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Clifford and RiemannFinsler Structures

in Geometric Mechanics and Gravity

Selected Works

Geometry Balkan Press - 2006

Bucharest, Romania



Clifford and RiemannFinsler Structures in Geometric Mechanics and Gravity
Monographs # 7

Differential Geometry - Dynamical Systems * ISSN 1454-511x * Monographs # 7

Editor-in-Chief Prof.Dr. Constantin Udrişte
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Preface

The researches resulting in this massive book have been initiated by S. Vacaru fifteen
years ago when he prepared a second Ph. Thesis in Mathematical Physics. Study-
ing Finsler–Lagrange geometries he became aware of the potential applications of these
geometries in exploring nonlinear aspects and nontrivial symmetries arising in various
models of gravity, classical and quantum field theory and geometric mechanics.

Along years he convinced many people to enroll in solving some of his open prob-
lems and especially he attracted young students to specialize in this field. Some of his
collaborators are among the co–authors of this book.

The book contains a collection of works on Riemann–Cartan and metric-affine mani-
folds provided with nonlinear connection structure and on generalized Finsler–Lagrange
and Cartan–Hamilton geometries and Clifford structures modelled on such manifolds.

The authors develop and use the method of anholonomic frames with associated
nonlinear connection structure and apply it to a great number of concrete problems:
constructing of generic off–diagonal exact solution, in general, with nontrivial torsion
and nonmetricity, possessing noncommutative symmetries and describing black ellipsoid/
torus configurations, locally anisotropic wormholes, gravitational solitons and warped
factors and investigation of stability of such solutions; classification of Lagrange/Finsler
affine spaces; definition of nonholonomic Dirac operators and their applications in com-
mutative and noncommutative Finsler geometry.

This collection of works enriches very much the literature on generalized Finsler
spaces and opens new ways toward applications by proposing new geometric approaches
in gravity, string theory, quantum deformations and noncommutative models.

The book is extremely useful for the researchers in Differential Geometry and Math-
ematical Physics.

February, 2006

Prof. Dr. Mihai Anastasiei

Faculty of Mathematics, University ”Al.I.Cuza” Iasi ,
Iasi, 700506, Romania
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Foreword

The general aim of this Selection of Works is to outline the methods of Riemann–
Finsler geometry and generalizations as an aid in exploring certain less known nonlin-
ear aspects and nontrivial symmetries of field equations defined by nonholonomic and
noncommutative structures arising in various models of gravity, classical and quantum
field theory and geometric mechanics. Accordingly, we move primarily in the realm of
the geometry of nonholonomic manifolds for which the tangent bundles are provided
with nonintegrable (anholonomic) distributions defining nonlinear connection (in brief,
N–connection) structures. Such N–connections may be naturally associated to certain
general off–diagonal metric terms and distinguish some preferred classes of adapted lo-
cal frames and linear connections. This amounts to a program of unification when the
Riemann–Cartan, Finsler–Lagrange spaces and various generalizations are commonly
described by the corresponding geometric objects on N–anholonomic manifolds.

Our purposes and main concern are to illuminate common aspects in spinor differ-
ential geometry, gravity and geometric mechanics from the viewpoint of N–connection
geometry and methods elaborated in investigating Finsler–Lagrange and related metric–
affine spaces (in general, with nontrivial torsion and nonmetricity), to elaborate a cor-
responding language and techniques of nonholonomic deformations of geometric struc-
tures with various types of commutative and noncommutative symmetries and to benefit
physicists interested in more application of advanced commutative and noncommutative
geometric methods.

The guiding principle of the selected here works has been to show that the concept of
N–anholonomic space seeks in roots when different type of geometries can be modelled
by certain parametrizations of the N–connection structure and correspondingly adapted
linear connection and metric structures. For instance, a class of such objects results
in (pseudo) Riemann spaces but with preferred systems of reference, other classes of
objects give rise into models of Finsler (Lagrange) geometries with metric compatible,
or noncompatible, linear connections, all defined by the fundamental Finsler (regular
Lagrange) functions and corresponding parametrizations and prescribed symmetries.

xiii
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Despite a number of last decade works on research and applications of Finsler–
Lagrange geometry by leading schools and prominent scholars in Romania (R. Miron,
M. Anastasiei, A. Bejancu, ...), Japan (K. Matsumoto, S. Ikeda, H. Shimada,...), USA
(S. S. Chern, S. Bao, Z. Shen, J. Vargas, R. G. Beil,...), Russia (G. Asanov, G. Yu.
Bogoslovsky, ...), Germany (H. F. Goenner, K. Buchner, H. B. Rademacher,...), Canada
(P. Antonelli, D. Hrimiuc,...), Hungary (L. Tamassy, S. Basco,...) and other Coun-
tries, there have not been yet obtained explicit results related to the phenomenology of
Standard Model of particle physics, string theory, standard cosmological scenaria and
astrophysics. The problem is that the main approaches and constructions in Finsler ge-
ometry and generalizations were elaborated in the bulk on tangent/ vector bundles and
their higher generalizations. In this case all type of such locally anisotropic models are
related to violations of the local Lorentz symmetry which is a fashion, for instance, in
brane physics but, nevertheless, is subjected to substantial theoretical and experimental
restrictions (J. D. Beckenstein and C. Will).

Our idea1 was to define and work with Finsler (Lagrange) like geometric objects and
structures not only on the tangent/vector bundles (and their higher order generalizations)
but to model them on usual manifolds enabled with certain classes of nonholonomic dis-
tributions defined by exact sequences of subspaces of the tangent space to such manifolds.
This way, for instance, we can model a Finsler geometry as a Riemann–Cartan manifold
provided with certain types of N–connection and adapted linear connection and metric
structures. The constructions have to be generalized for the metric–affine spaces pro-
vided with N–connection structure if there are considered the so–called Berwald–Moor
or Chern connections for Finsler geometry, or, in an alternative way, one can be im-
posed such nonholonomic constrains on the frame structure when some subclasses of
Finsler metrics are equivalently modelled on (pseudo) Riemann spaces provided with
corresponding preferred systems of reference. This is possible for such configurations
when the Ricci tensor for the so–called canonical distinguished connection in general-
ized Lagrange (or Finsler) space is constrained to be equal to the Ricci tensor for the
Levi–Civita connection even the curvature tensors are different.

It was a very surprising result when a number of exact solutions modelling Finsler

1hereafter, in this Preface, we shall briefly outline the main ideas, concepts and results obtained
during the last decade by a team of young researches in the Republic of Moldova (S. Vacaru, S. Ostaf,
Yu. Goncharenko, E. Gaburov, D. Gonţa, N. Vicol, I. Chiosa ...) in collaboration (or having certain
support) with some scientific groups and scholars in Romania, USA, Germany, Greece, Portugal and
Spain (D. Singleton, H. Dehnen, P. Stavrinos, F. Etayo, B. Fauser, O. Ţintǎreanu–Mircea, F. C. Popa,
J. F. Gonzales–Hernandez, R. R. Santamaŕıa and hosting by R. Miron, M. de Leon, M. Vişinescu, M.
Anastasiei, T. Wolf, S. Anco, I. Gottlieb, C. Mociuţchi, B. Fauser, J. P. S. Lemos, L. Boya, P. Almeida,
R. Picken, M. E. Gomez, M. Piso, M. Mars, L. Aĺıas, C. Udrişte, D. Balan, V. Blanuţǎ, G. Zet, ...)
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like structures were constructed in the Einstein and string gravity. Such solutions are
defined by generic off–diagonal metrics, nonholonomic frames and linear connections (in
general, with nontrivial torsion; examples of solutions with nontrivial nonmetricity were
also constructed), when a subset of variables are holonomic and the subset of the rest
ones are nonholonomic. That was an explicit proof that effective local anisotropies can
be induced by off–diagonal metric terms and/or from extra dimensions. In a partic-
ular case, the locally anisotropic configurations can be modelled as exact solutions of
the vacuum or nonvacuum Einstein equations. Sure, such Einstein–Finsler/ generalized
Lagrange metrics and related nonholnomic frame structures are not subjected to the ex-
isting experimental restrictions and theoretical considerations formulated for the Finsler
models on tangent/vector bundles.

The new classes of exact solutions describe three, four, or five dimensional space–
times (there are possibilities for extensions to higher dimensions) with generalized sym-
metries when the metric, connection and frame coefficients depend on certain integration
functions on two/ three / four variables. They may possess noncommutative symmetries
even for commutative gravity models, or any generalizations to Lie/ Clifford algebroid
structures, and can be extended to stable configurations in complex gravity. 2 Here it is
appropriate to emphasize that the proposed ’anholnomic frame method’ of constructing
exact solutions was derived by using explicit methods from the Finsler–Lagrange geome-
try. Perhaps, this is the most general method of constructing exact solutions in gravity:
it was elaborated as a geometric method by using the N–connection formalism.

The above mentioned results derived by using moving frames and nonholonomic
structures feature several fundamental constructions: 1) Any Finsler–Lagrange geome-
try can be equivalently realized as an effective Riemann–Cartan nonholonomic manifold
and, inversely, 2) any space-time with generic off–diagonal metric and nonholonomic
frame and affine connection structures can be equivalently nonholonomically deformed
into various types of Finsler/ Lagrange geometries. 3) As a matter of principle, realizing
a Finsler configuration as a Riemannian nonholonomic manifold (with nonholonomically
induced torsion), we may assemble this construction from the ingredients of noncommu-
tative spin geometry, in the A. Connes approach, or we can formulate a noncommutative
gauge–Finsler geometry via the Seiberg–Witten transform.

The differential geometry of N–anholonomic spinors and related Clifford structures
provided with N–connections predated the results on ’nonholonomic’ gravity and related
classes of exact solutions. The first and second important results were, respectively, the

2The bibliography presented for the Introduction and at the end of Chapters contains exact citations
of our works on anholonomic black ellipsoid/torus and disk solutions, locally anisotropic wormholes
and Taub NUT spaces, nonholonomic Einstein–Dirac wave solitons, locally anisotropic cosmological
solutions, warped configurations or with Lie/Clifford algebroid and/or noncommutative symmetries, ...
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possibility to give a rigorous definition for spinors in Finsler spaces and elaboration of the
concept of Finsler superspaces. The third result was the classification of such spaces in
terms of nearly autoparallel maps (generalizing the classes of geodesic maps and confor-
mal transforms) and their basic equations and invariants suggesting variants of definition
of conservation lows for such (super) spaces. The forth such a fundamental result was
a nontrivial proof that Finsler like structures can be derived in low energy limits of
(super) string theory if the (super) frames with associated N–connection structure are
introduced into consideration. There were obtained a set of results in the theory of lo-
cally anisotropic stochastic, kinetic and thermodynamic processes in generalized curved
spacetimes. Finally, we mention here the constructions when from a regular Lagrange
(Finsler) fundamental functions one derived canonically a corresponding Clifford/spinor
structure which in its turn induces canonical noncommutative Lagrange (Finsler) geome-
tries, nonholonomic Fedosov manifolds and generalized Lagrange (Finsler) Lie/Clifford
algebroid structures.

The ideas that we can deal in a unified form, by applying the N–connection formal-
ism, with various types of nonholnomic Riemann–Cartan–Weyl and generalized Finsler–
Lagrange or Cartan–Hamilton spaces scan several new directions in modern geometry
and physics: We hope that they will appeal researches (we also try to contribute explicitly
in our works) in investigating nonholonomic Hopf strutures, N–anholonomic gerbes and
noncommutative/ algebroid extensions, Atyiah–Singer theorems for Clifford–Lagrange
spaces and in constructing exact solutions with nontrivial topological structure mod-
elling Finsler gerbes, Ricci and Finsler–Lagrange fluxes, and applications in gravity and
string theory, analogous modelling of gravity and gauge interactions and geometric me-
chanics.
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Introduction

This collection of works grew out from explicit constructions proving that the Finsler
and Lagrange geometries can be modelled as certain type nonintegrable distributions on
Riemann–Cartan manifolds if the metric and connection structures on such spaces are
compatible3. This is a rather surprising fact because the standard approaches were based
on the idea that the Finsler geometry is more general then the Riemannian one when,
roughly speaking, the metric anisotropically depends on ”velocity” and the geometrical
and physical models are elaborated on the tangent bundle. Much confusing may be
made from such a generalization if one does not pay a due attention to the second
fundamental geometric structure for the Finsler spaces called the nonlinear connection
(N–connection), being defined by a nonholonomic distribution on the tangent bundle
and related to a corresponding class of preferred systems of reference. There is the third
fundamental geometric object, the linear connection, which for the Finsler like geometries
is usually adapted to the N–connection structure.

In the former (let us say standard) approach, the Finsler and Lagrange spaces (the sec-
ond class of spaces are derived similarly to the Finsler ones but for regular Lagrangians)
are assembled from the mentioned three fundamental objects (the metric, N–connection
and linear connection) defined in certain adapted forms on the tangent bundles provided
with a canonical nonholonomic splitting into horizontal and vertical subspaces (stated
by the exact sequence just defining the N–connection).

3one has to consider metric–affine spaces with nontrivial torsion and nonmetricity fields defined by
the N–connection and adapted linear connection and metric structures if we work, for instance, with
the metric noncompatible Berwald and Chern connections (they can be defined both in Finsler and
Lagrange geometries)

xvii
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As a matter of principle, we may consider that certain exact sequences and related
nonintegrable distributions, also defining a N–connection structure, are prescribed, for
instance, for a class of Riemann–Cartan manifolds. In this case, we work with sets of
mixed holonomic coordinates (corresponding to the horizontal coordinates on the tangent
bundle) and anholonomic4 coordinates (corresponding to the vertical coordinates). The
splitting into holonomic–anholonomic local coordinates and the corresponding conven-
tional horizontal–vertical decomposition are globally stated by the N–connection struc-
ture as in the standard approaches to Finsler geometry. We are free to consider that
a fibered structure is some way established as a generalized symmetry by a prescribed
nonholonomic distribution defined for a usual manifold and not for a tangent or vector
bundle.

There is a proof that for any vector bundles over paracompact manifolds the N–
connection structure always exists, see Ref. [38]. On general manifolds this does not
hold true but we can restrict our considerations to such Riemann–Cartan (or metric–
affine) spaces when the metric structure5 is someway related via nontrivial off–diagonal
metric coefficients to the coefficients of the N–connection and associated nonholonomic
frame structure. This way we can model Finsler like geometries on nonholonomic man-
ifolds when the anisotropies depend on anholonomic coordinates (playing the role of
”velocities” if to compare with the standard approaches to the Finsler geometry and
generalizations). It is possible the case when such generic off–diagonal metric and N–
connection and the linear connection structures are subjected to the condition to satisfy
a variant of gravitational filed equations in Einstein–Cartan or string gravity. Any such
solution is described by a Finsler like gravitational configuration which for corresponding
constraints on the frame structure and distributions of matter defines a nonholonomic
Einstein space.

0.1 For Experts in Differential Geometry and Grav-

ity

The aim of this section is to present a self–contained treatment of generalized Finsler
strucures modelled on Riemann–Cartan spaces provided with N–connections (we fol-
low Chapters 2 and 3 in Ref. [80], see also details on modelling Lagrange and Finsler
geometries on metric–affine spaces presented in Part I of this book).

4in literature, one introduced two equivalent terms: nonholonomic or anholonomic; we shall use both
terms

5the corresponding metric tensor can not be diagonalized by any coordinate transforms
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0.1.1 N–anholonomic manifolds

We formulate a coordinate free introduction into the geometry of nonholonomic man-
ifolds. The reader may consult details in Refs. [62, 83, 78, 23]. Some important compo-
nent/coordinate formulas are given in the next section.

Nonlinear connection structures

Let V be a smooth manifold of dimension (n+m) with a local splitting in any point
u ∈ V of type Vu = Mu ⊕ Vu, where M is a n–dimensional subspace and V is a m–
dimensional subspace. It is supposed that one exists such a local decomposition when
V→M is a surjective submersion. Two important particular cases are that of a vector
bundle, when we shall write V = E (with E being the total space of a vector bundle
π : E→ M with the base space M) and that of tangent bundle when we shall consider
V = TM. The differential of a map π : V → M defined by fiber preserving morphisms
of the tangent bundles TV and TM is denoted by π⊤ : TV → TM. The kernel of π⊤

defines the vertical subspace vV with a related inclusion mapping i : vV→ TV.

Definition 0.1.1. A nonlinear connection (N–connection) N on a manifold V is defined
by the splitting on the left of an exact sequence

0→ vV
i→ TV→ TV/vV→ 0, (1)

i. e. by a morphism of submanifolds N : TV→ vV such that N ◦ i is the unity in vV.

The exact sequence (1) states a nonintegrable (nonholonomic, equivalently, anholo-
nomic) distribution on V, i.e. this manifold is nonholonomic. We can say that a N–
connection is defined by a global splitting into conventional horizontal (h) subspace,
(hV) , and vertical (v) subspace, (vV) , corresponding to the Whitney sum

TV = hV ⊕N vV (2)

where hV is isomorphic to M. We put the label N to the symbol ⊕ in order to emphasize
that such a splitting is associated to a N–connection structure.

For convenience, in the next Section, we give some important local formulas (see, for
instance, the local representation for a N–connection (13)) for the basic geometric objects
and formulas on spaces provided with N–connection structure. Here, we note that the
concept of N–connection came from E. Cartan’s works on Finsler geometry [17] (see a
detailed historical study in Refs. [38, 23, 67] and alternative approaches developed by
using the Ehressmann connection [22, 29]). Any manifold admitting an exact sequence
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of type (1) admits a N–connection structure. If V = E, a N–connection exists for any
vector bundle E over a paracompact manifold M, see proof in Ref. [38].

The geometric objects on spaces provided with N–connection structure are denoted
by ”bolfaced” symbols. Such objects may be defined in ”N–adapted” form by considering
h– and v–decompositions (2). Following the conventions from [38, 54, 87, 67], one call
such objects to be d–objects (i. e. they are distinguished by the N–connection; one
considers d–vectors, d–forms, d–tensors, d–spinors, d–connections, ....). For instance,
a d–vector is an element X of the module of the vector fields χ(V) on V, which in
N–adapted form may be written

X = hX + vX or X = X ⊕N •X,

where hX (equivalently, X) is the h–component and vX (equivalently, •X) is the v–
component of X.

A N–connection is characterized by its N–connection curvature (the Nijenhuis
tensor)

Ω(X,Y) + [ •X, •Y ] + •[X,Y]− •[ •X,Y]− •[X, •Y ] (3)

for any X,Y ∈χ(V), where [X,Y] + XY− YX and •[, ] is the v–projection of [, ], see
also the coordinate formula (14) in section 0.2. This d–object Ω was introduced in Ref.
[27] in order to define the curvature of a nonlinear connection in the tangent bundle over a
smooth manifold. But this can be extended for any nonholonomic manifold, nonholnomic
Clifford structure and any noncommutative / supersymmetric versions of bundle spaces
provided with N–connection structure, i. e. with nonintegrable distributions of type (2),
see [23, 67, 89].

Proposition 0.1.1. A N–connection structure on V defines a nonholonomic N–adapted
frame (vielbein) structure e = (e,• e) and its dual ẽ = (ẽ, •ẽ) with e and •ẽ linearly
depending on N–connection coefficients.

Proof. It follows from explicit local constructions, see formulas (16), (15) and (17).

Definition 0.1.2. A manifold V is called N–anholonomic if it is defined a local (in gen-
eral, nonintegrable) distribution (2) on its tangent space TV, i.e. V is N–anholonomic
if it is enabled with a N–connection structure (1).

Curvatures and torsions of N–anholonomic manifolds

One can be defined N–adapted linear connection and metric structures on V :
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Definition 0.1.3. A distinguished connection (d–connection) D on a N–anholonomic
manifold V is a linear connection conserving under parallelism the Whitney sum (2).
For any X ∈χ(V), one have a decomposition into h– and v–covariant derivatives,

DX+ X⌋D = X⌋D+ •X⌋D =DX + •DX . (4)

The symbol ”⌋” in (4) denotes the interior product. We shall write conventionally
that D =(D, •D).

For any d–connection D on a N–anholonomic manifold V, it is possible to define the
curvature and torsion tensor in usual form but adapted to the Whitney sum (2):

Definition 0.1.4. The torsion

T(X,Y) + DXY −DYX− [X,Y] (5)

of a d–connection D =(D, •D), for any X,Y ∈χ(V), has a N–adapted decomposition

T(X,Y) = T(X, Y ) + T(X, •Y ) + T( •X, Y ) + T( •X, •Y ). (6)

By further h- and v–projections of (6), denoting hT +T and vT + •T, taking in the
account that h[ •X, •Y ] =0, one proves

Theorem 0.1.1. The torsion of a d–connection D =(D, •D) is defined by five nontrivial
d–torsion fields adapted to the h– and v–splitting by the N–connection structure

T (X, Y ) + DXY −DYX − h[X, Y ], •T (X, Y )+ •[Y,X],

T (X, •Y ) + − •DYX − h[X, •Y ], •T (X, •Y )+ •DXY − •[X, •Y ],
•T ( •X, •Y ) + •DX

•Y − •DY
•X − •[ •X, •Y ].

The d–torsions T (X, Y ), •T ( •X, •Y ) are called respectively the h(hh)–torsion,
v(vv)–torsion and so on. The formulas (26) present a local proof of this Theorem.

Definition 0.1.5. The curvature of a d–connection D =(D, •D) is defined

R(X,Y) + DXDY−DYDX−D[X,Y] (7)

for any X,Y ∈χ(V).

Denoting hR = R and vR = •R, by straightforward calculations, one check the
properties

R(X,Y) •Z = 0, •R(X,Y)Z = 0,

R(X,Y)Z = R(X,Y)Z + •R(X,Y) •Z

for any for any X,Y,Z ∈χ(V).
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Theorem 0.1.2. The curvature R of a d–connection D =(D, •D) is completely defined
by six d–curvatures

R(X,Y )Z =
(
DXDY −DYDX −D[X,Y ] − •D[X,Y ]

)
Z,

R(X,Y ) •Z =
(
DXDY −DYDX −D[X,Y ] − •D[X,Y ]

) •Z,

R( •X,Y )Z =
( •DXDY −DY

•DX −D[ •X,Y ] − •D[ •X,Y ]

)
Z,

R( •X,Y ) •Z =
( •DX

•DY − •DY
•DX −D[ •X,Y ] − •D[ •X,Y ]

) •Z,

R( •X, •Y )Z =
( •DXDY −DY

•DX − •D[ •X, •Y ]

)
Z,

R( •X, •Y ) •Z =
( •DXDY −DY

•DX − •D[ •X, •Y ]

) •Z.

The proof of Theorems 0.1.1 and 0.1.2 is given for vector bundles provided with N–
connection structure in Ref. [38]. Similar Theorems and respective proofs hold true for
superbundles [57], for noncommutative projective modules [67] and for N–anholonomic
metric–affine spaces [78], where there are also give the main formulas in abstract coor-
dinate form. The formulas (31) consist a coordinate proof of Theorem 0.1.2.

Definition 0.1.6. A metric structure ğ on a N–anholonomic space V is a symmetric
covariant second rank tensor field which is not degenerated and of constant signature in
any point u ∈ V.

In general, a metric structure is not adapted to a N–connection structure.

Definition 0.1.7. A d–metric g = g⊕N •g is a usual metric tensor which contracted to
a d–vector results in a dual d–vector, d–covector (the duality being defined by the inverse
of this metric tensor).

The relation between arbitrary metric structures and d–metrics is established by

Theorem 0.1.3. Any metric ğ can be equivalently transformed into a d–metric

g = g(X, Y ) + •g( •X, •Y ) (8)

for a corresponding N–connection structure.

Proof. We introduce denotations hğ(X, Y ) + g(X, Y ) and vğ( •X, •Y ) = •g( •X, •Y )
and try to find a N–connection when

ğ(X, •Y ) = 0 (9)

for any X,Y ∈χ(V). In local form, the equation (9) is just an algebraic equation for
N = {Na

i }, see formulas (18), (19) and (20) and related explanations in section 0.2.
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Definition 0.1.8. A d–connection D on V is said to be metric, i.e. it satisfies the metric
compatibility (equivalently, metricity) conditions with a metric ğ and its equivalent d–
metric g, if there are satisfied the conditions

DXg = 0. (10)

Considering explicit h– and v–projecting of (10), one proves

Proposition 0.1.2. A d–connection D on V is metric if and only if

DXg = 0, DX
•g = 0, •DXg = 0, •DX

•g = 0.

One holds this important

Conclusion 0.1.1. Following Propositions 0.1.1 and 0.1.2 and Theorem 0.1.3, we can
elaborate the geometric constructions on a N–anholonomic manifold V in N–adapted
form by considering N–adapted frames e = (e,• e) and co–frames ẽ = (ẽ, •ẽ) , d–
connection D and d–metric g = [g, •g] fields.

