4)

which build on existing techniques described in Sec-

tion 3.1, including cursor manipulation, fast-paced ob-

ject clicking, and double-click timing. Whereas most ex-

isting proof-of-concepts have focused on compromising

target display integrity, we focus our analysis on pointer

integrity and temporal integrity, as well as on combin-

ing several known techniques in novel ways to increase

effectiveness and bypass all known defenses.

4 New Attack Variants

To demonstrate the insufficiency of state-of-the-art de-

fenses described above, we construct and evaluate three

attack variants using known clickjacking techniques. We

have designed the new attack scenarios to be potentially

more damaging than existing clickjacking attacks in the

face of current defenses. We describe each in turn.

4.1 Cursor spoofing attack to steal webcam access

We first crafted a cursor spoofing attack (Section 3.1.2) to

steal access to a private resource of a user: the webcam.

In this attack, the user is presented with an attack page

shown in Figure 1. A fake cursor is programmatically

rendered to provide false feedback of pointer location to

the user, in which the fake cursor gradually shifts away

from the hidden real cursor while the pointer is moving.

A loud video ad plays automatically, leading the user to

click on a “skip this ad” link. If the user moves the fake

cursor to click on the skip link, the real click actually

lands on the Adobe Flash Player webcam settings dialog

that grants the site permission to access the user’s web-

cam. The cursor hiding is achieved by setting the CSS

cursor property to none, or a custom cursor icon that is

completely transparent, depending on browser support.

4.2 Double-click attack to steal user private data

Today’s browsers do not protect temporal integrity for

web sites. We show in our second attack that even if

a security-critical web page (such as an OAuth dialog

page) successfully employs framebusting (refusing to be

embedded by other sites), our attack can still success-

fully clickjack such a page by compromising temporal

integrity for popup windows.

We devised a bait-and-switch double-click attack

(Section 3.1.3) against the OAuth dialog for Google ac-

counts, which is protected with X-Frame-Options. The

attack is shown in Figure 2. First, the attack page baits

the user to perform a double-click on a decoy button.

After the first click, the attacker switches in the Google

OAuth pop-up window under the cursor right before the
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Figure 2: Double-click attack page. The target OAuth dia-

log popup window appears underneath the pointer immediately

after the first click on the decoy button.

second click (the second half of the double-click). This

attack can steal a user’s emails and other private data

from the user’s Google account.

The double-click attack technique was previously dis-

cussed in the context of extension installation dialogs by

Ruderman [33].

4.3 Whack-a-mole attack to compromise web

surfing anonymity

In our third attack, we combine the approaches from

the previous two attacks, cursor spoofing and bait-and-

switch, to launch a more sophisticated whack-a-mole

attack that combines clickjacking with social plugins

(e.g., Facebook Like button) to compromise web surfing

anonymity.

In this attack, we ask the user to play a whack-a-mole

game and encourage her to score high and earn rewards

by clicking on buttons shown at random screen locations

as fast as possible. Throughout the game, we use a fake

cursor to control where the user’s attention should be. At

a later point in the game, we switch in a Facebook Like

button at the real cursor’s location, tricking the user to

Figure 3: Whack-a-mole attack page. This is a cursor spoof-

ing variant of the whack-a-mole attack. On the 18th trial, the

attacker displays the target Like button underneath the actual

pointer.

click on it.

In 2010, Wondracek et al. [48] showed that it is fea-

sible for a malicious web site to uniquely identify 42%

of social network users that use groups by exploiting

browsing history leaks. Fortunately, the history sniffing

technique required in their attack is no longer feasible

in major browsers due to Baron’s patch [6]. However,

we find that our whack-a-mole attack above, and Like-

jacking attacks in general, can still easily reveal the vic-

tim’s real identity at the time of visit and compromise

user anonymity in web surfing as follows.

Consider an attacker who is an admin for a Face-

book page; the attacker crafts a separate malicious page

which tricks users to click on his Like button. That

page is notified when a victim clicks on the Like button

via FB.Event.subscribe(), triggering the attacker’s

server to pull his fan list from Facebook and instantly

identify the newly added fan. The attacker’s server could

then query the victim’s profile via Facebook Graph API

(and remove the victim fan to avoid suspicion). While we

implemented this logic as a proof-of-concept and verified

its effectiveness, we did not test it on real users.

In Section 7, we show our results on the effectiveness

of all these attacks on Mechanical Turk users.

5 InContext Defense

As described in Section 1, the root cause of clickjacking

is that an attacker application presents a sensitive UI el-

ement of a target application out of context to the user,

and hence the user gets tricked to act out of context.
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Enforcing context integrity for an application is essen-

tially one aspect of application isolation, in addition to

memory and other resource access. Namely, the context

for a user’s action in the application should be protected

from manipulation by other applications. We believe it

is an OS’s (or a browser’s) role to provide such cross-

application (or cross-web-site) protection.

Section 1 introduced two dimensions of context in-

tegrity: visual and temporal. Enforcing visual integrity

ensures that the user is presented with what she should

see before an input action. Enforcing temporal integrity

ensures that the user has enough time to comprehend

what UI element they are interacting with.

We describe our design for each in turn.

5.1 Ensuring Visual Integrity

To ensure visual integrity at the time of a sensitive user

action, the system needs to make the display of both the

sensitive UI elements and the pointer feedback (such as

cursors, touch feedback, or NUI input feedback) fully

visible to the user. Only when both the former (target

display integrity) and the latter (pointer integrity) are sat-

isfied, the system activates sensitive UI elements and de-

livers user input to them.

