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Abstract

Over the years middleboxes have become a fundamen-

tal part of today’s networks. Despite their usefulness,

they come with a number of problems, many of which

arise from the fact that they are hardware-based: they are

costly, difficult to manage, and their functionality is hard

or impossible to change, to name a few.

To address these issues, there is a recent trend to-

wards network function virtualization (NFV), in essence

proposing to turn these middleboxes into software-based,

virtualized entities. Towards this goal we introduce

ClickOS, a high-performance, virtualized software mid-

dlebox platform. ClickOS virtual machines are small

(5MB), boot quickly (about 30 milliseconds), add little

delay (45 microseconds) and over one hundred of them

can be concurrently run while saturating a 10Gb pipe on

a commodity server. We further implement a wide range

of middleboxes including a firewall, a carrier-grade NAT

and a load balancer and show that ClickOS can handle

packets in the millions per second.

1 Introduction

The presence of hardware-based network appliances

(also known as middleboxes) has exploded, to the point

where they are now an intrinsic and fundamental part

of today’s operational networks. They are essential to

network operators, supporting a diverse set of functions

ranging from security (firewalls, IDSes, traffic scrub-

bers), traffic shaping (rate limiters, load balancers), deal-

ing with address space exhaustion (NATs) or improv-

ing performance (traffic accelerators, caches, proxies), to

name a few. Middleboxes are ubiquitous: a third of ac-

cess networks show symptoms of stateful middlebox pro-

cessing [12] and in enterprise networks there are as many

middleboxes deployed as routers and switches [37].

Despite their usefulness, recent reports and operator

feedback reveal that such proprietary middleboxes come

with a number of significant drawbacks [9]: middleboxes

are expensive to buy and manage [37], and introduc-

ing new features means having to deploy new hardware

at the next purchase cycle, a process which on average

takes four years. Hardware middleboxes cannot easily

be scaled up and down with shifting demand, and so

must provisioned to cope with peak demand, which is

This work was partly funded by the EU FP7 CHANGE (257422)

project.

wasteful. Finally, a considerable level of investment is

needed to develop new hardware-based devices, which

leaves potential small players out of the market and so

raises innovation barriers.

To address these issues, Network Function Virtual-

ization (NFV) has been recently proposed to shift mid-

dlebox processing from hardware appliances to software

running on inexpensive, commodity hardware (e.g., x86

servers with 10Gb NICs). NFV has already gained a con-

siderable momentum: seven of the world’s leading tele-

coms network operators, along with 52 other operators,

IT and equipment vendors and technology providers,

have initiated a new standards group for the virtualiza-

tion of network functions [8].

NFV platforms must support multi-tenancy, since they

are intended to concurrently run software belonging to

the operator and (potentially untrusted) third parties: co-

located middleboxes should be isolated not only from a

security but also a performance point of view [10]. Fur-

ther, as middleboxes implement a large range of func-

tionality, platforms should accommodate a wide range of

OSes, APIs and software packages.

Is it possible to build a software-based virtual-

ized middlebox platform that fits these requirements?

Hypervisor-based technologies such as Xen or KVM are

well established candidates and offer security and perfor-

mance isolation out-of-the-box. However, they only sup-

port small numbers of tenants and their networking per-

formance is unsatisfactory1. At a high-level, the reason

for the poor performance is simple: neither the hyper-

visors (Xen or KVM), nor the guest OSes (e.g., Linux)

have been optimized for middlebox processing.

In this paper we present the design, implementation

and evaluation of ClickOS, a Xen-based software plat-

form optimized for middlebox processing. To achieve

high performance, ClickOS implements an extensive

overhaul of Xen’s I/O subsystem, including changes to

the back-end switch, virtual net devices and back and

front-end drivers. These changes enable ClickOS to sig-

nificantly speed up networking in middleboxes running

in Linux virtual machines: for simple packet generation,

Linux throughput increases from 6.46 Gb/s to 9.68 Gb/s

for 1500B packets and from 0.42 Gb/s to 5.73 Gb/s for

minimum-sized packets.

1In our tests, a Xen guest domain running Linux can only reach

rates of 6.5 Gb/s on a 10Gb card for 1500-byte packets out-of-the-box;

KVM reaches 7.5 Gb/s.
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A key observation is that developing middleboxes as

applications running over Linux (and other commodity

OSes) is a complex task and uses few of the OS services

beyond network connectivity. To allow ease of develop-

ment, a much better choice is to use specialized frame-

works to program middleboxes. Click [17] is a stand-out

example as it allows users to build complex middlebox

processing configurations by using simple, well known

processing elements. Click is great for middlebox pro-

cessing, but it currently needs Linux to function and so it

inherits the overheads of commodity OSes.

To support fast, easily programmable middleboxes,

ClickOS implements a minimalistic guest virtual ma-

chine that is optimized from the ground up to run Click

processing at rates of millions of packets per second.

ClickOS images are small (5MB), making it possible

to run a large number of them (up to 400 in our tests).

ClickOS virtual machines can boot and instantiate mid-

dlebox processing in under 30 milliseconds, and can sat-

urate a 10Gb/s link for almost all packets sizes while con-

currently running as many as 100 ClickOS virtual ma-

chines on a single CPU core.

2 Problem Statement

Our goal is to build a versatile, high performance soft-

ware middlebox platform on commodity hardware. Such

a platform must satisfy a number of performance and se-

curity requirements:

Flexibility to run different types of software middle-

boxes, relying on different operating systems or frame-

works, coming from different vendors, and requested by

the operator itself or potentially untrusted third-parties.

Isolation of memory, CPU, device access and perfor-

mance to support multiple tenants on common hardware.

High Throughput and Low Delay: Middleboxes are

typically deployed in operator environments so that it is

common for them to have to handle large traffic rates

(e.g., multiple 10Gb/s ports); the platform should be

able to handle such rates, while adding only negligible

delay to end-to-end RTTs.

Scalability: Running middleboxes for third-parties

must be very efficient if it is to catch on. Ideally, the

platform should ideally support a large number of mid-

dleboxes belonging to different third-parties, as long as

only a small subset of them are seeing traffic at the same

time. This implies that platforms must be able to quickly

scale out processing with demand to make better use of

additional resources on a server or additional servers, and

to quickly scale down when demand diminishes.