In Riemannian geometry, there is a preferred linear Levi–Civita connection ▽ which
is metric compatible and torsionless, i.e.

▽T(X,Y) +▽X Y−▽Y X− [X,Y] =0,

and defined by the metric structure. On a general N–anholonomic manifold V pro-
vided with a d–metric structure g = [g, •g], the Levi–Civita connection defined by this
metric is not adapted to the N–connection, i. e. to the splitting (2). The h– and v–
distributions are nonintegrable ones and any d–connection adapted to a such splitting
contains nontrivial d–torsion coefficients. Nevertheless, one exists a minimal extension
of the Levi–Civita connection to a canonical d–connection which is defined only by a
metric ğ.

Theorem 0.1.4. For any d–metric g = [g, •g] on a N–anholonomic manifold V, there

is a unique metric canonical d–connection D̂ satisfying the conditions D̂g =0 and with
vanishing h(hh)–torsion, v(vv)–torsion, i. e. T̂ (X, Y ) = 0 and •T̂ ( •X, •Y ) = 0.

Proof. The formulas (27) and (29) and related discussions state a proof, in component
form, of this Theorem.

The following Corollary gathers some basic information about N–anholonomic man-
ifolds.
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Corollary 0.1.1. A N–connection structure defines three important geometric objects:

1. a (pseudo) Euclidean N–metric structure ηg = η ⊕N •η, i.e. a d–metric with
(pseudo) Euclidean metric coefficients with respect to ẽ defined only by N;

2. a N–metric canonical d–connection D̂N defined only by ηg and N;

3. a nonmetric Berwald type linear connection DB.

Proof. Fixing a signature for the metric, sign ηg = (±,±, ...,±), we introduce these
values in (20) and get ηg = η ⊕N •η of type (8), i.e. we prove the point 1. The point 2
is to be proved by an explicit construction by considering the coefficients of ηg into (29).
This way, we get a canonical d–connection induced by the N–connection coefficients
and satisfying the metricity conditions (10). In an approach to Finsler geometry [9],
one emphasizes the constructions derived for the so–called Berwald type d–connection
DB, considered to be the ”most” minimal (linear on Ω) extension of the Levi–Civita
connection, see formulas (30). Such d–connections can be defined for an arbitrary d–
metric g = [g, •g], or for any ηg = η ⊕N •η. They are only ”partially” metric because,
for instance, DBg = 0 and •DB •g = 0 but, in general, DB •g 6= 0 and •DBg 6= 0, i.
e. DBg 6= 0, see Proposition 0.1.2. It is a more sophisticate problem to define spinors
and supersymmetric physically valued models for such Finsler spaces, see discussions in
[67, 71, 78].

Remark 0.1.1. The d–connection D̂N or DB, for ηg, nonholonomic bases e = (e,• e)
and ẽ = (ẽ, •ẽ) , see Proposition 0.1.1 and the N–connection curvature Ω (3), define
completely the main properties of a N–anholonomic manifold V.

It is possible to extend the constructions for any additional d–metric and canon-
ical d–connection structures. For our considerations on nonholnomic Clifford/ spinor
structures, the class of metric d–connections plays a preferred role. That why we em-
phasize the physical importance of d–connections D̂ and D̂N instead of DB or any other
nonmetric d–connections.

Finally, in this section, we note that the d–torsions and d–curvatures on N–anholo-
nomic manifolds can be computed for any type of d–connection structure, see Theorems
0.1.1 and 0.1.2 and the component formulas (26) and (31).

0.1.2 Examples of N–anholonomic spaces:

For corresponding parametrizations of the N–connection, d–metric and d–connec-
tion coefficients of a N–anholonomic space, it is possible to model various classes of
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(generalized) Lagrange, Finsler and Riemann–Cartan spaces. We briefly analyze three
such nonholonomic geometric structures.

Lagrange–Finsler geometry

This class of geometries is usually defined on tangent bundles [38] but it is possible
to model such structures on general N–anholonomic manifolds, in particular in (pseudo)
Riemannian and Riemann–Cartan geometry if nonholonomic frames are introduced into
consideration [62, 83, 78, 73]. Let us outline the first approach when the N–anholonomic
manifold V is taken to be just a tangent bundle (TM,π,M), where M is a n–dimensional
base manifold, π is a surjective projection and TM is the total space. One denotes by
T̃M = TM\{0} where {0} means the null section of map π.

We consider a differentiable fundamental Lagrange function L(x, y) defined by a map

L : (x, y) ∈ TM → L(x, y) ∈ R of class C∞ on T̃M and continuous on the null section
0 : M → TM of π. The values x = {xi} are local coordinates on M and (x, y) = (xi, yk)
are local coordinates on TM. For simplicity, we consider this Lagrangian to be regular,
i.e. with nondegenerated Hessian

Lgij(x, y) =
1

2

∂2L(x, y)

∂yi∂yj
(11)

when rank |gij| = n on T̃M and the left up ”L” is an abstract label pointing that the
values are defined by the Lagrangian L.

Definition 0.1.9. A Lagrange space is a pair Ln = [M,L(x, y)] with Lgij(x, y) being

of constant signature over T̃M.

The notion of Lagrange space was introduced by J. Kern [28] and elaborated in details
in Ref. [38] as a natural extension of Finsler geometry.

Theorem 0.1.5. There are canonical N–connection LN, almost complex LF, d–metric
Lg and d–connection LD̂ structures defined by a regular Lagrangian L(x, y) and its
Hessian Lgij(x, y) (11).

Proof. The simplest way to prove this theorem is to take do this in local form (using
formulas (35) and (37)) and then to globalize the constructions. The canonical LN
is defined by certain nonlinear spray configurations related to the solutions of Euler–
Lagrange equations, see formula (35). It is given there the explicit matrix representation
of LF (36) which is a usual definition of almost complex structure, after LN and N–
adapted bases have been constructed. The d–metric (37) is a local formula for Lg.

Finally, the canonical d–connection LD̂ is a usual one but for Lg and LN on T̃M.
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A similar Theorem can be formulated and proved for the Finsler geometry:

Remark 0.1.2. A Finsler space defined by a fundamental Finsler function F (x, y), being
homogeneous of type F (x, λy) = λF (x, y), for nonzero λ ∈ R, may be considered as a
particular case of Lagrange geometry when L = F 2.

From the Theorem 0.1.5 and Remark 0.1.2, one follows:

Result 0.1.1. Any Lagrange mechanics with regular Lagrangian L(x, y) (any Finsler ge-
ometry with fundamental function F (x, y)) can be modelled as a nonhlonomic Riemann–

Cartan geometry with canonical structures LN, Lg and LD̂ ( FN, Fg and F D̂) defined
on a corresponding N–anholonomic manifold V.

It was concluded that any regular Lagrange mechanics/Finsler geometry can be ge-
ometrized/modelled as an almost Kähler space with canonical N–connection distribution,
see [38] and, for N–anholonomic Fedosov manifolds, [23]. Such approaches based on al-
most complex structures are related with standard sympletic geometrizations of classical
mechanics and field theory, for a review of results see Ref. [29].

For applications in optics of nonhomogeneous media [38] and gravity (see, for in-
stance, Refs. [62, 83, 78, 71, 73]), one considers metrics of type gij ∼ eλ(x,y) Lgij(x, y)
which can not be derived from a mechanical Lagrangian but from an effective ”energy”
function. In the so–called generalized Lagrange geometry, one introduced Sasaki type
metrics (37), see section 0.2, with any general coefficients both for the metric and N–
connection.

N–connections and gravity

Now we show how N–anholonomic configurations can defined in gravity theories. In
this case, it is convenient to work on a general manifold V, dimV = n+m enabled with
a global N–connection structure, instead of the tangent bundle T̃M.

For the N–connection splitting of (pseudo) Riemannian–Cartan spaces of dimension
(n+m) (there were also considered (pseudo) Riemannian configurations), the Lagrange
and Finsler type geometries were modelled by N–anholonomic structures as exact so-
lutions of gravitational field equations [78, 83, 69]. Inversely, all approaches to (super)
string gravity theories deal with nontrivial torsion and (super) vielbein fields which under
corresponding parametrizations model N–anholonomic spaces [57, 59, 89]. We summarize
here some geometric properties of gravitational models with nontrivial N–anholonomic
structure.
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Definition 0.1.10. A N–anholonomic Riemann–Cartan manifold RCV is defined by a
d–metric g and a metric d–connection D structures adapted to an exact sequence splitting
(1) defined on this manifold.

The d–metric structure g on RCV is of type (8) and satisfies the metricity condi-
tions (10). With respect to a local coordinate basis, the metric g is parametrized by
a generic off–diagonal metric ansatz (19), see section 0.2. In a particular case, we can

take D =D̂ and treat the torsion T̂ as a nonholonomic frame effect induced by noninte-
grable N–splitting. For more general applications, we have to consider additional torsion
components, for instance, by the so–called H–field in string gravity.

Let us denote by Ric(D) and Sc(D), respectively, the Ricci tensor and curvature
scalar defined by any metric d–connection D and d–metric g on RCV, see also the
component formulas (32), (33) and (34) in Section 0.2. The Einstein equations are

En(D) + Ric(D)− 1

2
gSc(D) = Υ (12)

where the source Υ reflects any contributions of matter fields and corrections from, for
instance, string/brane theories of gravity. In a closed physical model, the equation (12)
have to be completed with equations for the matter fields, torsion contributions and so
on (for instance, in the Einstein–Cartan theory one considers algebraic equations for
the torsion and its source)... It should be noted here that because of nonholonomic
structure of RCV, the tensor Ric(D) is not symmetric and that D [En(D)] 6= 0 which
imposes a more sophisticate form of conservation laws on such spaces with generic ”local
anisotropy”, see discussion in [78, 87] (this is similar with the case when the nonholonomic
constraints in Lagrange mechanics modifies the definition of conservation laws). A very
important class of models can be elaborated when Υ =diag

[
λh(u)g, λv(u) •g

]
, which

defines the so–called N–anholonomic Einstein spaces.

Result 0.1.2. Various classes of vacuum and nonvacuum exact solutions of (12) para-
metrized by generic off–diagonal metrics, nonholonomic vielbeins and Levi–Civita or
non–Riemannian connections in Einstein and extra dimension gravity models define ex-
plicit examples of N–anholonomic Einstein–Cartan (in particular, Einstein) spaces.

Such exact solutions (for instance, with noncommutative, algebroid, toroidal, ellip-
soid, ... symmetries) have been constructed in Refs. [62, 83, 23, 67, 69, 73, 71, 78, 87]. We
note that a subclass of N–anholonomic Einstein spaces was related to generic off–diagonal
solutions in general relativity by such nonholonomic constraints when Ric(D̂) = Ric(▽)

even D̂ 6= ▽, where D̂ is the canonical d–connection and▽ is the Levi–Civita connection,
see formulas (15.25) and (28) in section 0.2 and details in Ref. [73].
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A direction in modern gravity is connected to analogous gravity models when certain
gravitational effects and, for instance, black hole configurations are modelled by optical
and acoustic media, see a recent review or results in [8]. Following our approach on geo-
metric unification of gravity and Lagrange regular mechanics in terms of N–anholonomic
spaces, one holds

Theorem 0.1.6. A Lagrange (Finsler) space can be canonically modelled as an exact
solution of the Einstein equations (12) on a N–anholonomic Riemann–Cartan space if
and only if the canonical N–connection LN ( FN), d–metric Lg ( Fg) and d–connection
LD̂ ( F D̂) structures defined by the corresponding fundamental Lagrange function L(x,y)
(Finsler function F (x,y)) satisfy the gravitational field equations for certain physically
reasonable sources Υ.

Proof. We sketch the idea: It can be performed in local form by considering the Einstein
tensor (34) defined by the LN ( FN) in the form (35) and Lg ( Fg) in the form

(37) inducing the canonical d–connection LD̂ ( F D̂). For certain zero or nonzero Υ,
such N–anholonomic configurations may be defined by exact solutions of the Einstein
equations for a d–connection structure. A number of explicit examples were constructed
for N–anholonomic Einstein spaces [62, 83, 23, 67, 69, 73, 71, 78, 87].

It should be noted that Theorem 0.1.6 states the explicit conditions when the Result
0.1.1 holds for N–anholonomic Einstein spaces.

Conclusion 0.1.2. Generic off–diagonal metric and vielbein structures in gravity and
regular Lagrange mechanics models can be geometrized in a unified form on N–anholono-
mic manifolds. In general, such spaces are not spin and this presents a strong motivation
for elaborating the theory of nonholonomic gerbes and related Clifford/ spinor structures.

Following this Conclusion, it is not surprising that a lot of gravitational effects (black
hole configurations, collapse scenaria, cosmological anisotropies ....) can be modelled in
nonlinear fluid, acoustic or optic media.

0.2 For Beginners in Riemann–Finsler Geometry

In this section, we outline some component formulas and equations defining the local
geometry of N–anholonomic spaces, see details in Refs. [78, 67, 73, 38]. Elementary
introductions on Riemann and Finsler geometry are contained in [41, 45].

Locally, a N–connection, see Definition 0.1.1, is stated by its coefficients Na
i (u),

N = Na
i (u)dx

i ⊗ ∂a (13)
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where the local coordinates (in general, abstract ones both for holonomic and nonholo-
nomic variables) are split in the form u = (x, y), or uα = (xi, ya) , where i, j, k, . . . =
1, 2, . . . , n and a, b, c, . . . = n + 1, n + 2, . . . , n + m when ∂i = ∂/∂xi and ∂a = ∂/∂ya.
The well known class of linear connections consists on a particular subclass with the
coefficients being linear on ya, i.e., Na

i (u) = Γabj(x)y
b.

An explicit local calculus allows us to write the N–connection curvature (3) in the
form

Ω =
1

2
Ωa
ijdx

i ∧ dxj ⊗ ∂a,

with the N–connection curvature coefficients

Ωa
ij = δ[jN

a
i] = δjN

a
i − δiNa

j = ∂jN
a
i − ∂iNa

j +N b
i ∂bN

a
j −N b

j ∂bN
a
i . (14)

Any N–connection N = Na
i (u) induces a N–adapted frame (vielbein) structure

eν = (ei = ∂i −Na
i (u)∂a, ea = ∂a) , (15)

and the dual frame (coframe) structure

eµ =
(
ei = dxi, ea = dya +Na

i (u)dx
i
)
. (16)

The vielbeins (16) satisfy the nonholonomy (equivalently, anholonomy) relations

[eα, eβ] = eαeβ − eβeα = W γ
αβeγ (17)

with (antisymmetric) nontrivial anholonomy coefficients W b
ia = ∂aN

b
i and W a

ji = Ωa
ij .

6

These formulas present a local proof of Proposition 0.1.1 when

e = {eν} = ( e = {ei},• e = {ea})

and

ẽ = {eµ} =
(
ẽ = {ei}, •ẽ = {ea}

)
.

Let us consider metric structure

ğ = g
αβ

(u) duα ⊗ duβ (18)

6One preserves a relation to our previous denotations [54, 59] if we consider that eν = (ei, ea)
and eµ = (ei, ea) are, respectively, the former δν = δ/∂uν = (δi, ∂a) and δµ = δuµ = (di, δa) when
emphasize that operators (15) and (16) define, correspondingly, the “N–elongated” partial derivatives
and differentials which are convenient for calculations on N–anholonomic manifolds.
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defined with respect to a local coordinate basis duα = (dxi, dya) by coefficients

g
αβ

=

[
gij +Na

i N
b
jhab N e

j hae
N e
i hbe hab

]
. (19)

Such a metric (19) is generic off–diagonal, i.e. it can not be diagonalized by any coordi-
nate transforms if Na

i (u) are any general functions. The condition (9), for X → ei and
•Y → •ea, transform into

ğ(ei,
•ea) = 0, equivalently g

ia
−N b

i hab = 0

where g
ia

+ g(∂/∂xi, ∂/∂ya), which allows us to define in a unique form the coefficients

N b
i = habg

ia
where hab is inverse to hab. We can write the metric ğ with ansatz (19) in

equivalent form, as a d–metric adapted to a N–connection structure, see Definition 0.1.7,

g = gαβ (u) eα ⊗ eβ = gij (u) ei ⊗ ej + hab (u)
•ea ⊗ •eb, (20)

where gij + g (ei, ej) and hab + g ( •ea,
•eb) and the vielbeins eα and eα are respectively

of type (15) and (16).
We can say that the metric ğ (18) is equivalently transformed into (20) by performing

a frame (vielbein) transform

eα = e α
α ∂α and eβ = eββdu

β.

with coefficients

e α
α (u) =

[
e i
i (u) N b

i (u)e
a
b (u)

0 e a
a (u)

]
, (21)

eββ(u) =

[
ei i(u) −N b

k(u)e
k
i (u)

0 eaa(u)

]
, (22)

being linear on Na
i . We can consider that a N–anholonomic manifold V provided with

metric structure ğ (18) (equivalently, with d–metric (20)) is a special type of a manifold
provided with a global splitting into conventional “horizontal” and “vertical” subspaces
(2) induced by the “off–diagonal” terms N b

i (u) and a prescribed type of nonholonomic
frame structure (17).

A d–connection, see Definition 0.1.3, splits into h– and v–covariant derivatives, D =
D + •D, where Dk =

(
Lijk, L

a
bk

)
and •Dc =

(
Ci
jk, C

a
bc

)
are correspondingly introduced

as h- and v–parametrizations of (23),

Lijk = (Dkej)⌋ei, Labk = (Dkeb)⌋ea, Ci
jc = (Dcej)⌋ei, Ca

bc = (Dceb)⌋ea.
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The components Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
completely define a d–connection D on a

N–anholonomic manifold V.
The simplest way to perform a local covariant calculus by applying d–connections is

to use N–adapted differential forms like Γα
β = Γα

βγe
γ with the coefficients defined with

respect to (16) and (15). One introduces the d–connection 1–form

Γα
β = Γα

βγe
γ,

when the N–adapted components of d-connection Dα = (eα⌋D) are computed following
formulas

Γγ
αβ (u) = (Dαeβ)⌋eγ , (23)

where ”⌋” denotes the interior product. This allows us to define in local form the torsion
(5) T = {T α}, where

T α + Deα = deα + Γαβ ∧ eβ (24)

and curvature (7) R = {Rα
β}, where

Rα
β + DΓα

β = dΓα
β − Γγβ ∧ Γα

γ . (25)

The d–torsions components of a d–connection D, see Theorem 0.1.1, are computed

T ijk = Li jk − Likj, T ija = −T iaj = Ci
ja, T

a
ji = Ωa

ji,

T abi = T aib =
∂Na

i

∂yb
− Labi, T abc = Ca

bc − Ca
cb. (26)

For instance, T ijk and T abc are respectively the coefficients of the h(hh)–torsion T (X, Y )
and v(vv)–torsion •T ( •X, •Y ).

The Levi–Civita linear connection ▽ = {▽Γα
βγ}, with vanishing both torsion and

nonmetricity, ▽ğ = 0, is not adapted to the global splitting (2). There is a preferred,

canonical d–connection structure, D̂, on N–aholonomic manifold V constructed only
from the metric and N–connection coefficients [gij, hab, N

a
i ] and satisfying the conditions

D̂g = 0 and T̂ ijk = 0 and T̂ abc = 0, see Theorem 0.1.4. By straightforward calculations
with respect to the N–adapted bases (16) and (15), we can verify that the connection

Γ̂α
βγ = ▽Γα

βγ + P̂α
βγ (27)

with the deformation d–tensor 7

P̂α
βγ = (P i

jk = 0, P a
bk = eb(N

a
k ), P

i
jc = −1

2
gikΩa

kjhca, P
a
bc = 0) (28)

7P̂α
βγ is a tensor field of type (1,2). As is well known, the sum of a linear connection and a tensor

field of type (1,2) is a new linear connection.
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satisfies the conditions of the mentioned Theorem. It should be noted that, in general,
the components T̂ ija, T̂

a
ji and T̂ abi are not zero. This is an anholonomic frame (or,

equivalently, off–diagonal metric) effect. With respect to the N–adapted frames, the

coefficients Γ̂γ
αβ =

(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
are computed:

L̂ijk =
1

2
gir (ekgjr + ejgkr − ergjk) , (29)

L̂abk = eb(N
a
k ) +

1

2
hac
(
ekhbc − hdc ebNd

k − hdb ecNd
k

)
,

Ĉi
jc =

1

2
gikecgjk, Ĉ

a
bc =

1

2
had (echbd + echcd − edhbc) .

In some approaches to Finsler geometry [9], one uses the so–called Berwald d–
connection DB with the coefficients

BΓγ
αβ =

(
BLijk = L̂ijk,

BLabk = eb(N
a
k ),

BCi
jc = 0, BCa

bc = Ĉa
bc

)
. (30)

This d–connection minimally extends the Levi–Civita connection (it is just the Levi–
Civita connection if the integrability conditions are satisfied, i.e. Ωa

kj = 0, see (28)).
But, in general, for this d–connection, the metricity conditions are not satisfied, for
instance Dagij 6= 0 and Dihab 6= 0.

By a straightforward d–form calculus in (25), we can find the N–adapted components
Rα

βγδ of the curvature R = {Rα
β} of a d–connection D, i.e. the d–curvatures from

Theorem 0.1.2:

Ri
hjk = ekL

i
hj − ejLihk + LmhjL

i
mk − LmhkLimj − Ci

haΩ
a
kj,

Ra
bjk = ekL

a
bj − ejLabk + LcbjL

a
ck − LcbkLacj − Ca

bcΩ
c
kj,

Ri
jka = eaL

i
jk −DkC

i
ja + Ci

jbT
b
ka, (31)

Rc
bka = eaL

c
bk −DkC

c
ba + Cc

bdT
c
ka,

Ri
jbc = ecC

i
jb − ebCi

jc + Ch
jbC

i
hc − Ch

jcC
i
hb,

Ra
bcd = edC

a
bc − ecCa

bd + Ce
bcC

a
ed − Ce

bdC
a
ec.

Contracting respectively the components of (31), one proves: The Ricci tensor Rαβ +

Rτ
αβτ is characterized by h- v–components, i.e. d–tensors,

Rij + Rk
ijk, Ria + −Rk

ika, Rai + Rb
aib, Rab + Rc

abc. (32)

It should be noted that this tensor is not symmetric for arbitrary d–connections D.
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The scalar curvature of a d–connection is

sR + gαβRαβ = gijRij + habRab, (33)

defined by a sum the h– and v–components of (32) and d–metric (20).
The Einstein tensor is defined and computed in standard form

Gαβ = Rαβ −
1

2
gαβ

sR (34)

For a Lagrange geometry, see Definition 0.1.9, by straightforward component calcu-
lations, one can be proved the fundamental results:

1. The Euler–Lagrange equations

d

dτ

(
∂L

∂yi

)
− ∂L

∂xi
= 0

where yi = dxi

dτ
for xi(τ) depending on parameter τ, are equivalent to the “nonlin-

ear” geodesic equations
d2xi

dτ 2
+ 2Gi(xk,

dxj

dτ
) = 0

defining paths of the canonical semispray

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi

where

2Gi(x, y) =
1

2
Lgij

(
∂2L

∂yi∂xk
yk − ∂L

∂xi

)

with Lgij being inverse to (11).

2. There exists on T̃M a canonical N–connection

LN i
j =

∂Gi(x, y)

∂yi
(35)

defined by the fundamental Lagrange function L(x, y), which prescribes nonholo-
nomic frame structures of type (15) and (16), Leν = (ei,

•ek) and Leµ = (ei, •ek).
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3. The canonical N–connection (35), defining •ei, induces naturally an almost com-

plex structure F : χ(T̃M)→ χ(T̃M), where χ(T̃M) denotes the module of vector

fields on T̃M,
F(ei) = •ei and F( •ei) = −ei,

when
F = •ei ⊗ ei − ei ⊗ •ei (36)

satisfies the condition F⌋ F = −I, i. e. F α
βF

β
γ = −δαγ , where δαγ is the Kronecker

symbol and “⌋” denotes the interior product.

4. On T̃M, there is a canonical metric structure

Lg = Lgij(x, y) e
i ⊗ ej + Lgij(x, y)

•ei ⊗ •ej (37)

constructed as a Sasaki type lift from M.

5. There is also a canonical d–connection structure LΓ̂γ
αβ defined only by the com-

ponents of LN i
j and Lgij, i.e. by the coefficients of metric (37) which in its turn

is induced by a regular Lagrangian. The values LΓ̂γ
αβ = ( LL̂ijk,

LĈa
bc) are com-

puted just as similar values from (29). We note that on T̃M there are couples of
distinguished sets of h- and v–components.

0.3 The Layout of the Book

This book is organized in three Parts comprising fifteen Chapters. Every Chapter
represents a research paper, begins with an Abstract and ends with a Bibliography. We
try to follow the original variants of the selected works but subject the text to some
minimal grammar and style modifications if it is necessary.