5.1.1 Guaranteeing Target Display Integrity

Although it is possible to enforce the display integrity

of all the UI elements of an application, doing so would

make all the UI elements inactivated if any part of the

UI is invisible. This would burden users to make the

entire application UI unobstructed to carry out any in-

teractions with the application. Such whole-application

display integrity is often not necessary. For example, not

all web pages of a web site contain sensitive operations

and are susceptible to clickjacking. Since only appli-

cations know which UI elements require protection, we

let web sites indicate which UI elements or web pages

are sensitive. This is analogous to how HTML5 [43]

and some browsers [32] (as well as earlier research on

MashupOS [44]) allow web sites to label certain content

as “sandboxed”. The sandboxed content is isolated so

that it cannot attack the embedding page. In contrast, the

sensitive content is protected with context integrity for

user actions, so that the embedding page cannot click-

jack the sensitive content.

We considered several design alternatives for provid-

ing target display integrity, as follows.

Strawman 1: CSS Checking. A naı̈ve approach is to let

the browser check the computed CSS styles of elements,

such as the position, size, opacity and z-index, and

make sure the sensitive element is not overlaid by cross-

origin elements. However, various techniques exist to

bypass CSS and steal topmost display, such as using IE’s

createPopup() method [25] or Flash Player’s Window

Reference bitmap: OS screenshot: 

Figure 4: Ensuring target element display integrity. Here,

the attacker violates visual context of the Twitter Follow but-

ton by changing its opacity and obstructing it with two DIVs.

InContext detects this during its bitmap comparison. Obstruc-

tions from other windows are also detected (e.g., the non-

browser Vi window on the right).

Mode [2]. Solely relying on CSS checking is not reliable

and thus insufficient.

Strawman 2: Static reference bitmap. Another ap-

proach is to let a web site provide a static bitmap of

its sensitive element as a reference, and let the browser

make sure the rendered sensitive element matches the

reference. Flash Player uses this approach for protect-

ing its webcam access dialog (Section 3.2.1). However,

different browsers may produce slightly differently ren-

dered bitmaps from the same HTML code, and it would

be too burdensome for developers to serve different ref-

erence bitmaps for different browsers. Furthermore, this

approach fails when sensitive elements contain animated

content, such as button mouseover effects, or dynami-

cally generated content, such as the amount to pay in a

checkout UI.

Our design. InContext enforces target display integrity

by comparing the OS-level screenshot of the area that

contains the sensitive element (what the user sees), and

the bitmap of the sensitive element rendered in isolation

at the time of user action. If these two bitmaps are not the

same, then the user action is canceled and not delivered

to the sensitive element. Figure 4 illustrates this process.

In the Likejacking attack example in Section 1, when

a user clicks on the “claim your iPad” button, the trans-

parent Facebook Like button is actually clicked, as the

browser unconditionally delivered the click event to the

Facebook Like button. With our defense, Facebook can

label its Like button web page as “sensitive” in the corre-

sponding HTTP response. The browser will then per-

form the following tasks before delivering each click

event to the Like button. The browser first determines

what the user sees at the position of the Like button on

the screen by taking a screenshot of the browser window

and cropping the sensitive element from the screenshot

based on the element’s position and dimenions known

by the browser. The browser then determines what the
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sensitive element should look like if rendered in isola-

tion and uses this as a reference bitmap. To this end, the

browser draws the sensitive element on a blank surface

and extracts its bitmap. The browser then compares the

cropped screenshot with the reference bitmap. A mis-

match here means that the user does not fully see the Like

button but her click targets the Like button. In this case,

the browser detects a potential clickjacking offense and

cancels the delivery of the click event. Instead, it triggers

a new oninvalidclick event to give the application an

opportunity to deal with such occasions.

This design is resilient to new visual spoofing attack

vectors because it uses only the position and dimension

information from the browser layout engine to determine

what the user sees. This is much easier to get right than

relying on other sophisticated logic (such as CSS) from

the layout engine to determine what the user sees. By

obtaining the reference bitmap at the time of the user ac-

tion on a sensitive UI element, this design works well

with dynamic aspects (such as animations or movies) in

a sensitive UI element, unlike Strawman 2 above.

We also enforce that a host page cannot apply any CSS

transforms [42] (such as zooming, rotating, etc.) that

affect embedded sensitive elements; any such transfor-

mations will be ignored by InContext-capable browsers.

This will prevent malicious zooming attacks [36], which

change visual context via zoom. We also disallow any

transparency inside the sensitive element itself. Al-

though doing so may have a compatibility cost in terms

of preventing legitimate blending effects of the sensitive

element with the host page, we believe this is a necessary

restriction, since otherwise attackers could violate visual

context by inserting decoys that could show through the

sensitive element.

Our bitmap comparison is similar to ClearClick (Sec-

tion 3.2.1), with two crucial differences: (1) We use

OS APIs to take a screenshot of the browser window,

rather than relying on the browser to generate screen-

shots, making it more robust to rendering performed by

Flash Player and other plug-ins, and (2) our approach

is opt-in, eliminating false positives and obviating user

prompts.

5.1.2 Guaranteeing Pointer Integrity

Without pointer integrity support, an attacker could spoof

the real pointer. For example, an attack page may show

a fake cursor to shift the user’s attention from the real

cursor and cause the user to act out of context by not

looking at the destination of her action. To mitigate this,

we must ensure that users see system-provided (rather

than attacker-simulated) cursors and pay attention to the

right place before interacting with a sensitive element.

For our design, we consider the following techniques,

individually and in various combinations, to under-

stand the tradeoff between their effectiveness of stop-

ping pointer-spoofing attacks and intrusiveness to users.

