
Clicktok: Click Fraud Detection using Traffic Analysis
Shishir Nagaraja, Ryan Shah

{shishir.nagaraja,ryan.shah}@strath.ac.uk
University of Strathclyde

ABSTRACT
Advertising is a primary means for revenue generation for millions
of websites and smartphone apps. Naturally, a fraction abuse ad net-
works to systematically defraud advertisers of their money. Modern
defences have matured to overcome some forms of click fraud but
measurement studies have reported that a third of clicks supplied by
ad networks could be clickspam. Our work develops novel inference
techniques which can isolate click fraud attacks using their funda-
mental properties. We propose two defences,mimicry and bait-click,
which provide clickspam detection with substantially improved re-
sults over current approaches. Mimicry leverages the observation
that organic clickfraud involves the reuse of legitimate click traf-
fic, and thus isolates clickspam by detecting patterns of click reuse
within ad network clickstreams. The bait-click defence leverages
the vantage point of an ad network to inject a pattern of bait clicks
into a user’s device. Any organic clickspam generated involving the
bait clicks will be subsequently recognisable by the ad network. Our
experiments show that the mimicry defence detects around 81% of
fake clicks in stealthy (low rate) attacks, with a false-positive rate
of 110 per hundred thousand clicks. Similarly, the bait-click defence
enables further improvements in detection, with rates of 95% and
a reduction in false-positive rates of between 0 and 30 clicks per
million – a substantial improvement over current approaches.

1 INTRODUCTION
By definition, click fraud generates no revenue for the advertiser, but
inflicts losses on tens of thousands of online advertisers in the order
of hundreds of millions of dollars each year [37, 39]. Typically, click
fraud is generated bymalicious applications (apps) andmalware, and
is responsible for around 30% of click traffic in ad networks [11, 17].

Early threshold-based defences demonstrated a focus on the vol-
umes of click fraud frombad-listed sources, but failed simply because
attackers were able to swiftly discard their publisher accounts after
receiving reputational hits from ad network defences [12, 51], and
opened new ones. The decrease in the cost of botnet rentals in the
underground economy has been a primary driver of fraud [1, 38, 47].
Click botnets can generate massive amounts of fake traffic and ad
impressions, by automatically clicking onwebsites and apps in large
numbers. The reduction in the fixed costs of generating clickspam,
by several orders of magnitude, significantly reduces the number
of fake clicks per host required to run an economically sustainable
click fraud operation. Assuming the earning potential of 0.5 cents
per click, which is at the lower end of the spectrum, an attacker can
cover operational costswith just three to five fake clicks a day, with a
fewmore to run their operation profitably. Based on this, traditional
threshold-based defences [11, 12, 32, 33] fail as the levels of click
fraud per source goes below the detection threshold.

Subsequently, ad network defences have evolved to generate
liveness-proofs by running machine learning models on advertise-
ment clickstreams to distinguish bots from humans. As a response,

attackers mimic the actions of legitimate device users in order to
generate credible click fraud [19, 39]. Recently, a serious increase in
organic click fraud has been noted via mobile malware. Fraudsters
develop seemingly legitimate apps or purchase those with high rep-
utation scores. These apps carry out a legitimate activity, such as
controlling the torch, but also serve as a mechanism for mining the
(organic) click activity of the device user. Moreover, attackers then
launder mined clicks back through their installed user-base. Since
the click fraud is based on legitimate traces, the clicks are able to pass
throughadnetworkfilters. The exception iswhere the attackviolates
a threshold, such as using a small pool of IP addresses to carry out the
attack. Ultimately, this motivates the need for automated detection
techniques that can scale the detection of click fraud attacks, whilst
ensuring the integrity of the digital advertising ecosystem.

Figure 1: Organic and Non-Organic Click fraud

To address this, we developed Clicktok, a statistical technique
that detects clickspam by efficiently searching for reflections of click
traffic, encountered by an adnetwork in the past. Clicktok is based on
exploiting the timing properties of click traffic, and also unifies the
technical response, offering a defence technique which isolates both
organic, and the relatively simpler, non-organic click fraud attacks.
The focus of this work is on generic click fraud defences, rather than
analysing individual click-modules. Current efforts to defeat click
fraud have primarily focused on fraudmeasurement techniques [11],
measurement and analysis of publisher fraud [7, 12], and ad place-
ment fraud [29]. While publisher and affiliate- marketing fraud are
doubtless of importance, there is limitedwork that focuses on detect-
ing click fraud from ad network clickstreams supplied to advertisers.

1

ar
X

iv
:1

90
3.

00
73

3v
2

 [
cs

.C
R

]
 2

6
M

ar
 2

01
9

Upon evaluation of our defence, we report significantly improved
detection and estimation over past efforts [11, 12, 31–33].
Contributions: First, we have developed two clickspam defenses:
the mimicry defence and the bait-click defence. Second, we have
developed a unified algorithm for detecting both organic and non-
organic clickspam, which provides the engineering advantage that
ad networks need only to adopt a single defence. Finally, our tech-
niques support attributionvia their ability to separatemalware clicks
embedded within legitimate clickstreams. This demonstrates the
usefulness of the algorithm in building passive and active click fraud
defences using real-world data.
Roadmap: We start by giving a detailed problem description in Sec-
tion 2. In Section 3, we describe our overall approach and algorithm.
We then evaluate the performance of our algorithm on click fraud
traffic, embedded within real click traffic data in Section 4. Related
work is situated at the end of the paper.

2 THECLICK FRAUDDETECTION PROBLEM
Click fraud involves directing fraud clicks (or clickspam) at online
advertisements (ads), concerning three parties: an advertiser, a pub-
lisher, and an ad network. The advertisers participate in a keyword
auction, organized by the ad network, where ads owned by the win-
ning advertiser are submitted for circulation by the ad network. The
publisher’s role is to render the advertisements that are provided
by the ad network. When a user clicks on an ad, the ad network:
receives the request, updates the billing account of the correspond-
ing advertiser, and redirects the click to a URL of the advertiser’s
choice. For each click on an ad, the advertiser pays the ad network,
who in turn pays the publisher a substantial fraction of the per-click
revenue (≊70%).

Figure 2: Click fraud detection problem

The click fraud problem is the challenge of distinguishing be-
tween clickspam and legitimate clicks, given that the attacker has
full knowledge of legitimate click traffic (Figure 2). Typically, an at-
tacker registers as a (largenumberof) publisherswith theadnetwork.
They deploy techniques to send clickspam to advertisements, allow-
ing them to gain a fraction of the money paid out by the advertiser
for every (fake) click.
Terminology: A paper on click fraud makes frequent use of cer-
tain terminology, which we now cover for ease of readability. Click
traffic, click stream, or click traces all refer to an ordered sequence of
one or more clicks each corresponding to an advertisement. Clicks
are termed legitimate or organicwhen generated by a genuine user.

Clicks generated for the motive of profit are considered fake, fraud-
ulent, or clickspam. Clickspam generated using legitimate traces is
termed organic clickspam.

2.1 Challenges
Efficient clickspam detection involves several challenges. First, an
ideal detection system should be able to directly observe human
input on end user devices, and label click traffic that is suspected
to be illegitimate; however this is an impractical approach. Second,
legitimate click traffic that arrives at an ad network likely dwarfs the
relatively smaller amount of clickspam. Third, the variable form and
structureof click trafficposes an issuewhenconstructing anaccurate
baseline model of legitimate click traffic, that is broadly applicable.
Finally, click malware can employ a variety of stealth techniques
to evade detection, in particular the use of organic click traffic and
reducing the number of fake clicks per source, towell below the level
set by threshold-based click fraud detection techniques.

2.2 Opportunities
Although adapting fake clicks to match the statistical characteristics
of legitimate clickstreams is undoubtedly a stealthy approach, we
note that this can be used as a point of detection. Based on this, we
identify both passive and active approaches to defence.
PassiveApproach: Weargue that legitimate clickactivityhas copy-
resistance properties, owing to the uncertainty of inter-click times.
Therefore, to accurately mimic a user’s click activity, an attacker
would need to model the timing behaviour of the user, which has
some uncertainty that forms the basis for our passive defences. Fur-
thermore, click generation techniques, that are encoded by malware
authors, may result in correlations in the inter-click times of click-
streams across users. Thus, another approach is to consider the rela-
tive increase in the correlation across clickstreams, due to click fraud.
ActiveApproach: While considering a passive approach to defend-
ing against click fraud, a radically different approach is to consider
active interventions. By adding bait clicks to legitimate user traffic,
we can attract the attention of malware. To measure and understand
malware click generation strategies, malware adaptation to a bait
clickstreammay be a promising approach. This is a novel idea for
instrumenting click malware — the ad network injects a pattern of
clicks into a user device over a period of time, via a client-side scripts
executed by the browser. Only malware will respond to this click
pattern, mistaking it for legitimate activity, whilst the ad network
ignores these clicks. If click malware is to be present on the device
and adapts to the user’s activity, it will generate clickspam that can
be readily isolated.

