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Abstract

We present a new dataset for machine

comprehension in the medical domain.

Our dataset uses clinical case reports with

around 100,000 gap-filling queries about

these cases. We apply several baselines and

state-of-the-art neural readers to the dataset,

and observe a considerable gap in perfor-

mance (20% F1) between the best human

and machine readers. We analyze the skills

required for successful answering and show

how reader performance varies depending

on the applicable skills. We find that infer-

ences using domain knowledge and object

tracking are the most frequently required

skills, and that recognizing omitted infor-

mation and spatio-temporal reasoning are

the most difficult for the machines.

1 Introduction

Machine comprehension is a task in which a sys-

tem reads a text passage and then answers questions

about it. The progress in machine comprehension

heavily depends on the introduction of new datasets

(Burges, 2013), which encourages the development

of new algorithms and deepens our understanding

of the (linguistic) challenges that can or can not

be tackled well by these algorithms. Recently, a

number of reading comprehension datasets have

been proposed (§ 2), differing in various aspects

such as mode of construction, answer-query for-

mulation and required understanding skills. Most

are open-domain datasets built from news, fiction

and Wikipedia texts. For specialized domains,

however, large machine comprehension datasets

are extremely scarce (Welbl et al., 2017a), and

∗We provide the information about accessing the dataset,
as well as the code for the experiments, at http://github.
com/clips/clicr.

passage:
[. . . ] A gradual improvement in clinical and laboratory
status was achieved within 20 days of antituberculous treat-
ment . The patient was then subjected to a thoracic CT
scan that also showed significant radiological improvement
. Thereafter , tapering of corticosteroids was initiated with
no clinical relapse . The patient was discharged after be-
ing treated for a total of 30 days and continued receiving
antituberculous therapy with no reported problems for a
total of 6 months under the supervision of his hometown
physicians . [. . . ]
query:
If steroids are used , great caution should be exercised on
their gradual tapering to avoid .
answer:
relapse (sem type=problem, cui=C0035020)

Figure 1: An example from the dataset, with the pas-

sage sentence relevant for answering italicized. The

passage has been shortened for clarity.

the required comprehension skills poorly under-

stood. With our work we hope to narrow this gap

by proposing a new resource for reading compre-

hension in the clinical domain, and by analyzing

the different types of comprehension skills that are

triggered while answering (Sugawara et al., 2017;

Lai et al., 2017).

Machine comprehension for healthcare and

medicine has received little attention so far, al-

though it offers great potential for practical use.

A typical application would be clinical decision

support, where given a massive amount of text, a

clinician asks questions about either external, med-

ical knowledge (reading literature) or about par-

ticular patients (reading electronic health records).

Currently, patient-specific questions are tackled

by manually browsing or searching those records.

This task can be facilitated by summarization and

QA systems (Demner-Fushman and Lin, 2007;

Demner-Fushman et al., 2009), and we believe, by

fine-grained machine reading. Reading comprehen-

sion systems that perform on a finer level could play

an important role especially when combined with
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document retrieval to perform machine reading at

scale, such as in the models of Chen et al. (2017)

and Watanabe et al. (2017) for the general domain.

For our dataset, we construct queries, answers

and supporting passages from BMJ Case Reports,

the largest online repository of such documents. A

case report is a detailed description of a clinical

case that focuses on rare diseases, unusual presen-

tation of common conditions and novel treatment

methods. Each report contains a Learning points

section, summarizing the key pieces of information

from that report. The learning points are typically

paraphrased portions of passage text and do not

match passage sentences exactly. We use these

learning points to create queries by blanking out a

medical entity. To counteract potential errors and

inconsistencies due to automated dataset creation,

we perform several checks to improve the quality

of the dataset (§ 3). Our dataset contains around

100,000 queries on 12,000 case reports, has long

support passages (around 1,500 tokens on average)

and includes answers which are single- or multi-

word medical entities. We show an example from

the dataset in Figure 1.