Some of the techniques limit the attackers’ ability to

carry out pointer-spoofing attacks; others draw attention

to a particular place on the screen.

No cursor customization. Current browsers disallow

cross-origin cursor customization. We further restrict

this policy: when a sensitive element is present, In-

Context disables cursor customization on the host page

(which embeds the sensitive element) and on all of the

host’s ancestors, so that a user will always see the system

cursor in the areas surrounding the sensitive element.

Our opt-in design is better than completely disallow-

ing cursor customization, because a web site may want

to customize the pointer for its own UIs (i.e., same-origin

customization). For example, a text editor may want to

show different cursors depending on whether the user is

editing text or selecting a menu item.

Screen freezing around sensitive element. Since hu-

mans typically pay more attention to animated objects

than static ones [15], attackers could try to distract a user

away from her actions with animations. To counter this,

InContext “freezes” the screen (i.e., ignores rendering

updates) around a sensitive UI element when the cursor

enters the element.

Muting. Sound could also draw a user’s attention away

from her actions. For example, a voice may instruct the

user to perform certain tasks, and loud noise could trigger

a user to quickly look for a way to stop the noise. To

stop sound distractions, we mute the speakers when a

user interacts with sensitive elements.

Lightbox around sensitive element. Greyout (also

called Lightbox) effects are commonly used for focus-

ing the user’s attention on a particular part of the screen

(such as a popup dialog). In our system, we apply this

effect by overlaying a dark mask on all rendered content

around the sensitive UI element whenever the cursor is

within that element’s area. This causes the sensitive ele-

ment to stand out visually.

The mask cannot be a static one. Otherwise, an at-

tacker could use the same static mask in its application

to dilute the attention-drawing effect of the mask. In-

stead, we use a randomly generated mask which consists

of a random gray value at each pixel.

No programmatic cross-origin keyboard focus

changes. To stop strokejacking attacks that steal key-

board focus (see Section 3.1.2), once the sensitive UI

element acquires keyboard focus (e.g., for typing text in

an input field), we disallow programmatic changes of

keyboard focus by other origins.

Discussion. This list of techniques is by no means ex-

haustive. For example, sensitive elements could also

draw the user’s attention with splash animation effects

on the cursor or the element [15].
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Our goal was to come up with a representative set of

techniques with different security and usability tradeoffs,

and conduct user studies to evaluate their effectiveness

as a design guide. We hope that this methodology can be

adopted by browser vendors to evaluate a wider range of

techniques with a larger-scale user study for production

implementations.

5.2 Ensuring Temporal Integrity

Even with visual integrity, an attacker can still take a

user’s action out of context by compromising its tempo-

ral integrity, as described in Section 3.1.3. For example, a

timing attack could bait the user with a “claim your free

iPad” button and then switch in a sensitive UI element

(with visual integrity) at the expected time of user click.

The bait-and-switch attack is similar to time-of-check-

to-time-of-use (TOCTTOU) race conditions in software

programs. The only difference is that the race condition

happens to a human rather than a program. To mitigate

such TOCTTOU race conditions on users, we impose the

following constraints for a user action on a sensitive UI

element:

UI delay. We apply this existing technique (discussed in

Section 3.2.2) to only deliver user actions to the sensi-

tive element if the visual context has been the same for

a minimal time period. For example, in the earlier bait-

and-switch attack, the click on the sensitive UI element

will not be delivered unless the sensitive element (to-

gether with the pointer integrity protection such as grey-

out mask around the sensitive element) has been fully

visible and stationary long enough. We evaluate trade-

offs of a few delays in Section 7.3.

UI delay after pointer entry. The UI delay technique

above is vulnerable to the whack-a-mole attack (Sec-

tion 4.3) that combines pointer spoofing with rapid ob-

ject clicking. A stronger variant on the UI delay is to

impose the delay not after changes to visual context, but

each time the pointer enters the sensitive element. Note

that the plain UI delay may still be necessary, e.g., on

touch devices which have no pointer.

Pointer re-entry on a newly visible sensitive element.

In this novel technique, when a sensitive UI element first

appears or is moved to a location where it will overlap

with the current location of the pointer, an InContext-

capable browser invalidates input events until the user

explicitly moves the pointer from the outside of the sen-

sitive element to the inside. Note that an alternate design

of automatically moving the pointer outside the sensitive

element could be misused by attackers to programmati-

cally move the pointer, and thus we do not use it. Obvi-

ously, this defense only applies to devices and OSes that

provide pointer feedback.

Padding area around sensitive element. The sensitive

UI element’s padding area (i.e., extra whitespace separat-

Sensitive Element Dimensions Click Delay Memory

Overhead

Facebook Like 90x20 px 12.04 ms 5.11 MB

Twitter Follow 200x20 px 13.54 ms 8.60 MB

Animated GIF (1.5 fps) 468x60 px 14.92 ms 7.90 MB

Google OAuth 450x275 px 24.78 ms 12.95 MB

PayPal Checkout 385x550 px 30.88 ms 15.74 MB

Table 1: Performance of InContext. For each sensitive

element, this table shows extra latency imposed on each click,

as well as extra memory used.

ing the host page from the embedded sensitive element)

needs to be thick enough so that a user can clearly de-

cide whether the pointer is on the sensitive element or

on its embedding page. As well, this ensures that during

rapid cursor movements, such as those in the whack-a-

mole attack (Section 4.3), our pointer integrity defenses

such as screen freezing are activated early enough. Sec-

tions 7.2 and 7.4 give a preliminary evaluation on some

padding thickness values. The padding could be either

enforced by the browser or implemented by the devel-

oper of the sensitive element; we have decided the latter

is more appropriate to keep developers in control of their

page layout.