3 INFERENCE SYSTEM
3.1 SystemArchitecture
We propose an inference system, depicted in Figure 3, which takes
two inputs, click timestamps from the ad network, and an optional
seed clickspam input from a bait ad farm. The ad network contains
servers which run click traffic monitors that store click timestamps.
Optionally, to supplement information for click trafficmonitors, our
inference systemmay also receive input from a bait ad farm (hon-
eynet) [17]. Classification information from these may be used as an

2

input to Clicktok, where the suspicion of click fraud is knownwith
a higher probability.

Figure 3: SystemArchitecture

Our primary focus is to design a generic inference algorithm that
is, first, based on the fundamental limitations of automated fake click
generation techniques, and second, can address both organic and
non-organic clickspam.

Clicktok works on the core observation that both organic and in-
organic clickspam cause an increase in redundancy, albeit differently
within ad network clickstreams. In the case for organic click fraud,
to isolate the source of redundancy, we use a compression function
in combination with a clustering algorithm, to isolate click traffic
whose timing patterns are similar to past timing patterns. A timing
pattern is an ordered ascending sequence of time offsets, relative to
an absolute start time.

Similarly, we noticed that the same intuition can be leveraged
to isolate inorganic clickspam. For instance, where malware gen-
erates traffic using randomised generators, the traffic with high
entropy timing patterns can be clustered together, by exploiting
theirnon-compressibility. Likewise, the injectionof small amountsof
clickspamperdevice are evident,when traffic frommultiple end-user
devices is considered together, thus exploiting the common patterns
across infected devices. Ad networks, or backbone routers, provide
us with a vantage point into click traffic tainted with clickspam.

The primary challenge in partitioning on the basis of inter-click
times, is that both clickspam and legitimate clicks may not be tem-
porally separated. As Figure 5 be superimposed over each other.
Interestingly, click modules, such as Zeroaccess [39] and its variants,
have been documented to distribute clickspam only after detecting
some legitimate activity on a device. As well as this, another be-
haviour has been observed, which involves attackers adding random
time offsets to blend in.

Overall, Clicktok addresses the following challenges:
(a) Resisting a mimicking source — an adversarial source that

imitates a partially observed source, and
(b) Superimposed legitimate and clickspam time series.

3.2 Inference Algorithm
Clicktok uses a decomposition technique (Figure 4), which parti-
tions click traces into legitimate clicks and clickspam. We make

Figure 4: Multi-layer NMF

no assumptions about the shape or form of legitimate traffic, how-
ever we assume that click fraud is a minority fraction (< 50%) of
the traffic traces. Partitioning leverages the observation that the
shape and form of organic clickspam has a close dependency on the
legitimate trace thatwas used to generate a specific clickspam attack.
Partitioning is carried out using a multi-layer non-negative matrix
factorization (NMF) algorithm.
Traffic matrix construction: Traffic traces from n source iden-
tifiers (e.g. source IP addresses or Android ID) are collected at a
suitable vantage point such as an ad network or enterprise backbone,
to construct anxm trafficmatrix of observationsO . Each elementOi j ,
contains the number of clicks from source i during time-interval j.

Thegoalof the inferencealgorithmis todecompose the input click-
stream into constituent r highly sparse timing patterns called basic-
patterns. A basic patternhi can be represented as:hi =c+m,...,c+k
wherec is thestart time,and0<m< ···<k <∞areoffsets. Inference is
achieved by the notion of compression. The idea is that the input traf-
fic traces can be compressed down into r basic-patterns and weights.
Specifically, the traffic matrixO is decomposed intoH andW as:

O =HW (1)

While using compression to trace stolen click traffic and their
usage inclick fraudcampaignshasobviouspotential, themain techni-
cal challenge is that click fraud campaigns utilise legitimate traffic as
cover as shown in Figure 5. This creates interleaved (superimposed)
click trafficwhichmust beunmixedwithminimal assumptions about
baseline user or attacker behaviour. If thiswere not the case, a simple
application of time-series correlation analysis [48]would reveal click
fraud.

The inference algorithm illustrated in Figure 4 has two steps, first
multiple layers of partitioning and second a pooling step. Both steps
aremotivated byDeepNeuralNetworks (DNN) [26] and are prior art.
Step1:Trafficpartitioning First,nested layersofNMFalgorithm[28]
partition the traffic matrixO . NMF partitions the observed click ma-
trix into sparse timing patterns (matrixH) and activation patterns
(matrixW), i.e.O =HW . Sparsity is a key property here that incorpo-
rates the intuition of compressive partitioning within the decompo-
sition step. NMF is an iterative technique with a multiplicative opti-
misation function at its core and a stopping critieria of | |O−HW | | ≤ϵ
where | | ⊙ | | is the Frobenius norm. Nested decomposition layers
further promote sparsity. Thus the output of the final decomposi-
tion layer isOK =H1(H2(H3(....HKW K)))), and the optimisation
function works out to:min | |O1−H1(H2(H3(...(HKW K))...) | |

3

Step2: Pooling. Second, to reduce sensitivity to synchronisation
errors arising from timingmisalignment, amovingwindow function
is applied. InDNN literature [26], this is termed as a pooling function.
Without this, time-synchronisation errors can cause redundant tim-
ing patterns that are slightly time-shifted, to appear withinH . Pool-
ing can provide some robustness against such errors.We incorporate
pooling by including average-pooling [5] in each partitioning step.
This is a moving-window function F whose input is the rows of the
weight matrixW k , and its output is the average over the input win-
dow (j−c,j+c). F (W k

i∗)= {W
k
ip | j−c ≤p ≤ j+c,0≤ j ≤N . To absorb

alignment errors of up to an hour, we set c=12 in our experiments.

Input: O ∈Rm×n
The number of layers K
The number of columns to pool across, poolsize
Output: Partitioning at each layer k
for k in 1 :K−1 do

while ϵ >0.05 do
Hk =Hk ⊙ Ok (W k)T

HkW k (W k)T

W k =W k ⊙ (Hk)TOk

(Hk)THkW k

ϵ =
√∑m

i
∑n
j (Ok

i j−(HkW k)i j)2

Ok+1←F (W k)
end

end
Algorithm 1: Traffic partitioning

Figure 5: Overlapping legitimate and fraud clicks

Figure 6: Clicktok traffic partitioning

3.2.1 Uniqueness of click partitioning. In order to detect clickspam,
the partitioning process uses multiplicative rules to drive the optimi-
sation function. We now show that the multiplicative update rules
used in Algorithm 1 lead to a unique optimal solution.

In each layer of our algorithm, as per Equation 1,O is partitioned
intoH andW . The probability of observing t clicks given r timing-
patterns H1,...,Hr is given by P(Oi j = t |H1,...,Hr)=

∏r
k=1P(Oi j =

t |Hk)P(Hk), where P(Hk) is the prior probability about patternHk
(which can be set using a honey pot or drawn from a uniform distri-
bution). We’ll ignore the layer number in the discussion that follows.

Assuming that legitimate clicks can occur at any point in time,
on a per-source basis, the interclick arrival times between subse-
quent clicks justifies a Poisson distribution. The average number of
legitimate clicks in any time interval can be well approximated by
a normal distribution [2]. Making no assumptions about the distri-
bution of clickspam, the probability of observing t legitimate clicks
due to patternH∗k in the ith user at the jth time interval is given by

the Poisson probability distribution: P(t ,i,j,Hk)=
λti, j,k exp(−λi, j,k)

t ! .
After computing the log-likelihood, we obtain:

ℓ=

n∑
i

(
Oi∗ln(HTW∗i)−HTW∗i−ln(Oi∗!)

)
(2)

Theobservations inmatrixO are thenumber of ad-clicks (per time
interval) frommultiple simultaneously active (hence superimposed)
basic-patterns. Considering all the patternsH∗1,...,H∗r , letHk j be
the probability that patternH∗k has been exploited to generate clicks
in time interval j. The intensity of click fraud contribution ofHk to
traffic from user i is given byWik . The corresponding vectorW∗k
encodes the commonality of patternHk across all users (

∑
kWik =

1). Therefore Oi j = λi, j =
∑r
k HikWk j . Replacing (HW) by λ in

Equation 2 and computing derivatives with respect to λ, we obtain:

ℓ =
∑
t
t lnλ−λ−ln(t !) (3)

− dℓ
dλ

=
∑
t
− t
λ
+1 (4)

− d
2ℓ

dλ2
=

∑
t

t√
(λ)

(5)

From Equation 5, we see that − d2ℓ
dλ2 is positive for all values of λ.