How should middleboxes be programmed? The de-

fault today is to code them as applications or kernel

changes on top of commodity OSes. This allows much

flexibility in choosing the development tools and lan-

guages, at the cost of having to run one commodity OS

to support a middlebox.

In addition, a large fraction of functionality is com-

mon across different middleboxes, making it important

to support code re-use to reduce prototyping effort, and

processing re-use to reduce overhead [36].

3 Related Work

There is plenty of related work we could leverage to build

NFV platforms. Given that the goal is to isolate different

middleboxes running on the same hardware, the choice

is either containers (chroot, FreeBSD Jails, Solaris

Zones, OpenVZ [44, 45, 27]) or hypervisors (VMWare

Server, Hyper-V, KVM, Xen [40, 21, 16, 3]).

Containers are lightweight but inflexible, forcing all

middleboxes to run on the same operating system. This

is a limitation even in the context of an operator wanting

to run software middleboxes from different vendors.

Hypervisors provide the flexibility needed for multi-

tenant middleboxes (i.e., different guest operating sys-

tems are able to run on the same platform), but this is at

the cost of high performance, especially in networking.

For high-performance networking with hypervisors, the

typical approach today is to utilize device pass-through,

whereby virtual machines are given direct access to a de-

vice (NIC). Pass-through has a few downsides: it compli-

cates live migration, and it reduces scalability since the

device is monopolized by a given virtual machine. The

latter issue is mitigated by modern NICs supporting tech-

nologies such as hardware multi-queuing, VMDq and

SR-IOV [14], however the number of VMs is still lim-

ited by the number of queues offered by the device. In

this work we will show that it is possible to maintain per-

formance scalability even without device pass-through.

Minimalistic OSes and VMs: Minimalistic OSes or

micro kernels are attractive because, unlike traditional

OSes, they aim provide just the required functionality for

the job. While many minimalist OSes have been built

[22, 23, 1, 42, 43], they typically lack driver support

for a wide range of devices (especially NICs), and most

do not run in virtualized environments. With respect to

ClickOS, Mirage [19] is also a Xen VM built on top of

MiniOS, but the focus is to create Ocaml, type-safe virtu-

alized applications and, as such, its network performance

is not fully optimized (e.g., 1.7 Gb/s for TCP traffic). Er-

lang on Xen, LuaJIT and HalVM also leverage MiniOS

to provide Erlang, Lua, and Haskell programming envi-

ronments; none target middlebox processing nor are op-

timized for network I/O.

Network I/O Optimization: Routebricks [7] looked

into creating fast software routers by scaling out to a

number of servers. PacketShader [11] took advantage

of low cost GPUs to speed up certain types of network
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processing. More recently, PFQ, PF RING, Intel DPDK

and netmap [25, 6, 13, 29] focused on accelerating net-

working by directly mapping NIC buffers into user-space

memory; in this work we leverage the last of these to pro-

vide a more direct pipe between NIC and VMs.

Regarding virtualization, work in the literature has

looked at improving the performance of Xen network-

ing [28, 35], and we make use of some of the tech-

niques suggested, such as grant re-use. The works

in [47, 24] look into modifying scheduling in the hyper-

visor in order to improve I/O performance; however, the

results reported are considerably lower than ClickOS. Fi-

nally, Hyper-Switch [15] proposes placing the software

switch used to mux/demux packets between NICs and

VMs inside the hypervisor. Unfortunately, the switch’s

data plane relies on open vSwitch code [26], resulting

in sub-optimal performance. More recently, two sepa-

rate efforts have looked into optimizing network I/O for

KVM [4] [32]; neither of these has focused on virtual-

izing middlebox processing, and the rates reported are

lower than those in this paper.

Software Middleboxes: Comb [36] introduces an archi-

tecture for middlebox deployments targeted at consoli-

dation. However, it does not support multi-tenancy nor

isolation, and the performance figures reported (about

4.5Gb/s for two CPU cores assuming maximum-sized

packets) are lower than the line-rate results we present

in Section 9. The work in [37] uses Vyatta software (see

below) to run software middleboxes on Amazon EC2 in-

stances. Finally, while a number of commercial offer-

ings exist (Cisco [5], Vyatta [41]), there are no publicly-

available detailed evaluations.

It is worth noting that a preliminary version of this paper

has appeared as [20]. This version includes a detailed

account of our solution and design decisions, extensive

benchmarking as well as implementation and evaluation

of a range of ClickOS middleboxes.

4 ClickOS Design

To achieve flexibility, isolation and multi-tenancy, we

rely on hypervisor virtualization, which adds an extra

software layer between the hardware and the middlebox

software which could hurt throughput or increase delay.

To minimize these effects, para-virtualization is prefer-

able to full virtualization: para-virtualization makes mi-

nor changes to the guest OSes, greatly reducing the over-

heads inherent in full virtualization such as VM exits [2]

or the need for instruction emulation [3].

Consequently, we base ClickOS on Xen [3] since its

support for para-virtualized VMs provides the possibility

to build a low-delay, high-throughput platform, though

its potential is not fulfilled out of the box (Section 6).

Middlebox Key Click Elements

Load balancer RatedSplitter, HashSwitch

Firewall IPFilter

NAT [IP|UDP|TCP]Rewriter

DPI Classifier, IPClassifier

Traffic shaper BandwidthShaper, DelayShaper

Tunnel IPEncap, IPsecESPEncap

Multicast IPMulticastEtherEncap, IGMP

BRAS PPPControlProtocol, GREEncap

Monitoring IPRateMonitor, TCPCollector

DDoS prevention IPFilter

IDS Classifier, IPClassifier

IPS IPClassifier, IPFilter

Congestion control RED, SetECN

IPv6/IPv4 proxy ProtocolTranslator46

Table 1: Key Click elements that allow developing a

wide range of middleboxes.

KVM also supports driver para-virtualization through

virtio [33], but yields lower performance (Section 6).

Programming Abstractions. Today’s software middle-

boxes are written either as user-space applications on

top of commodity OSes (e.g., Snort or Bro) or as kernel

changes (e.g., iptables, etc). Either way, C is the de-facto

programming language as it offers high performance.