5.3 Opt-in API

In our design, web sites must express which elements

are sensitive to the browser. There are two options for

the opt-in API: a JavaScript API and an HTTP response

header. The JavaScript API’s advantages include abil-

ity to detect client support for our defense as well as to

handle oninvalidclick events raised when clickjack-

ing is detected. On the other hand, the header approach

is simpler as it doesn’t require script modifications, and

it does not need to deal with attacks that disable script-

ing on the sensitive element [37]. We note that bitmap

comparison functions should not be directly exposed in

JavaScript (and can only be triggered by user-initiated

actions). Otherwise, they might be misused to probe pix-

els across origins using a transparent frame.

6 Prototype Implementation

We built a prototype of InContext using Internet Explorer

9’s public COM interfaces. We implemented the pixel

comparison between an OS screenshot and a sensitive

element rendered on a blank surface to detect element

visibility as described in Section 5.1.1, using the GDI

BitBlt function to take desktop screenshots and using

the MSHTML IHTMLElementRender interface to gen-

erate reference bitmaps.

To implement the UI delays, we reset the UI delay

timer whenever the top-level window is focused, and

whenever the computed position or size of the sensitive

element has changed. We check these conditions when-

ever the sensitive element is repainted, before the actual
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paint event; we detect paint events using IE binary behav-

iors [27] with the IHTMLPainter::Draw API. We also

reset the UI delay timer whenever the sensitive element

becomes fully visible (e.g., when an element obscuring it

moves away) by using our visibility checking functions

above. When the user clicks on the sensitive element, In-

Context checks the elapsed time since the last event that

changed visual context.

Our prototype makes the granularity of sensitive ele-

ments to be HTML documents (this includes iframes);

alternately, one may consider enabling protection for

finer-grained elements such as DIVs. For the opt-in

mechanism, we implemented the Javascript API of Sec-

tion 5.3 using the window.external feature of IE.

Although our implementation is IE and Windows-

specific, we believe these techniques should be feasible

in other browsers and as well. For example, most plat-

forms support a screenshot API, and we found an API

similar to IE’s IHTMLElementRender in Firefox to ren-

der reference bitmaps of an HTML element.

At this time, we did not implement the pointer in-

tegrity defenses, although we have evaluated their effects

in Section 7.

Performance. To prove that InContext is practical, we

evaluated our prototype on five real-world sensitive ele-

ments (see Table 1). For each element, we measured the

memory usage and click processing time for loading a

blank page that embeds each element in a freshly started

browser, with and without InContext, averaging over ten

runs. Our testing machine was equipped with Intel Xeon

CPU W3530 @ 2.80 GHz and 6 GB of RAM.

Without additional effort on code optimization, we

find that our average click processing delay is only 30 ms

in the worst case. This delay is imposed only on clicks on

sensitive elements, and should be imperceptible to most

users. We find that the majority (61%) of the click delay

is spent in the OS screenshot functions (averaging 11.65

ms). We believe these could be significantly optimized,

but this is not our focus in this paper.

7 Experiments

7.1 Experimental design

In February of 2012 we posted a Human Interactive Task

(HIT) at Amazon’s Mechanical Turk to recruit prospec-

tive participants for our experiments. Participants were

offered 25 cents to “follow the on-screen instructions and

complete an interactive task” by visiting the web site at

which we hosted our experiments. Participants were told

the task would take roughly 60 seconds. Each task con-

sisted of a unique combination of a simulated attack and,

in some cases, a simulated defense. After each attack, we

asked a series of follow-up questions. We then disclosed

the existence of the attack and explained that since it was

simulated, it could only result in clicking on harmless

simulated functionality (e.g., a fake Like button).

We wanted participants to behave as they would if

lured to a third-party web site with which they were pre-

viously unfamiliar. We hosted our experiments at a web

site with a domain name unaffiliated with our research

institution so as to ensure that participants’ trust (or dis-

trust) in our research institution would not cause them to

behave in a more (or less) trusting manner.

For attacks targeting Flash Player and access to video

cameras (webcams), we required that participants have

Flash Player installed in their browser and have a web-

cam attached. We used a SWF file to verify that Flash

Player was running and that a webcam was present. For

attacks loading popup windows, we required that partic-

ipants were not using IE or Opera browsers since our at-

tack pages were not optimized for them.

We recruited a total of 3521 participants.2 Partici-

pants were assigned uniformly and at random to one of

27 (between-subjects) treatment groups. There were 10

treatment groups for the cursor-spoofing attacks, 4 for

the double-click attacks, and 13 for the whack-a-mole at-

tacks. Recruiting for all treatments in parallel eliminated

any possible confounding temporal factors that might re-

sult if different groups were recruited or performed tasks

at different times. We present results for each of these

three sets of attacks separately.

In our analysis, we excluded data from 370 partici-

pants who we identified (by worker IDs) have previously

participated in this experiment or earlier versions of it.

We also discarded data from 1087 participants who were

assigned to treatment groups for whack-a-mole attacks

that targeted Facebook’s Like button but who could not

be confirmed as being logged into Facebook (using the

technique described in [8]). In Tables 2, 3 and 4, we re-

port data collected from the remaining 2064 participants.

Except when stated otherwise, we use a two-tailed

Fisher’s Exact Test when testing whether differences be-

tween attack rates in different treatment groups are sig-

nificant enough to indicate a difference in the general

population. This test is similar to χ
2, but more conserva-

tive when comparing smaller sample sizes.