We examine the performance on the dataset in

two ways. First, we report machine performance

for several baselines and neural readers. To en-

able a more flexible answer evaluation, we expand

the answers with their respective synonyms from a

medical knowledge base, and additionally supple-

ment the standard evaluation metrics with BLEU

and embedding-based methods. We investigate dif-

ferent ways of representing medical entities in the

text and how this affects the neural readers. We ob-

tain the best results with a recurrent neural network

(RNN) with gated attention (Dhingra et al., 2017a),

but a simple approach based on embedding similar-

ity proves to be a strong baseline as well. Second,

we look at how well humans perform on this task,

by asking both a medical expert and a novice to

answer a portion of the validation set. When catego-

rizing the skills necessary to find the right answer,

we observe that a large number of comprehension

skills get activated and that prior knowledge in the

form of the ability to perform lexico-grammatical

inferences matters the most. This suggests that

for our dataset and possibly for domain-specific

datasets more generally, more background knowl-

edge should be incorporated in machine compre-

hension models. The current gap between the best

machine and the best human performance is nearly

Dataset Question origin Domain Size

CliCR
(this work)

Learning
points

Medical 105K

Quasar-S
(Dhingra et al., 2017b)

Definitions Software 37K

SciQ
(Welbl et al., 2017a)

Crowdsourced Science 14K

MedHop
(Welbl et al., 2017b)

KB Drugs 2.5K

Biology
(Berant et al., 2014)

Domain
expert

Biology 585

Algebra
(Kushman et al., 2014)

Crowdsourced Algebra 514

QA4MRE
(Sutcliffe et al., 2013)

Annotator Various 240

Table 1: Survey of closed-domain reading comprehen-

sion datasets. Size: number of questions. We did not

include remotely related datasets which concern a dif-

ferent task (e.g. information retrieval) (Roberts et al.,

2015; Voorhees and Tice, 2000).

20% F1, which leaves ample space for further study

of machine readers on our dataset. In brief, the con-

tributions of our paper are:

• We propose a large dataset for reading

comprehension in the medical domain, using

clinical case descriptions.

• We carry out an empirical analysis of

a) system and human performance on reading

comprehension, and b) comprehension skills

that are required for answering the queries cor-

rectly and that allow us to position the dataset

according to its difficulty on each of the skills.

2 Related datasets

Numerous general-domain datasets have been re-

cently created to allow machine comprehension

using data-intensive methods. These datasets were

collected from Wikipedia (Hewlett et al., 2016;

Joshi et al., 2017; Rajpurkar et al., 2016), web

search queries (Nguyen et al., 2016), news articles

(Hermann et al., 2015; Onishi et al., 2016; Trischler

et al., 2017), books (Bajgar et al., 2016; Hill et al.,

2016; Paperno et al., 2016) and English exams (Lai

et al., 2017). In Table 1, we compare our dataset

to several domain-specific datasets for machine

comprehension. In Quasar-S, the queries are con-

structed from definitions of software entity tags in

a community QA website, while in our case the

queries are more varied and explicitly relate to the

supporting passages. SciQ is a dataset of science

exam questions, in which question-answer pairs are

used to retrieve the text passages. For each ques-

tion, four candidate answers are available. In our

dataset, the number of candidate answer is much
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higher as the candidate answers come from the rel-

atively long passages. Other datasets mentioned in

the table are smaller, so they could not be used as

training sets for statistical NLP models.

Cloze datasets require the reader to fill in gaps

by relying on accompanying text. Representa-

tive datasets are Children’s Book Test (Hill et al.,

2016) and Book Test (Bajgar et al., 2016), in which

queries are created by removing a word or a named

entity from the running text in a book; and Her-

mann et al. (2015), who similarly to us blank out

entities in abstractive CNN and Daily Mail sum-

maries, but who are only concerned with short

proper nouns and short passages. Who-did-what

(Onishi et al., 2016) requires the reader to select the

person name from a short candidate list that best

answers the query about a news event. They do not

use summaries for query formation but remove a

named entity from the initial sentence in a news

article, and then perform information retrieval to

find independent passages relevant to the query.

Another cloze dataset for language understanding

is ROCStories (Mostafazadeh et al., 2016), but it is

targeted more towards script knowledge evaluation,

and only contains five-sentence stories. Another

related task is predicting rare entities only, with a

focus on improving a reading comprehension sys-

tem with external knowledge sources (Long et al.,

2017).

Another popular way of creating datasets for

reading comprehension is crowdsourcing (Ra-

jpurkar et al., 2016; Richardson et al., 2013;

Nguyen et al., 2016; Trischler et al., 2017). These

datasets exist primarily for the general domain;

for specialized domains where background knowl-

edge is crucial, crowdsourcing is intuitively less

suitable (Welbl et al., 2017b), although some pos-

itive precedent exists for example in crowdsourc-

ing annotations of radiology reports (Cocos et al.,

2015). Compared to automated dataset construc-

tion, crowdsourcing is more likely to provide high-

quality queries and answers. On the other hand,

human question generation may also lead to less

varied datasets as questions would tend to be of

wh- type; for cloze datasets, the questions may be

more varied and might require readers to possess a

different set of skills.1

1Support for this is given in Sugawara et al. (2017), who
show that Who-did-what dataset, for example, requires on
average a larger number of reading skills than SQuAD (Ra-
jpurkar et al., 2016) and MCTest (Richardson et al., 2013).