Our platform aims to allow today’s middleboxes to run

efficiently in the context of virtualization. However, we

believe that there are much better ways to develop fast

middleboxes. C offers great flexibility but has high de-

velopment and debugging costs, especially in the kernel.

In addition, there is not much software one can reuse

when programming a new type of middlebox.

Finding the best programming abstraction for middle-

boxes is an interesting research topic, but we do not set

out to tackle it in this paper. Instead, we want to prag-

matically choose the best tool out of the ones we have

available today. As a result, we leverage the Click mod-

ular router software. Previous work [36] showed that a

significant amount of functionality is common across a

wide range of middleboxes; Click makes it easy to reuse

such functionality, abstracting it into a set of re-usable

elements. Click comes with over 300+ stock elements

which make it possible to construct middleboxes with

minimal effort (Table 1). Finally, Click is extensible, so

we are not limited to the functionality provided by the

stock elements. Click is of course no panacea: it does

not cover all types of middlebox processing, for instance

middleboxes that need a full-fledged TCP stack. In such

cases it is better to use a standard Linux VM.

Running Click Efficiently: By default, Click runs on

top of Linux either as a userland process (with poor per-

formance, see [30]) or as a kernel module. To get domain

isolation, we would have to run each Click middlebox

inside a Linux virtual machine. This, however, violates

our scalability requirement: even stripped down Linux

VMs are memory-hungry (128MB or more) and take 5s

to boot.



462 11th USENIX Symposium on Networked Systems Design and Implementation  USENIX Association

�
��

���

������������

�
��
��
�

�
���

�������
��	 �������
��� �������
���

���
������

�������
���
���

���

�����
��������� �

���
�

�
������

�
� �

��������
���
���

��������
���
���

��������
���
���

�
���
�
�
�
�
�
�
���
�

�
��
�
�

����
�
�

�
�
�

����
�
�

���������
������

���������������

� ������

� �

������
���

���

Figure 1: ClickOS architecture.

Instead, we take a step back and ask: what support

does Click need from the operating system to be able to

enable a wide range of middlebox processing? The an-

swer is, surprisingly, not much:

• Driver support to be able to handle different types of

network interfaces.

• Basic memory management to allocate different data

structures, packets, etc.

• A simple scheduler that can switch between running

Click element code and servicing interrupts (mostly

from the NICs). Even a cooperative scheduler is

enough - there is no need for pre-emptive scheduling,

or multi-threading.

The first requirement seems problematic, given the

large number of interface vendors and variety of mod-

els. Xen elegantly solves this issue through paravirtual-

ization: the guest accesses all NIC types through a single,

hardware-agnostic driver connected to the driver domain,

and the driver domain (a full-blown Linux machine with

the customary driver support) talks to the hardware itself.

Almost all operating systems meet the other two re-

quirements, so there is no need to build one from scratch:

we just need an OS that is minimalistic and is able to

boot quickly. Xen comes with MiniOS, a tiny operating

system that fits the bill and allows us to build efficient,

virtualized middleboxes without all of the unnecessary

functionality included in a conventional operating sys-

tem. MiniOS is the basis for our ClickOS VMs.

In short, our ClickOS virtualized middlebox platform

consists of (1) a number of optimizations to Xen’s net-

work I/O sub-system that allow fast networking for tra-

ditional VMs (Section 7); (2) tailor-made middlebox vir-

tual machines based on Click; and (3) tools to build and

manage the ClickOS VMs, including inserting, deleting,

and inspecting middlebox state (Figure 1).

5 ClickOS Virtual Machines

Before describing what a ClickOS virtual machine is, it

is useful to give a brief Xen background. Xen is split into

a privileged virtual machine or domain called dom0 (typ-

ically running Linux), and a set of guest or user domains

comprising the users’ virtual machines (also known as

domUs). In addition, Xen includes the notion of a driver

domain VM which hosts the device drivers, though in

most cases dom0 acts as the driver domain. Further,

Xen has a split-driver model, where the back half of a

driver runs in a driver domain, the front-end in the guest

VM, and communications between the two happen us-

ing shared memory and a common, ring-based API. Xen

networking follows this model, with dom0 containing

a netback driver and the guest VM implementing a

netfront one. Finally, event channels are essentially

Xen inter-VM interrupts, and are used to notify VMs

about the availability of packets.

MiniOS implements all of the basic functionality

needed to run as a Xen VM. MiniOS has a single ad-

dress space, so no kernel/user space separation, and a co-

operative scheduler, reducing context switch costs. Min-

iOS does not have SMP support, though this could be

added. We have not done so because a single core is suf-

ficient to support 10 Gbps line-rate real middlebox pro-

cessing, as we show later. Additionally, we scale up by

running many tiny ClickOS VMs rather than a few large

VMs using several CPU cores each.

Each ClickOS VM consists of the Click modular

router software running on top of MiniOS, but building

such a VM image is not trivial. MiniOS is intended to be

built with standard GCC and as such we can in principle

link any standard C library to it. However, Click is writ-

ten in c++, and so it requires special precautions. The

most important of these is that standard g++ depends on

(among others) ctypes.h (via glibc) which contains

Linux specific dependencies that break the standard Min-

iOS iostream libraries. To resolve this we developed

a new build tool which creates a Linux-independent c++

cross-compiler using newlibc [38].

In addition, our build tool re-designs the standard Min-

iOS toolchain so that it is possible to quickly and eas-

ily build arbitrary, MiniOS-based VMs by simply link-

ing an application’s entry point so that it starts on VM

boot; this is useful for supporting middleboxes that can-

not be easily supported by Click. Regarding libraries,

we have been conservative in the number of them we

link, and have been driven by need rather than experi-

mentation. In addition to the standard libraries provided

with the out-of-the-box MiniOS build (lwip, zlib,

libpci) we add support for libpcre, libpcap

and libssl, libraries that certain Click elements de-

pend on. The result is a ClickOS image with 216/282

Click elements, with many of the remaining ones requir-

ing a filesystem to run, which we plan to add.

Once built, booting a ClickOS image start by creat-

ing the virtual machine itself, which involves reading its

configuration, the image file, and writing a set of entries
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to the Xen store, a proc-like database residing in dom0

that is used to share control information with the guest

domains. Next, we attach the VM to the back-end switch,

connecting it to physical NICs.