Hence, our optimisation function is concave. This means that there
are no local maxima which will adversely affect optimisation. The
solution is unique regardless of the initial values ofW andH .

3.2.2 Isolating clickspam. This stage of the application of NMF al-
gorithm is a standard step, which may be familiar to the reader
experienced in NMF. Here we reverse the partitioning process, in
order to arrive at the traffic of interest i.e. clickspam.

We isolate organic clickspam, by observing the patterns (inmatrix
H) that repeat (as given by the activation matrixW). Each column
of weight matrixWj∗ gives the extent of repetition of the jth base
patternHj∗. All patterns that repeat twice or more, are involved in
organic click fraud. Using matrixH , we computeH ′ as follows; we
retain allH ′j∗ =Hj∗∀∑Wj∗ > 2 and reset the restH ′j∗ =0∀

∑
Wj∗ ≤ 2

(i.e. we retain all traffic that corresponds to click fraud). The weight
4

matrixW is also modified to retain weights corresponding to click
fraudW ′,W ′j∗=Wj∗∀∑Wj∗>2 and reset the restW ′j∗=0∀

∑
Wj∗ ≤ 2.

We then computeO ′=W ′H ′, activating click fraud patterns alone.
Each cell ofO ′ contains the number of fake clicks detected during
any 5 minute interval.

Identification of non-organic click fraud is a two-step process.
First, we cluster closely related pattern vectors usingkNN (k nearest-
neighbors) [45], a centroid-based clustering technique. The distance
function between vectors is the inverse cosine similarity function.
Second, to determine which clusters of patterns correspond to in-
organic clickspam, we use entropy as the validation metric. We
compute the average Shannon entropy of the distribution over inter-
click times within click patterns in each cluster. The use of statistical
average is appropriate as the patternswithin a cluster are expected to
be fairly similar to each other. Together, the weight and entropy of a
cluster can be used to isolate different click fraud attacks. All clusters
with entropy greater the 0.5 are indicative of legitimate traffic (which
have innately higher entropy), the remaining clusters consists of low-
rate clickspam generated using randomized or constant time offsets.

3.2.3 Algorithmic complexity. The complexity of our inference al-
gorithm primarily depends on the number of time intervals and the
density of clicks in each interval. There are O(nmr) update oper-
ations in the worst (dense) case in the first iteration. We assume
that the number of legitimate clicks is roughly loд(m), based on the
sparseness of user click activity wherem is the number of time in-
tervals. r – the number of independent sources — is a small constant.
Thus the complexity reduces toO(n loдm). ThekNN algorithm used
to cluster the basic-patterns involves a total of nloд(n) comparisons,
where k is a constant. Hence its complexity isO(nloдn).

4 EVALUATION
In order to evaluate our inference algorithm, we require access to
click traffic which contain both organic and non-organic clickspam.
First, we acquired a pre-labelled dataset, consisting of both legit-
imate clicks and clickspam, in controlled proportions. To achieve
this, we collected traffic within a university network, filtered it, and
then exposed it to a testbed; consisting of malicious apps and click
malware. As a result, the traffic exiting the testbed contains clicks
from both sources of legitimate and fake clicks.

4.1 Dataset Acquisition
To collect legitimate ad-click traces, we setup traffic monitors on
backbone routers of a university campus network. For each click,
an advertisement is requested and the traffic monitors record the
following information from the request: ad URL, ad server IP ad-
dress, publisher page (referrer URL), source IP address, User-Agent
string (UAstring) and the timestamp. Overall, we recorded a total of
217,334,190 unique clicks, between June 2015 and November 2017.
Thedatawascollectedafterdueprocessofobtainingethical approval,
and all stored data is encrypted.

4.2 Click
Malware and Exposure to Legitimate Traces

Ourmalwaredataset consists of12,518binaries (allegedly) associated
with clickfraud from a private collection. To verify that the malware

dataset is indeed linked to clickfraud, we set up a dynamic analysis
environment. The environment is suitably instrumented to study
the dynamic behaviour of malware in response to legitimate clicks.

ForWindowsbinaries, our analysis environment consists of Linux
Mint 17.3 servers. Each server includes 4 x AMD Opteron 6376
Sixteen-Core 2.30GHz CPUs equipped with 1TB RAM and can run
several VMs. Each VM consists of aWindows 8.1 guest OS installed
with instrumentation tools. We used the Selenium IDE 3.1 [41], to
inject click traffic into a Firefox 54.0 browser within the VM. Outgo-
ing click traffic from the VM is captured using Virtualbox’s network
tracing facility. Dynamic analysis is carried out via the following
workflow:

(1) Each windows binary is retrieved from the malware dataset
and installed on a VM.

(2) A fraction of click sources are chosen from the legitimate
traces.

(3) For each source (UAstring), a firefox browser is launched
within a fresh VM.

(4) For each source, the webpage hosting the ad (referrer URL) is
pushed into the browser and the corresponding (legitimate)
ad-clicks are injected into the browser, whilst preserving
inter-click times.

(5) The installed malware is thus exposed to legitimate click traf-
fic. Any ad-clicks induced by malware are recorded on the
VM and labeled as clickspam, on the basis that the ad-click
was induced by malware.

For Android binaries, our analysis environment is based on the
same hardware, however the Virtualbox VM is configured to use
an Android 6.0 guest image. Our analysis-workflow schedules an
app to run on the VM using the Monkeyrunner tool [18]. This tool
allows us to inject ad-clicks from our dataset on to the installed app.
We used a network monitoring tool to capture mobile clickspam
locally on the device. It leverages Android’s VPN API to redirect the
device’s network traffic through a localhost service enabling packet
inspection. ForAndroid apps, theworkflow consists of the following:

(1) Each android app is retrieved from the dataset and pushed on
to a fresh VMwhere it is executed for a chosen duration of
time.

(2) As before, a fraction of click sources are chosen from legiti-
mate traces and injected into the appusing theMonkeyrunner
tool.

(3) If the app is inclined towards click fraud, we expect to see
additional clicks and ad-fetches over and above those injected.
These are recorded by monitoring outgoing network traffic
using Lumen, and labeled as clickspam.

Out of the 12,271Windowsmalware that were initially associated
with clickspam, we found that only 9,773 produced clickspamwhen
put through our dynamic analysis environment. Similarly, out of
the 247 apps we inspected, 93 produced clickspam. This means that
our traffic dataset is based on a total of just over 10k click malware
samples.

4.3 Passive Detection –Mimicry
In order to understand the significance of contextual parameters,
we examine the traffic from multiple ad networks, control for the

5

effects of the sizes of legitimate and fake clicks, andmultiple ad cat-
egories. Furthermore, to evaluate the performance of Clicktok as a
passive defence, we are concerned with the false-positive (FPR) and
true-positive (TPR) rates. The FP and TP rates are the fraction of
legitimate clicks reported as fraudulent clicks, and the fraction of
fraudulent clicks detected, respectively.