3 Dataset design

We collected the articles from BMJ Case Reports2.

The data span the years 2005–2016 and amount

to almost 12 thousand reports. We removed the

HTML boilerplate from the crawled reports us-

ing jusText3, segmented and tokenized the texts

with cTakes (Savova et al., 2010), and annotated

the medical entities using Clamp (Soysal et al.,

2017). We apply two simple heuristics to refine the

recognized entities and to decrease their sparsity.

Namely, we move the function words (determin-

ers and pronouns) from the beginning of the entity

outside of it, and we adjust the entity boundary so

that it does not include a parenthetical at the end

of the entity. Clamp assigns entities following the

i2b2-2010 shared task specifications (Uzuner et al.,

2011). For each entity, a concept unique identi-

fier (CUI) is also available, which links it to the

UMLS R© Metathesaurus R© (Lindberg et al., 1993).

To check the quality of the recognized entities, we

carried out a small manual analysis on 250 enti-

ties. We found that in 89% of cases, the boundaries

were correct and defined a true entity. Wrongly rec-

ognized cases occurred mostly when two entities

were coordinated and recognized as one; when a

verb was wrongly included in the entity; or when a

pre-modifier was left out.

3.1 Query construction

We create a query by replacing a medical entity in

one learning point with a blank. For example, in

a report describing comorbid disorders of ADHD,

we could obtain the following query:

(1) “Patients with ADHD have higher inci-

dence of .”

The missing entity “enuresis” is taken as the correct

answer. Even though one query corresponds to at

most one learning point, there can be more than one

query built from a learning point. Occasionally, a

learning point contains an exact repetition from the

passage. These instances would be trivial to answer,

so we remove them. We count as an exact match

every instance whose longer side to left/right of the

query blank coincides with a part in the passage

text. This curation step reduces the dataset size

by 5%. More commonly, the learning points are

paraphrases of crucial parts of the passage. Some-

times, the entity answering the query is expressed

2http://casereports.bmj.com/
3https://pypi.python.org/pypi/jusText

1553



differently in the passage. For example, in place of

“enuresis”, the passage might include its synonym

“bedwetting”. We manage these cases in two ways,

by extending the set of answers for a certain query

(§ 3.2), and adding a semantic relatedness metric

to the standard evaluation (§ 6).

3.2 Answer set

We account for lexical variation of the ground-truth

answers (compared to mentions in the passages) by

extending each original ground-truth answer a to a

set of ground-truth answers A using a knowledge

base. Since our entity recognizer already provides

the CUI labels, we can use them to obtain the list

of alternative word and phrase forms (synonyms,

abbreviations and acronyms) from UMLS R©.

Similarly to previous work (Choi et al., 2016;

Hewlett et al., 2016), for certain queries none of

the answers in A occurs verbatim in the passage.

We have found upon manual inspection that this is

mostly due to lexical variation that is not captured

by answer extension, and to a lesser degree, due to

the introduction of entirely new information in the

learning point and the entity recognition errors. In

the empirical part, we use for training only the in-

stances for which at least one answer occurs in the

passage, but we evaluate on all instances in the val-

idation and test sets, including those for which A∩
E = ∅, where E is the set of all entities in the pas-

sage. This mimics a likely real-life scenario where

the set of ground-truth answers is a priori unknown.

3.3 Task formulation

The reading comprehension problem in our case

can be represented as a tuple (q, p, A), where q is

the query, built from a learning point; the passage

p is the entire report excluding the Learning points

section; and A is the set of ground-truth entities

answering q. In defining the task, it is important to

consider how to take into account entity annotation

and how to define the answer output space. We

look at these more closely in the rest of this section.

Whenever the entities are marked in the passage,

the system can learn to exploit this cue to find the

answers more easily (Wang et al., 2017). Although

this simplifies the task, it also makes it less realistic

as the entities may not be recognized at test time.

Realizing that the presence of entities makes

the task easier for the machines, Hermann et al.