The Foreword outlines the main results on modelling locally anisotropic and/or non-
commutative structures in modern gravity and geometric mechanics. Chapter 0 presents
an Introduction to the book: There are stated the main principles and concepts both
for the experts in differential geometry and applications and for the beginners on Finsler
and Lagrange geometry. We discuss the main references and results in such directions
and present the corresponding list of references.

The Part I consists of three Chapters.
Chapter 1 is devoted to modelling Finsler–Lagrange and Hamilton–Cartan geometries

on metric–affine spaces provided with N–connection structure. There are defined the
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Finsler-, Lagrange– and Hamilton–affine spaces and elaborated complete scheme of their
classification in terms of N–adapted geometric structures. The corresponding Tables are
presented in the Appendix section.

Chapter 2 describes how Finsler–Lagrange metrics and connections can be extracted
from the metric–affine gravity by introducing nonhlonomic distributions and extending
the results for N–anholonomic manifolds. There are formulated and proved the main
theorems on constructing exact solutions modelling such spacetimes in string gravity
and models with nontrivial torsion and nonmetricity. Some examples of such solutions
describing configurations with variable cosmological constants and three dimensional
gravitational solitons propagating self–consistently in locally anisotropic spaces are con-
structed.

In Chapter 3 we construct exact solutions in metric–affine and string gravity with
noncommutative symmetries defined by nontrivial N–connection structures. We general-
ize the methods of generating such noncommutative solutions in the commutative gauge
and Einstein gravity theories [69, 64, 75, 68] and show that they can be performed in a
form generalizing the solutions for the black ellipsoids [65, 66, 77]. We prove the stability
of such locally anisotropic black holes objects and prove that stability can be preserved
for extensions to solutions in complex gravity.

Part II provides an almost complect relief how the so–called ”anholonomic frame
method” of constructing exact solutions in gravity was proposed and developed. It
reflects a set of nine electronic preprints 8 and communications at International Confer-
ences concerning developments of a series of works [58, 63, 82, 88, 86, 83, 84, 85, 65, 66,
77, 21, 21, 69, 68, 70, 72, 74, 80].

Chapter 4 reflects the results of the first work where, in four dimensional gravity,
an exact generic off–diagonal solution with ellipsoidal symmetry was constructed. It
develops the the results of [58] and announces certain preliminary results published
latter in [59, 63, 65, 66].

Chapter 5 is devoted to three dimensional (3D) black holes solutions with generic
local anisotropy. It is well known that the vacuum 3D (pseudo) Riemannian gravity is
trivial because the curvature vanishes if the Ricci tensor is zero. The firsts nontrivial so-
lutions were obtained by adding a nonzero cosmological constant, a torsion field or other
contributions, for instance, from string gravity. Our idea was to generate 3D nonholo-
nomic configurations by deforming the frame structure for nonholonomic distributions
(with anholonomically induced torsion). The results correct the errors from a previous
preprint (S. Vacaru, gr–qc/ 9811048) caused by testing a Maple program on generating

8the exact references for these preprints are given as footnotes to Abstracts at the beginnings of
Chapters 4–12
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off–diagonal exact solutions. In collaboration with E. Gaburov and D. Gontţa, one were
obtained all formulas in analytic form.

Chapter 6 shows a possible application of 3D nonholonomic exact solutions in appli-
cations of geometric thermodynamics to black hole physics. It revises a former preprint
(S. Vacaru, gr–qc/ 9905053) to the case of elliptic local anisotropies (a common work
together with P. Stavrinos and D. Gonţa). The results were further developed in Refs.
[61, 63] and partially published in monograph [87].

Chapter 7 contains a research of warped configurations with generic local anisotropy.
Such solutions prove that the running hierarchies became anisotropic if generic off–
diagonal metric terms are included into consideration.

Chapter 8 introduces some classes of exact black ellipsoid solutions in brane gravity
constructed by using the N–connection formalism. This is a common work together with
E. Gaburov. Further developments were published in [85].

Chapter 9 elaborates a locally anisotropic models of inflational cosmology (a work
together with D. Gonţa). Such models are defined by generic off–diagonal cosmological
metrics and can be, for instance, with ellipsoid or toroidal symmetry [76, 21].

Chapter 10 reviews in detail the ”anholonomic frame method” elaborated on the base
of N–connection formalism and various methods from Finsler and Lagrange geometry.
There are given the bulk of technical results used in Refs. [59, 63, 82, 88, 86, 83, 84, 85]
and emphasized the cases of four and five dimensional ellipsoid configurations. The
method was developed for the metric–affine spaces with N–connection structure (see
Chapter 2) and revised for the solutions with noncommutative and Lie/Clifford algebroid
symmetries (see Chapter 3 and Ref. [69]).

Chapter 11 develops the ”anholonomic frame method” to the cases of toroidal con-
figurations. Such solutions are not subjected to the restrictions of cosmic censorship
criteria because, in general, the nonholonomic structures contain nontrivial torsion co-
efficients and additional sources induced by the off–diagonal metric terms. Such black
tori solutions exist in five dimensional gravity and for nonholonomic configurations they
are not restricted by black hole uniqueness theorems.

Chapter 12 extends the results of Chapters 10 and 11 when superpositions of ellipsoid
and toroidal locally anisotropic configurations are constructed in explicit form. There
are discussed possible applications in modern astrophysics as possible topological tests
of the Einstein and extra dimension gravity.

In Part III, we mop to several foundations of noncommutative Finsler geometry and
generalizations. In three Chapters, there are elaborated such models following possible
realizations of Finsler and Lagrange structures as gauge models, Riemann–Cartan or
string models of gravity provided with N–connection structure.
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Chapter 13 extends the theory of N–connections to the case of projective finite mod-
ules (i.e. for noncommutative vector bundles). With respect to the noncommutative
geometry there are outlined the necessary well known results from [18, 30, 26, 31] but
with the aim to introduce nonholonomic structures. Noncommutative Finsler–gauge
theories are investigated. There are developed the results elaborated in [64, 75].

Chapter 14 features several fundamental constructions when noncommutative Finsler
configurations are derived in (super) string gravity. We show how locally anisotropic su-
pergravity theories are derived in the low energy limit and via anisotropic topological
compactification. There are analyzed noncommutative locally anisotropic field interac-
tions. A model of anisotropic gravity is elaborated on noncommutative D–branes. Such
constructions are provided with explicit examples of exact solutions: 1) black ellipsoids
with noncommutative variables derived from string gravity; 2) 2D Finsler structures
imbedded noncommutatively in string gravity; 3) moving soliton–black string configura-
tion; 4) noncommutative anisotropic wormholes and strings.

Chapter 15 deals with the construction of nonholonomic spin geometry from the
noncommutative point of view. We define noncommutative nonholonomic spaces and
investigate the Clifford–Lagrange (–Finsler) structures. We prove that any regular fun-
damental Lagrange (Finsler) function induces a corresponding N–anholonomic spinor
geometry and related nonholonomic Dirac operators. There are defined distinguished
by N–connection spectral triples and proved the main theorems on extracting Finsler–
Lagrange structures from noncommutative geometry.

Finally, we note that Chapters 13–15 scan some directions for further developments.
For instance, the nonholonmic distributions can be considered on Hopf structures [32], Lie
and Clifford algebroids [70, 72] and in relation to exact solutions with noncommutative
symmetries [69]. We hope that such results will appeal to people both interested in
noncommutative/ quantum developments of Finsler–Lagrange–Hamilton geometries and
nonholonomic structures in gravity and string theory.

0.4 Sources on Finsler Geometry and Applications

We refer to the most important monographs, original articles and survey papers.
Some of them sit in the junctions between different approaches and new applications. The
bibliography is not exhaustive and reflects the authors interests and activity. The intend
is to orient the nonspecialists on Finsler geometry, to emphasize some new perspectives
and make a bridge to modern gravity and string theories and geometric mechanics. More
specific details and discussions can be found in the references presented at the end of
Chapters.
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The first Finsler metric was considered by B. Riemann in his famous hability thesis
in 1854 [42]. The geometric approach starts with the P. Finsler thesis work [24] in 1918
and the fundamental contributions by L. Berwald [12], a few years latter (see historical
remarks and detailed bibliography in Refs. [43, 33, 37, 38, 60, 87]). The first monograph
in the subject was due to E. Cartan [17].

The book [43] by H. Rund was for a long time the most comprehensive monograph
on Finsler geometry.

In the middle of 80ths of the previous century, three new fundamental monographs
stated renewed approaches and developments of Finsler geometry and applications: 1)
The monograph by R. Miron and M. Anastasiei [37] elaborated a common approach to
Finsler and Lagrange spaces following the geometry of nonlinear connections. Together
with a set of further monographs [38, 34, 35, 39, 36], it reflects the results of the famous
Romanian school on Finsler geometry and, in general, higher order generalizations of
the Finsler–Lagrange and Cartan–Hamilton spaces. The monograph by G. Asanov [4]
developed an approach related to new type of Finsler gauge symmetries and applications
in relativity and field theories (the further work of his school [6, 5] is related to jet exten-
sions and generalized nonlinear gauge symmetries). The monograph by M. Matsumoto
[33] reflected the style and achievements on Finsler geometry in Japan.

Two monographs by A. Bejancu [10] and G. Yu. Bogoslovsky [13] complete the
”80ths wave” on generalizations of Finsler geometry related respectively to the geometry
of fiber bundles and certain bimetric theories of gravity.

During the last 15 years, the developments on Finsler geometry and applications can
be conventionally distinguished into 5 main directions and applications (with interrela-
tions of various sub–directions; we shall cite the works considered to be of key importance
and discuss the items to which we contributed with our publications):

1. Generalized Finsler geometries with applications in geometric mechanics and optimal

control theory. On higher order generalizations, there were published the mono-
graphs [34, 35, 39, 36] and, related results in optimal control theory, [47, 48].

2. Fisler methods in biology, ecology, diffusion and physics. It was published a series
of monographs and collections of selected works like [2, 3, 1] (see there the main
results and detailed references).

3. Nonmetric Finsler geometry, generalizations, violation of local Lorentz symmetry and

applications. The direction originates from the L. Berwald and S. S. Chern works on
Finsler geometry, see details in monographs [9, 44]. It was a fashion in the 20-30th
years of the previous century to consider possible applications of the Riemann–
Cartan–Weyl geometry (with nontrivial torsion and nonmetricity fields) in physics.
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The Berwald and Chern connections (with various re–discovering and modifications
by Rund, Moor and others) are typical ones which do not satisfy the compatibility
conditions with the Finsler metric. Sure, they present certain interest in differential
geometry but with more sophisticate applications in physics [16, 15, 25, 49] (for in-
stance, it is a quite difficult problem to define spinors on spaces with nonmetricity
and to construct supersymmetric and noncommutative extensions of such Finsler
spaces). Here one should be noted that the E. Cartan [17] approach to Finsler
geometry and a number of further developments [38, 60, 87] are based on canonical
metric compatible Finsler conections and generalizations. In such cases, various
real and complex spinor generalizations, supersymmetric models and noncommu-
tative extensions are similar to those for the Riemann–Cartan geometry but with
nonholonomic structures. The problem is discussed in details in Chapters 1–3 of
this book.

There are investigated physical models with violation of the local Lorentz sym-
metry [4, 5, 6, 13, 14] being of special interest in modern gravity [19, 20]. Some
authors [92, 11] consider that such Finsler spacetime and field interaction theories
are subjected to substantial experimental restrictions but one should be noted that
their conclusions are with respect to a restricted class of theories with nonmetricity
and local broken Lorentz symmetry without a deep analysis of the N–connection
structure. Such experimental restrictions do not hold in the metric compatible
models when the Finsler like structures are defined, for instance, as exact solu-
tions in general relativity and string gravity theories (see below, in point 5, some
additional considerations and related references).

4. Super–Finsler spaces, Finsler–gauge gravity, locally anisotropic spinors and noncommu-

tative geometry, geometric kinetics and stochastic processes and conservation laws.

A new classification of curved spaces in terms of chains of nearly autoparallel maps
(generalizing the classes of conformal transforms and geodesic maps) and their in-
variants is possible both for the (pseudo) Riemannian and generalized Lagrange
spaces and their supersymmetric generalizations [81, 60]. There were formulated
the conservation laws on Riemann–Cartan–Weyl and Finsler–Lagrange spaces de-
fined by the basic equations and invariant conditions for nearly autoparallel maps.
It was also proven that the field equations of the Finsler–Lagrange (super) gravity
can be formulated as Yang–Mills equations in affine (super) bundles provided with
Cartan type connections and N–adapted frame structures [79, 60].

In monograph [10], there are summarized the A. Bejancu’s results on gauge the-
ories on Finsler spaces and supersymmetric models on usual manifolds but with
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supervector fibers and corresponding nonlinear connection structures. The author
followed the approach to superspaces from [93] but had not used any global def-
inition of superbundles and related nonintegrable super–distributions. It was not
possible to do that in rigorous form without definition of spinors in Finsler spaces.
The references [57, 60, 75] contains a comprehensive formulation of the geometry
of generalized super–Finsler spaces. The approach is developed, for instance, by
the authors of Ref. [7].

The idea to use spinor variables in Finsler spaces is due to Y. Takano (1983) [46]
(see the monograph [87] for details, discussions, and references related to further
contributions by T. Ono and Y. Takano, P. Stavrinos and V. Balan, who used
2–spinor variables but do not defined and do not proved the existence of general
Clifford structures induced by Finsler metrics and connections; the spinor variables
constructions, in that monograph, are compared with the S. Vacaru’s approach to
Finsler–spinors). The rigorous definition of locally anisotropic spinors on Finsler
and Lagrange spaces was given in Refs. [53, 54] which was a nontrivial task because
on Finsler like spaces there are not even local rotation symmetries. The differential
geometry of spinors for Finsler, Lagrange and Hamilton spaces and their higher
order generalizations, noncommutative extensions, and their applications in mod-
ern physics is elaborated in Refs. [59, 60, 87, 89, 82, 88, 75, 67, 71, 72, 74, 80].
The geometry of generalized Clifford–Finsler spaces, the further supersymmetric
and noncommutative extensions, as well the proof that Finsler like structures ap-
pear in low energy limits of string theory [56, 57, 60] demonstrate that there are
not conceptual problems for elaborating Finsler like theories in the framework of
standard models in physics.

We refer also to applications of Finsler geometry in the theory of stochastic pro-
cesses and kinetics and thermodynamics in curved spaces [61, 63]. Perhaps, the
original idea on Finsler structures on phase spaces came from the A. A. Vlasov
monograph [91]. The locally anisotropic processes in the language of Finsler ge-
ometry and generalizations were investigated in parallel by S. Vacaru [50, 51, 52,
55, 61, 60] and by P. Antonelli, T. Zastavniak and D. Hrimiuc (see details and a
number of applications in Refs. [3, 2, 1]).

5. Generalized Finsler–Lagrange structures in gravity and string theory, anholonomic non-

commutative and algebroid configurations, gravitational gerbes and exact solutions.

There is a fundamental result for certain generic off–diagonal metric ansatz in four
and five dimensional gravity: The Einstein equations for the so–called canonical
distinguished connections are exactly integrable and such very general solutions
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depends on classes of functions depending on 2,3 and 4 variables (see details in
Chapters 2, 10 and 11 and Refs. [68, 69, 73]). Perhaps, this is the most general
method of constructing exact solutions in gravity by using geometric methods
and the N–connection formalism. It was applied in different models of gravity, in
general, with nontrivial torsion and nonmetricity.

Additionally to the formulas and references considered in Sections 0.1 and 0.2, we
note that we analyzed the Finsler structures in explicit form in Refs. [21, 76] and
that there are formulated explicit criteria when the Finsler–Lagrange geometries
can be modelled in metric–affine, Riemann–Cartan, string and Einstein gravity
models by corresponding nonholononmic frame and N–connection structures (see
Chapters 1 and 2 and Refs. [73, 67]).

Section 0.3 outlines the main results and our publications related to modelling
locally anisotropic configurations as exact solutions in gravity and generalization
to noncommutative geometry, Lie/ Clifford algebroids and gerbes. Finally, we cite
the works [90, 40] where ’hidden connections between general relativity and Finsler
geometry’ are discussed following alternative methods.
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Chapter 1

Generalized Finsler Geometry in
Einstein, String and Metric–Affine
Gravity

Abstract 1

We develop the method of anholonomic frames with associated nonlinear connec-
tion (in brief, N–connection) structure and show explicitly how geometries with local
anisotropy (various type of Finsler–Lagrange–Cartan–Hamilton spaces) can be modelled
on the metric–affine spaces. There are formulated the criteria when such generalized
Finsler metrics are effectively defined in the Einstein, teleparallel, Riemann–Cartan and
metric–affine gravity. We argue that every generic off–diagonal metric (which can not be
diagonalized by coordinate transforms) is related to specific N–connection configurations.
We elaborate the concept of generalized Finsler–affine geometry for spaces provided with
arbitrary N–connection, metric and linear connection structures and characterized by
gravitational field strengths, i. e. by nontrivial N–connection curvature, Riemannian
curvature, torsion and nonmetricity. We apply an irreducible decomposition techniques
(in our case with additional N–connection splitting) and study the dynamics of metric–
affine gravity fields generating Finsler like configurations. The classification of basic
eleven classes of metric–affine spaces with generic local anisotropy is presented.
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1.1 Introduction

Brane worlds and related string and gauge theories define the paradigm of modern
physics and have generated enormous interest in higher–dimensional spacetimes amongst
particle and astrophysics theorists (see recent advances in Refs. [1, 2, 3] and an outline of
the gauge idea and gravity in Refs. [4, 5]). The unification scheme in the framework of
string/ brane theory indicates that the classical (pseudo) Riemannian description is not
valid on all scales of interactions. It turns out that low–energy dilaton and axi–dilaton
interactions are tractable in terms of non–Riemannian mathematical structures possess-
ing in particular anholonomic (super) frame [equivalently, (super) vielbein] fields [6],
noncommutative geometry [7], quantum group structures [8] all containing, in general,
nontrivial torsion and nonmetricity fields. For instance, in the closest alternatives to gen-
eral relativity theory, the teleparallel gravity models [9], the spacetime is of Witzenbock
type with trivial curvature but nontrivial torsion. The frame or co–frame filed (tetrad,
vierbein, in four dimensions, 4D) is the basic dynamical variable treated as the gauge
potential corresponding to the group of local translations.

Nowadays, it was established a standard point of view that a number of low energy
(super) string and particle physics interactions, at least the nongravitational ones, are
described by (super) gauge potentials interpreted as linear connections in suitable (super)
bundle spaces. The formal identity between the geometry of fiber bundles [10] and gauge
theory is recognized since the works [11] (see a recent discussing in connection to a unified
description in of interactions in terms of composite fiber bundles in Ref. [12]).

The geometry of fiber bundles and the moving frame method originating from the E.
Cartan works [6] constitute a modern approach to the Finsler geometry and generaliza-
tions (also suggested by E. Cartan [13] but finally elaborated in R. Miron and M. Anas-
tasiei works [14]), see some earlier and recent developments in Refs. [15, 16, 17, 18, 19].
Various type of geometries with local anisotropy (Finsler, Lagrange, Hamilton, Cartan
and their generalizations, according to the terminology proposed in [14]), are modelled on
(co) vector / tangent bundles and their higher order generalizations [21, 20] with different
applications in Lagrange and Hamilton mechanics or in generalized Finsler gravity. Such
constructions were defined in low energy limits of (super) string theory and supergravity
[22, 23] and generalized for spinor bundles [24] and affine– de Sitter frame bundles [25]
provided with nonlinear connection (in brief, N–connection) structure of first and higher
order anisotropy.

The gauge and moving frame geometric background is also presented in the metric–
affine gravity (MAG) [4]. The geometry of this theory is very general being described
by the two–forms of curvature and of torsion and the one–form of nonmetricity treated
respectively as the gravitational field strengths for the linear connection, coframe and
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metric. The kinematic scheme of MAG is well understood at present time as well certain
dynamical aspects of the vacuum configurations when the theory can be reduced to an
effective Einstein–Proca model with nontrivial torsion and nonmetricity [26, 27, 28, 29].
There were constructed a number of exact solutions in MAG connecting the theory to
modern string gravity and another extra dimension generalizations [30, 31, 32]. Never-
theless, one very important aspect has not been yet considered. As a gauge theory, the
MAG can be expressed with respect to arbitrary frames and/or coframes. So, if we intro-
duce frames with associated N–connection structure, the MAG should incorporate mod-
els with generic local anisotropy (Finsler like ones and their generalizations) which are
distinguished by certain prescriptions for anholonomic frame transforms, N–connection
coefficients and metric and linear connection structures adapted to such anholonomic
configurations. Roughly speaking, the MAG contains the bulk of known generalized
Finsler geometries which can be modelled on metric–affine spaces by defining splitting
on subspaces like on (co) vector/ tangent bundles and considering certain anholonomi-
cally constrained moving frame dynamics and associated N–connection geometry.

Such metric–affine spaces with local anisotropy are enabled with generic off–diagonal
metrics which can not be diagonalized by any coordinate transforms. The off–diagonal
coefficients can be mapped into the components of a specific class of anholonomic frames,
defining also the coefficients of the N–connection structure. It is possible to redefine
equivalently all geometrical values like tensors, spinors and connections with respect to
N–adapted anholonomic bases. If the N–connection, metric and linear connections are
chosen for an explicit type of Finsler geometry, such a geometric structure is modelled on
a metric–affine space (we claim that a Finsler–affine geometry is constructed). The point
is to find explicitly by what type of frames and connections a locally anisotropic structure
can be modelled by exact solutions in the framework of MAG. Such constructions can
be performed in the Einstein–Proca sector of the MAG gravity and they can be defined
even in general relativity theory (see the partners of this paper with field equations and
exact solutions in MAG modelling Finsler like metrics and generalizations [33]).

Within the framework of moving frame method [6], we investigated in a series of
works [34, 35, 36, 37] the conditions when various type of metrics with noncommutative
symmetry and/or local anisotropy can be effectively modelled by anholonomic frames on
(pseudo) Riemannian and Riemann–Cartan spaces [38]. We constructed explicit classes
of such exact solutions in general relativity theory and extra dimension gravity models.
They are parametrized by generic off–diagonal metrics which can not diagonalized by
any coordinate transforms but only by anholonomic frame transforms. The new classes
of solutions describe static black ellipsoid objects, locally anistoropic configurations with
toroidal and/ or ellipsoidal symmetries, wormholes/ flux tubes and Taub-NUT metrics
with polarizied constants and warped spinor–soliton–dilaton configurations. For cer-
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tain conditions, some classes of such solutions preserve the four dimensional (4D) local
Lorentz symmetry.

Our ongoing effort is to model different classes of geometries following a general
approach to the geometry of (co) vector/tangent bundles and affine–de Sitter frame
bundles [25] and superbundles [23] and or anisotropic spinor spaces [24] provided with
N–connection structures. The basic geometric objects on such spaces are defined by
proper classes of anholonomic frames and associated N–connections and correspond-
ingly adapted metric and linear connections. There are examples when certain Finsler
like configurations are modelled by some exact solutions in Einstein or Einstein–Cartan
gravity and, inversely (the outgoing effort), by using the almost Hermitian formula-
tion [14, 20, 24] of Lagrange/Hamilton and Finsler/Cartan geometry, we can consider
Einstein and gauge gravity models defined on tangen/cotangent and vector/covector
bundles. Recently, there were also obtained some explicit results demonstrating that the
anholonomic frames geometry has a natural connection to noncommutative geometry
in string/M–theory and noncommutative gauge models of gravity [36, 37] (on existing
approaches to noncommutative geometry and gravity we cite Refs. [7]).

We consider torsion fields induced by anholonomic vielbein transforms when the
theory can be extended to a gauge [5], metric–affine [4], a more particular Riemann–
Cartan case [38], or to string gravity with B–field [2]. We are also interested to define
the conditions when an exact solution possesses hidden noncommutative symmetries,
induced torsion and/or locally anisotropic configurations constructed, for instance, in
the framework of the Einstein theory. This direction of investigation develops the results
obtained in Refs. [35] and should be distinguished from our previous works on the
geometry of Clifford and spinor structures in generalized Finsler and Lagrange–Hamilton
spacetimes [24]. Here we emphasize that the works [34, 35, 36, 37, 24] were elaborated
following general methods of the geometry of anholonomic frames with associated N–
connections in vector (super) bundles [14, 20, 23]. The concept of N–connection was
proposed in Finsler geometry [15, 17, 18, 19, 16, 13]. As a set of coefficients it was firstly
present the E. Cartan’s monograph[13] and then was elaborated in a more explicit form
by A. Kawaguchi [39]. It was proven that the N–connection structures can be defined
also on (pseudo) Riemannian spaces and certain methods work effectively in constructing
exact solutions in Einstein gravity [24, 34, 35].