The first step is to create the traffic matrix, as explained in Sec-
tion 3.2. The data from each source IP address is loaded into one row
of thematrix, i.e. one rowper source per day. The input input series is
thendivided intofiveminute intervals, thusestablishing288 columns
per day. For each interval, we compute the total number of clicks;
for which we do not know if the click is a legitimate or spam click.
Time interval (bin size): Wemust next consider the level of tem-
poral granularity required in isolating fake clicks. Specifically, is the
defender happy to know that a fake click occurred within a specific
day, hour or fiveminute interval.Within the limitations of our study,
we discovered that the average user clicks on less than 15 advertise-
ments per day, and thus having a small bin size in the range of a few
seconds would be excessive in terms of unduly high granularity.
Number of basic patterns: The number of unknown basic pat-
terns, r , is fixed by hand, and thus we need to consider themaximum
possible number of basic patterns, r =n. consideration is a scenario,
where the traffic dataset is not compressible at all and therefore, a
simple way to choose r is to simply set it ton. Subsequently, a higher
value for r showed no resulting impact on detection efficiency, but
simply causes some basic patterns to repeat and cluster together
when k-nearest neighbours is applied. An r value greater than 73
did not result in any new basic patterns.
Attack volumes: For evaluating our algorithm, we must also con-
sider the volumes of click fraud attacks. The hardest case for detec-
tion involves stealthy click fraud attacks, which our dataset contains,
where the level of click fraud is less than 5 clicks per source device,
per day (e.g. as induced by the TDSS and TDL-4 botnets [8]). As well
as stealthy click fraud attacks, our dataset also consists of sparse
click fraud attacks, which are mid-range attacks that correspond to
between 5 and 15 clicks per day (e.g. Chameleon [24] and Zeus [3]
descendants). Due to the minimal amount of clicks, any threshold-
based statistical defence technique will find it difficult to detect a
stealthy attack. Finally, we also consider firehose attacks, which in-
volve attacks with volumes greater than 15 clicks per day, per source
(e.g. ZeroAccess [39]). The attack traffic in this case, is distributed
amongst publisher sites, to reduce the per-publisher volume below
the anomaly threshold [31].
Isolating organic clickspam: When a subset of legitimate clicks
is reused, evenwhen click times are partially randomised ormultiple
legitimate clickstreams are combined, it triggers the optimization
criteria within the inference algorithm. The organic click traffic used
in the click fraud attack is found in matrixH , while the clickspam is
identified by the location of pattern activation in matrixW (weight
matrix). The precise mechanism is given in Section 3.2.2.
Isolatingnon-organicclickspam: For isolatingnon-organicclickspam,
we first set the cosine-similarity threshold to 0.9 over non-repeating
column vectors of the set of basic patternsH . We discovered several
giant clusters (between 1 and 25) that contained a majority of the
clicks from the clickstream (70% to 98%). Aswell as this, we identified
smaller clusters (between 0 and 16) which contained fewer clicks

ad network (duration) Attack #spam/src/day % FPR % TPR
Google (1 week) stealth-1 1–4 0.066 62.80

sparse-1 5–15 0.009 74.31
firehose-1 >15 0.004 87.46

Google (12 weeks) stealth-12 1–4 0.019 78.03
sparse-12 5–14 0.006 81.33
firehose-12 >15 0.004 99.32

adCentre (1 week) stealth-1 1–4 0.071 67.05
sparse-1 5–15 0.008 74.52
firehose-1 >15 0.004 81.07

adCentre (12 weeks) stealth-12 1–4 0.024 81.79
sparse-12 5–15 0.005 82.92
firehose-12 >15 0.003 98.36

Table 1: Passive detection — detection and error rates of
inference

(between 2% and 30% of the clicks). From these observations, we
then examined the normalized entropy and weight of each cluster of
patterns. As a heuristic, clusters of low entropy (≤ 0.5) correspond
to simple click fraud attacks and pattern clusters with a normalised
entropy greater than 0.5 are considered to be legitimate flows. The
clusters of low entropy consist of attackswhere the clickmodules are
characterised by low-variability or near-constant inter-click times.
This includes click modules that generate traffic via constant or
random offsets to legitimate clicks.
Detection and error rates of inference: The results of applying
Clicktok are summarized in Table 1. We observed fairly service-
able detection rates, between 70% to 100%. More importantly, the
false-positive rates are fairly low, with rates between 3 clicks to 66
clicks per hundred thousand clicks, for high-volume and stealthier
low-volume attacks respectively. These results are consistent across
ad networks, which aids with verifying the evaluation results of
Clicktok in a realistic setting.
Size of background traffic: Upon evaluation of Clicktok, we ob-
served that larger traffic sizes improve inference. For the Google
ad network, the detection rate of stealthy attacks improved by 12%,
whilst the FPR reduce from 66 to 19 clicks per hundred thousand. In-
terestingly,we also observed thiswith adSense (Microsoft), which in-
creases confidence in the result. For stealthy attacks, this significant
reduction is achieved by exploiting correlations across user click-
streams. As we consider the traffic for multiple users together, even
a low attack rate can be detected across click traffic frommultiple
users. Understandably, we observed a lesser improvement with the
firehose attacks, as attack rates already afford better detection rates
and lower false-positive rates, even with just a few days of traffic.
Effects of click category: We examined click fraud in three cat-
egories: sponsored, contextual and mobile ads. Sponsored search
ads are advertisements displayed by search engines, based on the
keywords within a user’s query alongside search results. Contextual
ads are a more generic form of advertisements, which are displayed
onawebpage basedon thekeywords present on thatwebpage. For in-
stance, an advertisement on purchasing gold bars may be displayed
on a webpage that contains information about investing in gold.
Finally, mobile ads is a category of advertisements which are exclu-
sively displayed onmobile devices. In all cases, the detection rates
are fairly high, as well as a serviceably low false-positive rate. The
detection of mobile ad click fraud has a slightly lower FPR compared
to other categories.

6

(a) Google 84M

Fraud-type #spam % FPR % TPR
Sponsored 16795 0.005% 93.595

138345 0.005% 95.005
1332910 0.004% 95.692

Contextual 22394 0.005% 87.806
171883 0.005% 89.202
1818777 0.004% 90.546

Mobile 18475 0.004% 91.379
108999 0.003% 92.833
1165221 0.003% 92.654

(b) Microsoft adSense 78M clicks

Fraud-type #spam % FPR % TPR
Sponsored 18219 0.005% 89.11

123442 0.004% 90.70
912480 0.004% 92.17

Contextual 20380 0.006% 88.30
323302 0.004% 91.68
2198249 0.004% 90.93

Mobile 10594 0.005% 90.33
141077 0.003% 91.52
1161338 0.003% 94.76

Table 2: Detection and error rates of Inference across
multiple clickstreams

4.4 Active Detection – Bait Clicks
The idea of the active defence is that the ad network injects bait
clicks with a well defined inter-click delay pattern along with the
ad it serves. Any mimicking of the injected pattern is evidence of
click fraud. This approach is loosely motivated from traffic-analysis
literature [42]. We used an injected pattern where consecutive in-
jected clicks are a δn =δ time apart tn =δn+tn−1. The ad network
can use more than one injected patterns each defined by a different
δ in order to keep the bait-clicks discrete.

To implement this defence, as before the traffic matrixO is initial-
ized with each row containing the time series from a 24 hour output
of the testbed. We then decomposeO using our inference algorithm
and r =n, however there are two important changes. First, the initial
r rows ofH are set to the injected patterns instead of being initialized
with random value. Second, instead of applying the update functions
forH from Algorithm 1 for all i <r ′, we fix the values ofHi∗ for all
i ≤r , i.e. the rows ofH representing injected patterns are not altered.
This step allows the other rows ofH to be suitably altered so as to
represent legitimate timing patterns. The final step is the isolation of
fraud clicks. This is done by analyzingW .Wi j gives the influence of
patternHj∗ on click traffic time seriesOi∗. Since the injected timing
patternsare locatedon thefirstr rowsofH , the fractionof fraudclicks

for time-window i of click traffic is simply computed as:
∑r
j=1Wi j∑n
l=1Wil

.
In engineering terms, an ad network sends ads encapsulated with

JavaScript code into the user’s browser. Code execution is triggered
by a suitable JavaScript event (such as when a page has finished load-
ing). For the ad network the network and computational overheads
are constant time per user and scales linearly with the number of
users. The impact on the user device is also fairly minimal, dispatch-
ing three-four mouse clicks on an advertisement.
Results: Active defence improves detection rates by almost 10%.
The results of active defences are documented in Table 3. In both
Google and AdSense, active defences are very successful (> 89%)
at detecting fake clicks at all ranges of attack traffic volumes from
stealthy to a firehose, at low FPR of 30–40 per million clicks. The
reduction in FPR for low-rate attacks is most improved compared
to passive defences, indicating the importance of considering active
attack approaches in fighting click fraud.

However,whenactivedefencesarepresentedwithpoorcontext (1-
week traffic set), i.e. applied over only few clicks per user, we observe

ad network (duration) Attack #spam/src/day % FPR % TPR
Google (1 week) stealth-1 1–4 0.051 66.40

sparse-1 5–15 0.010 78.61
firehose-1 >15 0.004 93.48

Google (12 weeks) stealth-12 1–4 0.004 89.34
sparse-12 5–15 0.004 91.62
firehose-12 >15 0.003 96.77

Microsoft (1 week) stealth-1 1–4 0.060 51.02
sparse-1 5–15 0.003 75.14
firehose-1 >15 0.005 92.60

Microsoft (12 weeks) stealth-12 1–4 0.004 90.78
sparse-12 5–15 0.003 92.44
firehose-12 >15 0.002 95.41

Table 3: Active defence — detection and error rates of
inference

that detection and FPR are similar to passive defences. To under-
standwhy,wemust note that looking for a response to injected traffic
mainly detects mimicking attacks (as opposed to other variable-rate
attacks such as randomly generated fake clicks). In our dataset, a
week’s traffic contains between 2 and 43 user clicks per day.At attack
rates of twoper day, Clicktok fails to detect the attack. As attack rates
which are still fairly stealthily increases, click fraud attacks are read-
ily detectable; For an increase in fake click rate from1% to10%of legit-
imate traffic,we observe a reduction in FPR by an order ofmagnitude
for stealth attacks,whiledetection rate increases from50% to70%. For
higher attack rates, the click fraud campaigns are mostly randomly
generated fake clicks, and these result in modest changes in FPR.