(2015) anonymize the entities, also with a goal

of discouraging language model solutions to the

N of cases 11,846

N of queries in train/dev/test 91,344/6,391/7,184

N of tokens in passages 16,544,217

N of word types in passages 112,673

N of entity types in passages 591,960

N of distinct answers 56,093

N of distinct answers (incl. extended) 288,211

% answers verbatim in passage 59

Table 2: Data statistics based on the lowercased dataset.

For N of tokens in passages, we count each passage ex-

actly once, although several queries are normally asso-

ciated with a passage.
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Figure 2: Distribution of (a) passage and (b) answer

length. Curve (a) is bimodal due to shorter lengths of

articles published prior to 2008.

queries. In our case, it is not clear how relevant the

anonymization is since we deal with medical en-

tities, which have different properties than proper

name entities (Kim et al., 2003; Niu et al., 2003).

We explore different entity-annotation choices in

the empirical part, where we refer to them as Ent

(entities marked) and Anonym (entities marked

but anonymized). We further examine a more

challenging setup in which the reader can not rely

on entity markers as they are not present in the

passage (NoEnt). In all cases, the reader chooses

an answer among the candidates E collected from

all entities in the passage.4 Multi-word entities,

which are common in our dataset, are treated as

a single token by Ent and Anonym.

4The candidate answers could in principle be obtained also
in some other way, so we do not list them in our dataset.
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Type % Example

problem 67 tuberculosis, abdominal pain,

acute myocardial infarction

treatment 22 chemotherapy, surgical inter-

vention, vitamin D suppl.

test 11 MRI, histopathological exam.

Table 3: Answer type statistics.
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Figure 3: The 15 most common medical specialties rep-

resented in the dataset.

4 Dataset analysis

We now describe the dataset in more detail, starting

with the general statistics summarized in Table 2.

It is worth pointing out that the support passages

are rather long, which stems from the data origin

(journal articles). We show the passage length dis-

tribution in Figure 2a, which has the average length

of 1,466 tokens. Furthermore, passages are rich

with medical entities. There is little repetition of

answers—the total of around 100,000 queries are

answered by 50,000 distinct entities. Upon extend-

ing the answer set with UMLS R© we introduce on

average four alternative answers for each original

one. In 59% of instances, the answer entity is found

verbatim in the relevant passage. The answers can

belong to any of the problem, treatment or test

categories (Table 3), and usually consist of multi-

ple words (Figure 2b). The diversity of medical

specialties represented in the articles is shown in

Figure 3.

4.1 Analysis of comprehension skills

We estimate the types of skills required in answer-

ing by following the categorization of Sugawara

et al. (2017). We include the skill definitions with

examples from our dataset in Appendix B. We an-

notated 100 instances in the validation set (with

ground-truth answers provided), which yielded on

average 2.85 skills per query. The distribution of

the required skills is shown in Figure 4. In com-
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Figure 4: Percentage of times a skill is required in a

given dataset. The percentages for the datasets other

than ours are from Sugawara et al. (2017).

parison to the general-domain datasets (SQuAD,

Who-did-what), our dataset and QA4MRE (which

is also a domain-specific dataset, but with human-

generated questions) require more bridging infer-

ences (inferences using background knowledge

about the domain), spatio-temporal reasoning and

coreference resolution. In our dataset, meta knowl-

edge and object tracking are required more often

than in any other dataset. This can be explained by

the data origin and the nature of queries. In the case

reports, a prominent topic can be discussed which

the author refers to in the query, but the query itself

is never answered in the passage (meta knowledge).

Furthermore, the authors often enumerate medical

entities in the query, which leads to the frequent

use of object tracking. The queries which were

unanswerable are marked as “none”. The fraction

of these cases was around 16%.

In our experience, the annotation of skills proved

quite challenging due to certain confusables. For

example, object tracking and coreference both need

to maintain the link between objects; object track-

ing, which includes establishing set relations and

membership, may be overlaid with the schematic

clause relation skill (subordination); and bridging

inference can overlap with coreference resolution.

Nevertheless, we adhered to this classification of

skills to increase comparability to other datasets

included in Figure 4.

5 Methods

5.1 Baselines

Our simplest baselines that we apply on the test

set include choosing a random entity (rand-entity)
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and selecting the most frequent passage entity

(maxfreq-entity) as the answer. We also include a

distance-based method that uses word embeddings

(sim-entity). Here, we vectorize the passage and

the query, and then choose that entity from the pas-

sage whose representation has the highest cosine

similarity to the query representation:

sim-entity = argmax
i∈E

cos
(

∑

j∈Ci

cj ,
∑

k∈Q

qk
)

, (1)

where c, q ∈ R
d. The multiset Ci contains the

words {xi−n, . . . , xi−1, xi+1, . . . , xi+n} surround-

ing the passage entity i ∈ E. We define Q, the

context words of the query, likewise. To find out

how well the queries can be answered without read-

ing the passage, we also predict the most likely

continuation with a language model (lang-model).