In order to avoid possible terminology ambiguities, we note that for us the definition
of N–connection is that proposed in global form by W. Barthel in 1963 [40] when a N–
connection is defined as an exact sequence related to a corresponding Whitney sum of
the vertical and horizontal subbundles, for instance, in a tangent vector bundle. 2 This

2Instead of a vector bundle we can consider a tangent bundle, or cotangent/covector ones, or even
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concept is different from that accepted in Ref. [42] were the term ’nonlinear connection’ is
used for tetrads as N–connections which do not transform inhomogeneously under local
frame rotations. That approach invokes nonlinear realizations of the local spacetime
group (see also an early model of gauge gravity with nonlinear gauge group realizations
[43] and its extensions to Finsler like [25] or noncommutative gauge gravity theories [36]).

In summary, the aim of the present work is to develop a unified scheme of anholonomic
frames with associated N–connection structure for a large number of gauge and gravity
models (in general, with locally isotropic and anisotropic interactions and various tor-
sion and nonmetricity contributions) and effective generalized Finsler–Weyl–Riemann–
Cartan geometries derived from MAG. We elaborate a detailed classification of such
spaces with nontrivial N–connection geometry. The unified scheme and classification
were inspired by a number of exact solutions parametrized by generic off–diagonal met-
rics and anholonomic frames in Einstein, Einstein–Cartan and string gravity. The result-
ing formalism admits inclusion of locally anisotropic spinor interactions and extensions
to noncommutative geometry and string/ brane gravity [22, 23, 34, 35, 36, 37]. Thus, the
geometry of metric–affine spaces enabled with an additional N–connection structure is
sufficient not only to model the bulk of physically important non–Riemannian geometries
on (pseudo) Riemannian spaces but also states the conditions when effective spaces with
generic anisotropy can be derived as exact solutions of gravitational and matter field
equations. In the present work we pay attention to the geometrical (pre–dynamical) as-
pects of the generalized Finsler–affine gravity which constitute a theoretical background
for constructing a number of exact solutions in MAG in the partner papers [33].

The article is organized as follows. We begin, in Sec. 2, with a review of the main
concepts from the metric–affine geometry and the geometry of anholonomic frames with
associated N–connections. We introduce the basic definitions and formulate and prove
the main theorems for the N–connection, linear connection and metric structures on
metric–affine spaces and derive the formulas for torsion and curvature distinguished by
N–connections. Next, in Sec. 3, we state the main properties of the linear and nonlinear
connections modelling Finsler spaces and their generalizations and consider how the N–
connection structure can be derived from a generic off–diagonal metric in a metric–affine
space. Section 4 is devoted to the definition and investigation of generalized Finsler–
affine spaces. We illustrate how by corresponding parametrizations of the off–diagonal
metrics, anholonomic frames, N–connections and distinguished connections every type of
generalized Finsler–Lagrange–Cartan–Hamilton geometry can be modelled in the metric–

general manifolds of necessary smooth class with adapted definitions of global sums of horizonal and
vertical subspaces. The geometry of N–connections is investigated in details in Refs. [41, 14, 23, 24, 25]
for various type of spaces.
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affine gravity or any its restrictions to the Einstein–Cartan and general relativity theory.
In Sec. 5, we conclude the results and point out how the synthesis of the Einstein, MAG
and generalized Finsler gravity models can be realized and connected to the modern
string gravity. In Appendix we elaborate a detailed classification of eleven classes of
spaces with generic local anisotropy (i. e. possessing nontrivial N–connection structure)
and various types of curvature, torsion and nonmetricity distinguished by N–connections.

Our basic notations and conventions combine those from Refs. [4, 14, 34, 35] and
contain an interference of traditions from MAG and generalized Finsler geometry. The
spacetime is modelled as a manifold V n+m of necessary smoothly class of dimension
n + m. The Greek indices α, β, ... can split into subclasses like α = (i, a) , β = (j, b) ...
where the Latin indices from the middle of the alphabet, i, j, k, ... run values 1, 2, ...n and
the Latin indices from the beginning of the alphabet, a, b, c, ... run values n + 1, n + 2,
..., n + m. We follow the Penrose convention on abstract indices [44] and use under-
lined indices like α = (i, a) , for decompositions with respect to coordinate frames. The
notations for connections Γαβγ, metrics gαβ and frames eα and coframes ϑβ , or other geo-
metrical and physical objects, are the standard ones from MAG if a nonlinear connection
(N–connection) structure is not emphasized on the spacetime. If a N–connection and
corresponding anholonomic frame structure are prescribed, we use ”boldfaced” symbols
with possible splitting of the objects and indices like Vn+m, Γα

βγ =
(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
,

gαβ = (gij, hab) , eα = (ei, ea) , ...being distinguished by N–connection (in brief, we use the
terms d–objects, d–tensor, d–connection in order to say that they are for a metric–affine
space modelling a generalized Finsler, or another type, anholonomic frame geometry).
The symbol ” +” will be used is some formulas which state that the relation is introduced
”by definition” and the end of proofs will be stated by symbol �.

1.2 Metric–Affine Spaces and Nonlinear Connecti-

ons

We outline the geometry of anholonomic frames with associated nonlinear connec-
tions (in brief, N–connections) in metric–affine spaces which in this work are necessary
smooth class manifolds, or (co) vector/ tangent bundles provided with, in general, in-
dependent nonlinear and linear connections and metrics, and correspondingly derived
strengths like N–connection curvature, Riemannian curvature, torsion and nonmetric-
ity. The geometric formalism will be applied in the next sections where we shall prove
that every class of (pseudo) Riemannian, Kaluza–Klein, Einstein–Cartan, metric–affine
and generalized Lagrange–Finsler and Hamilton–Cartan spaces is characterized by cor-
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responding N–connection, metric and linear connection structures.

1.2.1 Linear connections, metrics and anholonomic frames

We briefly review the standard results on linear connections and metrics (and related
formulas for torsions, curvatures, Ricci and Einstein tensors and Bianchi identities) de-
fined with respect to arbitrary anholonomic bases in order to fix a necessary reference
which will be compared with generalized Finsler–affine structures we are going to propose
in the next sections for spaces provided with N–connection. The results are outlined in a
form with conventional splitting into horizontal and vertical subspaces and sub–indices.
We follow the Ref. [45] but we use Greek indices and denote a covariant derivative by D
preserving the symbol▽ for the Levi–Civita (metric and torsionless) connection. Similar
formulas can be found, for instance. in Ref. [46].

Let V n+m be a (n+m)–dimensional underlying manifold of necessary smooth class
and denote by TV n+m the corresponding tangent bundle. The local coordinates on
V n+m, u = {uα = (xi, ya)} conventionally split into two respective subgroups of ”hori-
zontal” coordinates (in brief, h–coordinates), x = (xi), and ”vertical” coordinates (v–
coordinates), y = (ya) , with respective indices running the values i, j, ... = 1, 2, ..., n and
a, b, ... = n+1, n+2, ..., n+m. The splitting of coordinates is treated as a formal labelling
if any fiber and/or the N–connection structures are not defined. Such a splitting of ab-
stract coordinates uα = (xi, ya) may be considered, for instance, for a general (pseudo)
Riemannian manifold with xi being some ’holonomic” variables (unconstrained) and ya

being ”anholonomic” variables (subjected to some constraints), or in order to parametrize
locally a vector bundle (E, µ, F,M) defined by an injective surjection µ : E → M from
the total space E to the base space M of dimension dimM = n, with F being the
typical vector space of dimension dimF = m. For our purposes, we consider that both
M and F can be, in general, provided with metric structures of arbitrary signatures.
On vector bundles, the values x = (xi) are coordinates on the base and y = (ya) are
coordinates in the fiber. If dimM = dimF, the vector bundle E transforms into the
tangent bundle TM. The same conventional coordinate notation uα = (xi, ya → pa) can
be used for a dual vector bundle (E, µ, F ∗,M) with the typical fiber F ∗ being a covector
space (of 1-forms) dual to F, where pa are local (dual) coordinates. For simplicity, we
shall label ya as general coordinates even for dual spaces if this will not result in ambigu-
ities. In general, our geometric constructions will be elaborated for a manifold V n+m (a
general metric–affine spaces) with some additional geometric structures and fibrations
to be stated or modelled latter (for generalized Finsler geometries) on spacetimes under
consideration.

At each point p ∈ V n+m, there are defined basis vectors (local frames, vielbeins) eα =
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A α
α (u)∂α ∈ TV n+m, with ∂α = ∂/∂uα being tangent vectors to the local coordinate lines

uα = uα(τ) with parameter τ. In every point p, there is also a dual basis ϑβ = Aββ(u)du
β

with duβ considered as coordinate one forms. The duality conditions can be written
in abstract form by using the interior product ⌋, eα⌋ϑβ = δβα, or in coordinate form
A α
α A

β
α = δβα, where the Einstein rule of summation on index α is considered, δβα is the

Kronecker symbol. The ”not underlined” indices α, β, ..., or i, j, ... and a, b, ... are treated
as abstract labels (as suggested by R. Penrose). We shall underline the coordinate indices
only in the cases when it will be necessary to distinguish them from the abstract ones.

Any vector and 1–form fields, for instance, X and, respectively, Ỹ on V n+m are
decomposed in h– and v–irreducible components,

X = Xαeα = X iei +Xaea = Xα∂α = X i∂i +Xa∂a

and
Ỹ = Ỹαϑ

α = Ỹiϑ
i + Ỹaϑ

a = Ỹαdu
α = Ỹidx

i + Ỹady
a.

We shall omit labels like ”̃” for forms if this will not result in ambiguities.

Definition 1.2.1. A linear (affine) connection D on V n+m is a linear map (operator)
sending every pair of smooth vector fields (X, Y ) to a vector field DXY such that

DX (sY + Z) = sDXY +DXZ

for any scalar s = const and for any scalar function f (uα) ,

DX (fY ) = fDXY + (Xf)Y and DXf = Xf.

DXY is called the covariant derivative of Y with respect to X (this is not a tensor).
But we can always define a tensor DY : X → DXY. The value DY is a (1, 1) tensor field
and called the covariant derivative of Y.

With respect to a local basis eα, we can define the scalars Γαβγ, called the components
of the linear connection D, such that

Dαeβ = Γγβαeγ and Dαϑ
β = −Γβγαϑ

γ

were, by definition, Dα + Deα and because eβϑ
β = const.

We can decompose

DXY = (DXY )β eβ =
[
eα(Y

β) + Γβγαϑ
γ
]
eβ + Y β

;αX
α (1.1)

where Y β
;α are the components of the tensor DY.
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It is a trivial proof that any change of basis (vielbein transform), eα′ = B α
α′ eα,

with inverse Bα′

α, results in a corresponding (nontensor) rule of transformation of the
components of the linear connection,

Γα
′

β′γ′ = Bα′

α

[
B β
β′ B

γ
γ′ Γ

α
βγ +B γ

γ′ eγ
(
B α
β′

)]
. (1.2)

Definition 1.2.2. A local basis eβ is anhlonomic (nonholonomic) if there are satisfied
the conditions

eαeβ − eβeα = wγαβeγ (1.3)

for certain nontrivial anholonomy coefficients wγαβ = wγαβ(u
τ). A such basis is holonomic

if wγαβ + 0.

For instance, any coordinate basis ∂α is holonomic. Any holonomic basis can be
transformed into a coordinate one by certain coordinate transforms.

Definition 1.2.3. The torsion tensor is a tensor field T defined by

T (X, Y ) = DXY −DYX − [X, Y ], (1.4)

where [X, Y ] = XY − Y X, for any smooth vector fields X and Y.

The components T γαβ of a torsion T with respect to a basis eα are computed by
introducing X = eα and Y = eβ in (1.4),

T (eα, eβ) = Dαeβ −Dβeα − [eα, eβ] = T γαβeγ

where
T γαβ = Γγβα − Γγαβ − wγαβ. (1.5)

We note that with respect to anholonomic frames the coefficients of anholonomy wγαβ
are contained in the formula for the torsion coefficients (so any anholonomy induces a
specific torsion).

Definition 1.2.4. The Riemann curvature tensor R is defined as a tensor field

R (X, Y )Z = DYDXZ −DXDYZ +D[X,Y ]Z. (1.6)

We can compute the components Rα
βγτof curvature R, with respect to a basis eα are

computed by introducing X = eγ, Y = eτ , Z = eβ in (1.6). One obtains

R (eγ , eτ ) eβ = Rα
βγτeα
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where
Rα

βγτ = eτ
(
Γαβγ

)
− eγ

(
Γαβτ

)
+ ΓνβγΓ

α
ντ − ΓνβτΓ

α
νγ + wνγτΓ

α
βν . (1.7)

We emphasize that the anholonomy and vielbein coefficients are contained in the formula
for the curvature components (1.6). With respect to coordinate frames, eτ = ∂τ , with
wνγτ = 0, we have the usual coordinate formula.

Definition 1.2.5. The Ricci tensor Ri is a tensor field obtained by contracting the
Riemann tensor,

R βτ = Rα
βτα. (1.8)

We note that for a general affine (linear) connection the Ricci tensor is not symmetric
R βτ + R τβ.

Definition 1.2.6. A metric tensor is a (0, 2) symmetric tensor field

g = gαβ(u
γ)ϑα ⊗ ϑβ

defining the quadratic (length) linear element,

ds2 = gαβ(u
γ)ϑαϑβ = gαβ(u

γ)duαduβ.

For physical applications, we consider spaces with local Minkowski signature, when
locally, in a point u

γ

0 , the diagonalized metric is gαβ(u
γ

0) = ηαβ = (1,−1,−1, ...) or,
for our further convenience, we shall use metrics with the local diagonal ansatz being
defined by any permutation of this order.

Theorem 1.2.1. If a manifold V n+m is enabled with a metric structure g , then there
is a unique torsionless connection, the Levi–Civita connection D = ▽, satisfying the
metricity condition

▽g = 0. (1.9)

The proof, as an explicit construction, is given in Ref. [45]. Here we present the
formulas for the components Γα▽ βτ of the connection ▽, computed with respect to a
basis eτ ,

Γ▽ αβγ = g (eα,▽γeβ) = gατΓ
τ
▽ αβ (1.10)

=
1

2

[
eβ (gαγ) + eγ (gβα)− eα (gγβ) + wτγβgατ + wταγgβτ − wτβγgατ

]
.

By straightforward calculations , we can check that

▽αgβγ = eα
(
gβγ

)
− Γτ▽ βαgτγ − Γτ▽ γαgβτ ≡ 0
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and, using the formula (1.5),

T γ▽ αβ = Γγ▽ βα − Γγ▽αβ − wγαβ ≡ 0.

We emphasize that the vielbein and anholonomy coefficients are contained in the formulas
for the components of the Levi–Civita connection Γτ▽ αβ (1.10) given with respect to an
anholonomic basis eα. The torsion of this connection, by definition, vanishes with respect
to all bases, anholonomic or holonomic ones. With respect to a coordinate base ∂α, the
components Γ▽ αβγ (1.10) transforms into the so–called 1-st type Christoffel symbols

Γ▽
αβγ = Γ

{}
αβγ = {αβγ} =

1

2
(∂βgαγ + ∂γgβα − ∂αgγβ) . (1.11)

If a space V n+m posses a metric tensor, we can use gαβ and the inverse values gαβ for
lowering and upping indices as well to contract tensor objects.

Definition 1.2.7.
a) The Ricci scalar R is defined

R + gαβRαβ,

where Rαβ is the Ricci tensor (1.8).
b) The Einstein tensor G has the coefficients

Gαβ + Rαβ −
1

2
Rgαβ ,

with respect to any anholonomic or anholonomic frame eα.

We note that Gαβ and Rαβ are symmetric only for the Levi–Civita connection ▽ and
that ▽αG

αβ = 0.
It should be emphasized that for any general affine connection D and metric g struc-

tures the metric compatibility conditions (1.9) are not satisfied.

Definition 1.2.8. The nonmetricity field

Q = Qαβ ϑ
α ⊗ ϑβ

on a space V n+m is defined by a tensor field with the coefficients

Qγαβ + −Dγgαβ (1.12)

where the covariant derivative D is defined by a linear connection 1–form Γγα = Γγαβϑ
β.
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In result, we can generalize the concept of (pseudo) Riemann space [defined only by
a locally (pseudo) Euclidean metric inducing the Levi–Civita connection with vanish-
ing torsion] and Riemann–Cartan space [defined by any independent metric and linear
connection with nontrivial torsion but with vanishing nonmetricity] (see details in Refs.
[4, 38]):

Definition 1.2.9. A metric–affine space is a manifold of necessary smooth class provided
with independent linear connection and metric structures. In general, such spaces posses
nontrivial curvature, torsion and nonmetricity (called strength fields).

We can extend the geometric formalism in order to include into consideration the
Finsler spaces and their generalizations. This is possible by introducing an additional
fundamental geometric object called the N–connection.

1.2.2 Anholonomic frames and associated N–connections

Let us define the concept of nonlinear connection on a manifold V n+m. 3 We denote
by πT : TV n+m → TV n the differential of the map π : V n+m → V n defined as a fiber–
preserving morphism of the tangent bundle (TV n+m, τE, V

n) to V n+m and of tangent
bundle (TV n, τ, V n) . The kernel of the morphism πT is a vector subbundle of the vector
bundle (TV n+m, τE, V

n+m) . This kernel is denoted (vV n+m, τV , V
n+m) and called the

vertical subbundle over V n+m.We denote the inclusion mapping by i : vV n+m → TV n+m

when the local coordinates of a point u ∈ V n+m are written uα = (xi, ya) , where the
values of indices are i, j, k, ... = 1, 2, ..., n and a, b, c, ... = n+ 1, n+ 2, ..., n+m.

A vector Xu ∈ TV n+m, tangent in the point u ∈ V n+m, is locally represented as (x, y,

X, X̃) = (xi, ya, X i, Xa) ,where (X i) ∈IRn and (Xa) ∈IRm are defined by the equality
Xu = X i∂i +Xa∂a [∂α = (∂i, ∂a) are usual partial derivatives on respective coordinates

xi and ya]. For instance, πT
(
x, y,X, X̃

)
= (x,X) and the submanifold vV n+m contains

elements of type
(
x, y, 0, X̃

)
and the local fibers of the vertical subbundle are isomor-

phic to IRm. Having πT (∂a) = 0, one comes out that ∂a is a local basis of the vertical
distribution u→ vuV

n+m on V n+m, which is an integrable distribution.

Definition 1.2.10. A nonlinear connection (N–connection) N in a space (V n+m, π, V n)
is defined by the splitting on the left of the exact sequence

0→ vV n+m → TV n+m/vV n+m → 0, (1.13)

3see Refs. [40, 14] for original results and constructions on vector and tangent bundles.
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i. e. a morphism of manifolds N : TV n+m → vV n+m such that C ◦ i is the identity on
vV n+m.

The kernel of the morphism N is a subbundle of (TV n+m, τE , V
n+m) , it is called the

horizontal subspace (being a subbundle for vector bundle constructions) and denoted
by (hV n+m, τH , V

n+m) . Every tangent bundle (TV n+m, τE , V
n+m) provided with a N–

connection structure is a Whitney sum of the vertical and horizontal subspaces (in brief,
h- and v– subspaces), i. e.

TV n+m = hV n+m ⊕ vV n+m. (1.14)

It is proven that for every vector bundle (V n+m, π, V n) over a compact manifold V n there
exists a nonlinear connection [14] (the proof is similar if the bundle structure is modelled
on a manifold).4

A N–connection N is defined locally by a set of coefficients Na
i (u

α) = Na
i (x

j , yb)
transforming as

Na′

i′
∂xi

′

∂xi
= Ma′

a N
a
i −

∂Ma′

a

∂xi
ya (1.15)

under coordinate transforms on the space (V n+m, µ,M) when xi
′

= xi
′

(xi) and ya
′

=
Ma′

a (x)ya. The well known class of linear connections consists a particular parametization
of its coefficients Na

i to be linear on variables yb,

Na
i (x

j , yb) = Γabi(x
j)yb.

A N–connection structure can be associated to a prescribed ansatz of vielbein trans-
forms

A α
α (u) = e α

α =

[
e i
i (u) N b

i (u)e
a
b (u)

0 e a
a (u)

]
, (1.16)

Aββ(u) = eββ =

[
ei i(u) −N b

k(u)e
k
i (u)

0 eaa(u)

]
, (1.17)

in particular case e
i
i = δ

i
i and e a

a = δaa with δ
i
i and δaa being the Kronecker symbols,

defining a global splitting of Vn+m into ”horizontal” and ”vertical” subspaces with the
N–vielbein structure

eα = e α
α ∂α and ϑβ = eββdu

β.

4We note that the exact sequence (1.13) defines the N–connection in a global coordinate free form. In
a similar form, the N–connection can be defined for covector bundles or, as particular cases for (co) tan-
gent bundles. Generalizations for superspaces and noncommutative spaces are considered respectively
in Refs. [23] and [36, 37].
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In this work, we adopt the convention that for the spaces provided with N–connection
structure the geometrical objects can be denoted by ”boldfaced” symbols if it would be
necessary to distinguish such objects from similar ones for spaces without N–connection.
The results from subsection 1.2.1 can be redefined in order to be compatible with the
N–connection structure and rewritten in terms of ”boldfaced” values.

A N–connection N in a space Vn+m is parametrized, with respect to a local coordinate
base,

∂α = (∂i, ∂a) ≡
∂

∂uα
=

(
∂

∂xi
,
∂

∂ya

)
, (1.18)

and dual base (cobase),

dα = (di, da) ≡ duα = (dxi, dya), (1.19)

by its components Na
i (u) = Na

i (x, y),

N = Na
i (u)d

i ⊗ ∂a.

It is characterized by the N–connection curvature Ω = {Ωa
ij} as a Nijenhuis tensor field

Nv (X, Y ) associated to N ,

Ω = Nv = [vX, vY ] + v [X, Y ]− v [vX, Y ]− v [X, vY ] ,

for X, Y ∈ X (V n+m) [41] and [, ] denoting commutators. In local form one has

Ω =
1

2
Ωa
ijd

i ∧ dj ⊗ ∂a,

Ωa
ij = δ[jN

a
i] =

∂Na
i

∂xj
− ∂Na

j

∂xi
+N b

i

∂Na
j

∂yb
−N b

j

∂Na
i

∂yb
. (1.20)

The ’N–elongated’ operators δj from (1.20) are defined from a certain vielbein con-
figuration induced by the N–connection, the N–elongated partial derivatives (in brief,
N–derivatives)

eα + δα = (δi, ∂a) ≡
δ

δuα
=

(
δ

δxi
= ∂i −Na

i (u) ∂a,
∂

∂ya

)
(1.21)

and the N–elongated differentials (in brief, N–differentials)

ϑβ + δ β =
(
di, δa

)
≡ δuα =

(
δxi = dxi, δya = dya +Na

i (u) dxi
)

(1.22)



1.2. METRIC–AFFINE SPACES AND NONLINEAR CONNECTIONS 17

called also, respectively, the N–frame and N–coframe. 5

The N–coframe (1.22) is anholonomic because there are satisfied the anholonomy
relations (1.3),

[δα, δβ] = δαδβ − δβδα = wγ
αβ (u) δγ (1.23)

for which the anholonomy coefficients wα
βγ (u) are computed to have certain nontrivial

values

wa
ji = −wa

ij = Ωa
ij , wb

ia = −wb
ai = ∂aN

b
i . (1.24)

We emphasize that the N–connection formalism is a natural one for investigating
physical systems with mixed sets of holonomic–anholonomic variables. The imposed an-
holonomic constraints (anisotropies) are characterized by the coefficients of N–connection
which defines a global splitting of the components of geometrical objects with respect to
some ’horizontal’ (holonomic) and ’vertical’ (anisotropic) directions. In brief, we shall
use respectively the terms h- and/or v–components, h- and/or v–indices, and h- and/or
v–subspaces

A N–connection structure on Vn+m defines the algebra of tensorial distinguished (by
N–connection structure) fields dT (TVn+m) (d–fields, d–tensors, d–objects, if to follow
the terminology from [14]) on Vn+m introduced as the tensor algebra T = {T prqs } of the
distinguished tangent bundle V(d), pd : hVn+m⊕ vVn+m → Vn+m. An element t ∈ T prqs ,
a d–tensor field of type

(
p r
q s

)
, can be written in local form as

t = t
i1...ipa1...ar

j1...jqb1...br
(u) δi1 ⊗ ...⊗ δip ⊗ ∂a1 ⊗ ...⊗ ∂ar ⊗ dj1 ⊗ ...⊗ djq ⊗ δb1 ...⊗ δbr .

There are used the denotations X
(
V(d)

)
(or X (Vn+m),∧p

(
V(d)

)
(or ∧p (Vn+m) and

F
(
V(d)

)
(or F (Vn+m)) for the module of d–vector fields on V(d) (or Vn+m ), the exterior

algebra of p–forms on V(d) (or Vn+m) and the set of real functions on V(d) (or Vn+m).