5 DISCUSSION
Successful click fraud campaigns not only need to scale, they must
also be credible (pseudo-legitimate), and stealthy. Attackers achieve
scale using compromised apps to automate click fraud campaigns
and achieve stealth by using organic clicks to institute click fraud. To
combat stealth, Clicktok detects click fraud based on timing charac-
teristics of click traffic feeds received at ad networks. Unlike thresh-
oldbaseddefences, it exploits correlations in timingbehaviour across
multiple compromised end-user devices.

Detecting click fraud using timing information exploits a funda-
mental propertyof attacksbasedonorganic click fraud—someattack
traffic is a function of historical legitimate traffic. Clicktok’s strength
lies in its generic approach. Instead of assuming specific attackmeth-
ods for click fraud attack strategies, Clicktok uses a notion of a com-
pressive optimization function to isolate clicks generated by different
sourceswithout prior knowledge aboutwhat those sources are. Thus
Clicktok can isolate non-organic clickspam such as those generated
at pseudo-random times and the replay of organic clickstreams.

Our techniques show some promise: passive defences have a de-
tection rate of around 78%–81% with a false-positive rate of 190
per million clicks; and, active attacks work best, with the false pos-
itive rate entering a region of 40 to 70 false positives per million
clicks. This means the ad network charges the advertiser for 40 to 70
clicks per million clicks received, as compared with a false-positive
rate of between 200,000–300,000 clicks per million in current ad
networks [11, 17].
Passive defences: WhenClicktok is applied as a passive defence, it
acts as a (lossy) compression function that partitions the input time
series into basis patterns, such that all basis patterns from the same

7

distribution are grouped together. Thus given a clickstream contain-
ing clicks generated from different statistical distributions (random
variables) over generation times, Clicktok creates asmany partitions.
Active defences: Wemodel a clickstream as a timing channel be-
tween a user and the ad network composed of inter-click times
between consecutive ad clicks. The ad network watermarks the
channel periodically using bait-clicks. When an attacker harvests
and reuses a (legitimate) clickstream, it sets off watermark detectors
located in the ad network. Unlike conventional watermarks how-
ever, the timing pattern induced by click fraud may not appear as an
isolated series of consecutive clicks. Clickstreams arriving at the ad
network may therefore contain clickspam that’s thoroughly mixed
(superimposed) with legitimate clicks. Thus, the challenge of design-
ing the watermark detector system is to unmix the stream back into
legitimate and clickspam. Clicktok develops the algorithmic basis
for carrying out this work. In order to bypass the active defences, the
attacker must distinguish between the bait-click watermark and le-
gitimate traffic, which roughly speaking, shifts the burden of solving
the click fraud problem to the attacker.

5.1 Limitations of Clicktok
Metrics used: We use entropy as a validation metric with a nor-
malised threshold of 0.5. However, this may be vulnerable to the
adversary generating non-organic clickspam using pseudo-random
number generator that generates clicks from distributions with high
entropy. While we haven’t observed this taking place in our testbed
across 1.5 years, it is a reasonable countermeasure for the attacker.
Clicktok can still function in these circumstances by leveraging a
honeypot to populate the pattern matrixH as follows: columns of
the pattern matrix are pre-populated with traffic from the honeypot
and fixed, i.e. excluded from the application of multiplicative rules
in Algorithm 1 while the rest of the columns are optimised. Upon
convergence, the weight matrix will contain high weights if any
traffic similar to the honeypot is observed in the traffic matrixO .
IP aggregation and churn: Often, enterprise networks may de-
ployDMZor other traffic aggregators to avoid exposing IP addresses
to the outside world. This impacts the extent of attribution. Malice
will therefore be at best traced back to the aggregator and further in-
vestigation would be required to isolate the actual source behind the
aggregator. Churn causes similar record-keeping problems. In order
to positively attribute malice to a source, the source-IP addresses
involved must be reconciled with the local DHCP records. We note
that the impact on detection itself is minimal; an short DHCP expi-
ration policy, simply implicates both the previous and new source
IP addresses of a malicious source.
Cookies and deletion: A relatively reliable approach is to use
cookies instead of source-IP addresses to keep track ofmalice. ad net-
works can track clickstreams on a per user basis using authenticated
HTTP sessions, instead of solely depending on source IP addresses.
Cookies can help address churn issues where a pool of source IP
addresses are cycled among many users.

5.2 Comparison with related work
We compared Clicktok’s efficiency with click fraud detection tech-
niques proposed in the literature. While some of these techniques

Technique Attack #spam/src/day % FPR % TPR
Clicktok stealth 1–4 0.066 62.80

sparse 5–15 0.01 74.31
firehose >15 0.004 87.46

Similarity Seeker stealth 1–4 14.41 57.49
sparse 5–15 9.68 59.82
firehose >15 0.78 85.21

ViceROI stealth 1–4 10.23 60.03
sparse 5–15 2.65 66.13
firehose >15 0.5 78.29

PubCrawl stealth 1–4 4.70 52.64
sparse 5–15 3.24 67.28
firehose >15 0.85 77.91

Table 4: Comparative analysis of Clicktok (Passive) vs others

were not intended to work with the challenges of embedded fake
clicks or stealthy click fraud attacks, we can nonetheless compare
against themon real datasets to get a sense of howClicktok compares
against these approaches. Several techniques to differentiate fake
clicks from legitimate clicks have been proposed. Work in this space
can be categorized into threshold-based techniques that build a base-
line of benign behaviour and analyze deviations from the baseline,
and on timing analysis techniques. We choose two methods from
timing analysis and a recently proposed threshold technique for
detection efficiency.

• Threshold-based approaches detect hotspots of activity be-
tween click-malware andpublishers.One set of techniques de-
tect traffic hotspots [31–33]. Another technique is to examine
publisher-user pairs with above-average click rates [12]. All
the techniques in this approach develop a normative baseline
of activity and detectmalicious behaviour beyond a threshold
distance from the baseline. The idea is that fraudsters need to
scale their activity to a levelwhere their turnover (froma click
fraud campaign) covers their costs as well as generate a profit.
• In time-series analysis, techniques such as auto-correlation,
partial-correlation, and cross-correlation techniques [48] are
used to process the input clickstream. Each clickstream is
converted into a time-series by counting the number of clicks
within each time interval, just as in Clicktok. Parsing Click-
tok’s traffic matrix in a row-major fashion gives the required
time-series vector overwhich analysis techniques are applied.
Recently, PubCrawl [19] extended this idea by combining it
with learning approaches, where a classifier is trained with
a labelled dataset containing time series for both honest and
fraud clicksets.

The algorithmic complexity of both is similar to Clicktok so we
were able to readily run them on the 1-week Google ad network
dataset. Results fromour comparison are shown inTable 4.We found
that the performance of Clicktok is similar to existing solutions for
high-rate (hose and firehose) attacks in terms of detection rate, but
has a much better FPR for all attacks. For low-rate attacks (stealth
and sparse), Clicktok significantly outperforms all existing solutions.
For example, for a hose attack, Clicktok’s FPR is 0.04% whereas FPR
for other approaches ranged from 0.5%—7.65%. As another example,
for a stealth attack, Clicktok’s FPR is 0.066% whereas FPR for other
approaches ranged from 4.7%–14.7%.

Our experiments show the limitations of using threshold based
approaches, which can be defeated by reducing the network loads

8

placed by attackers. In the case of ViceROI, the cost of renting a bot-
net has fallen by three orders of magnitude which allows attackers
to scale up the number of attack hosts for the same amount of click
fraud, pushing the level of fraud per user and per publisher below the
detection threshold. Similarly, with Similarity-Seeker which looks
for traffic hotspots, but without using bluff ads to generate a base-
line, the hotspot is diffused with increase in the number of attack
hosts and malicious publishers. Interestingly, PubCrawl was fairly
successful at detecting stealthier attacks than Similarity Seeker and
ViceROI. PubCrawl also uses time-series analysis, however it is not
designed to handle the case where clickspam and legitimate traffic
are temporally overlapped. This capability gap is especially evident
when the fake clickstream size is smaller as any overlap tends to
severely ’damage’ the signal that PubCrawl detects.