MiniOS boots, after which a special control thread is

created. At this point, the control thread creates an install

entry in the Xen store to allow users to install Click con-

figurations in the ClickOS VM. Since Click is designed

to run on conventional OSes such as Linux or FreeBSD

which, among other things, provide a console through

which configurations can be controlled and, given that

MiniOS does not provide these facilities, we leverage the

Xen store to emulate such functionality.

Once the install entry is created, the control thread sets

up a watch on it that monitors changes to it. When writ-

ten to, the thread launches a second MiniOS thread which

runs a Click instance, allowing several Click configura-

tions to run within a single ClickOS VM. To remove the

config we write an empty string to the Xen store entry.

We also need to support Click element handlers,

which are used to set and retrieve state in elements (e.g,

the AverageCounter element has a read counter to

get the current packet count and a write one to reset

the count); to do so, we once again leverage the Xen

store. For each VM, we create additional entries for

each of the elements in a configuration and their han-

dlers. We further develop a new Click element called

ClickOSControl which gets transparently inserted

into all configurations. This element takes care of in-

teracting, on one end, with the read and write operations

happening on the Xen store, and communicating those to

the corresponding element handlers within Click.

In order to control these mechanisms which are not

standard to all Xen VMs, ClickOS comes with its own

dom0 CLI called Cosmos (as opposed to the standard,

Xen-provided xl tool). Cosmos is built directly on top

of the Xen UI libraries (Figure 1) and therefore does not

incur any extraneous costs when processing requests. To

simplify development and user interaction, Cosmos im-

plements a SWIG [39] wrapper enabling users to auto-

matically generate Cosmos bindings for any of the SWIG

supported languages. For convenience, we have also im-

plemented a Python-based ClickOS CLI.

Finally, it is worth mentioning that while MiniOS rep-

resents a low-level development environment, program-

ming for ClickOS is relatively painless: development,

building and testing can take place in user-space Click,

and the resulting code/elements simply imported into the

ClickOS build process when ready.

6 Xen Networking Analysis

In this section we investigate where the Xen network-

ing bottlenecks are. Figure 1 illustrates the Xen network
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Figure 2: Xen performance bottlenecks using a differ-

ent back-end switch and netfront (NF) and netback (NB)

drivers (“opt” stands for optimized).

I/O sub-system: the network driver, software switch, vir-

tual interface and netback driver in dom0 and the netfront

driver (either the Linux or MiniOS one) in the guest do-

mains, any of which could be bottlenecks.

In order to get some baseline numbers, we begin by

performing a simple throughput test. For this test we

used a server with an Intel Xeon E3-1220 3.1GHz 4-core

CPU, 16GB memory and an Intel x520-T2 dual Ether-

net port 10Gb/s card (about $1,500 including the NIC).

The server had Xen 4.2, Open vSwitch as its back-end

switch and a single ClickOS virtual machine. The VM

was assigned a single CPU core, the remainder given to

dom0.

The first result (labeled “NF-MiniOS” in Figure 2)

shows the performance of the MiniOS netfront driver

when sending (Tx, in which case we measure rates at the

netback driver in dom0) and receiving (Rx) packets. Out

of the box, the MiniOS netfront driver yields poor rates,

especially for Rx, where it can barely handle 8 Kp/s.

To improve this receive rate, we modified the net-

front driver to re-use memory grants. Memory grants are

Xen’s mechanism to share memory between two virtual

machines, in this case the packet buffers between dom0

and the ClickOS VM. By default, the driver requests a

grant for each packet, requiring an expensive hypercall

to the hypervisor (essentially the equivalent of a system

call for an OS); we changed the driver so that it receives

the grants for packet buffers at initialization time, and to

re-use these buffers for all packets handled. The driver

now also uses polling, further boosting performance.

The results are labeled “NF-MiniOS-opt” in Figure 2.

We see important improvements in Rx rates, from 8 Kp/s

to 344 Kp/s for maximum-sized packets. Still, this is far

from the 10Gb/s line rate figure of 822 Kp/s, and quite far

from the 14.8 Mp/s figure for minimum-sized packets,

meaning that other significant bottlenecks remain.

Next, we took a look at the software switch. By de-

fault, Xen uses Open vSwitch, which previous work re-

ports as capping out at 300 Kp/s [30]. As a result, we

decided to replace it with the VALE switch [31]. Be-

cause VALE ports communicate using the netmap API,



464 11th USENIX Symposium on Networked Systems Design and Implementation  USENIX Association

description function ns

get vif poll net schedule list 119

handle frags if any netbk count requests 53

alloc skb alloc skb

reserve skb

384

alloc page

for packet data

xen netbk alloc page 293

build grant op struct fills gnttab copy 96

extends the skb

with the expected size

skb put 96

build grant op struct

(for frags)

xen netbk get requests 61

add the skb

to the Tx queue

skb queue tail 53

checks for

packets received

check rx xenvif 206

packet grant copy HYPERCALL 24708

dequeue packet

from Tx queue

skb dequeue 94

copy pkt data to skb memcpy 90

put a response

in the ring

fills xen netif tx response

notify via remote irq

52

copy frag data xen netbk fill frags 179

calc checksum checksum setup 78

forward pkt to bridge xenvif receive skb 3446

Table 2: Per-function netback driver costs when sending

a batch of 32 packets. Small or negligible costs are not

listed for readability. Timings are in nanoseconds.

we modified the netback driver to implement that API,

and removed the Xen virtual interface (vif ) in the pro-

cess. These changes (“NB-vale”) gave a noticeable boost

of up to 1.2 Mp/s for 64B packets, confirming that the

switch was at least partly to blame 2.

Despite the improvement, the figures were still far

from line rate speeds. Sub-optimal performance in the

presence of a fast software switch, no vif and an opti-

mized netfront driver seem to point to issues in the net-

back driver, or possibly in the communication between

netback and netfront drivers. To dig in deeper, we car-

ried out a per-function analysis of the netback driver to

determine where the major costs were coming from.

The results in Table 2 report the main costs in the

code path when transmitting a batch of 32 packets. We

obtain timings via the getnstimeofday() function,

and record them using the trace_printk function

from the lightweight FTrace tracing utility.