1.2.3 Distinguished linear connection and metric structures

The d–objects on V(d) are introduced in a coordinate free form as geometric objects
adapted to the N–connection structure. In coordinate form, we can characterize such
objects (linear connections, metrics or any tensor field) by certain group and coordinate

5We shall use both type of denotations eα + δα and ϑβ + δ α in order to preserve a connection to
denotations from Refs. [14, 23, 24, 34, 35, 25, 37]. The ’boldfaced’ symbols eα and ϑβ are written in
order to emphasize that they define N–adapted vielbeins and the symbols δα and δ β will be used for
the N–elongated partial derivatives and, respectively, differentials.
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transforms adapted to the N-connection structure on Vn+m, i. e. to the global space
splitting (1.14) into h- and v–subspaces.

d–connections

We analyze the general properties of a class of linear connections being adapted to
the N–connection structure (called d–connections).

Definition 1.2.11. A d–connection D on V(d) is defined as a linear connection D,
see Definition 1.2.1, on V(d) conserving under a parallelism the global decomposition
of TVn+m (1.14) into the horizontal subbundle, hVn+m, and vertical subbundle, vVn+m,
of V(d).

A N-connection induces decompositions of d–tensor indices into sums of horizontal
and vertical parts, for example, for every d–vector X ∈ X

(
V(d)

)
and 1-form X̃ ∈ Λ1

(
V(d)

)

we have respectively
X = hX + vX and X̃ = hX̃ + vX̃.

For simplicity, we shall not use boldface symbols for d–vectors and d–forms if this will not
result in ambiguities. In consequence, we can associate to every d–covariant derivation
DX = X⌋D two new operators of h- and v–covariant derivations, DX = D

[h]
X + D

[v]
X ,

defined respectively

D
[h]
X Y = DhXY and D

[v]
X Y = DvXY,

for which the following conditions hold:

DXY = D
[h]
X Y +D

[v]
X Y, (1.25)

D
[h]
X f = (hX)f and D

[v]
X f = (vX)f,

for any X, Y ∈ X (E) , f ∈ F (V n+m) .
The N–adapted components Γα

βγ of a d-connection Dα = (δα⌋D) are defined by the
equations

Dαδβ = Γγ
αβδγ,

from which one immediately follows

Γγ
αβ (u) = (Dαδβ)⌋δγ. (1.26)

The operations of h- and v-covariant derivations, D
[h]
k = {Lijk, Labk } and D

[v]
c = {Ci

jk, C
a
bc}

(see (1.25)) are introduced as corresponding h- and v–parametrizations of (1.26),

Lijk = (Dkδj)⌋di, Labk = (Dk∂b)⌋δa (1.27)

Ci
jc = (Dcδj)⌋di, Ca

bc = (Dc∂b)⌋δa. (1.28)
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A set of h–components (1.27) and v–components (1.28), distinguished in the form Γγ
αβ

= (Lijk, L
a
bk, C

i
jc, C

a
bc), completely defines the local action of a d–connection D in Vn+m.

For instance, having taken a d–tensor field of type

(
1 1
1 1

)
, t = tiajbδi ⊗ ∂a ⊗ ∂j ⊗ δb,

and a d–vector X = X iδi +Xa∂a we can write

DXt =D
[h]
X t+D

[v]
X t =

(
Xktiajb|k +Xctiajb⊥c

)
δi ⊗ ∂a ⊗ dj ⊗ δb,

where the h–covariant derivative is

tiajb|k =
δtiajb
δxk

+ Lihkt
ha
jb + Lackt

ic
jb − Lhjktiahb − Lcbktiajc

and the v–covariant derivative is

tiajb⊥c =
∂tiajb
∂yc

+ Ci
hct

ha
jb + Ca

dct
id
jb − Ch

jct
ia
hb − Cd

bct
ia
jd.

For a scalar function f ∈ F (V n+m) we have

D
[h]
k =

δf

δxk
=

∂f

∂xk
−Na

k

∂f

∂ya
and D[v]

c f =
∂f

∂yc
.

We note that these formulas are written in abstract index form and specify for d–
connections the covariant derivation rule (1.1).

Metric structures and d–metrics

We introduce arbitrary metric structures on a space Vn+m and consider the possibility
to adapt them to N–connection structures.

Definition 1.2.12. A metric structure g on a space Vn+m is defined as a symmetric
covariant tensor field of type (0, 2) , gαβ, being nondegenerate and of constant signature
on Vn+m.

This Definition is completely similar to Definition 1.2.6 but in our case it is adapted
to the N–connection structure. A N–connection N ={N b

i (u)} and a metric structure

g = gαβdu
α ⊗ duβ (1.29)

on Vn+m are mutually compatible if there are satisfied the conditions

g (δi, ∂a) = 0, or equivalently, gia (u)−N b
i (u)hab (u) = 0, (1.30)
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where hab + g (∂a, ∂b) and gia + g (∂i, ∂a) resulting in

N b
i (u) = hab (u) gia (u) (1.31)

(the matrix hab is inverse to hab; for simplicity, we do not underly the indices in the last
formula). In consequence, we obtain a h–v–decomposition of metric (in brief, d–metric)

g(X, Y )=hg(X, Y ) + vg(X, Y ), (1.32)

where the d-tensor hg(X, Y ) = g(hX, hY ) is of type

(
0 0
2 0

)
and the d-tensor

vg(X, Y )= h(vX, vY ) is of type

(
0 0
0 2

)
. With respect to a N–coframe (1.22), the

d–metric (1.32) is written

g = gαβ (u) δα ⊗ δβ = gij (u) d
i ⊗ dj + hab (u) δ

a ⊗ δb, (1.33)

where gij + g (δi, δj) . The d–metric (1.33) can be equivalently written in ”off–diagonal”
form if the basis of dual vectors consists from the coordinate differentials (1.19),

g
αβ

=

[
gij +Na

i N
b
jhab N e

j hae
N e
i hbe hab

]
. (1.34)

It is easy to check that one holds the relations

gαβ = e α
α e

β

β gαβ

or, inversely,
g
αβ

= eααe
β
βgαβ

as it is stated by respective vielbein transforms (1.16) and (1.17).

Remark 1.2.1. A metric, for instance, parametrized in the form (1.34) is generic off–
diagonal if it can not be diagonalized by any coordinate transforms. If the anholonomy
coefficients (1.24) vanish for a such parametrization, we can define certain coordinate
transforms to diagonalize both the off–diagonal form (1.34) and the equivalent d–metric
(1.33).

Definition 1.2.13. The nonmetricity d–field

Q = Qαβϑ
α ⊗ ϑβ = Qαβδ

α ⊗ δβ
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on a space Vn+m provided with N–connection structure is defined by a d–tensor field with
the coefficients

Qαβ + −Dgαβ (1.35)

where the covariant derivative D is for a d–connection Γγ
α = Γγ

αβϑ
β , see (1.26) with

the respective splitting Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
, as to be adapted to the N–connection

structure.

This definition is similar to that given for metric–affine spaces (see definition 1.2.8)
and Refs. [4], but in our case the N–connection establishes some ’preferred’ N–adapted
local frames (1.21) and (1.22) splitting all geometric objects into irreducible h- and v–
components. A linear connection DX is compatible with a d–metric g if

DXg = 0, (1.36)

∀X∈X (V n+m) , i. e. if Qαβ ≡ 0. In a space provided with N–connection structure, the
metricity condition (1.36) may split into a set of compatibility conditions on h- and v–
subspaces. We should consider separately which of the conditions

D[h](hg) = 0, D[v](hg) = 0, D[h](vg) = 0, D[v](vg) = 0 (1.37)

are satisfied, or not, for a given d–connection Γγ
αβ. For instance, if D[v](hg) = 0 and

D[h](vg) = 0, but, in general, D[h](hg) 6= 0 andD[v](vg) 6= 0 we can consider a nonmetric-
ity d–field (d–nonmetricity) Qαβ = Qγαβϑ

γ with irreducible h–v–components (with re-
spect to the N–connection decompositions), Qγαβ = (Qijk, Qabc) .

By acting on forms with the covariant derivative D, in a metric–affine space, we can
also define another very important geometric objects (the ’gravitational field potentials’,
see [4]):

torsion T α + Dϑα = dϑα + Γγβ ∧ ϑβ, see Definition 1.2.3 (1.38)

and

curvature Rα
β + DΓαβ = dΓαβ − Γγβ ∧ Γαγ, see Definition 1.2.4. (1.39)

The Bianchi identities are

DQαβ ≡ Rαβ +Rβα, DT α ≡ R α
γ ∧ ϑγ and DR α

γ ≡ 0, (1.40)

where we stress the fact that Qαβ, T
α and Rβα are called also the strength fields of a

metric–affine theory.
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For spaces provided with N–connections, we write the corresponding formulas by
using ”boldfaced” symbols and change the usual differential d into N-adapted operator
δ.

Tα + Dϑα = δϑα + Γγ
β ∧ ϑβ (1.41)

and

Rα
β + DΓα

β = δΓα
β − Γγ

β ∧ Γα
γ (1.42)

where the Bianchi identities written in ’boldfaced’ symbols split into h- and v–irreducible
decompositions induced by the N–connection. 6. We shall examine and compute the
general form of torsion and curvature d–tensors in spaces provided with N–connection
structure in section 1.2.4.

We note that the bulk of works on Finsler geometry and generalizations [15, 14, 20,
16, 17, 19, 13, 23, 24, 37] consider very general linear connection and metric fields being
adapted to the N–connection structure. In another turn, the researches on metric–affine
gravity [4, 38] concern generalizations to nonmetricity but not N–connections. In this
work, we elaborate a unified moving frame geometric approach to both Finlser like and
metric–affine geometries.

1.2.4 Torsions and curvatures of d–connections

We define and calculate the irreducible components of torsion and curvature in a space
Vn+m provided with additional N–connection structure (these could be any metric–
affine spaces [4], or their particular, like Riemann–Cartan [38], cases with vanishing
nonmetricity and/or torsion, or any (co) vector / tangent bundles like in Finsler geometry
and generalizations).

d–torsions and N–connections

We give a definition being equivalent to (1.41) but in d–operator form (the Definition
1.2.3 was for the spaces not possessing N–connection structure):

Definition 1.2.14. The torsion T of a d–connection D =
(
D[h], D[v]

)
in space Vn+m

is defined as an operator (d–tensor field) adapted to the N–connection structure

T (X, Y ) = DXY−DYX − [X, Y ] . (1.43)

6see similar details in Ref. [14] for the case of vector/tangent bundles provided with mutually
compatible N–connection, d–connection and d–metric structure
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One holds the following h- and v–decompositions

T (X, Y )= T (hX, hY )+T (hX, vY ) +T (vX, hY ) +T (vX, vY ) . (1.44)

We consider the projections: hT (X, Y ) ,vT (hX, hY ) ,hT (hX, hY ) , ... and say that, for
instance, hT (hX, hY ) is the h(hh)-torsion of D , vT (hX, hY ) is the v(hh)-torsion of
D and so on.

The torsion (1.43) is locally determined by five d–tensor fields, d–torsions (irreducible
N–adapted h–v–decompositions) defined as

T ijk = hT (δk, δj)⌋di, T ajk = vT (δk, δj)⌋δa, P i
jb = hT (∂b, δj)⌋di,

P a
jb = vT (∂b, δj)⌋δa, Sabc = vT (∂c, ∂b)⌋δa.

Using the formulas (1.21), (1.22), and (1.20), we can calculate the h–v–components of
torsion (1.44) for a d–connection, i. e. we can prove 7

Theorem 1.2.2. The torsion Tα
.βγ = (T i.jk, T

i
ja, T

a
.ij, T

a
.bi, T

a
.bc) of a d–connection

Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
(1.26) has irreducible h- v–components (d–torsions)

T i.jk = −T ikj = Lijk − Likj, T ija = −T iaj = Ci
.ja, T

a
.ji = −T a.ij =

δNa
i

δxj
− δNa

j

δxi
= Ωa

.ji,

T a.bi = −T a.ib = P a
.bi =

∂Na
i

∂yb
− La.bj , T a.bc = −T a.cb = Sa.bc = Ca

bc − Ca
cb. (1.45)

We note that on (pseudo) Riemanian spacetimes the d–torsions can be induced by
the N–connection coefficients and reflect an anholonomic frame structures. Such objects
vanishes when we transfer our considerations with respect to holonomic bases for a trivial
N–connection and zero ”vertical” dimension.

d–curvatures and N–connections

In operator form, the curvature (1.42) is stated from the

Definition 1.2.15. The curvature R of a d–connection D =
(
D[h], D[v]

)
in space Vn+m

is defined as an operator (d–tensor field) adapted to the N–connection structure

R (X, Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z. (1.46)

7see also the original proof for vector bundles in [14]
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This Definition is similar to the Definition 1.2.4 being a generalization for the spaces
provided with N–connection. One holds certain properties for the h- and v–decompositi-
ons of curvature:

vR (X, Y ) hZ = 0, hR (X, Y ) vZ=0, R (X, Y )Z = hR (X, Y ) hZ+vR (X, Y ) vZ.

From (1.46) and the equation R (X, Y ) = −R (Y,X) , we get that the curvature of a
d-connection D in Vn+m is completely determined by the following six d–tensor fields
(d–curvatures):

Ri
hjk = di⌋R (δk, δj) δh, R

a
bjk = δa⌋R (δk, δj) ∂b, (1.47)

P i
jkc = di⌋R (∂c, ∂k) δj , P

a
bkc = δa⌋R (∂c, ∂k) ∂b,

Sijbc = di⌋R (∂c, ∂b) δj, S
a
bcd = δa⌋R (∂d, ∂c) ∂b.

By a direct computation, using (1.21), (1.22), (1.27), (1.28) and (1.47), we prove

Theorem 1.2.3. The curvature Rα
.βγτ = (Ri

hjk, R
a
bjk, P

i
jka, P

c
bka, S

i
jbc, S

a
bcd) of a d–

connection Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
(1.26) has the h- v–components (d–curvatures)

Ri
hjk =

δLi.hj
δxk

− δLi.hk
δxj

+ Lm.hjL
i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk, (1.48)

Ra
bjk =

δLa.bj
δxk

− δLa.bk
δxj

+ Lc.bjL
a
.ck − Lc.bkLa.cj − Ca

.bc Ωc
.jk,

P i
jka =

∂Li.jk
∂yk

−
(
∂Ci

.ja

∂xk
+ Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc

)
+ Ci

.jbP
b
.ka,

P c
bka =

∂Lc.bk
∂ya

−
(
∂Cc

.ba

∂xk
+ Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd

)
+ Cc

.bdP
d
.ka,

Sijbc =
∂Ci

.jb

∂yc
− ∂Ci

.jc

∂yb
+ Ch

.jbC
i
.hc − Ch

.jcC
i
hb,

Sabcd =
∂Ca

.bc

∂yd
− ∂Ca

.bd

∂yc
+ Ce

.bcC
a
.ed − Ce

.bdC
a
.ec.

The components of the Ricci d-tensor

Rαβ = Rτ
αβτ

with respect to a locally adapted frame (1.21) has four irreducible h- v–components,
Rαβ = {Rij, Ria, Rai, Sab}, where

Rij = Rk
ijk, Ria = − 2Pia = −P k

ika, (1.49)

Rai = 1Pai = P b
aib, Sab = Scabc.
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We point out that because, in general, 1Pai 6= 2Pia the Ricci d–tensor is non symmetric.
Having defined a d–metric of type (1.33) in Vn+m, we can introduce the scalar cur-

vature of a d–connection D,

←−
R = gαβRαβ = R + S, (1.50)

where R = gijRij and S = habSab and define the distinguished form of the Einstein
tensor (the Einstein d–tensor), see Definition 1.2.7,

Gαβ + Rαβ −
1

2
gαβ
←−
R . (1.51)

The Ricci and Bianchi identities (1.40) of d–connections are formulated in h- v-
irreducible forms on vector bundle [14]. The same formulas hold for arbitrary metric
compatible d–connections on Vn+m (for simplicity, we omit such details in this work).

1.3 Some Classes of Linear and Nonlinear Connec-

tions

The geometry of d–connections in a space Vn+m provided with N–connection struc-
ture is very reach (works [14] and [23] contain results on generalized Finsler spaces and
superspaces). If a triple of fundamental geometric objects (Na

i (u) ,Γα
βγ (u) , gαβ (u)) is

fixed on Vn+m, in general, with respect to N–adapted frames, a multi–connection struc-
ture is defined (with different rules of covariant derivation). In this Section, we analyze
a set of linear connections and associated covariant derivations being very important
for investigating spacetimes provided with anholonomic frame structure and generic off–
diagonal metrics.

1.3.1 The Levi–Civita connection and N–connections

The Levi–Civita connection ▽ = {Γτ
▽βγ} with coefficients

Γ▽
αβγ = g (eα,▽γeβ) = gατΓ

τ
▽βγ , (1.52)

is torsionless,
Tα

▽ + ▽ϑα = dϑα + Γτ
▽βγ ∧ ϑβ = 0,

and metric compatible, ▽g = 0, see see Definition 1.2.1. The formula (1.52) states that
the operator ▽ can be defined on spaces provided with N–connection structure (we use



26 CHAPTER 1. LAGRANGE AND FINSLER–AFFINE GRAVITY

’boldfaced’ symbols) but this connection is not adapted to the N–connection splitting
(1.14). It is defined as a linear connection but not as a d–connection, see Definition 1.2.11.
The Levi–Civita connection is usually considered on (pseudo) Riemannian spaces but it
can be also introduced, for instance, in (co) vector/tangent bundles both with respect
to coordinate and anholonomic frames [14, 34, 35]. One holds a Theorem similar to the
Theorem 1.2.1,

Theorem 1.3.4. If a space Vn+m is provided with both N–connection N and d–metric g
structures, there is a unique linear symmetric and torsionless connection ▽, being metric
compatible such that ▽γgαβ = 0 for gαβ = (gij, hab) , see (1.33), with the coefficients

Γ▽
αβγ = g (δα,▽γδβ) = gατΓ

τ
▽βγ ,

computed as

Γ▽
αβγ =

1

2

[
δβgαγ + δγgβα − δαgγβ + gατw

τ
γβ + gβτw

τ
αγ − gγτw

τ
βα

]
(1.53)

with respect to N–frames eβ + δβ (1.21) and N–coframes ϑα + δα (1.22).

The proof is that from Theorem 1.2.1, see also Refs. [45, 46], with eβ → eβ and
ϑβ → ϑβ substituted directly in formula (1.10).

With respect to coordinate frames ∂β (1.18) and duα (1.19), the metric (1.33) trans-
forms equivalently into (1.29) with coefficients (1.34) and the coefficients of (1.53) trans-
form into the usual Christoffel symbols (1.11). We emphasize that we shall use the
coefficients just in the form (1.53) in order to compare the properties of different classes
of connections given with respect to N–adapted frames. The coordinate form (1.11)
is not ”N–adapted”, being less convenient for geometric constructions on spaces with
anholonomic frames and associated N–connection structure.

We can introduce the 1-form formalism and express

Γ▽
γα = Γ▽

γαβϑ
β

where

Γ▽
γα =

1

2

[
eγ⌋ δϑα − eα⌋ δϑγ − (eγ⌋ eα⌋ δϑβ) ∧ ϑβ

]
, (1.54)

contains h- v-components, Γγ
▽αβ =

(
Li▽jk, L

a
▽bk, C

i
▽jc, C

a
▽bc
)
, defined similarly to (1.27)

and (1.28) but using the operator ▽,

Li▽jk = (▽kδj)⌋di, La▽bk = (▽k∂b)⌋δa, Ci
▽jc = (▽cδj)⌋di, Ca

▽bc = (▽c∂b)⌋δa.
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In explicit form, the components Li▽jk, L
a
▽bk, C

i
▽jc and Ca

▽bc are defined by formula (1.54)

if we consider N–frame eγ = (δi = ∂i −Na
i ∂a, ∂a) and N–coframe ϑβ = (dxi, δya =

dya + Na
i dx

i) and a d–metric g = (gij,hab) . In these formulas, we write δϑα instead of
absolute differentials dϑα from Refs. [4, 38] because the N–connection is considered.
The coefficients (1.54) transforms into the usual Levi–Civita (or Christoffel) ones for
arbitrary anholonomic frames eγ and ϑβ and for a metric

g = gαβϑ
α ⊗ ϑβ

if eγ → eγ , ϑ
β → ϑβ and δϑβ → dϑβ .

Finally, we note that if the N–connection structure is not trivial, we can define
arbitrary vielbein transforms starting from eγ and ϑβ , i. e. e

[N ]
α = A α′

α (u)eα′ and ϑβ[N ] =

Aββ′(u)ϑβ
′

(we put the label [N ] in order to emphasize that such object were defined
by vielbein transforms starting from certain N–adapted frames). This way we develop a
general anholonomic frame formalism adapted to the prescribed N–connection structure.
If we consider geometric objects with respect to coordinate frames eα′ → ∂α = ∂/∂uα and
coframes ϑβ

′ → duβ, the N–connection structure is ’hidden’ in the off–diagonal metric
coefficients (1.34) and performed geometric constructions, in general, are not N–adapted.

1.3.2 The canonical d–connection and the Levi–Civita connec-
tion

The Levi–Civita connection ▽ is constructed only from the metric coefficients, being
torsionless and satisfying the metricity conditions ▽αgβγ = 0. Because the Levi–Civita
connection is not adapted to the N–connection structure, we can not state its coefficients
in an irreducible form for the h– and v–subspaces. We need a type of d–connection which
would be similar to the Levi–Civita connection but satisfy certain metricity conditions
adapted to the N–connection.

Proposition 1.3.1. There are metric d–connections D =
(
D[h], D[v]

)
in a space Vn+m,

see (1.25), satisfying the metricity conditions if and only if

D
[h]
k gij = 0, D[v]

a gij = 0, D
[h]
k hab = 0, D[h]

a hab = 0. (1.55)

The general proof of existence of such metric d–connections on vector (super) bundles
is given in Ref. [14]. Here we note that the equations (1.55) on Vn+m are just the
conditions (1.37). In our case the existence may be proved by constructing an explicit
example:
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Definition 1.3.16. The canonical d–connection D̂ =
(
D̂[h], D̂[v]

)
, equivalently Γ̂γ

α =

Γ̂γ
αβϑ

β , is defined by the h– v–irreducible components Γ̂γ
αβ =

(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
,

L̂ijk =
1

2
gir
(
δgjk
δxk

+
δgkr
δxj
− δgjk
δxr

)
, (1.56)

L̂abk =
∂Na

k

∂yb
+

1

2
hac
(
δhbc
δxk
− ∂Nd

k

∂yb
hdc −

∂Nd
k

∂yc
hdb

)
,

Ĉi
jc =

1

2
gik

∂gjk
∂yc

,

Ĉa
bc =

1

2
had
(
∂hbd
∂yc

+
∂hcd
∂yb
− ∂hbc
∂yd

)
.

satisfying the torsionless conditions for the h–subspace and v–subspace, respectively,
T̂ ijk = T̂ abc = 0.

By straightforward calculations with (1.56) we can verify that the conditions (1.55)

are satisfied and that the d–torsions are subjected to the conditions T̂ ijk = T̂ abc = 0 (see
section 1.2.4)). We emphasize that the canonical d–torsion posses nonvanishing torsion
components,

T̂ a.ji = −T̂ a.ij =
δNa

i

δxj
− δNa

j

δxi
= Ωa

.ji, T̂
i
ja = −T̂ iaj = Ĉi

.ja, T̂
a
.bi = −T̂ a.ib = P̂ a

.bi =
∂Na

i

∂yb
− L̂a.bj

induced by L̂abk, Ĉ
i
jc and N–connection coefficients Na

i and their partial derivatives
∂Na

i /∂y
b (as is to be computed by introducing (1.56) in formulas (1.45)). This is an

anholonmic frame effect.

Proposition 1.3.2. The components of the Levi–Civita connection Γτ
▽βγ and the irre-

ducible components of the canonical d–connection Γ̂τ
βγ are related by formulas

Γτ
▽βγ =

(
L̂ijk, L̂

a
bk −

∂Na
k

∂yb
, Ĉi

jc +
1

2
gikΩa

jkhca, Ĉ
a
bc

)
, (1.57)

where Ωa
jk is the N–connection curvature (1.20).

The proof follows from an explicit decomposition of N–adapted frame (1.21) and N–
adapted coframe (1.22) in (1.53) (equivalently, in (1.54)) and re–grouping the components
as to distinguish the h- and v– irreducible values (1.56) for gαβ = (gij, hab) .