7.2 Cursor-spoofing attacks

In our first experiment, we test the efficacy of the cursor-

spoofing attack page, described in Section 4.1 and illus-

trated in Figure 1, and of the pointer integrity defenses

we proposed in Section 5.1.2. The results for each treat-

ment group make up the rows of Table 2. The columns

show the number of users that clicked on the “Skip ad”

link (Skip), quit the task with no pay (Quit), clicked on

2The ages of our participants were as follows: 18-24 years: 46%;

25-34 years: 38%; 35-44 years: 11%; 45-54 years: 3%; 55-64 years:

1%; 65 years and over: 0.5%. A previous study by Ross et al. provides

an analysis of the demographics of Mechanical Turk workers [31].
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Treatment Group Total Timeout Skip Quit Attack Success

1. Base control 68 26 35 3 4 (5%)

2. Persuasion control 73 65 0 2 6 (8%)

3. Attack 72 38 0 3 31 (43%)

4. No cursor styles 72 34 23 3 12 (16%)

5a. Freezing (M=0px) 70 52 0 7 11 (15%)

5b. Freezing (M=10px) 72 60 0 3 9 (12%)

5c. Freezing (M=20px) 72 63 0 6 3 (4%)

6. Muting + 5c 70 66 0 2 2 (2%)

7. Lightbox + 5c 71 66 0 3 2 (2%)

8. Lightbox + 6 71 60 0 8 3 (4%)

Table 2: Results of the cursor-spoofing attack. Our attack

tricked 43% of participants to click on a button that would

grant webcam access. Several of our proposed defenses re-

duced the rate of clicking to the level expected if no attack had

occurred.

webcam “Allow” button (Attack success), and those who

watched the ad full video and were forwarded to the end

of the task with no clicks (Timeout).

Control. We included a control group, Group 1, which

contained an operational skip button, a Flash webcam

access dialog, but no attack to trick the user into click-

ing the webcam access button while attempting to click

the skip button. We included this group to determine the

click rate that we would hope a defense could achieve

in countering an attack. We anticipated that some users

might click on the button to grant webcam access simply

out of curiosity. In fact, four did. We were surprised that

26 of the 68 participants waited until the full 60 seconds

of video completed, even though the “skip ad” button

was available and had not been tampered with. In future

studies, we may consider using a video that is longer,

more annoying, and that does not come from a charity

that users may feel guilty clicking through.

We added a second control, Group 2, in which we re-

moved the “skip ad” link and instructed participants to

click on the target “Allow” button to skip the video ad.

This control represents one attempt to persuade users to

grant access to the webcam without tricking them. As

with Group 1, we could consider a defense successful it

rendered attacks no more successful than using persua-

sion to convince users to allow access to the webcam.

Whereas 4 of 68 (5%) participants randomly as-

signed to the persuasion-free control treatment (Group

1) clicked on the “Allow” button, we observed that 6

of 73 (8%) participants assigned to the persuasion con-

trol treatment did so. However, the difference in the

attack success rates of Group 1 and Group 2 were not

significant, with a two-tailed Fisher’s exact test yielding

p=0.7464.

Attack. Participants in Group 3 were exposed to the sim-

ulated cursor spoofing attack, with no defenses to protect

them. The attack succeeded against 31 of 72 participants

(43%). The difference in the attack success rates between

participants assigned to the non-persuasion control treat-

Figure 5: Cursor-spoofing attack with lightbox defenses.

The intensity of each pixel outside of the target element is dark-

ened and randomized when the actual pointer hovers on the

target element.

ment (Group 1) and the attack treatment (Group 3) is sta-

tistically significant (p<0.0001). The attack might have

been even more successful had participants been given

a more compelling motivation to skip the “skip this ad”

link. Recall that only 51% of participants in the non-

persuasion control treatment (Group 1) tried to skip the

animation. If we assume the same percent of participants

tried to skip the advertisement during the attack, then

84% of those participants who tried to skip the ad fell

for the attack (43% of 51%).

Defenses. One straightforward defense against cursor-

spoofing attacks is to disallow cursor customization.

This would prevent the real cursor from being hidden,

though the attack page could still draw a second, fake

cursor. Some victims might focus on the wrong cursor

and fall for the attack. In Group 4, we disallowed cursor

customization and found that 12 of 72 (16%) participants

still fell for the attack. This result, along with attacker’s

ability to draw multiple fake cursors and emphasize one

that is not the real cursor, suggest this defense has lim-

ited effectiveness. Nevertheless, the defense does appear

to make a dent in the problem, as there is a reduction

in attack success rates from Group 3 (43%), without the

defense, to Group 4 (16%), with the defense, and the dif-

ference between these two treatment groups was statisti-

cally significant (p=0.0009).

In Groups 5a-c, we deployed the freezing defense de-

scribed in Section 5.1.2: when this defense triggers, all

movement outside the protected region, including the

video and fake cursor, is halted. This helps break the il-

lusion of the fake cursor and draws the user’s attention to

the part of the screen on which there is still movement—

that which contains the real cursor. The freezing effect

will not help if users have already initiated a click before

noticing it. We thus initiate the freeze when the cursor

is within M pixels of the webcam dialog, for M of 0, 10,

and 20 pixels. At M=20px (Group 5c), the attack success

rate dropped to that of our non-persuasion control group,
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Treatment Group Total Timeout Quit Attack Success

1. Attack 90 46 1 43 (47%)

2a. UI Delay (TA=250ms) 91 89 0 2 (2%)

2b. UI Delay (TA=500ms) 89 86 2 1 (1%)

3. Pointer re-entry 88 88 0 0 (0%)

Table 3: Results of double-click attack. 43 of 90 partic-

ipants fell for the attack that would grant access to their

personal Google data. Two of our defenses stopped the attack

completely.

tricking only 3 of 72 (4%). Fewer participants assigned

to the 20px-border-freezing defense of Group 5c fell for

the attack (4%) than those in the cursor-customization-

defense treatment of Group 4 (16%), and this difference

was significant (p=0.0311).