6 RELATEDWORK
Click fraud demonstrates a serious economic impact on the Internet
sub-economy of the click marketplace, bringing rise to a growing
bodyof academic research to address theproblem.Click fraud inflicts
losses for tens of thousands of online advertisers, causing upwards
of hundreds of millions of dollars each year [37].

Several papers have highlighted the importance of the field of
advertising and click fraud [44, 50]. Keeping ad networks free of
fraud is highlighted by the work of Mungamuru et al. [37], who
show that ad networks free of click fraud results in a competitive
advantage over rival ad networks and thus attracts more advertis-
ers. Research shows that even the largest advertising platforms are
affected by click fraud [25] and are tackling the problem, by pri-
marily employing data mining techniques to distinguish legitimate,
fraudulent or bot-generated click events. Clickbots are a leading
attack vector for carrying out click fraud; around 30% of the clicks
are fraudulent across major ad networks [11, 17] and originate from
malware networks (rent-a-botnet services).
Clickbots and Malware Networks: Malware networks are pri-
marily operated by malicious publishers or a malicious advertiser
who depleted the budget of competing advertisers such as theWOW
botnet [46]. Chen et al. [8] discovered that the TDSS/TDL4 botnet
— one of the most sophisticated botnets — incurred an average of
$340 thousand in daily losses to advertisers. The losses scale up to
ten times more than the daily impact some previous botnets had to
the advertising ecosystem [30, 40]. Naturally, a number of studies
have focused on botnets used for click fraud. Daswani et al. [10]
reverse engineered clickbot and followed by Miller et al. [34] on
Fiesta and 7cy. These works focused on the C&C traffic structure of
the attack infrastructure. We consider the timing characteristics of
click-generation algorithms used by botnets instead of the structure
of the C&C traffic or the malware binaries. Unlike these specialized
studies which are solely focused on specific botnets, our work has
wider application including future botnets.

Online advertisement networks employ a variety of heuristics to
detect click fraud and apply corresponding discounts on advertisers
they invoice [9]. These heuristics involves tracking and bounding
user click behaviour often on a per-IP-address basis. In response,
criminals are using large distributed attack networks of bots for
launching replay click fraud attacks. Bots are unique in that they
collectively maintain a communication structure across infected

machines to resiliently distribute commands from a command and
control node. The ability to coordinate and upload click fraud attack
commands gives the botnet owner vastly increased power against
major ad networks.
Traffic analysis: Several countermeasures [31–33] are based on
traffic analysis. These methods isolate machines being used for click
fraud attacks by identifying traffic hot-spots between the attack ma-
chines and publisher sites. Not only non-stationary traffic, but also
stealth occurrences of malicious behaviors both introduce issues to
analyse anomalous network traffic [22]. Machine learning frame-
works have been used to help analyse network behaviour, identify
click fraud and adapt to changes in traffic [22, 36]. However, most
of of this research is done on botnet-induced click traffic, and does
not identify the effectiveness of these methods on other forms of
fraudulent clicks.
Detecting rogue publishers: In [12], Dave et al. point out that the
conversion rate of malicious publishers is abnormally high. Thus a
heuristic based on the conversion rate could be used as part of a click
fraud defence. However, this is easily circumvented by distributing
attack traces across a few publisher accounts. Or, alternately after an
account is “tainted”, it is abandoned.This strategy imposes additional
effort on the attackers (they need to register new publisher accounts
with high frequency) but this is cheap. Such a strategy is already
well in use to evade reputation blacklists for domain names [15] due
to which the mean life-time of domains is a mere 2.5 hours.
Click honeypots: Haddadi proposed the use of Bluff ads [17] – a
fake ad that is of little interest to the legitimate user butwould attract
click fraud attacks in the wild. Bluff ads can be used to collect attack
traffic and in conjunction with Click fraud to extract basis patterns
corresponding to the static timing characteristics of malware click-
modules. Instead of bait-ads, Clicktok applies bait clicks to entice
click fraud apps into responding with watermarked click fraud. This
is a new approach towards instrumentation of click fraud apps at
scale, and will form part of our future work.
Humanbots: Ahuman-centric approach to setting up a call-centre
to generated handcrafted clickspam [27] and tricking people into
clicking ads on porn websites and mobile gaming apps [13]. Zhang
et al. studied click fraud by purchasing click traffic feeds. They also
showed that the explicit existence of human clickers [51]. Our work
is focused on clickspam generation frommalware alone.
Trustworthy clicks: Gummadi et al. [16] propose to combat bot
activity through detection mechanisms at the client. The client ma-
chine has a trusted component that monitors keyboard and mouse
input to attest to the legitimacy of individual requests to remote
parties. In addition, Juels et al. [20] likewise propose dealing with
click fraud by certifying some clicks as premium or legitimate using
an attester instead of attempting to filter fraudulent clicks. Zingirian
and Benini [52] show that a single adversary can increase the click
count for given advertised subscribers, from a single IP address, even
if the paid clicks are not linkedwith legitimate advertisements. They
evaluate security tradeoffs and revenue losses from discarded clicks
claimed as being illegitimate, and formulate an algorithm to control
the tradeoff; which shows to induce a very low impact even with a
largevolumeof clicks.Kintanaet al. [23] created a systemdesigned to
penetrate click fraud filters in order to discover detection vulnerabil-
ities. Blundo et al. [4] propose to detect click fraud by usingCaptchas

9

and proof-of-work schemes. In a proof-of-work based scheme [11],
the ad network serves Captchas probabilistically in response to ad-
clicks to verify the authenticity of clicks. The main problem here is
that malware often delegate the problem of solving a CAPTCHAS to
a third party. For example, via a gaming app where the players are
asked to periodically solve Captchas for “authentication purposes”.
Detecting fake search engine queries: A number of click fraud
malware use cover traffic in the form of automated search engine
queries leading to the malicious publisher’s website. Researchers
have dedicated considerable effort to methods for differentiating
search queries from automated and human sources. Kang et al. [21]
propose a learning-based approach to identify automated searches
but exclude query timing. Yu et al. [49] observe details of bot be-
haviour in aggregate, using the characteristics of the queries to iden-
tify bots. Buehrer et al. [6] focus on bot-generated traffic and click-
through designed to influence page-rank. These efforts do not exam-
ine timing behaviour, focusing instead on techniques for the search
engine to identify automated traffic. Shakiba et al.[43] propose thede-
tectionof spamsearchenginequeriesusingasemi-supervisedstream
clustering method, which characterises legitimate and illegitimate
users using linguistic properties of search queries and behavioural
characteristicsofusers; showntobeaccurate94%of the timewith low
overhead. Graepel et al. [14] define a scalable Bayesian click-through
ratepredictionalgorithm,mapping input features toprobabilities, for
Sponsored Search in the Bing search engine. They showed that their
new algorithmwas superior to, and outperformed a calibrated Naive
Bayes algorithm — regardless of the new algorithm being calibrated.
Machine-learning based defences are vulnerable tomimicry
attacks: Many machine-learning based approaches [44] have been
proposed for click fraud detection.Many of these rely on rich feature
sets. While there are clear benefits to a diverse feature set we also
know that some features are highly predictable. For instance, accu-
rately predicting ads of interest to a user is possible [14], reducing
the utility of using features such as keywords in detecting click fraud
—malware can target advertisers relevant to the user. Our finding
is that timing information is relatively hard to predict and should
be used in conjunction with other features to combat click fraud.
Conventionaltime-seriesanalysis techniquesdon’twork: Con-
ventional time-series techniquesareauto-correlation,partial-correlation,
and cross-correlation techniques [48] which can find statistically
similar subsets across two or more time series. Correlation tools
are typically applied to wavelet coefficients or to the inverse trans-
form of wavelet coefficients at carefully selected coefficient levels.
Correlation-based techniques can detect sub-similar features if the
time series signal is not contaminated by convolutions of the sig-
nal with other signals or high-amplitude noise. Unfortunately, in
the case of click fraud detection the traffic is contaminated by time-
overlapping legitimate and spam clicks as shown in Figure 5. Indeed
as prior art has noted, compromised-apps or click-malware generate
clickspam only when some “trigger” fires such as the presence of
legitimate clicks on the compromised device [35].