We trained a 4-gram Kneser-Ney model on CliCR

training data (with multi-word entities represented

as a single token) using SRILM (Stolcke, 2002).

5.2 Neural readers

We apply two types of bidirectional RNNs to our

data. Following Wang et al. (2017), we distinguish

between aggregation readers and explicit reference

readers, which differ in their formulation of the

attention mechanism and how it is being used for

answer prediction.

Stanford Attentive (SA) Reader The model

proposed by Chen et al. (2016) is an aggregation

reader based on the Attentive Reader (Hermann

et al., 2015). It predicts the answer using:

â = argmax
i∈E

eo(i)
T o, (2)

where eo(i) is the answer’s output embedding and

o is the passage representation obtained by weight-

ing every token representation in the passage with

attention: o =
∑

t αtht. The attention mechanism

is used here to measure the compatibility between

token (ht) and query (q) representations with a bi-

linear form, αt = softmaxth
T
t Wαq. At prediction

time, attention should highlight that position t in

the passage where the answer occurs. Note that the

prediction relies on the aggregate representation o,

hence the name of the reader category. As we see in

(2), the prediction score does not allow accounting

for multi-word entities, unless they are treated as

a single token. Returning to our different set-ups

based on entity annotation (§ 3.3), this means that

we can apply SA reader with Ent and Anonym set-

ups, but not with NoEnt, where multi-word answers

should be allowed.

Gated-Attention (GA) Reader Dhingra et al.

(2017a) investigate neural readers with a fine-

grained attention mechanism that learns token rep-

resentations for the passage that are also condi-

tional on the query, but are in addition refined

through multiple hops of the network. The model

predicts the answer using attention weights with ex-

plicit reference to answer positions in the passage:

â = argmax
i∈E

∑

t∈R(i,p)

αt, (3)

where R is the set of indices in passage p at which a

token from the candidate i occurs. This operation is

also called the pointer sum attention (Kadlec et al.,

2016). Since the model marks the references for

each token in the answer separately, it allows us to

investigate also the NoEnt set-up.5

We train each reader with the best hyper-

parameters found on the validation set using ran-

dom search (Bergstra and Bengio, 2012), and eval-

uate it on the test part of the dataset. We provide

more details about parameter optimization in Ap-

pendix A. The models use word embeddings pre-

trained on biomedical texts.

5.3 Embedding data and pre-training

We induce the word embeddings on a combination

of the CliCR training corpus and PubMed abstracts

with open-access PMC articles available until 2015

(segmented and tokenized), amounting to over 9

billion tokens (Hakala et al., 2016). Considering

the large effect of hyper-parameter selection on the

quality of word embeddings (Levy et al., 2015),

we optimize the embedding hyper-parameters also

using random search.

6 Evaluation

A model f takes as input a passage–query pair and

outputs an answer â.6 We carry out the evaluation

5We assume the candidate entities are known in advance.
6In our case, the answer is a word or a word phrase rep-

resenting a medical entity. Alternatively, one could also take
the UMLS R© CUI identifier as the answering unit. However,
in that case, it would mean that sometimes the original word
phrase is lost. This is because entity linking with CUIs can
be noisy, and only a part of a word phrase may be linked to
the ontology. In the current setup, we are able to keep both
the original word phrase as well as the extended answers. The
CUI information is still an integral part of the answer field in
our dataset, so it can be used by other researchers if preferred.
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with different metrics described below. The final

score m for a metric v is obtained by averaging

over the test set:

mv(f) =
1

|Dtest|

∑

(p,q,A)∈Dtest

max
a∈A

v(f(p, q), a).

(4)

Since there are multiple correct answers A, we take

the highest scoring answer â at each instance, as

done in Rajpurkar et al. (2016). Note that in the

dataset we do not supply the candidate answers; in

the experiments, we constrain the candidates to the

set of entities in the passage.