The main cost, as expected, comes from the hypercall,

essentially a system call between the VM and the hyper-

visor. Clearly this is required, though its cost can be sig-

nificantly amortized by techniques such as batching. The

next important overhead comes from transmitting pack-

ets from the netback driver through the vif and onto the

switch. The vif, basically a tap device, is not fundamen-

tal to having a VM communicate with the netback driver

2We did not implement Rx on this modified netback driver as the

objective was to see if the only remaining major bottleneck was the

software switch.
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Figure 3: Standard Xen network I/O pipe (top) and

our optimized, ClickOS one with packet buffers directly

mapped into the VM’s memory space.

and switch, but as shown adds non-negligible costs aris-

ing from extra queuing and packet copies. Other further

penalties come from using the Xen ring API, which for

instance requires responses to all packets transmitted in

either direction. Finally, a number of overheads are due

to sk buff management, not essential to having a VM

transmit packets to the network back-end – especially a

non-Linux VM such as ClickOS.

In the next section we discuss how we revamped the

Xen I/O network pipe in order to remove or alleviate

most of these costs.

7 Network I/O Re-Design

The Xen network I/O pipe has a number of components

and mechanisms that add overhead but that are not funda-

mental to the task of getting packets in and out of VMs.

In order to optimize this, it would be ideal if we could

have a more direct path between the back-end NIC and

switch and the actual VMs. Conceptually, we would like

to directly map ring packet buffers from the device driver

or back-end switch all the way into the VMs’ memory

space, much like certain fast packet I/O frameworks do

between kernel and user-space in non-virtualized envi-

ronments [29, 25, 6].

To achieve this, and to boost overall performance, we

take three main steps. First, we replace the standard but

sub-optimal Open vSwitch back-end switch with a high-

speed, ClickOS switch; this switch exposes per-port ring

packet buffers which are able to we map into a VM’s

memory space. Second, we observe that since in our

model the ClickOS switch and netfront driver transfer

packets between one another directly, the netback driver

becomes redundant. As a result, we remove it from the

pipe, but keep it as a control plane driver to perform

actions such as communicating ring buffer addresses

(grants) to the netfront driver. Finally, we changed the

VM netfront driver to map the ring buffers into its mem-

ory space.

These changes are illustrated in Figure 3, which con-

trasts the standard Xen network pipe (top diagram) with

ours (bottom). We dedicate the rest of this section to

providing a more detailed explanation of our optimized
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switch, netback and netfront drivers (both MiniOS’ and

the Linux one) and finally a few modifications to Click.

ClickOS Switch. Given the throughput limitations of

Xen’s standard Open vSwitch back-end switch, we de-

cided to replace it with the VALE high-speed switch [18],

and to extend its functionality in a number of ways. First,

VALE only supports virtual ports, so we add the ability

to connect NICs directly to the switch. Second, we in-

crease the maximum number of ports on the switch from

64 to 256 so as to accommodate a larger number of VMs.

In addition, we add support for each individual VM to

configure the number of slots in the packet buffer ring, up

to a maximum of 2048 slots. As we will see in the evalu-

ation section, larger ring sizes can improve performance

at the cost of larger memory requirements.

Finally, we modify the switch so that its switching

logic is modular, and replace the standard learning bridge

behavior with static MAC address-to-port mappings to

boost performance (since in our environment we are in

charge of assigning MAC addresses to the VMs this

change does not in any way limit our platform’s function-

ality). All of these changes have been now upstreamed

into VALE’s main code base.

Netback Driver. We redesign the netback driver to

turn it (mostly) into a control-plane only driver. Our

modified driver is in charge of allocating memory for the

receive and transmit packet rings and their buffers and to

set-up memory grants for these so that the VM’s netfront

driver can map them into its memory space. We use the

Xen store to communicate the rings’ memory grants to

the VMs, and use the rings themselves to tell the VM

about the ring buffers’ grants; doing so ensures that the

numerous grants do not overload the Xen store.

On the data plane side, the driver is only in charge

of (1) setting up the kthreads that will handle packet

transfers between switch and netfront driver; and (2)

proxy event channel notifications between the netfront

driver and switch to signal the availability of packets.

We also make a few other optimizations to the netback

driver. Since the driver is no longer involved with ac-

tual packet transfer, we no longer use vifs nor OS-specific

data structures such as sk buffs for packet processing.

Further, as suggested in [46], we adopt a 1:1 model for

mapping kernel threads to CPU cores: this avoids unfair-

ness issues. Finally, the standard netback uses a single

event channel (a Xen interrupt) for notifying the avail-

ability of packets for both transmit and receive. Instead,

we implement separate Tx and Rx event channels that

can be serviced by different cores.

Netfront Driver. We modify MiniOS’ netfront driver

to be able to map the ring packet buffers exposed by the

ClickOS switch into its memory space. Further, since

the switch uses the netmap API [29], we implement a

netmap module for MiniOS. This module uses the stan-

dard netmap data structures and provides the same ab-

stractions as user-space netmap: open, mmap, close

and finally poll to transmit/receive packets.

Beyond these mechanisms, our netfront driver in-

cludes a few other changes

• Asynchronous Transmit: In order to speed up trans-

mit throughput, we modify the transmit function to run

asynchronously.

• Grant Re-Use: Unlike the standard MiniOS netfront

driver, we set-up grants once, and re-use them for

the lifetime of the VM. This is a well-known tech-

nique for improving the performance of Xen’s network

drivers [35].

• Linux Support: While our modifications result in im-

portant performance increases, the departure from the

standard Xen network I/O model means that we break

support for other, non-MiniOS guests. To remedy this,

we implemented a new Linux netfront driver suited

to our optimized network pipe. Using this new net-

front results in 10 Gb/s rates for most packet sizes (see

Section 8) and allows us to run, at speed, any remain-

ing middleboxes that cannot be easily implemented in

Click or on top of MiniOS.

Click Modifications. Finally, we have made a few

small changes to Click (version 2.0.1, less than 50 lines

of code), including adding new elements to send and re-

ceive packets via the netfront driver, and optimizations

to the InfiniteSource element to allow it to reach

high packet rates.

ClickOS Prototype. The ClickOS prototype is open-

source software. It includes changes to the XEN back-

end (around 1000 LoC) and the frontend (1200 LoC). We

are beginning to upstream these changes to Xen, but this

process is lengthy; in the meantime, we plan to make the

code available so that prospective users can just down-

load our patches and recompile the netback and netfront

modules (or recompile the dom0 kernel altogether).