1.3. SOME CLASSES OF LINEAR AND NONLINEAR CONNECTIONS 29

We conclude from (1.57) that, in a trivial case, the Levi–Civita and the canonical d–

connection are given by the same h– v– components
(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
if Ωa

jk = 0, and

∂Na
k /∂y

b = 0. This results in zero anholonomy coefficients (1.24) when the anholonomic
N–basis is reduced to a holonomic one. It should be also noted that even in this case
some components of the anholonomically induced by d–connection torsion T̂α

βγ could be

nonzero (see formulas (1.95) for Γ̂τ
βγ). For instance, one holds the

Corollary 1.3.1. The d–tensor components

T̂ a.bi = −T̂ a.ib = P̂ a
.bi =

∂Na
i

∂yb
− L̂a.bj (1.58)

for a canonical d–connection (1.56) can be nonzero even ∂Na
k /∂y

b = 0 and Ωa
jk = 0 and

a trivial equality of the components of the canonical d–connection and of the Levi–Civita
connection, Γτ

▽βγ = Γ̂τ
βγ holds with respect to coordinate frames.

This quite surprising fact follows from the anholonomic character of the N–connection
structure. If a N–connection is defined, there are imposed specific types of constraints
on the frame structure. This is important for definition of d–connections (being adapted
to the N–connection structure) but not for the Levi–Civita connection which is not a
d–connection. Even such linear connections have the same components with respect
to a N–adapted (co) frame, they are very different geometrical objects because they
are subjected to different rules of transformation with respect to frame and coordinate
transforms. The d–connections’ transforms are adapted to those for the N–connection
(1.15) but the Levi–Civita connection is subjected to general rules of linear connection
transforms (1.2).8

Proposition 1.3.3. A canonical d–connection Γ̂τ
βγ defined by a N–connection Na

i and
d–metric gαβ = [gij , hab] has zero d–torsions (1.95) if an only if there are satisfied the

8The Corollary 1.3.1 is important for constructing various classes of exact solutions with generic
off–diagonal metrics in Einstein gravity, its higher dimension and/or different gauge, Einstein--Cartan
and metric–affine generalizations. Certain type of ansatz were proven to result in completely integrable
gravitational field equations for the canonical d–connection (but not for the Levi–Civita one), see details
in Refs. [34, 35, 25, 37]. The induced d–torsion (1.58) is contained in the Ricci d–tensor Rai = 1Pai =
P .b

a.ib, see (1.49), i. e. in the Einstein d–tensor constructed for the canonical d–connection. If a class of
solutions were obtained for a d–connection, we can select those subclasses which satisfy the condition
Γτ
▽βγ = Γ̂τ

βγ with respect to a frame of reference. In this case the nontrivial d–torsion T̂ a
.bi (1.58) can

be treated as an object constructed from some ”pieces” of a generic off–diagonal metric and related to
certain components of the N–adapted anholonomic frames.
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conditions Ωa
jk = 0, Ĉi

jc = 0 and L̂a.bj = ∂Na
i /∂y

b, i. e.

Γ̂τ
βγ =

(
L̂ijk, L̂

a
bk = ∂Na

i /∂y
b, 0, Ĉa

bc

)
which is equivalent to

gik
∂gjk
∂yc

= 0, (1.59)

δhbc
δxk
− ∂Nd

k

∂yb
hdc −

∂Nd
k

∂yc
hdb = 0, (1.60)

∂Na
i

∂xj
− ∂Na

j

∂xi
+N b

i

∂Na
j

∂yb
−N b

j

∂Na
i

∂yb
= 0. (1.61)

The Levi–Civita connection defined by the same N–connection and d–metric structure
with respect to N–adapted (co) frames has the components
[0]Γτ

▽βγ = Γ̂τ
βγ =

(
L̂ijk, 0, 0, Ĉ

a
bc

)
.

Proof: The relations (1.59)–(1.61) follows from the condition of vanishing of d–
torsion coefficients (1.95) when the coefficients of the canonical d–connection and the
Levi–Civita connection are computed respectively following formulas (1.56) and (1.57)

We note a specific separation of variables in the equations (1.59)–(1.61). For instance,
the equation (1.59) is satisfied by any gij = gij

(
xk
)
. We can search a subclass of N–

connections with Na
j = δjN

a, i. e. of 1–forms on the h–subspace, Ña = δjN
adxi which

are closed on this subspace,

δÑa =
1

2

(
∂Na

i

∂xj
− ∂Na

j

∂xi
+N b

i

∂Na
j

∂yb
−N b

j

∂Na
i

∂yb

)
dxi ∧ dxj = 0,

satisfying the (1.61). Having defined such Na
i and computing the values ∂cN

a
i , we may

try to solve (1.60) rewritten as a system of first order partial differential equations

∂hbc
∂xk

= N e
k

∂hbc
∂ye

+ ∂bN
d
k hdc + ∂cN

d
khdb

with known coefficients.�
We can also associate the nontrivial values of T̂τ

βγ (in particular cases, of T̂ a.bi) to be
related to any algebraic equations in the Einstein–Cartan theory or dynamical equations
for torsion like in string or supergravity models. But in this case we shall prescribe a
specific class of anholonomically constrained dynamics for the N–adapted frames.

Finally, we note that if a (pseudo) Riemannian space is provided with a generic off–
diagonal metric structure (see Remark 1.2.1) we can consider alternatively to the Levi–
Civita connection an infinite number of metric d–connections, details in the section 1.3.5.
Such d–connections have nontrivial d–torsions Tτ

βγ induced by anholonomic frames and
constructed from off–diagonal metric terms and h- and v–components of d–metrics.
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1.3.3 The set of metric d–connections

Let us define the set of all possible metric d–connections, satisfying the conditions
(1.55) and being constructed only form gij , hab and Na

i and their partial derivatives. Such
d–connections satisfy certain conditions for d–torsions that T ijk = T abc = 0 and can be
generated by two procedures of deformation of the connection

Γ̂γ
αβ → [K]Γγ

αβ = Γγ
αβ + [K]Zγ

αβ (Kawaguchi’s metrization [39]) ,

or → [M ]Γγ
αβ = Γ̂γ

αβ + [M ]Zγ
αβ (Miron’s connections [14] ).

Theorem 1.3.5. Every deformation d–tensor (equivalently, distorsion, or deflection)

[K]Zγ
αβ = { [K]Z i

jk =
1

2
gimD

[h]
j gmk,

[K]Za
bk =

1

2
hacD

[h]
k hcb,

[K]Z i
ja =

1

2
gimD[v]

a gmj ,
[K]Za

bc =
1

2
hadD[v]

c hdb}

transforms a d–connection Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
(1.26) into a metric d–connection

[K]Γγ
αβ =

(
Lijk + [K]Z i

jk, L
a
bk + [K]Za

bk, C
i
jc + [K]Z i

ja, C
a
bc + [K]Za

bc

)
.

The proof consists from a straightforward verification which demonstrate that the
conditions (1.55) are satisfied on Vn+m for [K]D = {[K]Γγ

αβ} and gαβ = (gij, hab) .We note
that the Kawaguchi’s metrization procedure contains additional covariant derivations
of the d–metric coefficients, defined by arbitrary d–connection, not only N–adapted
derivatives of the d–metric and N–connection coefficients as in the case of the canonical
d–connection.

Theorem 1.3.6. For a fixed d–metric structure (1.33), gαβ = (gij , hab) , on a space

Vn+m, the set of metric d–connections [M ]Γγ
αβ = Γ̂γ

αβ + [M ]Zγ
αβ is defined by the

deformation d–tensor

[M ]Zγ
αβ = { [M ]Z i

jk = [−]Oli
kmY

m
lj ,

[M ]Za
bk = [−]Oea

bdY
m
ej ,

[M ]Z i
ja = [+]Omi

jk Y
k
mc,

[M ]Za
bc = [+]Oea

bdY
d
ec}

where the so–called Obata operators are defined

[±]Oli
km =

1

2

(
δlkδ

i
m ± gkmgli

)
and [±]Oea

bd =
1

2
(δebδ

a
d ± hbdhea)

and Y m
lj , Y

m
ej , Y

k
mc, Y

d
ec are arbitrary d–tensor fields.



32 CHAPTER 1. LAGRANGE AND FINSLER–AFFINE GRAVITY

The proof consists from a direct verification of the fact that the conditions (1.55) are
satisfied on Vn+m for [M ]D = {[M]Γγ

αβ}. We note that the relation (1.57) between the

Levi–Civita and the canonical d–connection is a particular case of [M ]Zγ
αβ , when Y m

lj , Y
m
ej

and Y d
ec are zero, but Y k

mc is taken to have [+]Omi
jk Y

k
mc = 1

2
gikΩa

jkhca.
There is a very important consequence of the Theorems 1.3.5 and 1.3.6: For a generic

off–diagonal metric structure (1.34) we can derive a N–connection structure Na
i with a d–

metric gαβ = (gij, hab) (1.33). So, we may consider an infinite number of d–connections
{D}, all constructed from the coefficients of the off–diagonal metrics, satisfying the
metricity conditions Dγgαβ = 0 and having partial vanishing torsions, T ijk = T abc = 0.
The covariant calculi associated to the set {D} are adapted to the N–connection splitting
and alternative to the covariant calculus defined by the Levi–Civita connection ▽, which
is not adapted to the N–connection.

1.3.4 Nonmetricity in Finsler Geometry

Usually, the N–connection, d–connection and d–metric in generalized Finsler spaces
satisfy certain metric compatibility conditions [14, 15, 16, 17]. Nevertheless, there
were considered some classes of d–connections (for instance, related to the Berwald
d–connection) with nontrivial components of the nonmetricity d–tensor. Let us consider
some such examples modelled on metric–affine spaces.

The Berwald d–connection

A d–connection of Berwald type (see, for instance, Ref. [14] on such configurations in

Finsler and Lagrange geometry), [B]Γγ
α = [B]Γ̂γ

αβϑ
β , is defined by h- and v–irreducible

components

[B]Γγ
αβ =

(
L̂i jk,

∂Na
k

∂yb
, 0, Ĉa

bc

)
, (1.62)

with L̂i jk and Ĉa
bc taken as in (1.56), satisfying only partial metricity compatibility

conditions for a d–metric (1.33), gαβ = (gij, hab) on space Vn+m

[B]D
[h]
k gij = 0 and [B]D[v]

c hab = 0.

This is an example of d–connections which may possess nontrivial nonmetricity compo-
nents, [B]Qαβγ =

(
[B]Qcij ,

[B]Qiab

)
with

[B]Qcij = [B]D[v]
c gij and [B]Qiab = [B]D

[h]
i hab. (1.63)
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So, the Berwald d–connection defines a metric–affine space Vn+m with N–connection
structure.

If L̂i jk = 0 and Ĉa
bc = 0, we obtain a Berwald type connection

[N ]Γγ
αβ =

(
0,
∂Na

k

∂yb
, 0, 0

)

induced by the N–connection structures. It defines a vertical covariant derivation [N ]D
[v]
c

acting in the v–subspace of Vn+m, with the coefficients being partial derivatives on
v–coordinates ya of the N–connection coefficients Na

i [41].
We can generalize the Berwald connection (1.62) to contain any fixed values of d–

torsions T i.jk and T a.bc from the h- v–decomposition (1.95). We can check by a straight-
forward calculations that the d–connection

[Bτ ]Γγ
αβ =

(
L̂i jk + τ ijk,

∂Na
k

∂yb
, 0, Ĉa

bc + τabc

)
(1.64)

with

τ ijk =
1

2
gil
(
gkhT

h
.lj + gjhT

h
.lk − glhT hjk

)
(1.65)

τabc =
1

2
had
(
hbfT

f
dc + hcfT

f
db − hdfT fbc

)

results in [Bτ ]Ti
jk = T i.jk and [Bτ ]Ta

bc = T a.bc. The d–connection (1.64) has certain nonvan-

ishing irreducible nonmetricity components [Bτ ]Qαβγ =
(
[Bτ ]Qcij,

[Bτ ]Qiab

)
.

In general, by using the Kawaguchi metrization procedure (see Theorem 1.3.5) we can
also construct metric d–connections with prescribed values of d–torsions T i.jk and T a.bc,
or to express, for instance, the Levi–Civita connection via coefficients of an arbitrary
metric d–connection (see details, for vector bundles, in [14]).

Similarly to formulas (1.75), (1.76) and (1.77), we can express a general affine Berwald
d–connection [Bτ ]D, i. e. [Bτ ]Γγ

α = [Bτ ]Γγ
αβϑ

β , via its deformations from the Levi–
Civita connection Γα

▽ β,
[Bτ ]Γα

β = Γα
▽ β + [Bτ ]Zα

β, (1.66)

Γα
▽ β being expressed as (1.54) (equivalently, defined by (1.53)) and

[Bτ ]Zαβ = eβ⌋ [Bτ ]Tα − eα⌋ [Bτ ]Tβ +
1

2

(
eα⌋eβ⌋ [Bτ ]Tγ

)
ϑγ (1.67)

+
(
eα⌋ [Bτ ]Qβγ

)
ϑγ −

(
eβ⌋ [Bτ ]Qαγ

)
ϑγ +

1

2
[Bτ ]Qαβ .
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defined with prescribed d–torsions [Bτ ]Ti
jk = T i.jk and [Bτ ]Ta

bc = T a.bc. This Berwald d–
connection can define a particular subclass of metric–affine connections being adapted
to the N–connection structure and with prescribed values of d–torsions.

The canonical/ Berwald metric–affine d–connections

If the deformations of d–metrics in formulas (1.76) and (1.66) are considered not
with respect to the Levi–Civita connection Γα

▽ β but with respect to the canonical d–

connection Γ̂γ
αβ with h- v–irreducible coefficients (1.56), we can construct a set of canon-

ical metric–affine d–connections. Such metric–affine d–connections Γγ
α = Γγ

αβϑ
β are

defined via deformations
Γα

β = Γ̂α
β + Ẑα

β, (1.68)

Γ̂α
β being the canonical d–connection (1.26) and

Ẑαβ = eβ⌋ Tα − eα⌋ Tβ +
1

2
(eα⌋eβ⌋ Tγ)ϑ

γ (1.69)

+
(
eα⌋ [Bτ ]Qβγ

)
ϑγ − (eβ⌋ Qαγ)ϑ

γ +
1

2
[Bτ ]Qαβ

where Tα and Qαβ are arbitrary torsion and nonmetricity structures.
A metric–affine d–connection Γγ

α can be also considered as a deformation from the
Berwald connection [Bτ ]Γγ

αβ

Γα
β = [Bτ ]Γγ

αβ + [Bτ ] Ẑα
β, (1.70)

[Bτ ]Γγ
αβ being the Berwald d–connection (1.64) and

[Bτ ] Ẑα
β = eβ⌋ Tα − eα⌋ Tβ +

1

2
(eα⌋eβ⌋ Tγ)ϑ

γ (1.71)

+
(
eα⌋ [Bτ ]Qβγ

)
ϑγ − (eβ⌋ Qαγ)ϑ

γ +
1

2
[Bτ ]Qαβ

The h- and v–splitting of formulas can be computed by introducing N–frames eγ =
(δi = ∂i −Na

i ∂a, ∂a) and N–coframes ϑβ = (dxi, δya = dya +Na
i dx

i) and d–metric g =
(gij,hab) into (1.54), (1.66) and (1.67) for the general Berwald d–connections. In a similar
form we can compute splitting by introducing the N–frames and d–metric into (1.26),
(1.68) and (1.69) for the metric affine canonic d–connections and, respectively, into
(1.64), (1.70) and (1.71) for the metric–affine Berwald d–connections. For the corre-
sponding classes of d–connections, we can compute the torsion and curvature tensors
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by introducing respective connections (1.54), (1.76), (1.56), (1.62), (1.64), (1.66), (1.68)
and (1.70) into the general formulas for torsion (1.41) and curvature (1.42) on spaces
provided with N–connection structure.

1.3.5 N–connections in metric–affine spaces

In order to elaborate a unified MAG and generalized Finsler spaces scheme, it is
necessary to explain how the N–connection emerge in a metric–affine space and/or in
more particular cases of Riemann–Cartan and (pseudo) Riemann geometry.

Riemann geometry as a Riemann–Cartan geometry with N–connection

It is well known the interpretation of the Riemann–Cartan geometry as a general-
ization of the Riemannian geometry by distorsions (of the Levi–Civita connection) gen-
erated by the torsion tensors [38]. Usually, the Riemann–Cartan geometry is described
by certain geometric relations between the torsion tensor, curvature tensor, metric and
the Levi–Civita connection on effective Riemann spaces. We can establish new relations
between the Riemann and Riemann–Cartan geometry if generic off–diagonal metrics and
anholonomic frames of reference are introduced into consideration. Roughly speaking,
a generic off–diagonal metric induces alternatively to the well known Riemann spaces
a certain class of Riemann–Cartan geometries, with torsions completely defined by off–
diagonal metric terms and related anholonomic frame structures.

Theorem 1.3.7. Any (pseudo) Riemannian spacetime provided with a generic off–
diagonal metric, defining the torsionless and metric Levi–Civita connection, can be equiv-
alently modelled as a Riemann–Cartan spacetime provided with a canonical d–connection
adapted to N–connection structure.

Proof:
Let us consider how the data for a (pseudo) Riemannian generic off–diagonal metric

gαβ parametrized in the form (1.34) can generate a Riemann–Cartan geometry. It is
supposed that with respect to any convenient anholonomic coframes (1.22) the metric is
transformed into a diagonalized form of type (1.33), which gives the possibility to define
Na
i and gαβ = [gij , hab] and to compute the aholonomy coefficients wγ

αβ (1.24) and

the components of the canonical d–connection Γ̂γ
αβ =

(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
(1.56). This

connection has nontrivial d–torsions T̂α
.βγ, see the Theorem 1.2.2 and Corollary 1.3.1. In

general, such d–torsions are not zero being induced by the values Na
i and their partial

derivatives, contained in the former off–diagonal components of the metric (1.34). So, the
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former Riemannian geometry, with respect to anholonomic frames with associated N–
connection structure, is equivalently rewritten in terms of a Riemann–Cartan geometry
with nontrivial torsion structure.

We can provide an inverse construction when a diagonal d–metric (1.33) is given with
respect to an anholonomic coframe (1.22) defined from nontrivial values of N–connection
coefficients, Na

i . The related Riemann–Cartan geometry is defined by the canonical d–

connection Γ̂γ
αβ possessing nontrivial d–torsions T̂α

.βγ. The data for this geometry with
N–connection and torsion can be directly transformed [even with respect to the same
N–adapted (co) frames] into the data of related (pseudo) Riemannian geometry by using

the relation (1.57) between the components of Γ̂γ
αβ and of the Levi–Civita connection

Γτ
▽βγ .�

Remark 1.3.2.
a) Any generic off–diagonal (pseudo) Riemannian metric gαβ[N

a
i ] → gαβ = [gij, hab]

induces an infinite number of associated Riemann–Cartan geometries defined by sets of
d–connections D = {Γγ

αβ} which can be constructed according the Kawaguchi’s and,
respectively, Miron’s Theorems 1.3.5 and 1.3.6.
b) For any metric d–connection D = {Γγ

αβ} induced by a generic off–diagonal metric
(1.34), we can define alternatively to the standard (induced by the Levi–Civita connec-
tion) the Ricci d–tensor (1.49), Rαβ, and the Einstein d–tensor (1.51), Gαβ .

We emphasize that all Riemann–Cartan geometries induced by metric d–connections
D are characterized not only by nontrivial induced torsions Tα

.βγ but also by corre-
sponding nonsymmetric Ricci d–tensor, Rαβ, and Einstein d–tensor, Gαβ , for which
DγGαβ 6= 0. This is not a surprising fact, because we transferred the geometrical and
physical objects on anholonomic spaces, when the conservation laws should be redefined
as to include the anholonomically imposed constraints.

Finally, we conclude that for any generic off–diagonal (pseudo) Riemannian metric
we have two alternatives: 1) to choose the approach defined by the Levi–Civita connec-

tion ▽, with vanishing torsion and usually defined conservation laws ▽γG
[▽]
αβ = 0, or 2)

to diagonalize the metric effectively, by respective anholonomic transforms, and transfer
the geometric and physical objects into effective Riemann–Cartan geometries defined by
corresponding N–connection and d–connection structures. All types of such geometric
constructions are equivalent. Nevertheless, one could be defined certain priorities for
some physical models like ”simplicity” of field equations and definition of conservation
laws and/or the possibility to construct exact solutions. We note also that a variant with
induced torsions is more appropriate for including in the scheme various type of gener-
alized Finsler structures and/or models of (super) string gravity containing nontrivial
torsion fields.
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Metric–affine geometry and N–connections

A general affine (linear) connection D = ▽+ Z = {Γγβα = Γγ▽βα + Zγ
βα}

Γγα = Γγαβϑ
β , (1.72)

can always be decomposed into the Riemannian Γα▽ β and post–Riemannian Zα
β parts

(see Refs. [4] and, for irreducible decompositions to the effective Einstein theory, see
Ref. [26]),

Γαβ = Γα▽ β + Zα
β (1.73)

where the distorsion 1-form Zα
β is expressed in terms of torsion and nonmetricity,

Zαβ = eβ⌋Tα − eα⌋Tβ +
1

2
(eα⌋eβ⌋Tγ)ϑγ + (eα⌋Qβγ)ϑ

γ − (eβ⌋Qαγ)ϑ
γ +

1

2
Qαβ, (1.74)

Tα is defined as (1.38) and Qαβ + −Dgαβ . 9 For Qβγ = 0, we obtain from (1.74) the
distorsion for the Riemannian–Cartan geometry [38].

By substituting arbitrary (co) frames, metrics and linear connections into N–adapted
ones (i. e. performing changes

eα → eα, ϑ
β → ϑβ, gαβ → gαβ = (gij, hab) ,Γ

γ
α → Γγ

α

with Qαβ = Qγαβϑ
γ and Tα as in (1.41)) into respective formulas (1.72), (1.73) and

(1.74), we can define an affine connection D = ▽+ Z = {Γγ
βα} with respect to N–

adapted (co) frames,
Γγ

α = Γγ
αβϑ

β , (1.75)

with
Γα

β = Γα
▽ β + Zα

β, (1.76)

Γα
▽ β being expressed as (1.54) (equivalently, defined by (1.53)) and Zα

β expressed as

Zαβ = eβ⌋Tα − eα⌋Tβ +
1

2
(eα⌋eβ⌋Tγ)ϑ

γ + (eα⌋Qβγ)ϑ
γ − (eβ⌋Qαγ)ϑ

γ +
1

2
Qαβ. (1.77)

The h– and v–components of Γα
β from (1.76) consists from the components of Γα

▽ β

(considered for (1.54)) and of Zαβ with Zα
γβ =

(
Z i
jk, Z

a
bk, Z

i
jc, Z

a
bc

)
.The values

Γα
▽γβ + Zα

γβ =
(
Li▽jk + Z i

jk, L
a
▽bk + Za

bk, C
i
▽jc + Z i

jc, C
a
▽bc + Za

bc

)

9We note that our Γγ
α and Zα

β are respectively the Γγ
α and Nαβ from Ref. [26]; in our works we

use the symbol N for N–connections.
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are defined correspondingly

Li▽jk + Z i
jk = [(▽k + Zk)δj]⌋di, La▽bk + Za

bk = [(▽k + Zk)∂b]⌋δa,
Ci

▽jc + Z i
jc = [(▽c + Zc) δj ]⌋di, Ca

▽bc + Za
bc = [(▽c + Zc) ∂b]⌋δa.

and related to (1.77) via h- and v–splitting of N–frames eγ = (δi = ∂i −Na
i ∂a, ∂a) and

N–coframes ϑβ = (dxi, δya = dya +Na
i dx

i) and d–metric g = (gij,hab) .
We note that for Qαβ = 0, the distorsion 1–form Zαβ defines a Riemann–Cartan

geometry adapted to the N–connection structure.
Let us briefly outline the procedure of definition of N–connections in a metric–affine

space V n+m with arbitrary metric and connection structures
(
g[od] = {gαβ},Γγβα

)
and

show how the geometric objects may be adapted to the N–connection structure.

Proposition 1.3.4. Every metric–affine space provided with a generic off–diagonal met-
ric structure admits nontrivial N–connections.

Proof: We give an explicit example how to introduce the N–connection structure.
We write the metric with respect to a local coordinate basis,

g[od] = gαβdu
α ⊗ duβ,

where the matrix gαβ contains a non–degenerated (m×m) submatrix hab, for instance
like in ansatz (1.34). Having fixed the block hab, labelled by running of indices a, b, ... =
n + 1, n+ 2, ..., n+m, we can define the (n× n) bloc gij with indices i, j, ... = 1, 2, ...n.
The next step is to find any nontrivial Na

i (the set of coefficients has being defined,
we may omit underlying) and find N e

j from the (n×m) block relations gja = N e
j hae.