Given the efficacy of the large-margin (20px) freezing

defense in Group 5c, and the low rate of successful at-

tacks on which to improve, our sample was far too small

to detect any further benefits that might result from mut-

ing the speaker or freezing portions of the screen with

a lightbox might provide. Augmenting the freezing de-

fense to mute the computer’s speaker (Group 6) yielded

a similar attack success rate of 2 of 70 (2%) participants.

Augmenting that defense again with a lightbox, grey-

ing over the frozen region as described in Section 5.1.2,

(Groups 7 and 8) also resulted in attack success rates of

2-4%. The lightbox effect is a somewhat jarring user ex-

perience, and our experiments do not provide evidence

that this user-experience cost is offset by a measurably

superior defense. However, larger sample sizes or dif-

ferent attack variants may reveal benefits that our exper-

iment was unable to uncover.

7.3 Double-click attacks

In our second experiment, we tested the efficacy of the

double-click timing attack (described in Section 4.2 and

shown in Figure 2) and the defenses proposed in Sec-

tion 5.2. The attack attempts to trick the user into click-

ing on the “Allow Access” button of a Google OAuth

window by moving it underneath the user’s cursor after

the first click of a double-click on a decoy button. If

the “Allow” button is not clicked within two seconds, the

attack times out without success (column Timeout). The

results of each treatment group appear as rows of Table 3.

Attack. Of the 90 participants assigned to the treatment

in which they were exposed to the simulated attack with-

out any defense to protect them, the attack was success-

ful against 43 of them (47%). If this had been a real

attack, we could have accessed their GMail to read their

personal messages or download their contacts. Further-

more, many of the users who were not successfully at-

tacked escaped because the popup was not shown quickly

enough. Indeed, the popup took more than 500ms to be

displayed for 31 out of 46 users who timed out on the at-

tack (with 833ms average loading time for those users)—

likely greater than a typical user’s double-click speed.

The attack efficacy could likely be improved further by

pre-loading the OAuth dialog in a pop-under window (by

de-focusing the popup window) and refocusing the pop-

under window between the two clicks; this would avoid

popup creation cost during the attack.

Defenses. Two groups of participants were protected

by simulating the UI delay defense described in Sec-

tion 5.2—we treated clicks on the “Allow” button as in-

valid until after it has been fully visible for a threshold of

TA ms. We assigned a treatment group for two choices for

TA: 250ms (Group 2a), the mode of double-click inter-

vals of participants in an early mouse experiment [29] in

1984, and 500ms (Group 2b), the default double-click in-

terval in Windows (the time after which the second click

would be counted as a second click, rather than the sec-

ond half of a double-click) [26]. We observed that the

delay of 250ms was effective, though it was not long

enough for 2 out of 91 (2%) participants in Group 2a,

who still fell for the attack. The difference in attack suc-

cess rates between the attack treatment (Group 1) and

the UI delay defense treatment for TA=250ms (Group 2a)

was significant (p<0.0001). Similarly, the 500ms delay

stopped the attack for all but 1 of 89 (1%) participants in

Group 2b.

We also simulated our pointer re-entry defense (Group

3), which invalidated UI events on the OAuth dialog until

the cursor has explicitly transitioned from outside of the

OAuth dialog to inside. This defense was 100% effective

for 88 participants in Group 3. The difference in attack

success rates between the attack treatment (Group 1) and

the pointer re-entry defense treatment (Group 3) was sig-

nificant (p<0.0001). While the attack success rate re-

duction from the delay defense (Groups 2a and 2b) to the

pointer re-entry defense (Group 3) was not statistically

significant, the pointer re-entry defense is preferable for

other reasons; it does not constrain the timing with which

users can click on buttons, and it cannot be gamed by at-

tacks that might attempt to introduce delays—one can

imagine an attack claiming to test the steadiness of a

user’s hand by asking him to move the mouse to a po-

sition, close his eyes, and press the button after five sec-

onds.

7.4 Whack-a-mole attacks

Next, we tested the efficacy of the fast-paced button

clicking attack, the whack-a-mole attack, described in

Section 4.3 and shown in Figure 3. In attempt to in-

crease the attack success rates, as a real attacker would

do, we offered a $100 performance-based prize to keep

users engaged in the game. In this experiment, we used

the Facebook’s Like button as the target element (ex-

cept for Group 1b, where for the purposes of compari-

son, the Flash Player webcam settings dialog was also
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Treatment Group Total Timeout Quit Attack Success Attack Success Attack Success

(On 1st Mouseover) (Filter by Survey)

1a. Attack without clickjacking 84 1 0 83 (98%) N/A 42/43 (97%)

1b. Attack without clickjacking (webcam) 71 1 1 69 (97%) N/A 13/13 (100%)

2. Attack with timing 84 3 1 80 (95%) 80 (95%) 49/50 (98%)

3. Attack with cursor-spoofing 84 0 1 83 (98%) 78 (92%) 52/52 (100%)

4a. Combined defense (M=0px) 77 0 1 76 (98%) 42 (54%) 54/54 (100%)

4b. Combined defense (M=10px) 78 10 1 67 (85%) 27 (34%) 45/53 (84%)

4c. Combined defense (M=20px) 73 18 4 51 (69%) 12 (16%) 31/45 (68%)