The two standardly used metrics for machine

comprehension evaluation are the exact match

(EM) and the F1 score. For EM, the predicted and

the ground truth answers must match precisely, safe

for articles, punctuation and case distinction (same

for other metrics). F1 metric is applied per instance

and measures the overlap between the prediction â

and the ground truth a, which are treated as bags of

words.7 While these two metrics are arguably suffi-

cient in news-style machine comprehension where

the entities are proper nouns which allow for little

variation and synonymy, in our case the medical

entities are often mostly common nouns modified

by specifiers and qualifiers. To take into account

potentially large lexical and word-order variation,

we use two additional metrics. First, we measure

BLEU (Papineni et al., 2002) for n-grams of length

2 (shortly, B2) and 4 (B4) using the package by

Chen et al. (2015), with which we aim to capture

contiguity of tokens in longer answers. Second,

it may occur that answers contain no word over-

lap yet still be good candidates because of their

semantical relatedness, as in “renal failure”–“kid-

ney breakdown”. We take this into account by

using an embedding metric (Emb), in which we

construct mean vectors for both ground-truth and

system answer sequences, and then compare them

with the cosine similarity. This and other embed-

ding metrics for evaluation were previously studied

in dialog-system research (Liu et al., 2016).

7 Results and analysis

We show the results in Table 4. We see that answer

prediction based on contextual representation of

queries and passages (sim-entity) achieves a strong

base performance that is only outperformed by GA

7In precision, the number of correct words is divided by
the number of all predicted words. In recall, the former is
divided by the number of words in the ground-truth answer.

Method EM F1 B2 B4 Emb

rand-entity 1.4 5.1 .03 .01 .23

maxfreq-ent. 8.5 12.6 .10 .05 .31

sim-entity 20.8 29.4 .22 .15 .45

lang-model 2.1 3.5 .00 .00 .30

SA-Anonym 19.6 27.2 .22 .16 .43

SA-Ent 6.1 11.4 .07 .05 .31

GA-Anonym 24.5 33.2 .28 .20 .48

GA-Ent 22.2 30.2 .25 .18 .46

GA-NoEnt 14.9 33.9 .21 .11 .51

human-expert 35 53.7 .46 .23 .67

human-novice 31 45.1 .43 .24 .62

Table 4: Answering results on the test set. EM and F1

scores are percentages. The human scores (in italics)

are based on the validation set.

reader. The language model performs poorly on

EM and F1, but the embedding-metric score is

higher, likely reflecting the fact that the predicted

answers—though mostly incorrect—are related to

the ground-truth answers. The poor performance

means that based on queries alone (without reading

the passage), it is difficult to provide accurate an-

swers. The GA reader performs well across all en-

tity set-ups, even when the entities are not marked

in the passage. Interestingly, the exact match and

BLEU scores in this case are much lower compared

to other entity set-ups. Upon inspecting the pre-

dicted answers more closely, we have observed that

GA-NoEnt tends to predict longer answers than

GA-Ent/Anonym. For example, the average pre-

dicted answer length for GA-NoEnt was as high as

3.7 tokens, whereas for the other two set-ups and

the ground-truth answers the numbers range be-

tween 2.3 and 2.5. A plausible explanation for this

lies in how GA reaches its prediction (3), which is

by accumulating the attention weights without nor-

malizing. This would then drive the model to prefer

longer answers. For example, for the ground-truth

entity “chest CT”, GA-NoEnt predicts “interval CT

scans of the chest”. Although all neural models use

pre-trained word embeddings, for Ent and Anonym

the multi-word entities do not have pre-trained em-

beddings since our embeddings are induced on the

word level. This may partly explain the competitive

performance of NoEnt compared to Ent. We leave

the integration of entity embeddings for the future

work.

The results for SA reader are far below the per-
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formance of GA reader. We also see that it per-

forms much better on anonymized entities than on

non-anonymized ones. This is in line with Wang

et al. (2017) who find that SA reader suffers a

drop of 19 points in exact match on Who-did-what

dataset when anonymization is not done. A possi-

ble explanation is that anonymization reduces the

output space to only several hundred entity candi-

dates for which the output embedding needs to be

trained. When we do not use anonymization, the

set of output entities increases to the set of all entity

types found in all passages, which is several orders

of magnitude more. While this effect also occurs

for GA reader, it is less pronounced because GA

reader scores words in the passage and does not

need to learn separate answer word embeddings.