8 Base Evaluation

Having presented the ClickOS architecture, its compo-

nents and their optimization, we now provide a thorough

base evaluation of the system. After this, in Section 9, we

will describe the implementation of several middleboxes

as well as performance results for them.

Experimental Set-up. The ClickOS tests in this sec-

tion were conducted using either (1) a low-end, single-

CPU Intel Xeon E3-1220 server with 4 cores at 3.1 GHz

and 16 GB of DDR3-ECC RAM (most tests); or (2) a

mid-range, single-CPU Intel Xeon E5-1650 server with

6 cores at 3.2 GHz and 16 GB of DDR3-ECC RAM

(switch and scalability tests). In all cases we used Linux
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3.6.10 for dom0 and domU, Xen 4.2.0, Click 2.0.1 and

netmap’s pkt-gen application for packet generation

and rate measurements. All packet generation and rate

measurements on an external box are conducted using

one or more of the low-end servers, and all NICs are

connected through direct cables. For reference, 10Gb/s

equates to about 14.8 Mp/s for minimum-sized packets

and 822 Kp/s for maximum-sized packets.

ClickOS Switch. The goal is to ensure that the switch-

ing capacity is high so that it does not become a bottle-

neck as more ClickOS VMs, cores and NICs are added

to the system.

For this test we rely on a Linux (i.e., non-Xen) system.

We use a user-space process running pkt-gen to gen-

erate packets towards the switch, and from there onto a

single 10 Gb/s Ethernet port; a separate, low-end server

then uses pkt-gen once again to receive the packets

and to measure rates. We then add another pkt-gen

user-process and 10Gb/s Ethernet port to test scalability.

Each pkt-gen/port pair uses a single CPU core (so two

in total for the 20Gb/s test).

For the single port pair case, the switch saturated the

10Gb/s pipe for all packet sizes (Figure 4). For the two

port pairs case, the switch fills up the entire cumulative

20Gb/s pipe for all packet sizes except minimum-sized

ones, for which it achieves 70% of line rate. Finally, we

also conducted receive experiments (where packets are

sent from an external box towards the system hosting the

switch) which resulted in roughly similar rates.

Memory Footprint. As stated previously, the basic

memory footprint of a ClickOS image is 5MB (includ-

ing all the supported Click elements). In addition to this,

a certain amount of memory is needed to allocate the

netmap ring packet buffers. How much memory depends

on the size of the rings (i.e., how many slots or packets

the ring can hold at a time), which can be configured on

a per-ClickOS VM basis.

To get an idea of how much memory might be re-

quired, Table 3 reports the memory requirements for dif-

Ring size Required memory (KB) # of grants

64 264 65

128 516 129

256 1032 258

512 2064 516

1024 4128 1032

2048 8260 2065

Table 3: Memory requirements for different ring sizes.

ferent ring sizes, ranging from kilobytes for small rings

all the way up to 8MB for a 2048-slot ring. As we will

see later on in this section, this is a trade-off between the

higher throughput that can be achieved with larger rings

and the larger number of VMs that can be concurrently

run when using small ring sizes. Ultimately, it might be

unlikely that a single ClickOS VM will need to handle

very large packet rates, so in practice a small ring size

might suffice. It is also worth pointing out that larger

rings require more memory grants; while there is a max-

imum number of grants per VM that a Xen system can

have, this limit is configurable at boot time.

What about the state that certain middleboxes might

contain? To get a feel for this, we inserted 1,000 for-

warding rules into an IP router, 1,000 rules into a firewall

and 400 into an IDS (see Section 9 for a description of

these middleboxes); the memory consumption from this

was 20KB, 87KB and 30KB, respectively, rather small

amounts. All in all, even if we use large ring sizes, a

ClickOS VM requires approximately 15MB of memory.

Boot Times. In this set of tests we use the Cosmos tool

to create ClickOS VMs and measure how long it takes

for them to boot. A detailed breakdown of the ClickOS

boot process may be found in [20]; for brevity, here we

provide a summary. During boot up most of the time is

spent issuing and carrying out the hypercall to create the

VM (5.2 milliseconds), building the image (7.1 msecs)

and creating the console (4.4 msecs), for a total of about

20.8 msecs. Adding roughly 1.4 msecs to attach the VM

to the back-end switch and about 6.6 msecs to install a

Click configuration brings the total to about 28.8 msecs
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from when the command to create the ClickOS VM is

issued until the middlebox is up and running.

Next we measured how booting large numbers of

ClickOS VMs on the same system affects boot times.

For this test we boot an increasing number of VMs in

sequence and measure how long it takes for each of them

to boot and install a Click configuration (Figure 5). Both

the boot and startup times increase with the number of

VMs, up to a maximum of 219 msecs boot and 20.0

msecs startup for the 400th VM. This increase is due to

contention on the Xen store and could be improved upon.

Delay. Most middleboxes are meant to work transpar-

ently with respect to end users, and as such, should in-

troduce little delay when processing packets. Virtualiza-

tion technologies are infamous for introducing extra lay-

ers and with them additional delay, so we wanted to see

how ClickOS’ streamlined network I/O pipe would fare.

To set-up the experiment, we create a ClickOS VM

running an ICMP responder configuration based on the

ICMPPingResponder element. We use an external

server to ping the ClickOS VM and measure RTT. Fur-

ther, we run up to 11 other ClickOS VMs that are either

idle, performing a CPU-intensive task (essentially an in-

finite loop) or a memory-intensive-one (repeatedly allo-

cating and deallocating several MBs of memory).

The results show low delays of roughly 45 µsecs for

the test with idle VMs, a number that stays fairly con-

stant as more VMs are added. For the memory intensive

task test the delay is only slightly worse, starting again at

45 µsecs and ramping up to 64 µsecs when running 12

VMs. Finally, the CPU intensive task test results in the

largest delays (RTTs of up to 300 µsecs), though these

are still small compared to Internet end-to-end delays.