5. Lightbox + 4c 73 21 0 52 (71%) 10 (13%) 24/35 (68%)

6a. Entry delay (TE =250ms) + 4c 77 27 4 46 (59%) 6 (7%) 27/44 (61%)

6b. Entry delay (TE =500ms) + 4c 73 25 3 45 (61%) 3 (4%) 31/45 (68%)

6c. Entry delay (TE =1000ms) + 4c 71 25 1 45 (63%) 1 (1%) 25/38 (65%)

6d. Entry delay (TE =500ms) + 4a 77 6 0 71 (92%) 16 (20%) 46/49 (93%)

7. Lightbox + 6b 73 19 0 54 (73%) 6 (8%) 34/46 (73%)

Table 4: Results of the whack-a-mole attack.
98% of participants were vulnerable to Likejacking de-anonymization under the attack that combined whack-a-mole with cursor-spoofing. Several

defenses showed a dramatic drop in attack success rates, reducing them to as low as 1% when filtered by first mouseover events.

tested). We checked whether the participant was logged

into Facebook [8] and excluded data from users that were

not logged in. The results for each treatment group ap-

pear in the rows of Table 4. The “Timeout” column rep-

resents those participants who did not click on the target

button within 10 seconds, and were thus considered to

not have fallen for the attack.

We calculated the attack success rate with three differ-

ent methods, presented in three separate columns. The

first Attack Success column shows the total number of

users that clicked on the Like button. However, after an-

alyzing our logs, we realized that this metric is not neces-

sarily accurate: many people appeared to notice the Like

button and moved their mouse around it for several sec-

onds before eventually deciding to click on it. For these

users, it was not clickjacking that ultimately caused the

attack, but rather it was the users’ willingness to know-

ingly click on the Like button after noticing it (e.g., due

to wanting to finish the game faster, or deciding that they

did not mind clicking it, perhaps not understanding the

consequences). For the purposes of evaluating our de-

fense, we wanted to filter out these users: our defenses

are only designed to stop users from clicking on UI ele-

ments unknowingly.

We used two different filters to try to isolate those vic-

tims who clicked on the Like button unknowingly. The

first defined an attack to be successful if and only if the

victim’s cursor entered the Like button only once before

the victim click. This on first mouseover filter excludes

victims who are moving their mouse around the Like but-

ton and deliberating whether or not to click. The second

filter uses responses from our post-task survey to exclude

participants who stated that they noticed the Like button

and clicked on it knowingly, shown in column “Attack

Success (Filter by Survey)”. We asked the participants

the following questions, one at a time, revealing each

question after the previous question was answered:

1. Did you see the Facebook Like button at any point

in this task? <displayed an image of Like button>

2. (If No to 1) Would you approve if your Facebook

wall showed that you like this page?

3. (If Yes to 1) Did you click on the Like button?

4. (If Yes to 3) Did you intend to click on the Like

button?

We only included participants who either did not approve

“liking” (No to 2), were not aware that they “liked” (No

to 3) or did not intend to “like” (No to 4). This ex-

cludes victims who do not care about “liking” the at-

tacker’s page and who intentionally clicked on the Like

button. We expected the two filters to yield similar re-

sults; however, as we describe later, the trust in our sur-

vey responses was reduced by indications that partici-

pants lied in their answers. Therefore, we rely on the

on first mouseover column for evaluating and comparing

our defenses.

Attacks. We assigned two treatment groups to a simu-

lated whack-a-mole attack that did not employ clickjack-

ing. The first (Group 1a) eventually were shown a Like

button to click on whereas the second (Group 1b) were

eventually shown the “allow” button in the Flash webcam

access dialog. In the simulated attack, participants first

had to click on a myriad of buttons, many of which were

designed to habituate participants into ignoring the possi-

bility that these buttons might have context outside their

role in the game. These included buttons that contained

the text “great,” “awesome,” and smiley face icons. On

the attack iteration, the Like button simply appeared to be

the next target object to press in the game. We hypothe-

sized that users could be trained to ignore the semantics

usually associated with a user interface element if it ap-

peared within this game.

Though we had designed this attack, its efficacy sur-

prised even us. The Like button version of Group 1a suc-

ceeded on 83 of 84 (98%) participants and the “allow”

button of Group 1b succeeded on 69 of 71 (97%) partici-

pants. The differences between these two groups are not
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statistically significant. The attacks were also so effec-

tive that, at these sample sizes, they left no room in which

to find statistically significant improvements through the

use of clickjacking.

In the whack-a-mole attack with timing (Group 2), the

Like button is switched to cover one of the game buttons

at a time chosen to anticipate the user’s click. This attack

was also effective, fooling 80 of 84 (95%) participants in

Group 2. Next, we combined the timing technique with

cursor spoofing that we also used in Section 7.2, so that

the game is played with a fake cursor, with the attack

(Group 3) succeeding on 83 of 84 (98%) participants.

Defenses. In Groups 4a-c, we combined the proposed

defenses that were individually effective against the pre-

vious cursor-spoofing and the double-click attacks, in-

cluding pointer re-entry, appearance delay of TA=500ms,

and display freezing with padding area size M=0px, 10px

and 20px. We assumed that the attacker could be aware

of our defenses; e.g., our attack compensated for the ap-

pearance delay by substituting the Like button roughly

500ms before the anticipated user click.