7.1 Human performance

To measure the accuracy of human answering, we

have used the same sample of data instances as

used for the analysis of skills.8 The queries were

answered separately by a novice reader (linguistics

background, little-to-none medical knowledge) and

by an expert reader (both linguistics and medical

background). The annotators needed around 15

minutes on average to read the passage and answer

the query. The results are shown at the bottom of

Table 4. The expert scores higher across all evalua-

tion metrics, with as much as a 7-point advantage

in % F1. This advantage is largely coming from the

better performance on those instances where bridg-

ing inferences are required (the average F1 score

was 10 points higher on these queries), which sug-

gests that domain knowledge is beneficial in the

comprehension task. For a novice in a specialized

domain, it is harder to build a good situation model

that would lead to successful comprehension since

it requires more effort—active, strategic processing

and establishing ontological relationships in that

specific domain. For an expert reader this process

is more automatized (Kintsch and Rawson, 2008).

We can see from the table that the best human

performance is well below its theoretical upper

bound of 100% F1. An important part of explana-

tion for this lies in the automated dataset construc-

tion, which leaves certain queries unanswerable,

especially when the authors do not refer to a part

in the article but introduce completely new infor-

mation. Another reason is the problem of “answer

openness”: Typically more than one correct an-

8Human answers were collected before the skill analysis.
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Figure 5: Performance per required skill for the human

expert and GA-NoEnt reader.

swer is possible and the answers can be correct to

various degrees, which we aimed to capture with

the use of the embedding metric in the evaluation.

Nevertheless, the gap between the best human and

machine F1 score is large (around 20 points), leav-

ing considerable space for future applications of

machine readers on our dataset.9

7.2 Breakdown of results by skill

To see how the answering performance relates to

the skill requirements, we have analyzed the part

of the validation set annotated with the skills by

averaging F1 values for all instances with a partic-

ular skill. In this way, we are able to break down

both human and machine performance skill-wise,

as shown in Figure 5. Because of the small sample

size, the results should only be taken as a general

indication. The most difficult cases for the GA

reader are those annotated with “none” (unanswer-

able) and “ellipsis” (recognizing implicit and omit-

ted information), ignoring “analogy” for which we

only have a single annotated case. Furthermore,

spatio-temporal reasoning, elaboration (inferences

using general knowledge) and bridging—which is

also the most commonly required skill—are the

next most difficult ones. The human scores are

mostly much higher, which is especially apparent

for spatio-temporal reasoning, logical skills and

the skill involving punctuation. Our findings align

with those of Chu et al. (2017) on the Lambada

dataset (Paperno et al., 2016): Although they used

a different categorization of comprehension skills,

they also find that GA reader has most difficulties

with elaboration (which they refer to as “external

9For comparison, the gap for SQuAD was 12.2 and for
NewsQA 19.8 (Trischler et al., 2017).
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knowledge”), followed by coreference resolution.

8 Conclusion and future work

We have introduced a new dataset for domain-

specific reading comprehension in which we have

constructed around 100,000 cloze queries from clin-

ical case reports. We analyzed the dataset in terms

of the skills required for successful comprehension,

and applied various baseline methods and state-

of-the-art neural readers. We showed that a large

gap still exists between the best machine reader

and the expert human reader. One direction for

future research is improving the reading models on

the queries that are currently the most challenging,

i.e. those requiring world and background domain

knowledge. Better representing background knowl-

edge by inducing embeddings for entities or oth-

erwise integrating ontological knowledge is in our

opinion a promising avenue for future research.
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Hovy, Pamela Forner, Álvaro Rodrigo, Corina
Forascu, Yassine Benajiba, and Petya Osenova.
2013. Overview of QA4MRE Main Task at CLEF
2013. In CLEF (Working Notes).

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A Machine Compre-
hension Dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP. Associa-
tion for Computational Linguistics, pages 191–200.
http://www.aclweb.org/anthology/W17-2623.
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A Training details and hyper-parameter

optimization

We train the word embeddings using word2vec

(Mikolov et al., 2013), and optimize the window

size, the model type (CBOW, skip-gram), the di-

mensionality and the number of negative samples

using random search. For the embedding base-

line sim-entity, the evaluation was carried out 20

times on the validation part of our dataset, and we

chose the parameter configuration that led to the

highest-performing embedding model as measured

by F1. We find that higher embedding dimensional-

ity works better, that CBOW obtains somewhat bet-

ter scores than Skipgram, and that medium-sized

word windows work best. The best configuration:

’win size’: 5, ’min freq’: 200, ’model’: ’cbow’,

’dimension’: 750, ’neg samples’: 5. The difference

between the lowest and the highest scoring model

was 3.4 F1. At prediction time (equation (1)) we

set the window size to 3, which worked best on the

validation set.