This is always possible if gαβ is generic off–diagonal. The next step is to compute

gij = gij −Na
i N

e
j hae which gives the possibility to transform equivalently

g[od] → g = gijϑ
i ⊗ ϑj + habϑ

a ⊗ ϑb

where
ϑi + dxi, ϑa + δya = dya +Na

i (u) dxi

are just the N–elongated differentials (1.22) if the local coordinates associated to the
block hab are denoted by ya and the rest ones by xi. We impose a global splitting
of the metric–affine spacetime by stating that all geometric objects are subjected to
anholonomic frame transforms with vielbein coefficients of type (1.16) and (1.17) defined
by N = {Na

i }. This way, we define on the metric–affine space a vector/covector bundle
structure if the coordinates ya are treated as certain local vector/ covector components.�
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We note, that having defined the values ϑα =
(
ϑi, ϑb

)
and their duals eα = (ei, ea) ,

we can compute the linear connection coefficients with respect to N–adapted (co) frames,

Γγβα → Γ̃γ
βα. However, Γ̃γ

βα, in general, is not a d–connection, i. e. it is not adapted to
the global splitting TVn+m = hVn+m ⊕ vVn+m defined by N–connection, see Definition
1.2.11. If the metric and linear connection are not subjected to any field equations,
we are free to consider distorsion tensors in order to be able to apply the Theorems
1.3.5 and/or 1.3.6 with the aim to transform Γ̃γ

βα into a metric d–connection, or even
into a Riemann–Cartan d–connection. Here, we also note that a metric–affine space, in
general, admits different classes of N–connections with various nontrivial global splitting
n′ +m′ = n+m, where n′ 6= n.

We can state from the very beginning that a metric–affine space Vn+m is provided
with d–metric (1.33) and d–connection structure (1.26) adapted to a class of prescribed
vielbein transforms (1.16) and (1.17) and N–elongated frames (1.21) and (1.22). All
constructions can be redefined with respect to coordinate frames (1.18) and (1.19) with
off–diagonal metric parametrization (1.34) and then subjected to another frame and co-
ordinate transforms hiding the existing N–connection structure and distinguished char-
acter of geometric objects. Such ’distinguished’ metric–affine spaces are characterized
by corresponding N–connection geometries and admit geometric constructions with dis-
tinguished objects. They form a particular subclass of metric–affine spaces admitting
transformations of the general linear connection Γγβα into certain classes of d–connections
Γγ

βα.

Definition 1.3.17. A distinguished metric–affine space Vn+m is a usual metric–affine
space additionally enabled with a N–connection structure N = {Na

i } inducing splitting
into respective irreducible horizontal and vertical subspaces of dimensions n and m. This
space is provided with independent d–metric (1.33) and affine d–connection (1.26) struc-
tures adapted to the N–connection.

The metric–affine spacetimes with stated N–connection structure are also charac-
terized by nontrivial anholonomy relations of type (1.23) with anholonomy coefficients
(1.24). This is a very specific type of noncommutative symmetry generated by N–adapted
(co) frames defining different anholonomic noncommutative differential calculi (for de-
tails with respect to the Einstein and gauge gravity see Ref. [47]).

We construct and analyze explicit examples of metric–affine spacetimes with asso-
ciated N–connection (noncommutative) symmetry in Refs. [33]. A surprizing fact is
that various types of d–metric ansatz (1.33) with associated N–elongated frame (1.21)
and coframe (1.22) (or equivalently, respective off–diagonal ansatz (1.34)) can be de-
fined as exact solutions in Einstein gravity of different dimensions and in metric–affine,
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or Einstein–Cartan gravity and gauge model realizations. Such solutions model also
generalized Finsler structures.

1.4 Generalized Finsler–Affine Spaces

The aim of this section is to demonstrate that any well known type of locally anis-
toropic or locally isotropic spaces can be defined as certain particular cases of distin-
guished metric–affine spaces. We use the general term of ”generalized Finsler–affine
spaces” for all type of geometries modelled in MAG as generalizations of the Riemann–
Cartan–Finsler geometry, in general, containing nonmetricity fields. A complete classi-
fication of such spaces is given by Tables 1–11 in the Appendix.

1.4.1 Spaces with vanishing N–connection curvature

Three examples of such spaces are given by the well known (pseudo) Riemann,
Riemann–Cartan or Kaluza–Klein manifolds of dimension (n+m) provided with a gene-
ric off–diagonal metric structure g

αβ
of type (1.34), of corresponding signature, which

can be reduced equivalently to the block (n× n) ⊕ (m×m) form (1.33) via vielbein
transforms (1.16). Their N–connection structures may be restricted by the condition
Ωa
ij = 0, see (1.20).

Anholonomic (pseudo) Riemannian spaces

The (pseudo) Riemannian manifolds, Vn+m
R , provided with a generic off–diagonal

metric and anholonomic frame structure effectively diagonalizing such a metric is an
anholonomic (pseudo) Riemannian space. The space admits associated N–connection
structures with coefficients induced by generic off–diagonal terms in the metric (1.34).
If the N–connection curvature vanishes, the Levi–Civita connection is closely defined by
the same coefficients as the canonical d–connection (linear connections computed with
respect to the N–adapted (co) frames), see Proposition 1.3.2 and related discussions in
section 1.3. Following the Theorem 1.3.7, any (pseudo) Riemannian space enabled with
generic off–diagonal connection structure can be equivalently modelled as an effective
Riemann–Cartan geometry with induced N–connection and d–torsions.

There were constructed a number of exact ’off–diagonal’ solutions of the Einstein
equations [34, 35, 25], for instance, in five dimensional gravity (with various type restric-
tions to lower dimensions) with nontrivial N–connection structure with ansatz for metric
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of type

g = ω
(
xi, y4

)
[g1(dx

1)2 + g2

(
x2, x3

)
(dx2)2 + g3

(
x2, x3

)
(dx3)2

+h4

(
x2, x3, y4

) (
δy4
)2

+ h5

(
x2, x3, y4

) (
δy5
)2

], (1.78)

for g1 = const, where

δya = dya +Na
k

(
xi, y4

)
dya

with indices i, j, k... = 1, 2, 3 and a = 4, 5. The coefficients Na
i (xi, y4) were searched

as a metric ansatz of type (1.34) transforming equivalently into a certain diagonalized
block (1.33) would parametrize generic off–diagonal exact solutions. Such effective N–
connections are contained into a corresponding anholonomic moving or static config-
uration of tetrads/ pentads (vierbeins/funfbeins) defining a conventional splitting of
coordinates into n holonomic and m anholonomic ones, where n+m = 4, 5. The ansatz
(1.78) results in exact solutions of vacuum and nonvacuum Einstein equations which
can be integrated in general form. Perhaps, all known at present time exact solutions
in 3-5 dimensional gravity can be included as particular cases in (1.78) and general-
ized to anholonomic configurations with running constants and gravitational and matter
polarizations (in general, anisotropic on variable y4) of the metric and frame coefficients.

The vector/ tangent bundle configurations and/or torsion structures can be effectively
modelled on such (pseudo) Riemannian spaces by prescribing a corresponding class of
anholonomic frames. Such configurations are very different from those, for instance,
defined by Killing symmetries and the induced torsion vanishes after frame transforms
to coordinate bases. For a corresponding parametrizations of Na

i (u) and gαβ, we can
model Finsler like structures even in (pseudo) Riemannian spacetimes or in gauge gravity
[25, 36, 37].

The anholonomic Riemannian spaces Vn+m
R can be considered as a subclass of distin-

guished metric–affine spaces Vn+m provided with N–connection structure, characterized
by the condition that nonmetricity d–filed Qαβγ = 0 and that a certain type of induced
torsions Tα

βγ vanish for the Levi–Civita connection. We can take a generic off–diagonal
metric (1.34), transform it into a d–metric (1.33) and compute the h- and v-components
of the canonical d–connection (1.26) and put them into the formulas for d–torsions
(1.95) and d–curvatures (1.48). The vacuum solutions are defined by d–metrics and
N–connections satisfying the condition Rαβ = 0, see the h–, v–components (1.49).

In order to transform certain geometric constructions defined by the canonical d–
connection into similar ones for the Levi–Civita connection, we have to constrain the
N–connection structure as to have vanishing N–curvature, Ωa

ij = 0, or to see the con-
ditions when the deformation of Levi–Civita connection to any d–connection result in
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non–deformations of the Einstein equation. We obtain a (pseudo) Riemannian vacuum
spacetime with anholonomially induced d–torsion components

T̂ ija = −T̂ iaj = Ĉi
.ja and T̂ a.bi = −T̂ a.ib = ∂Na

i /∂y
b − L̂a.bj.

This torsion can be related algebraically to a spin source like in the usual Riemann–
Cartan gravity if we want to give an algebraic motivation to the N–connection splitting.
We emphasize that the N–connection and d–metric coefficients can be chosen in order
to model on Vn+m

R a special subclass of Finsler/ Lagrange structures (see discussion in
section 1.4.2).

Kaluza–Klein spacetimes

Such higher dimension generalizations of the Einstein gravity are characterized by a
metric ansatz

g
αβ

=

[
gij(x

κ) + Aai (x
κ)Abj(x

κ)hab(x
κ, ya) Aej(x

κ)hae(x
κ, ya)

Aei (x
κ)hbe(x

κ, ya) hab(x
κ, ya)

]
(1.79)

(a particular case of the metric (1.34)) with certain compactifications on extra dimension
coordinates ya. The values Aai (x

κ) are considered to define gauge fields after compacti-
fications (the electromatgnetic potential in the original extension to five dimensions by
Kaluza and Klein, or some non–Abelian gauge fields for higher dimension generaliza-
tions). Perhaps, the ansatz (1.79) was originally introduced in Refs. [48] (see [49] as a
review of non–supersymmetry models and [50] for supersymmetric theories).

The coefficients Aai (x
κ) from (1.79) are certain particular parametrizations of the N–

connection coefficients Na
i (xκ, ya) in (1.34). This suggests a physical interpretation for

the N–connection as a specific nonlinear gauge field depending both on spacetime and
extra dimension coordinates (in general, noncompactified). In the usual Kaluza–Klein
(super) theories, there were not considered anholonomic transforms to block d–metrics
(1.33) containing dependencies on variables ya.

In some more general approaches, with additional anholonomic structures on lower
dimensional spacetime, there were constructed a set of exact vacuum five dimensional
solutions by reducing ansatz (1.79) and their generalizations of form (1.34) to d–metric
ansatz of type (1.78), see Refs. [34, 35, 36, 37, 25, 47]. Such vacuum and nonvacuum
solutions describe anisotropically polarized Taub–NUT spaces, wormhole/ flux tube con-
fiugurations, moving four dimensional black holes in bulk five dimensional spacetimes,
anisotropically deformed cosmological spacetimes and various type of locally anisotropic
spinor–soliton–dialton interactions in generalized Kaluza–Klein and string/ brane grav-
ity.
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Teleparallel spaces

Teleparallel theories are usually defined by two geometrical constraints [9] (here, we
introduce them for d–connections and nonvanishing N–connection structure),

Rα
β = δΓα

β + Γα
γ ∧ Γγ

β = 0 (1.80)

and
Qαβ = −Dgαβ = −δgαβ + Γγ

βgαγ + Γγ
αgβγ = 0. (1.81)

The conditions (1.80) and (1.81) establish a distant paralellism in such spaces because
the result of a parallel transport of a vector does not depend on the path (the angles
and lengths being also preserved under parallel transports). It is always possible to find

such anholonomic transforms eα = A
β
α eβ and eα = A β

α eβ, where A β
α is inverse to A

β
α

when
Γα

β → Γ
α
β = A β

β Γα
βA

α
α + AαγδA

γ
β = 0

and the transformed local metrics becomes the standard Minkowski,

gαβ = diag (−1,+1, ....,+1)

(it can be fixed any signature). If the (co) frame is considered as the only dynamical
variable, it is called that the space (and choice of gauge) are of Weitzenbock type. A
coframe of type (1.22)

ϑβ +
(
δxi = dxi, δya = dya +Na

i (u) dxi
)

is defined by N–connection coefficients. If we impose the condition of vanishing the
N–connection curvature, Ωa

ij = 0, see (1.20), the N–connection defines a specific an-
holonomic dynamics because of nontrivial anholonomic relations (1.23) with nonzero
components (1.24).

By embedding teleparallel configurations into metric–affine spaces provided with N–
connection structure we state a distinguished class of (co) frame fields adapted to this
structure and open possibilities to include such spaces into Finsler–affine ones, see section
1.4.2. For vielbein fields e α

α and their inverses eαα related to the d–metric (1.33),

gαβ = e α
α e

β

β gαβ

we define the Weitzenbock d–connection

[W ]Γα
βγ = eααδγe

α
β , (1.82)
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where δγ is the N–elongated partial derivative (1.21). It transforms in the usual Weitzen-
bock connection for trivial N–connections. The torsion of [W ]Γα

βγ is defined

[W ]Tα
βγ = [W ]Γα

βγ − [W ]Γα
γβ. (1.83)

It posses h– and v–irreducible components constructed from the components of a d–
metric and N–adapted frames. We can express

[W ]Γα
βγ = Γα

▽ βγ + Zα
βγ

where Γα
▽ βγ is the Levi–Civita connection (1.53) and the contorsion tensor is

Zαβ = eβ⌋ [W ]Tα−eα⌋ [W ]Tβ+
1

2

(
eα⌋eβ⌋ [W ]Tγ

)
ϑγ+(eα⌋Qβγ)ϑ

γ−(eβ⌋Qαγ)ϑ
γ+

1

2
Qαβ .

In formulation of teleparallel alternatives to the general relativity it is considered that
Qαβ = 0.

1.4.2 Finsler and Finsler–Riemann–Cartan spaces

The first approaches to Finsler spaces [15, 16] were developed by generalizing the
usual Riemannian metric interval

ds =
√
gij (x) dxidxj

on a manifold M of dimension n into a nonlinear one

ds = F
(
xi, dxj

)
(1.84)

defined by the Finsler metric F (fundamental function) on T̃M = TM\{0} (it should
be noted an ambiguity in terminology used in monographs on Finsler geometry and on
gravity theories with respect to such terms as Minkowski space, metric function and so
on). It is also considered a quadratic form on IR2 with coefficients

g
[F ]
ij → hab =

1

2

∂2F 2

∂yi∂yj
(1.85)

defining a positive definite matrix. The local coordinates are denoted uα = (xi, ya → yi).
There are satisfied the conditions: 1) The Finsler metric on a real manifold M is a

function F : TM → IR which on T̃M = TM\{0} is of class C∞ and F is only
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continuous on the image of the null cross–sections in the tangent bundle to M. 2)

F (x, χy) = χF (x, y) for every IR∗
+. 3) The restriction of F to T̃M is a positive function.

4) rank
[
g

[F ]
ij (x, y)

]
= n.

There were elaborated a number of models of locally anisotropic spacetime geometry
with broken local Lorentz invariance (see, for instance, those based on Finsler geome-
tries [17, 19]). In result, in the Ref. [51], it was ambiguously concluded that Finsler
gravity models are very restricted by experimental data. Recently, the subject concern-
ing Lorentz symmetry violations was revived for instance in brane gravity [52] (see a
detailed analysis and references on such theoretical and experimental researches in [53]).
In this case, the Finsler like geometries broking the local four dimensional Lorentz in-
variance can be considered as a possible alternative direction for investigating physical
models both with local anisotropy and violation of local spacetime symmetries. But it
should be noted here that violations of postulates of general relativity is not a generic
property of the so–called ”Finsler gravity”. A subclass of Finsler geometries and their
generalizations could be induced by anholonomic frames even in general relativity theory
and Riemannian–Cartan or gauge gravity [25, 36, 37, 24]. The idea is that instead of
geometric constructions based on straightforward applications of derivatives of (1.85),
following from a nonlinear interval (1.84), we should consider d–metrics (1.33) with the
coefficients from Finsler geometry (1.85) or their extended variants. In this case, cer-
tain type Finsler configurations can be defined even as exact ’off–diagonal’ solutions in
vacuum Einstein gravity or in string gravity.

Finsler geometry and its almost Kahlerian model

We outline a modern approach to Finsler geometry [14] based on the geometry of
nonlinear connections in tangent bundles.

A real (commutative) Finsler space Fn = (M,F (x, y)) can be modelled on a tangent

bundle TM enabled with a Finsler metric F (xi, yj) and a quadratic form g
[F ]
ij (1.85)

satisfying the mentioned conditions and defining the Christoffel symbols (not those from
the usual Riemannian geometry)

cιjk(x, y) =
1

2
gih
(
∂jg

[F ]
hk + ∂kg

[F ]
jh − ∂hg

[F ]
jk

)
,

where ∂j = ∂/∂xj , and the Cartan nonlinear connection

[F ]Ni
j(x, y) =

1

4

∂

∂yj
[
cιlk(x, y)y

lyk
]
, (1.86)
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where we do not distinguish the v- and h- indices taking on TM the same values.
In Finsler geometry, there were investigated different classes of remarkable Finsler

linear connections introduced by Cartan, Berwald, Matsumoto and other geometers (see

details in Refs. [15, 17, 16]). Here we note that we can introduce g
[F ]
ij = gab and

[F ]Ni
j(x, y) in (1.34) and transfer our considerations to a (n× n)⊕ (n× n) blocks of type

(1.33) for a metric–affine space V n+n.
A usual Finsler space Fn = (M,F (x, y)) is completely defined by its fundamental

tensor g
[F ]
ij (x, y) and the Cartan nonlinear connection [F ]Ni

j(x, y) and any chosen d–
connection structure (1.26) (see details on different type of d–connections in section
1.3). Additionally, the N–connection allows us to define an almost complex structure I
on TM as follows

I (δi) = −∂/∂yi and I
(
∂/∂yi

)
= δi

for which I2 = −1.
The pair

(
g[F ], I

)
consisting from a Riemannian metric on a tangent bundle TM,

g[F ] = g
[F ]
ij (x, y)dxi ⊗ dxj + g

[F ]
ij (x, y)δyi ⊗ δyj (1.87)

and the almost complex structure I defines an almost Hermitian structure on T̃M asso-
ciated to a 2–form

θ = g
[F ]
ij (x, y)δyi ∧ dxj .

This model of Finsler geometry is called almost Hermitian and denoted H2n and it is
proven [14] that is almost Kahlerian, i. e. the form θ is closed. The almost Kahlerian

space K2n =
(
T̃M, g[F ], I

)
is also called the almost Kahlerian model of the Finsler space

F n.
On Finsler spaces (and their almost Kahlerian models), one distinguishes the almost

Kahler linear connection of Finsler type, D[I] on T̃M with the property that this covariant
derivation preserves by parallelism the vertical distribution and is compatible with the
almost Kahler structure

(
g[F ], I

)
, i.e.

D
[I]
X g[F ] = 0 and D

[I]
X I = 0

for every d–vector field on T̃M. This d–connection is defined by the data

[F ]Γ̂α
βγ =

(
[F ]L̂ijk,

[F ]L̂ijk,
[F ]Ĉi

jk,
[F ]Ĉi

jk

)
(1.88)

with [F ]L̂ijk and [F ]Ĉi
jk computed by similar formulas in (1.56) by using g

[F ]
ij as in (1.85)

and [F ]N i
j from (1.86).



1.4. GENERALIZED FINSLER–AFFINE SPACES 47

We emphasize that a Finsler space Fn with a d–metric (1.87) and Cartan’s N–
connection structure (1.86), or the corresponding almost Hermitian (Kahler) model H2n,
can be equivalently modelled on a space of dimension 2n, Vn+n, provided with an off–
diagonal metric (1.34) and anholonomic frame structure with associated Cartan’s non-
linear connection. Such anholonomic frame constructions are similar to modelling of the
Einstein–Cartan geometry on (pseudo) Riemannian spaces where the torsion is consid-
ered as an effective tensor field. From this viewpoint a Finsler geometry is a Riemannian–
Cartan geometry defined on a tangent bundle provided with a respective off–diagonal
metric (and a related anholonomic frame structure with associated N–connection) and
with additional prescriptions with respect to the type of linear connection chosen to be
compatible with the metric and N–connection structures.

Finsler–Kaluza–Klein spaces

In Ref. [37] we defined a ’locally anisotropic’ toroidal compactification of the 10 di-
mensional heterotic string sction [54]. We consider here the corresponding anholonomic
frame transforms and off–diagonal metric ansatz. Let (n′, m′) be the (holonomic, an-
holonomic) dimensions of the compactified spacetime (as a particular case we can state
n′ +m′ = 4, or any integers n′ +m′ < 10, for instance, for brane configurations). There
are used such parametrizations of indices and of vierbeinds: Greek indices α, β, ...µ...

run values for a 10 dimensional spacetime and split as α = (α′, α̂) , β =
(
β ′, β̂

)
, ... when

primed indices α′, β ′, ...µ′... run values for compactified spacetime and split into h- and
v–components like α′ = (i′, a′) , β ′ = (j′, b′) , ...; the frame coefficients are split as

e
µ
µ (u) =

(
e α′

α′ (uβ
′

) Aα̂α′(uβ
′

)e α̂
α̂ (uβ

′

)

0 e α̂
α̂ (uβ

′

)

)
(1.89)

where e
α′

α′ (uβ
′

), in their turn, are taken in the form (1.16),

e
α′

α′ (uβ
′

) =

(
e
i′

i′ (xj
′

, ya
′

) Na′

i′ (xj
′

, ya
′

)e
a′

a′ (xj
′

, ya
′

)

0 e a′

a′ (xj
′

, ya
′

)

)
. (1.90)

For the metric
g = g

αβ
duα ⊗ duβ (1.91)

we have the recurrent ansatz

g
αβ

=

[
gα′β′(uβ

′

) + Aα̂α′(uβ
′

)Aβ̂β′(uβ
′

)hα̂β̂(u
β′

) hα̂β̂(u
β′

)Aα̂α′(uβ
′

)

hα̂β̂(u
β′

)Aβ̂β′(uβ
′

) hα̂β̂(u
β′

)

]
, (1.92)
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where

gα′β′ =

[
gi′j′(u

β′

) +Na′

i′ (uβ
′

)N b′

j′ (u
β′

)ha′b′(u
β′

) ha′b′(u
β′

)Na′

i′ (uβ
′

)

ha′b′(u
β′

)N b′

j′ (u
β′

) ha′b′(u
β′

)

]
. (1.93)

After a toroidal compactification on uα̂ with gauge fields Aα̂α′(uβ
′

), generated by the
frame transform (1.89), we obtain a metric (1.91) like in the usual Kaluza–Klein the-
ory (1.79) but containing the values gα′β′(uβ

′

), defined as in (1.93) (in a generic off–
diagonal form similar to (1.34), labelled by primed indices), which can be induced as

in Finsler geometry. This is possible if gi′j′(u
β′

), ha′b′(u
β′

)→ g
[F ]
i′j′(x

′, y′) (see (1.85)) and

Na′

i′ (uβ
′

) → N
[F ]i′

j′ (x′, y′) (see (1.86)) inducing a Finsler space with ”primed” labels for
objects. Such locally anisotropic spacetimes (in this case we emphasized the Finsler
structures) can be generated anisotropic toroidal compactifications from different mod-
els of higher dimension of gravity (string, brane, or usual Kaluza–Klein theories). They
define a mixed variant of Finsler and Kaluza–Klein spaces.

By using the recurrent ansatz (1.92) and (1.93), we can generate both nontrivial
nonmetricity and prescribed torsion structures adapted to a corresponding N–connection
Na′

i′ . For instance, (after topological compactification on higher dimension) we can pre-
scribe in the lower dimensional spacetime certain torsion fields T k

′

i′j′ and T a
′

b′c′ (they
could have a particular relation to the so called B–fields in string theory, or connected
to other models). The next steps are to compute τk

′

i′j′ and τa
′

b′c′ by using formulas (1.65)
and define

[Bτ ]Γγ′

α′β′ =

(
Li

′

j′k′ = L̂i
′

j′k′ + τ i
′

j′k′, L
a′

.b′k′ =
∂Na′

k′

∂yb′
, Ci′

.j′a′ = 0, Ca′

b′c′ = Ĉa′

b′c′ + τa
′

b′c′

)

(1.94)

as in (1.64) (all formulas being with primed indices and L̂i
′

j′k′ and Ĉa′

b′c′ defined as in
(1.56)). This way we can generate from Kaluza–Klein/ string theory a Berwald spacetime
with nontrivial N–adapted nonmetricity

[Bτ ]Qα′β′γ′ = [Bτ ]Dgβ′γ′ =
(
[Bτ ]Qc′i′j′,

[Bτ ]Qi′a′b′
)

and torsions [Bτ ]Tα′

β′γ′ with h- and v– irreducible components

T i
′

.j′k′ = −T i′k′j′ = Li
′

j′k′ − Li
′

k′j′, T i
′

j′a′ = −T i′a′j′ = Ci′

.j′a′ , T
a′

.i′j′ =
δNa′

i′

δxj′
−
δNa′

j′

δxi′
,

T a
′

.b′i′ = −T a′.i′b′ =
∂Na′

i′

∂yb′
− La′.b′j′, T a

′

.b′c′ = −T a′.c′b′ = Ca′

b′c′ − Ca′

c′b′ . (1.95)
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defined by the h- and v–coefficients of (1.94).
We conclude that if toroidal compactifications are locally anisotropic, defined by a

chain of ansatz containing N–connection, the lower dimensional spacetime can be not
only with torsion structure (like in low energy limit of string theory) but also with
nonmetricity. The anholonomy induced by N–connection gives the possibility to define
a more wide class of linear connections adapted to the h- and v–splitting.