Time series analysis has been used previously for detecting click
fraud. In PubCrawl [19], the main idea is that users tend to be a lot
more noisier than crawlers who have a relatively stable behaviour
pattern across time. The challengewe address is significantly harder:
what happens when machines (crawlers) mimic user-behaviour by

closely following past user behaviour rather than the random strate-
gies (which PubCrawl is designed to isolate).

7 CONCLUSION
Online advertising is a funding model used by millions of websites
and mobile apps. Criminals are increasingly targeting online adver-
tising with special purpose attack tools called click malware. Click
fraud institutedviamalware isan important securitychallenge.Static
attacks involving large attack volumes are easily detected by state-
of-the-art techniques. However, dynamic attacks involving stealthy
clickspam, that adapt to the behaviour of the device user, are poorly
detected by currentmethods.We found that timing analysis can play
a compelling role in isolating click fraud, instituted via both static
and dynamic attack techniques. We applied NMF, a technique that
identifies clickspam by exploiting the relative uncertainty between
clickspam and legitimate clickstreams. It achieves this by detecting
repetitive patterns that arise within ad network clickstreams from
organic clickspam.We analysed a corpus of malware within an in-
strumented environment, that enabled us to control the generation
of clickspam by exposing malware to legitimate clickstreams. We
tested a passive technique which shows some promise. We also eval-
uated an active defense, where we injected watermarked click traffic
into the analysis environment, that works better still. While timing
analysis is well studied within the field of information hiding, for
its ability to unearth hidden communication, its potential has yet
to be fully explored in understanding stealthly click fraud attacks.
Our work indicates that timing analysis might indeed be relevant
to building better click fraud detection.

REFERENCES
[1] 2016. You can now rent a Mirai botnet of 400000

bots. https://www.bleepingcomputer.com/news/security/
you-can-now-rent-a-mirai-botnet-of-400-000-bots/

[2] Patrick Billingsley. 1995. Probability and Measure (3 ed.). Wiley-Interscience.
http://www.worldcat.org/isbn/0471007102

[3] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr
Youssef, Mourad Debbabi, and LingyuWang. 2010. On the analysis of the zeus
botnet crimeware toolkit. In 2010 Eighth International Conference on Privacy,
Security and Trust. IEEE, 31–38.

[4] Carlo Blundo and Stelvio Cimato. 2002. SAWM: a tool for secure and authenticated
web metering. In Proceedings of the 14th international conference on Software
engineering and knowledge engineering (SEKE ’02). ACM, New York, NY, USA,
641–648. https://doi.org/10.1145/568760.568871

[5] Y-Lan Boureau, Jean Ponce, and Yann Lecun. 2010. A Theoretical Analysis of
Feature Pooling in Visual Recognition. In 27TH INTERNATIONAL CONFERENCE
ONMACHINE LEARNING, HAIFA, ISRAEL.

[6] Gregory Buehrer, JackW. Stokes, and Kumar Chellapilla. 2008. A large-scale study
of automated web search traffic.. InAIRWeb (ACM International Conference Pro-
ceeding Series), Carlos Castillo, Kumar Chellapilla, and Dennis Fetterly (Eds.). 1–8.

[7] Neha Chachra, Stefan Savage, and Geoffrey M. Voelker. 2015. Affiliate
Crookies: Characterizing Affiliate Marketing Abuse. In Proceedings of the 2015
Internet Measurement Conference (IMC ’15). ACM, New York, NY, USA, 41–47.
https://doi.org/10.1145/2815675.2815720

[8] Yizheng Chen, Panagiotis Kintis, Manos Antonakakis, Yacin Nadji, David Dagon,
and Michael Farrell. 2017. Measuring lower bounds of the financial abuse to
online advertisers: A four year case study of the TDSS/TDL4 Botnet. Computers
& Security 67 (2017), 164–180.

[9] Click-spam accounting [n. d.]. The lane’s gift v. google report.
http://googleblog.blogspot.in/pdf/Tuzhilin_Report.pdf.

[10] Neil Daswani and Michael Stoppelman. 2007. The Anatomy of Clickbot.A. In
Proceedings of the First Conference on First Workshop on Hot Topics in Under-
standing Botnets (HotBots’07). USENIX Association, Berkeley, CA, USA, 11–11.
http://dl.acm.org/citation.cfm?id=1323128.1323139

[11] Vacha Dave, Saikat Guha, and Yin Zhang. 2012. Measuring and fingerprint-
ing click-spam in ad networks. In Proceedings of the ACM SIGCOMM 2012

10

https://www.bleepingcomputer.com/news/security/you-can-now-rent-a-mirai-botnet-of-400-000-bots/
https://www.bleepingcomputer.com/news/security/you-can-now-rent-a-mirai-botnet-of-400-000-bots/
http://www.worldcat.org/isbn/0471007102
https://doi.org/10.1145/568760.568871
https://doi.org/10.1145/2815675.2815720
http://googleblog.blogspot.in/pdf/Tuzhilin_Report.pdf
http://dl.acm.org/citation.cfm?id=1323128.1323139

conference on Applications, technologies, architectures, and protocols for com-
puter communication (SIGCOMM ’12). ACM, New York, NY, USA, 175–186.
https://doi.org/10.1145/2342356.2342394

[12] Vacha Dave, Saikat Guha, and Yin Zhang. 2013. ViceROI: Catching Click-spam
in Search Ad Networks. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13). ACM, New York, NY, USA,
765–776. https://doi.org/10.1145/2508859.2516688

[13] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. 2011. A surveyofmobilemalware in thewild. InProceedings of the 1stACM
workshop on Security and privacy in smartphones and mobile devices. ACM, 3–14.

[14] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich.
2010. Web-Scale Bayesian Click-Through rate Prediction for Sponsored
Search Advertising in Microsoft’s Bing Search Engine. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), Johannes
Fürnkranz and Thorsten Joachims (Eds.). Omnipress, Haifa, Israel, 13–20.
http://www.icml2010.org/papers/901.pdf

[15] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich,
Kirill Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa,
Andreas Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian
Rossow, Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. 2012.
Manufacturing Compromise: The Emergence of Exploit-as-a-Service . In Proc.
of the ACM Conference on Computer and Communications Security (CCS).

[16] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and Sylvia Rat-
nasamy. 2009. Not-a-Bot (NAB): Improving Service Availability in the Face of
Botnet Attacks. In NSDI 2009. Boston, MA.

[17] Hamed Haddadi. 2010. Fighting online click-fraud using bluff
ads. SIGCOMM Comput. Commun. Rev. 40, 2 (April 2010), 21–25.
https://doi.org/10.1145/1764873.1764877

[18] Google Inc. Accessed Mar 2018. Monkeyrunner reference. https:
//developer.android.com/studio/test/monkeyrunner

[19] Gregoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2012.
PUBCRAWL: Protecting Users and Businesses from CRAWLers. In Presented
as part of the 21st USENIX Security Symposium (USENIX Security 12). USENIX,
Bellevue, WA, 507–522. https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/jacob

[20] Ari Juels, Sid Stamm, and Markus Jakobsson. 2007. Combating click fraud via
premium clicks. In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium (SS’07). USENIX Association, Berkeley, CA, USA, Article 2,
10 pages. http://dl.acm.org/citation.cfm?id=1362903.1362905

[21] Hongwen Kang, Kuansan Wang, David Soukal, Fritz Behr, and Zijian Zheng.
2010. Large-scale Bot Detection for Search Engines. In Proceedings of the 19th
International Conference on World Wide Web (WWW ’10). ACM, New York, NY,
USA, 501–510. https://doi.org/10.1145/1772690.1772742

[22] Sara Khanchi, Nur Zincir-Heywood, and Malcolm Heywood. 2018. Streaming
Botnet traffic analysis using bio-inspired active learning. In NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE, 1–6.

[23] Carmelo Kintana, David Turner, Jia-Yu Pan, Ahmed Metwally, Neil Daswani,
Erika Chin, and Andrew Bortz. 2009. The Goals and Challenges of Click Fraud
Penetration Testing Systems. In International Symposium on Software Reliability
Engineering.

[24] GKirubavathi andRAnitha. 2014. Botnets: A study and analysis. InComputational
Intelligence, Cyber Security and Computational Models. Springer, 203–214.