Next, we compared ClickOS’ idle delay to that of

other systems such as KVM and other Xen domains

(Figure 6). Unsurprisingly, dom0 has a small delay of

41 µsecs since it does not incur the overhead of going

through the netback and netfront drivers. This overhead

does exist when measuring delay for the standard, un-

optimized netback/netfront drivers of a Xen Linux VM

(106 µsecs). KVM, in comparison, clocks in at 69 µsecs

when using its para-virtualized virtio drivers and 107

µsecs for its virtualized e1000 driver.

Throughput. In the next batch of tests we perform a

number of baseline measurements to get an understand-

ing of what packet rates ClickOS can handle. All of these

tests are done on the low-end servers, with one CPU core

dedicated to the VM and the remaining three to dom0.

Before testing a ClickOS VM we would like to bench-

mark the underlying network I/O pipe, from the NIC

through to the back-end switch, netback driver and the

netfront one. To do so, we employ our build tool to create

a special VM consisting of only MiniOS and pkt-gen

on top of it. After MiniOS boots, pkt-gen begins to

immediately generate packets (for Tx tests) or measure

rates (Rx). We conduct the experiment for different ring

sizes (set using a sysctl command to the netmap ker-

nel module) and for different packet sizes (for Tx tests

this is set via Cosmos before the VM is created).

Figure 7 reports the results of the measurements. On

transmit, the first thing to notice is that our optimized

I/O pipe achieves close to line rate for minimum-sized

packets (14.2 Mp/s using 2048-slot rings out of a max of

14.8 Mp/s) and line rate for all other sizes. Further, ring

size matters, but mostly for minimum-sized packets. The

receive performance is also high but somewhat lower due

to extra queuing overheads at the netfront driver.

With these rates in mind, we proceed to deriv-

ing baseline numbers for ClickOS itself. In this

case, we use a simple Click configuration based

on the AverageCounter element to measure re-

ceive rates and another one based on our modified

InfiniteSource to generate packets. Figure 7(c)

shows ClickOS’ transmit performance, which is com-

parable to that produced by the pkt-gen VM, meaning

that at least for simple configurations ClickOS adds lit-

tle overhead. The same is true for receive, except for

minimum-sized packets, where the rate drops from about

12.0 Mp/s to 9.0 Mp/s.

For the last set of throughput tests we took a look at

the performance of our optimized Linux domU netfront

driver, comparing it to that of a standard netfront/Linux

domU and KVM. For the latter, we used Linux version

3.6.10, the emulated e1000 driver, Vhost enabled, the

standard Linux bridge, and pkt-gen once again to gen-

erate and measure rates. As seen in Figure 8 the Tx

and Rx rates for KVM and the standard Linux domU

are fairly similar, reaching only a fraction of line rate for

small packet sizes and up to 7.88 Gb/s (KVM) and 6.46

Gb/s (Xen) for maximum-sized ones. The optimized net-

front/Linux domU, on the other hand, hits 8.53 Mp/s for

Tx and 7.26 Mp/s for Rx for 64-byte frames, and practi-

cally line rate for 256-byte packets and larger.

State Insertion. In order for our middlebox platform to

be viable, it has to allow the middleboxes running on it

to be quickly configured. For instance, this could involve

inserting rules into a firewall or IDS, or adding extra ex-

ternal IP addresses to a carrier-grade NAT. In essence, we

would like to test the performance of ClickOS element

handlers and their use of the Xen store to communicate

state changes. In this test we use Cosmos to perform a

large number of reads and writes to a dummy ClickOS

element with handlers, and measure how long these take

for different transaction sizes (i.e., the number of bytes

in question for each read and write operation).

Figure 9 reports read times of roughly 9.4 msecs and

writes of about 0.1 msecs, numbers that fluctuate little
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Figure 7: Performance of a single VM pkt-gen running on top of MiniOS/ ClickOS on a single CPU core, when

varying the number of ring slots. The line graphs correspond to the right-hand y-axis.

across different transaction sizes. Note that read takes

longer since it basically involves doing a write, wait-

ing for the result, and then reading it. However, the

more critical operation for middleboxes should be write,

since it allows state insertion and deletion. For complete-

ness, we also include measurements when using the XEN

python API; in this case, the read and write operations

jump to 10.1 and 0.3 msecs, respectively.

Chaining. Is it quite common for middleboxes to be

chained one after the other in operator networks (e.g.,

a firewall followed by an IDS). Given that ClickOS has

the potential to host large numbers of middleboxes on

the same server, we wanted to measure the system’s per-

formance when chaining different numbers of middle-

boxes back-to-back. In greater detail, we instantiate one

ClickOS VM to generate packets as fast as possible, an-

other one to measure them, and an increasing number of

intermediate ClickOS VMs to simply forward them. As

with other tests, we use a single CPU core to handle the

VMs and assign the rest to dom0.

As expected, longer chains result in lower rates, from

21.7 Gb/s for a chain of length 2 (just a generator VM

and the VM measuring the rate) all the way down to 3.1

Gb/s for a chain with 9 VMs (Figure 10). Most of the

decrease is due to the single CPU running the VMs being

overloaded, but also because of the extra copy operations

in the back-end switch and the load on dom0. The former

could be alleviated with additional CPU cores; the latter

by having multiple switch instances (which our switch

supports) or driver domains (which Xen does).

Scaling Out. In the final part of our platform’s base

evaluation we use our mid-range server to test how well

ClickOS scales out with additional VMs, CPU cores and

10 Gb/s NICs. For the first of these, we instantiate an in-

creasing number of ClickOS VMs, up to 100 of them. All

of them run on a single CPU core and generate packets as

fast as possible towards an outside box which measures

the cumulative throughput. In addition, we measure the

individual contribution of each VM towards the cumu-

lative rate in order to ensure that the platform is fairly

scheduling the VMs: all of VMs contribute equally to

the rate and that none are starved.

Figure 11 plots the results. Regardless of the number

of VMs, we get a cumulative throughput equivalent to

line rate for 512-byte packets and larger and a rate of 4.85

Mp/s for minimum-sized ones. The values on top of the

bars represent the standard deviation for all the individual
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Figure 11: Running many ClickOS packet generator

VMs on one core and a 10 Gb/s port. Fairness is shown

by the low standard deviations above the the bars.

rates contributed by each VM; the fact that these values

are rather low confirms fairness among the VMs.