Using no padding area (M=0px), the attack succeeded

on the first mouseover on 42 of 77 (54%) of the partici-

pants in Group 4a. The reduction in the first-mouseover-

success rate from Group 3 (without defense) to 4a (with

the M=0px combined defense) was statistically signifi-

cant, with p<0.0001. So, while all of the participants

in Group 4a eventually clicked on the Like button, the

defense caused more users to move their mouse away

from the Like button before clicking on it. Increas-

ing the padding area to M=10px (Group 4b) further re-

duced the first-mouseover success rate to 27 of 78 (34%),

and the maximum padding area tested (M=20px, Group

4c) resulted in a further reduction to 12 of 73 (16%).

The reduction in the first-mouseover attack success rates

between Groups 4a and 4b was statistically significant

(p=0.0155), as was the reduction from Groups 4b to 4c

(p=0.0151). We also noticed that adding a 10px padding

area even reduced the unfiltered attack success rate from

76 of 77 (98%) in Group 4a to 67 of 78 (85%) in Group

4b, and a 20px padding area further reduced the unfil-

tered attack success rate to 51 of 73 (69%) in Group 4c.

The reduction in the unfiltered attack success rates be-

tween Groups 4a and 4b was also statistically significant

(p=0.0046), as was the reduction from Groups 4b to 4c

(p=0.0191). Thus, larger padding areas provide notice-

ably better clickjacking protection. Participants assigned

to Group 5 received the defense of 4c enhanced with a

lightbox, which further decreased the first-mouseover at-

tack effectiveness to 10 of 73 (13%). The difference in

first-mouseover success rates between Group 4c and 5

was not statistically significant (p=0.8176).

Note that there is a large discrepancy comparing first-

mouseover attack success to the survey-filtered attack

success. After analyzing our event logs manually, we

realized that many users answered our survey questions

inaccurately. For example, some people told us that they

didn’t click on the Like button, and they wouldn’t ap-

prove clicking on it, whereas the logs show that while

their initial click was blocked by our defense, they con-

tinued moving the mouse around for several seconds be-

fore finally resolving to click the Like button. While

these users’ answers suggested that clickjacking protec-

tion should have stopped them, our defenses clearly had

no chance of stopping these kinds of scenarios.

Participants assigned to Groups 6a-d were protected

by the pointer-entry delay defense described in Sec-

tion 5.2: if the user clicks within a duration of TE ms of

the pointer entering the target region, the click is invalid.

In Groups 6a and 6b, we experiment with a pointer en-

try delay of TE=250ms and TE=500ms, respectively. We

used an appearance delay of TA=500ms and a padding

area of M=20px as in Group 4c. In both cases, we ob-

served that the addition of pointer entry delay was highly

effective. Only 3 of 73 (4%) participants in Group 6b

still clicked on the target button. We found a signifi-

cant difference in attack success rate between Groups 4c

and 6b (p=0.0264), indicating that the pointer entry de-

lay helps stopping clickjacking attacks, compared to no

pointer entry delays. We then test a more extreme pointer

entry delay of TE=1000ms, in which the appearance de-

lay TA must also be adjusted to no less than 1000ms. This

was most successful in preventing clickjacking from suc-

ceeding: only 1 of 71 (1%) participants fell for the at-

tack. We also tested the pointer entry delay TE=500ms

without a padding area (M=0px), which allowed 16 of

77 (20%) participants in Group 6d to fall for the attack.

Note that the difference in first-mouseover success rates

between Groups 6b and 6d was significant (p=0.0026).

Again, our results suggest that attacks are much more

effective when there is no padding area around the tar-

get. Finally, in Group 7 we tested the lightbox effect in

addition to Group 6b. The attack succeeded on 6 of 73

(8%) participants in Group 7, in which the difference be-

tween Groups 6b and 7 was not statistically significant

(p=0.4938).

Overall, we found that pointer entry delay was crucial

in reducing the first-mouseover success rate, the part of

the attack’s efficacy that could potentially be addressed

by a clickjacking defense. Thus, it is an important tech-

nique that should be included in a browser’s clickjacking

protection suite, alongside freezing with a sufficiently

large padding area, and the pointer re-entry protection.

The pointer entry delay subsumes, and may be used

in place of, the appearance delay. The only exception

would be for devices that have no pointer feedback; hav-

ing an appearance delay could still prove useful against

a whack-a-mole-like touch-based attack.
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7.5 Ethics

The ethical elements of our study were reviewed as per

our research institution’s requirements. No participants

were actually attacked in the course of our experiments;

the images they were tricked to click appeared identical

to sensitive third-party embedded content elements, but

were actually harmless replicas. However, participants

may have realized that they had been tricked and this

discovery could potentially lead to anxiety. Thus, after

the simulated attack we not only disclosed the attack but

explained that it was simulated.

8 Conclusion

We have devised new clickjacking attack variants, which

bypass existing defenses and cause more severe harm

than previously known, such as compromising webcams,

user data, and web surfing anonymity.

To defend against clickjacking in a fundamental way,

we have proposed InContext, a web browser or OS mech-

anism to ensure that a user’s action on a sensitive UI el-

ement is in context, having visual integrity and temporal

integrity.

Our user studies on Amazon Mechanical Turk show

that our attacks are highly effective with success rates

ranging from 43% to 98%. Our InContext defense can

be very effective for clickjacking attacks in which the

use of clickjacking improves the attack effectiveness.

This paper made the following contributions:

• We provided a survey of existing clickjacking at-

tacks and defenses.

• We conducted the first user study on the effective-

ness of clickjacking attacks.

• We introduced the concept of context integrity and

used it to define and characterize clickjacking at-

tacks and their root causes.

• We designed, implemented, and evaluated InCon-

text, a set of techniques to maintain context integrity

and defeat clickjacking.

With all these results, we advocate browser vendors

and client OS vendors to consider adopting InContext.
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