[25] Brendan Kitts, Jing Ying Zhang, GangWu,Wesley Brandi, Julien Beasley, Kieran
Morrill, John Ettedgui, Sid Siddhartha, Hong Yuan, Feng Gao, et al. 2015. Click
fraud detection: adversarial pattern recognition over 5 years at Microsoft. In Real
World Data Mining Applications. Springer, 181–201.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet
Classification with Deep Convolutional Neural Networks. Commun. ACM 60,
6 (May 2017), 84–90. https://doi.org/10.1145/3065386

[27] Nir Kshetri. 2010. The Economics of Click Fraud. IEEE Security & Privacy 8, 3
(2010), 45–53. http://dblp.uni-trier.de/db/journals/ieeesp/ieeesp8.html#Kshetri10

[28] Daniel D. Lee and H. Sebastian Seung. 2000. Algorithms for Non-negative Matrix
Factorization. In In NIPS. MIT Press, 556–562.

[29] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: Detecting and
CharacterizingAd Fraud inMobileApps. In 11thUSENIX Symposium onNetworked
Systems Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 57–70. https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/liu_bin

[30] Wei Meng, Ruian Duan, andWenke Lee. 2013. DNS Changer remediation study.
Talk at M3AAWG 27th (2013).

[31] Ahmed Metwally, Divyakant Agrawal, Amr El Abbad, and Qi Zheng. 2007.
On Hit Inflation Techniques and Detection in Streams of Web Advertising
Networks. In Proceedings of the 27th International Conference on Distributed
Computing Systems (ICDCS ’07). IEEE Computer Society, Washington, DC, USA,
52–. https://doi.org/10.1109/ICDCS.2007.124

[32] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2007. Detectives:
detecting coalition hit inflation attacks in advertising networks streams. In
Proceedings of the 16th international conference onWorldWideWeb (WWW ’07).

ACM, New York, NY, USA, 241–250. https://doi.org/10.1145/1242572.1242606
[33] Ahmed Metwally, Fatih Emekçi, Divyakant Agrawal, and Amr El Ab-

badi. 2008. SLEUTH: Single-pubLisher attack dEtection Using cor-
relaTion Hunting. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1217–1228.
http://dl.acm.org/citation.cfm?id=1454159.1454161

[34] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich, and Vern Paxson. 2011.
What’s Clicking What? Techniques and Innovations of Today’s Clickbots. In
Proceedings of the 8th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’11). Springer-Verlag, Berlin,
Heidelberg, 164–183. http://dl.acm.org/citation.cfm?id=2026647.2026661

[35] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring Multiple
Execution Paths for Malware Analysis. In Proc. of the IEEE Symposium on Security
and Privacy.

[36] Riwa Mouawi, Mariette Awad, Ali Chehab, Imad H El Hajj, and Ayman Kayssi.
2018. Towards a Machine Learning Approach for Detecting Click Fraud in
Mobile Advertizing. In 2018 International Conference on Innovations in Information
Technology (IIT). IEEE, 88–92.

[37] Bob Mungamuru and Stephen Weis. 2008. In Financial Cryptography
and Data Security, Gene Tsudik (Ed.). Springer-Verlag, Berlin, Heidelberg,
Chapter Competition and Fraud in Online Advertising Markets, 187–191.
https://doi.org/10.1007/978-3-540-85230-8_16

[38] G. Ollmann. 2009. Want to rent an 80-120k DDoS Botnet? Blog: Damballa.
http://bit.ly/W9Hh2x

[39] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko, Saikat Guha, Damon
McCoy,Vern Paxson, Stefan Savage, andGeoffreyM.Voelker. 2014. Characterizing
Large-Scale Click Fraud in ZeroAccess. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). ACM, New York,
NY, USA, 141–152. https://doi.org/10.1145/2660267.2660369

[40] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko, Saikat Guha, Damon
McCoy, Vern Paxson, Stefan Savage, andGeoffreyMVoelker. 2014. Characterizing
large-scale click fraud in zeroaccess. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 141–152.

[41] The Selenium Project. Accessed Oct 2017. Selenium IDE. https:
//docs.seleniumhq.org

[42] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. 1998. Anonymous
Connections andOnionRouting. IEEE Journal on SelectedAreas inCommunications
16, 4 (1998). citeseer.ist.psu.edu/reed98anonymous.html

[43] Tahere Shakiba, Sajjad Zarifzadeh, and Vali Derhami. 2018. Spam query detection
using stream clustering. WorldWideWeb 21, 2 (2018), 557–572.

[44] Brett Stone-Gross, Ryan Stevens, Apostolis Zarras, Richard Kemmerer, Chris
Kruegel, and Giovanni Vigna. 2011. Understanding Fraudulent Activities in
Online Ad Exchanges. In Proceedings of the 2011 ACM SIGCOMMConference on
Internet Measurement Conference (IMC ’11). ACM, New York, NY, USA, 279–294.
https://doi.org/10.1145/2068816.2068843

[45] Thanh N. Tran, Ron Wehrens, and Lutgarde M.C. Buydens. 2006. KNN-
kernel density-based clustering for high-dimensional multivariate
data. Computational Statistics & Data Analysis 51, 2 (2006), 513 – 525.
https://doi.org/10.1016/j.csda.2005.10.001

[46] Western Division ofWashington at Seattle United States District Court. June 2009.
United States District Court: Microsoft vs Eric Lam et. al., Civil Case Number CO
9-0815. http://graphics8.nytimes.com/packages/pdf/business/LamComplaint.pdf

[47] JialuWei. 2016. DDoS on internet of thingsâĂŤa big alarm for the future.
[48] WilliamWu-ShyongWei. 1994. Time series analysis. Addison-Wesley publ.
[49] Fang Yu, Yinglian Xie, and Qifa Ke. 2010. SBotMiner: Large Scale Search Bot

Detection. In Proceedings of the Third ACM International Conference on Web
Search and Data Mining (WSDM ’10). ACM, New York, NY, USA, 421–430.
https://doi.org/10.1145/1718487.1718540

[50] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,
Christopher Kruegel, and Giovanni Vigna. 2014. The Dark Alleys of Madison
Avenue: Understanding Malicious Advertisements. In Proceedings of the 2014
Conference on Internet Measurement Conference (IMC ’14). ACM, New York, NY,
USA, 373–380. https://doi.org/10.1145/2663716.2663719

[51] Qing Zhang, Thomas Ristenpart, Stefan Savage, and Geoffrey M. Voelker. 2011.
Got Traffic?: An Evaluation of Click Traffic Providers. In Proceedings of the 2011
Joint WICOW/AIRWeb Workshop on Web Quality (WebQuality ’11). ACM, New
York, NY, USA, 19–26. https://doi.org/10.1145/1964114.1964119

[52] Nicola Zingirian and Michele Benini. 2018. Click Spam Prevention Model
for On-Line Advertisement. CoRR abs/1802.02480 (2018). arXiv:1802.02480
http://arxiv.org/abs/1802.02480

11

https://doi.org/10.1145/2342356.2342394
https://doi.org/10.1145/2508859.2516688
http://www.icml2010.org/papers/901.pdf
https://doi.org/10.1145/1764873.1764877
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jacob
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jacob
http://dl.acm.org/citation.cfm?id=1362903.1362905
https://doi.org/10.1145/1772690.1772742
https://doi.org/10.1145/3065386
http://dblp.uni-trier.de/db/journals/ieeesp/ieeesp8.html#Kshetri10
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_bin
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_bin
https://doi.org/10.1109/ICDCS.2007.124
https://doi.org/10.1145/1242572.1242606
http://dl.acm.org/citation.cfm?id=1454159.1454161
http://dl.acm.org/citation.cfm?id=2026647.2026661
https://doi.org/10.1007/978-3-540-85230-8_16
http://bit.ly/W9Hh2x
https://doi.org/10.1145/2660267.2660369
https://docs.seleniumhq.org
https://docs.seleniumhq.org
citeseer.ist.psu.edu/reed98anonymous.html
https://doi.org/10.1145/2068816.2068843
https://doi.org/10.1016/j.csda.2005.10.001
http://graphics8.nytimes.com/packages/pdf/business/LamComplaint.pdf
https://doi.org/10.1145/1718487.1718540
https://doi.org/10.1145/2663716.2663719
https://doi.org/10.1145/1964114.1964119
http://arxiv.org/abs/1802.02480
http://arxiv.org/abs/1802.02480

	Abstract
	1 Introduction
	2 The click fraud detection problem
	2.1 Challenges
	2.2 Opportunities

	3 Inference System
	3.1 System Architecture
	3.2 Inference Algorithm

	4 Evaluation
	4.1 Dataset Acquisition
	4.2 Click Malware and Exposure to Legitimate Traces
	4.3 Passive Detection – Mimicry
	4.4 Active Detection – Bait Clicks

	5 Discussion
	5.1 Limitations of Clicktok
	5.2 Comparison with related work

	6 Related Work
	7 Conclusion
	References