Next, we test ClickOS’ scalability with respect to ad-

ditional CPU cores and 10 Gb/s ports. We use one packet

generator ClickOS VM per port, up to a maximum of

six ports. In addition, we assign two cores to dom0 and

the remaining four to the ClickOS VMs in a round-robin

fashion. Each pair of ports is connected via direct ca-

bles to one of our low-end servers and we calculate the

cumulative rate measured at them; ring size is 1024.

For maximum-sized packets we see a steady, line-rate

increase as we add ports, VMs and CPU cores, up to 4

ports (Figure 12). After this point, VMs start sharing

cores (our system has six of them, with four of them as-

signed to the VMs) and the performance no longer scales

linearly. For the final experiment we change the config-

uration that the ClickOS VMs are running from a packet

generator to one that bounces packets back onto the same

interface that they came on (line graphs in Figure 12). In

this configuration, ClickOS rates go up to 27.5 Gb/s.

Scaling these experiments further requires a CPU with

more cores than in our system, or adding NUMA sup-

port to ClickOS so that performance scales linearly with

additional CPU packages; the latter is our future work.
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Figure 12: Cumulative throughput when using multiple

10 Gb/s ports and one ClickOS VM per port to (1) send

out traffic (tx) or (2) forward traffic (fwd).

9 Middlebox Implementations

Having evaluated the baseline performance of ClickOS,

we now turn our attention to evaluating its performance

when running actual middleboxes. Clearly, since the

term middleboxes covers a wide range of processing, ex-

haustively testing them all is impossible. We therefore

evaluate the performance of ClickOS on a set candidate

middleboxes which vary in the type of workload they

generate.

For these set of tests we use two of our low-end servers

connected via two direct cables, one per pair of Ethernet

ports. One of the servers generates packets towards the

other server, which runs them through a ClickOS mid-

dlebox and forwards them back towards the first server

where their rate is measured. The ClickOS VM is as-

signed a single CPU core, with the remaining three given

to dom0. We test each of the following middleboxes:

Wire (WR): A simple “middlebox” which sends pack-

ets from its input to its output interface. This configura-

tion serves to give a performance baseline.

EtherMirror (EM): Like wire, but also swap the Eth-

ernet source and destination fields.

IP Router (IR): A standards-compliant IPv4 router

configured with a single rule.
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Figure 13: Performance for different ClickOS middle-

boxes and packet sizes using a single CPU core.

Firewall (FW): Based on the IPFilter element and

configured with ten rules, none matching any packets.

Carrier Grade NAT (CN): An almost standards-

compliant carrier-grade NAT. To stress the NAT, each

packet has a different set of source and destination port

numbers. Using a single flow/set of ports results in a

higher rate of 5.1 Mp/s for minimum-sized packets.

Software BRAS (BR): An implementation of a Broad-

band Remote Access Server (BRAS), including PPPoE

session handling. The data plane checks session num-

bers and PPPoE/PPP message types, strips tunnel head-

ers, and performs IP lookup and MAC header re-writing.

Intrusion Detection System (IDS): A simple Intrusion

Detection System based on regular expression matching.

The reported results are for a single rule that matches the

incoming packets.

Load Balancer (LB): This re-writes packet source

MAC addresses in a round-robin fashion based on the

IP src/dst, port src/dst and type 5-tuple in order to split

packets to different physical ports.

Flow Monitor (FM) retains per flow (5-tuple) statistics.

Figure 13 reports throughput results for the various

middleboxes. Overall, ClickOS performs well, achiev-

ing almost line rate for all configurations for 512-byte

and larger packets (the BRAS and CG-NAT middleboxes

have rates slightly below the 2.3 Mp/s line rate figure).

For smaller packet sizes the percentage of line rate drops,

but ClickOS is still able to process packets in the mil-

lions/second.

To get and idea of how this relates to a real-world traf-

fic matrix, compare this to an average packet size of 744

bytes reported by a recent study done on a tier-1 OC192

(about 10Gb/s) backbone link [34]: if we take our target

to be packets of around this size, all middleboxes shown

can sustain line rate.

Naturally, some of these middleboxes fall short of be-

ing fully functional, and different configurations (e.g., a

large number of firewall rules) would cause their perfor-

mance to drop from what we present here. Still, we be-

lieve these figures to be high enough to provide a sound

basis upon which to build production middleboxes. The

carrier-grade NAT, for instance, is proof of this: it is fully

functional, and in stress tests it is still able to handle

packets in the millions/second.

10 Conclusions

This paper has presented ClickOS, a Xen-based vir-

tualized platform optimized for middlebox processing.

ClickOS can turn Network Function Virtualization into

reality: it runs hundreds of middleboxes on commod-

ity hardware, offers millions of packets per second pro-

cessing speeds and yields low packet delays. Our ex-

periments have shown that a low-end server can forward

packets at around 30Gb/s.

ClickOS is proof that software solutions alone are

enough to significantly speed up virtual machine pro-

cessing, to the point where the remaining overheads are

dwarfed by the ability to safely consolidate heteroge-

neous middlebox processing onto the same hardware.

ClickOS speeds up networking for all Xen virtual ma-

chines by applying well known optimizations including

reducing the number of hypercalls, use of batching, and

removing unnecessary software layers and data paths.

The major contribution of ClickOS is adopting Click

as the main programming abstraction for middleboxes

and creating a tailor-made guest operating system

to run Click configurations. Such specialization al-

lows us to optimize the runtime of middleboxes to the

point where they boot in milliseconds, while allowing

us to support a wide range of functionality. Our im-

plementations of a software BRAS and a Carrier-Grade

NAT show that ClickOS delivers production-level perfor-

mance when running real middlebox functionality.

In the end, we believe that ClickOS goes beyond re-

placing hardware middleboxes with the software equiva-

lent. Small, quick-to-boot VMs make it possible to offer

personalized processing (e.g., firewalls) to a large num-

ber of users with comparatively little hardware. Boot

times in the order of milliseconds allow fast scaling

of processing dynamically (e.g., in response to a flash

crowd) as well as migration with negligible down-time.

Finally, ClickOS could help with testing and deployment

of new features by directing subsets of flows to VMs run-

ning experimental code; issues with the features would

then only affect a small part of the traffic, and even VMs

crashing would not represent a major problem since they

could be re-instantiated in milliseconds.
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