For inclusion in the neural readers, it would be

impractical to use the high embedding dimension-

ality found in the hyper-parameter search from the

previous paragraph, so we fix the input embedding

dimensionality to 200, as done in Chen et al. (2016)

to keep the training time practical. We optimize

the remaining embedding hyper-parameters just

like above. The best parameters were: ’win size’:

4, ’min freq’: 200, ’model’: ’cbow’, ’dimension’:

200, ’neg samples’: 9.

For SA reader, we optimized the hidden state

size and the dropout rate using 20 different random

configurations. The best values were 70 and 0.57,

respectively. We explore the same parameters for

the GA reader, but add to the search space the

feature that indicates the presence of a passage

token in the query, which was found useful in the

NoEnt set-up. The best hidden state number and

dropout rate were 64 and 0.5, respectively. We

used the default values for all the remaining hyper-

parameters.

B List of skills with selected examples

In annotating the skills, we followed the categoriza-

tion by Sugawara et al. (2017):

1. Object tracking: tracking or grasping multiple

objects; it is a version of list/enumeration skill

used in previous skill classifications

2. Mathematical reasoning: whenever a mathe-

matical operation is involved in finding the

answer

3. Coreference resolution: direct reference to

an object, includes anaphoras. These include

inferential processes based on background

knowledge or context.

4. Logical reasoning: conditionals, quantifiers,

negation, transitivity

5. Analogy: metaphors, metonymy

6. Causal relation: explicit expression such as

”why”, ”the reason of”

7. Spatio-temporal relations

8. Ellipsis: recognizing implicit or omitted infor-

mation

9. Bridging: inference through grammatical and

lexical knowledge (synonymy, idioms etc).

This link however is not automatic or stereo-

typical, as in the category of elaboration.

10. Elaboration: inference through commonsense

reasoning. Note that unlike in the previous

category, there is no direct way in which

grammatical, lexical or ontological knowl-

edge could help.

11. Meta-knowledge: knowing about the text

genre and the main topic being discussed as-

sists in comprehending. In our dataset, know-

ing the way the queries are constructed (Learn-

ing points) is sometimes beneficial.

12. Schematic clause relation: complex sentences

that include coordination or subordination

13. Punctuation: understanding parentheses,

dashes, quotations, colons etc.

In the following examples, we mark the medical

entities in blue, and italicize the parts in the pas-

sage that are crucial for answering. Whenever we

shorten a part of the passage, we use [...].

B.1 Bridging inference

passage

We report a case of a 72 - year - old Caucasian

woman with pl-7 positive antisynthetase syndrome

. Clinical presentation included interstitial lung dis-

ease , myositis , mechanic ’s hands and dysphagia
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. As lung injury was the main concern , treatment

consisted of prednisolone and cyclophosphamide

. Complete remission with reversal of pulmonary

damage was achieved , as reported by CT scan ,

pulmonary function tests and functional status . [...]

query

Therefore , in severe cases an aggressive treatment

, combining and glucocorticoids as

used in systemic vasculitis , is suggested .

answer

cyclophoshamide

explanation The reader needs to have the back-

ground knowledge that prednisolone is a glucocor-

ticoid, then it becomes obvious that the answer is

cyclophoshamide.

B.2 Object tracking

passage

[...] The patient was managed with supportive mea-

sures and the National Poisons Information Service

was contacted . A toxicology consultant was in-

volved in view of the unusual mode of administra-

tion . Although there was no precedent on how to

treat a significant rectal overdose of amitriptyline

, it was advised that the patient be administered

a phosphate enema and if failed to adequately re-

move the tablets then the patient should be given

whole bowel irrigation with 2 litre of Klean - Prep

via a nasogastric tube . It was also advised that

we admit the patient to a high dependency unit and

manage him according to the usual protocol for

a tricyclic overdose if complications arose . [...]

query

It seems reasonable to attempt careful removal of

the drug from the rectum and if that fails to con-

sider and whole bowel irrigation .

answer

phosphate enemas

explanation The query mentions removal (A), then

(B) and whole bowel irrigation (C).

In the passage, one needs to track those elements

and choose the right one. This skill should be con-

sidered whenever the gap is part of an enumeration

or is mentioned as a part of another entity.

B.3 Meta knowledge

query

bedaquiline , a new agent with bactericidal and

sterilising activity against mycobacterium tubercu-

losis , is effective against when given

together with a background regimen , and is well

tolerated and safe if there is awareness of drug inter-

actions and precautions are taken to avoid potential

qt prolongation .

answer

tuberculosis

explanation The right answer can be inferred from

several parts in the passage (not shown), or even

from the title or the query. The query, though, is

nowhere in the document explicitly answered.
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