Finsler–Riemann–Cartan spaces

Such spacetimes are modelled as Riemann–Cartan geometries on a tangent bundle
TM when the metric and anholonomic frame structures distinguished to be of Finsler
type (1.87). Both Finsler and Riemann–Cartan spaces possess nontrivial torsion struc-
tures (see section 1.2.4 for details on definition and computation torsions of locally
anisotropic spaces and Refs. [38] for a review of the Einstein–Cartan gravity). The
fundamental geometric objects defining Finsler–Riemann–Cartan spaces consists in the

triple
(
g[F ], ϑα[F ],Γ

γ
[F ]αβ

)
where g[F ] is a d–metric (1.87),

ϑα[F ] =
(
dxi, δyj = dyj +N j

[F ]k

(
xl, ys

)
dxk
)

with N j
[F ]k

(
xl, ys

)
of type (1.86) and Γγ

[F ]αβ is an arbitrary d–connection (1.26) on TM

(we put the label [F] emphasizing that the N–connection is a Finsler type one). The tor-
sion Tα

[F ] and curvature Rα
[F ]β d–forms are computed following respectively the formulas

(1.41) and (1.42) but for ϑα[F ] and Γγ
[F ]αβ.

We can consider an inverse modelling of geometries when (roughly speaking) the
Finsler configurations are ’hidden’ in Riemann–Cartan spaces. They can be distinguished
for arbitrary Riemann–Cartan manifolds V n+n with coventional split into ”horizontal”
and ”vertical” subspaces and provided with a metric ansatz of type (1.87) and with pre-
scribed procedure of adapting the geometric objects to the Cartan N–connectionN j

[F ]k.Of
course, the torsion can not be an arbitrary one but admitting irreducible decompositions
with respect to N–frames e

[F ]
α and N–coframes ϑα[F ] (see, respectively, the formulas (1.21)

and (1.22) when Na
i → N j

[F ]i). There were constructed and investigated different classes
of exact solutions of the Einstein equations with anholonomic variables characterized
by anholonomically induced torsions and modelling Finsler like geometries in (pseudo)
Riemannian and Riemann–Cartan spaces (see Refs. [34, 35, 25]). All constructions from
Finsler–Riemann–Cartan geometry reduce to Finsler–Riemann configurations (in gen-
eral, we can see metrics of arbitrary signatures) if Γγ

[F ]αβ is changed into the Levi–Civita
metric connection defined with respect to anholonomic frames eα and coframes ϑα when
the N–connection curvature Ωi

jk and the anholonomically induced torsion vanish.
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Teleparallel generalized Finsler geometry

In Refs. [55] the teleparallel Finsler connections, the Cartan–Einstein unification
in the teleparallel approach and related moving frames with Finsler structures were
investigated. In our analysis of teleparallel geometry we heavily use the results on N–
connection geometry in order to illustrate how the teleparallel and metric affine grav-
ity [9] can defined as to include generalized Finsler structures. For a general metric–
affine spaces admitting N–connection structure Na

i , the curvature Rα
.βγτ of an arbitrary

d–connection Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
splits into h– and v–irreversible components,

Rα
.βγτ = (Ri

hjk, R
a
bjk, P

i
jka, P

c
bka, S

i
jbc, S

a
bcd), see (1.48). In order to include Finsler like

metrics, we state that the N–connection curvature can be nontrivial Ωa
jk 6= 0, which is

quite different from the condition imposed in section 1.4.1. The condition of vanishing
of curvature for teleparallel spaces, see (1.80), is to be stated separately for every h-
v–irreversible component,

Ri
hjk = 0, Ra

bjk = 0, P i
jka = 0, P c

bka = 0, Sijbc = 0, Sabcd = 0.

We can define certain types of teleparallel Berwald connections (see sections 1.3.4 and
1.3.4) with certain nontrivial components of nonmetricity d–field (1.63) if we modify the
metric compatibility conditions (1.81) into a less strong one when

Qkij = −Dkgij = 0 and Qabc = −Dahbc = 0

but with nontrivial components

Qαβγ = (Qcij = −Dcgij, Qiab = −Dihab) .

The class of teleparallel Finsler spaces is distinguished by Finsler N–connection and d–

connection [F ]Ni
j(x, y) and [F ]Γ̂α

βγ =
(

[F ]L̂ijk,
[F ]L̂ijk,

[F ]Ĉi
jk,

[F ]Ĉi
jk

)
, see, respectively,

(1.86) and (1.88) with vanishing d–curvature components,

[F ]Ri
hjk = 0, [F ]P i

jka = 0, [F ]Sijbc = 0.

We can generate teleparallel Finsler affine structures if it is not imposed the condition
of vanishing of nonmetricity d–field. In this case, there are considered arbitrary d–
connections Dα that for the induced Finsler quadratic form (1.87) g[F ]

[F ]Qαβγ = −Dαg
[F ] 6= 0

but Rα
.βγτ (D) = 0.
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The teleparallel–Finsler configurations are contained as particular cases of Finsler–
affine spaces, see section 1.4.2. For vielbein fields e α

α and their inverses eαα related to
the d–metric (1.87),

g
[F ]
αβ = ẽ α

α ẽ
β

β gαβ

we define the Weitzenbock–Finsler d–connection

[WF ]Γα
βγ = ẽααδγ ẽ

α
β (1.96)

where δγ are the elongated by [F ]Ni
j(x, y) partial derivatives (1.21). The torsion of

[WF ]Γα
βγ is defined

[WF ]Tα
βγ = [WF ]Γα

βγ − [WF ]Γα
γβ (1.97)

containing h– and v–irreducible components being constructed from the components of
a d–metric and N–adapted frames. We can express

[WF ]Γα
βγ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ

where Γα
▽ βγ is the Levi–Civita connection (1.53), Ẑα

βγ =[F ] Γ̂α
βγ − Γα

▽ βγ , and the
contorsion tensor is

Zαβ = eβ⌋ [W ]Tα−eα⌋ [W ]Tβ+
1

2

(
eα⌋eβ⌋ [W ]Tγ

)
ϑγ+(eα⌋Qβγ)ϑ

γ−(eβ⌋Qαγ)ϑ
γ+

1

2
Qαβ.

In the non-Berwald standard approaches to the Finsler–teleparallel gravity it is consid-
ered that Qαβ = 0.

Cartan geometry

The theory of Cartan spaces (see, for instance, [16, 56]) can be reformulated as a
dual to Finsler geometry [58] (see details and references in [20]). The Cartan space is
constructed on a cotangent bundle T ∗M similarly to the Finsler space on the tangent
bundle TM.

Consider a real smooth manifold M, the cotangent bundle (T ∗M,π∗,M) and the

manifold T̃ ∗M = T ∗M\{0}.

Definition 1.4.18. A Cartan space is a pair Cn = (M,K(x, p)) such that K : T ∗M →
IR is a scalar function satisfying the following conditions:

1. K is a differentiable function on the manifold T̃ ∗M = T ∗M\{0} and continuous
on the null section of the projection π∗ : T ∗M → M ;
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2. K is a positive function, homogeneous on the fibers of the T ∗M, i. e. K(x, λp) =
λF (x, p), λ ∈ IR;

3. The Hessian of K2 with elements

ǧij[K](x, p) =
1

2

∂2K2

∂pi∂pj
(1.98)

is positively defined on T̃ ∗M.

The function K(x, y) and ǧij(x, p) are called respectively the fundamental function
and the fundamental (or metric) tensor of the Cartan space Cn. We use symbols like ”ǧ”
as to emphasize that the geometrical objects are defined on a dual space.

One considers ”anisotropic” (depending on directions, momenta, pi) Christoffel sym-

bols. For simplicity, we write the inverse to (1.98) as g
(K)
ij = ǧij and introduce the

coefficients

γ̌ijk(x, p) =
1

2
ǧir
(
∂ǧrk
∂xj

+
∂ǧjr
∂xk
− ∂ǧjk
∂xr

)
,

defining the canonical N–connection Ň = {Ňij},

Ň
[K]
ij = γ̌kijpk −

1

2
γknlpkp

l∂̆nǧij (1.99)

where ∂̆n = ∂/∂pn. The N–connection Ň = {Ňij} can be used for definition of an almost
complex structure like in (1.87) and introducing on T ∗M a d–metric

Ǧ[k] = ǧij(x, p)dx
i ⊗ dxj + ǧij(x, p)δpi ⊗ δpj, (1.100)

with ǧij(x, p) taken as (1.98).
Using the canonical N–connection (1.99) and Finsler metric tensor (1.98) (or, equiv-

alently, the d–metric (1.100)), we can define the canonical d–connection Ď = {Γ̌
(
Ň[k]

)
}

Γ̌
(
Ň[k]

)
= Γ̌α[k]βγ =

(
Ȟ i

[k] jk, Ȟ
i
[k] jk, Č

jk
[k] i , Č

jk
[k] i

)

with the coefficients computed

Ȟ i
[k] jk =

1

2
ǧir
(
δ̌j ǧrk + δ̌kǧjr − δ̌rǧjk

)
, Č jk

[k] i = ǧis∂̆
sǧjk.

The d–connection Γ̌
(
Ň(k)

)
satisfies the metricity conditions both for the horizontal and

vertical components, i. e. Ďαǧβγ = 0.



1.4. GENERALIZED FINSLER–AFFINE SPACES 53

The d–torsions (1.95) and d–curvatures (1.48) are computed like in Finsler geometry
but starting from the coefficients in (1.99) and (1.100), when the indices a, b, c... run the
same values as indices i, j, k, ... and the geometrical objects are modelled as on the dual
tangent bundle. It should be emphasized that in this case all values ǧij, Γ̌

α
[k]βγ and Ř.α

[k]βγδ

are defined by a fundamental function K (x, p) .
In general, we can consider that a Cartan space is provided with a metric ǧij =

∂2K2/2∂pi∂pj , but the N–connection and d–connection could be defined in a different
manner, even not be determined by K. If a Cartan space is modelled in a metric–affine
space V n+n, with local coordinates

(
xi, yk

)
, we have to define a procedure of dualization

of vertical coordinates, yk → pk.

1.4.3 Generalized Lagrange and Hamilton geometries

The notion of Finsler spaces was extended by J. Kern [57] and R. Miron [60]. It
is was elaborated in vector bundle spaces in Refs. [14] and generalized to superspaces
[23]. We illustrate how such geometries can be modelled on a space Vn+n provided with
N–connection structure.

Lagrange geometry and generalizations

The idea of generalization of the Finsler geometry was to consider instead of the
homogeneous fundamental function F (x, y) in a Finsler space a more general one, a
Lagrangian L (x, y), defined as a differentiable mapping L : (x, y) ∈ TV n+n → L(x, y) ∈
IR, of class C∞ on manifold T̃ V

n+n
and continuous on the null section 0 : V n → T̃ V

n+n

of the projection π : T̃ V
n+n → V n. A Lagrangian is regular if it is differentiable and the

Hessian

g
[L]
ij (x, y) =

1

2

∂2L2

∂yi∂yj
(1.101)

is of rank n on V n.

Definition 1.4.19. A Lagrange space is a pair Ln = (V n, L(x, y)) where V n is a smooth
real n–dimensional manifold provided with regular Lagrangian L(x, y) structure L :
TV n → IR for which gij(x, y) from (1.101) has a constant signature over the manifold

T̃ V
n+n

.

The fundamental Lagrange function L(x, y) defines a canonical N–connection

[cL]N i
j =

1

2

∂

∂yj

[
gik
(

∂2L2

∂yk∂yh
yh − ∂L

∂xk

)]
(1.102)
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as well a d-metric

g[L] = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj, (1.103)

with gij(x, y) taken as (1.101). As well we can introduce an almost Kählerian structure
and an almost Hermitian model of Ln, denoted as H2n as in the case of Finsler spaces
but with a proper fundamental Lagrange function and metric tensor gij . The canonical

metric d–connection D̂[L] is defined by the coefficients

[L]Γ̂α
βγ =

(
[L]L̂i jk,

[L]L̂i jk,
[L]Ĉi

jk,
[L]Ĉi

jk

)
(1.104)

computed for N i
[cL] j and by respective formulas (1.56) with hab → g

[L]
ij and Ĉa

bc → Ĉi
ij .

The d–torsions (1.95) and d–curvatures (1.48) are determined, in this case, by [L]L̂i jk
and [L]Ĉi

jk. We also note that instead of [cL]N i
j and [L]Γ̂α

βγ we can consider on a
Ln–space different N–connections N i

j, d–connections Γα
βγ which are not defined only by

L(x, y) and g
[L]
ij but can be metric, or non–metric with respect to the Lagrange metric.

The next step of generalization [60] is to consider an arbitrary metric gij (x, y) on
TVn+n (we use boldface symbols in order to emphasize that the space is enabled with
N–connection structure) instead of (1.101) which is the second derivative of ”anisotropic”
coordinates yi of a Lagrangian.

Definition 1.4.20. A generalized Lagrange space is a pair GLn = (V n, gij(x, y)) where
gij(x, y) is a covariant, symmetric and N–adapted d–tensor field of rank n and of constant

signature on T̃ V
n+n

.

One can consider different classes of N– and d–connections on TV n+n, which are
compatible (metric) or non compatible with (1.103) for arbitrary gij(x, y) and arbitrary
d–metric

g[gL] = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj, (1.105)

We can apply all formulas for d–connections, N–curvatures, d–torsions and d–curvatures
as in sections 1.2.3 and 1.2.4 but reconsidering them on TVn+n, by changing

hab → gij(x, y), Ĉ
a
bc → Ĉi

ij and Na
i → Nk

i.

Prescribed torsions T ijk and Sijk can be introduced on GLn by using the d–connection

Γ̂α
βγ =

(
L̂i[gL] jk + τ ijk, L̂

i
[gL] jk + τ ijk, Ĉ

i
[gL] jk + σijk, Ĉ

i
[gL] jk + σijk

)
(1.106)
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with

τ ijk =
1

2
gil
(
gkhT

h
.lj + gjhT

h
.lk − glhT hjk

)
and σijk =

1

2
gil
(
gkhS

h
.lj + gjhS

h
.lk − glhShjk

)

like we have performed for the Berwald connections (1.64) with (1.65) and (1.94) but in
our case

[aL]Γ̂α
βγ =

(
L̂i[gL] jk, L̂

i
[gL] jk, Ĉ

i
[gL] jk, Ĉ

i
[gL] jk

)
(1.107)

is metric compatible being modelled like on a tangent bundle and with the coefficients
computed as in (1.56) with hab → g

[L]
ij and Ĉa

bc → Ĉi
ij , by using the d–metric G[gL]

(1.105). The connection (1.106) is a Riemann–Cartan one modelled on effective tangent
bundle provided with N–connection structure.

Hamilton geometry and generalizations

The geometry of Hamilton spaces was defined and investigated by R. Miron in the
papers [59] (see details and additional references in [20]). It was developed on the
cotangent bundle as a dual geometry to the geometry of Lagrange spaces. Here we
consider their modelling on couples of spaces (V n, ∗V n) , or cotangent bundle T ∗M,
where ∗V n is considered as a ’dual’ manifold defined by local coordinates satisfying
a duality condition with respect to coordinates on V n. We start with the definition of
generalized Hamilton spaces and then consider the particular cases.

Definition 1.4.21. A generalized Hamilton space is a pair GHn = (V n, ǧij(x, p)) where
V n is a real n–dimensional manifold and ǧij(x, p) is a contravariant, symmetric, nonde-

generate of rank n and of constant signature on T̃ ∗V
n+n

.

The value ǧij(x, p) is called the fundamental (or metric) tensor of the space GHn. One
can define such values for every paracompact manifold V n. In general, a N–connection
on GHn is not determined by ǧij. Therefore we can consider an arbitrary N–connection
Ň = {Ňij (x, p)} and define on T ∗V n+n a d–metric similarly to (1.33) and/or (1.103)

˘G[gH] = ğαβ (ŭ) δ̆α ⊗ δ̆β = ğij (ŭ) di ⊗ dj + ǧij (ŭ) δ̆i ⊗ δ̆j, (1.108)

The N–coefficients Ňij (x, p) and the d–metric structure (1.108) define an almost Kähler
model of generalized Hamilton spaces provided with canonical d–connections, d–torsions
and d-curvatures (see respectively the formulas d–torsions (1.95) and d–curvatures (1.48)
with the fiber coefficients redefined for the cotangent bundle T ∗V n+n).
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A generalized Hamilton space GHn is called reducible to a Hamilton one if there
exists a Hamilton function H (x, p) on T ∗V n+n such that

ǧij[H](x, p) =
1

2

∂2H

∂pi∂pj
. (1.109)

Definition 1.4.22. A Hamilton space is a pair Hn = (V n, H(x, p)) such that H :
T ∗V n → IR is a scalar function which satisfy the following conditions:

1. H is a differentiable function on the manifold T̃ ∗V
n+n

= T ∗V n+n\{0} and contin-
uous on the null section of the projection π∗ : T ∗V n+n → V n;

2. The Hessian of H with elements (1.109) is positively defined on T̃ ∗V
n+n

and
ǧij(x, p) is nondegenerate matrix of rank n and of constant signature.

For Hamilton spaces, the canonical N–connection (defined by H and its Hessian) is
introduced as

[H]Ňij =
1

4
{ǧij, H} −

1

2

(
ǧik

∂2H

∂pk∂xj
+ ǧjk

∂2H

∂pk∂xi

)
, (1.110)

where the Poisson brackets, for arbitrary functions f and g on T ∗V n+n, act as

{f, g} =
∂f

∂pi

∂g

∂xi
− ∂g

∂pi

∂p

∂xi
.

The canonical metric d–connection [H]D̂ is defined by the coefficients

[H]Γ̂α
βγ =

(
[c]Ȟ i

jk,
[c]Ȟ i

jk,
[c]Či

jk,
[c]Či

jk

)

computed for [H]Ňij and by respective formulas (1.56) with gij → ğij (ŭ) , hab → ǧij and

L̂i jk → [c]Ĥ i
jk, Ĉ

a
bc → [c]Č jk

i when

[c]Ȟ i
jk =

1

2
ǧis
(
δ̌j ǧsk + δ̌kǧjs − δ̌sǧjk

)
and [c]Č jk

i = −1

2
ǧis∂̌

j ǧsk.

In result, we can compute the d–torsions and d–curvatures like on Lagrange or on Cartan
spaces. On Hamilton spaces all such objects are defined by the Hamilton functionH(x, p)
and indices have to be reconsidered for co–fibers of the cotangent bundle.

We note that there were elaborated various type of higher order generalizations (on
the higher order tangent and contangent bundles) of the Finsler–Cartan and Lagrange–
Hamilton geometry [21] and on higher order supersymmetric (co) vector bundles in
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Ref. [23]. We can generalize the d–connection [H]Γ̂α
βγ to any d–connection in Hn with

prescribed torsions, like we have done in previous section for Lagrange spaces, see (1.106).
This type of Riemann–Cartan geometry is modelled like on a dual tangent bundle by a
Hamilton metric structure (1.109), N–connection [H]Ňij, and d–connection coefficients
[c]Ȟ i

jk and [c]Č jk
i .

1.4.4 Nonmetricity and generalized Finsler–affine spaces

The generalized Lagrange and Finsler geometry may be defined on tangent bundles
by using d–connections and d–metrics satisfying metric compatibility conditions [14].
Nonmetricity components can be induced if Berwald type d–connections are introduced
into consideration on different type of manifolds provided with N–connection structure,
see formulas (1.62), (1.64), (1.70) and (1.94).

We define such spaces as generalized Finsler spaces with nonmetricity.

Definition 1.4.23. A generalized Lagrange–affine space GLan =
(
V n, gij(x, y),

[a]Γα
β

)

is defined on manifold TVn+n, provided with an arbitrary nontrivial N–connection struc-
ture N = {N i

j}, as a general Lagrange space GLn = (V n, gij(x, y)) (see Definition 1.4.20)

enabled with a d–connection structure [a]Γγ
α = [a]Γγ

αβϑ
β distorted by arbitrary torsion,

Tβ, and nonmetricity, Qβγ , d–fields,

[a]Γα
β = [aL]Γ̂α

β + [a] Zα
β, (1.111)

where [L]Γ̂α
β is the canonical generalized Lagrange d–connection (1.107) and

[a] Z αβ = eβ⌋ Tα−eα⌋ Tβ +
1

2
(eα⌋eβ⌋ Tγ)ϑ

γ +(eα⌋ Qβγ)ϑ
γ− (eβ⌋ Qαγ)ϑ

γ +
1

2
Qαβ.

The d–metric structure on GLan is stated by an arbitrary N–adapted form (1.33)
but on TVn+n,

g[a] = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj. (1.112)

The torsions and curvatures on GLan are computed by using formulas (1.41) and
(1.42) with Γγ

β → [a]Γα
β,

[a]Tα + [a]Dϑα = δϑα + [a]Γγ
β ∧ ϑβ (1.113)

and
[a]Rα

β + [a]D( [a]Γα
β) = δ( [a]Γα

β)− [a]Γγ
β ∧ [a]Γα

γ. (1.114)
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Modelling in V n+n, with local coordinates uα =
(
xi, yk

)
, a tangent bundle structure, we

redefine the operators (1.22) and (1.21) respectively as

eα + δα =
(
δi, ∂̃k

)
≡ δ

δuα
=

(
δ

δxi
= ∂i −Na

i (u) ∂a,
∂

∂yk

)
(1.115)

and the N–elongated differentials (in brief, N–differentials)

ϑβ + δ β =
(
di, δ̃k

)
≡ δuα =

(
δxi = dxi, δyk = dyk +Nk

i (u) dxi
)

(1.116)

where Greek indices run the same values, i, j, ... = 1, 2, ...n (we shall use the symbol ”∼”
if one would be necessary to distinguish operators and coordinates defined on h– and v–
subspaces).

Let us define the h– and v–irreducible components of the d–connection [a]Γα
β like in

(1.27) and (1.28),

[a]Γ̂α
βγ =

(
[L]L̂i jk + zijk,

[L]L̂i jk + zijk,
[L]Ĉi

jk + ci jk,
[L]Ĉi

jk + ci jk

)

with the distorsion d–tensor

[a] Zα
β =

(
zijk, z

i
jk, c

i
jk, c

i
jk

)

defined as on a tangent bundle

[a]Lijk =
(
[a]Dδkδj

)
⌋δi =

(
[L]D̂δkδj + [a] Zδkδj

)
⌋δi = [L]L̂i jk + zijk,

[a]L̃ijk =
(

[a]Dδk ∂̃j

)
⌋∂̃i =

(
[L]D̂k∂̃j + [a] Zk∂̃j

)
⌋∂̃i = [L]L̂i jk + zijk,

[a]Ci
jk =

(
[a]D∂̃k

δj
)
⌋δi =

(
[L]D̂∂̃k

δj + [a] Z∂̃k
δj

)
⌋δi = [L]Ĉi

jk + ci jk,

[a]C̃i
jk =

(
[a]D∂̃k

∂̃j

)
⌋∂̃i =

(
[L]D̂∂̃k

∂̃j + [a] Z∂̃k
∂̃j

)
⌋∂̃i = [L]Ĉi

jk + ci jk,

where for ’lifts’ from the h–subspace to the v–subspace we consider that [a]Lijk = [a]L̃ijk
and [a]Ci

jk = [a]C̃i
jk. As a consequence, on spaces with modelled tangent space structure,

the d–connections are distinguished as Γα
βγ =

(
Lijk, C

i
jk

)
.

Theorem 1.4.8. The torsion [a]Tα (1.113) of a d–connection [a]Γα
β =

(
[a]Lijk,

[a]Ci
jc

)

(1.111) has as irreducible h- v–components, [a]Tα =
(
T ijk, T̃

i
jk

)
, the d–torsions

T i.jk = −T ikj = [L]L̂i jk + zijk − [L]L̂i kj − zikj, (1.117)

T̃ ijk = − T̃ ikj = [L]Ĉi
jk + ci jk − [L]Ĉi

kj − ci kj.
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The proof of this Theorem consists from a standard calculus for metric–affine spaces
of [a]Tα [4] but with N–adapted frames. We note that in zijk and cikj it is possible to
include any prescribed values of the d–torsions.

Theorem 1.4.9. The curvature [a]Rα
β (1.114) of a d–connection

[a]Γα
β =

(
[a]Lijk,

[a]Ci
jc

)
(1.111) has the h- v–components (d–curvatures),

[a]Rα
.βγτ = { [a]Ri

hjk,
[a]P i

jka,
[a]Sijbc},

[a]Ri
hjk =

δ [a]Li.hj
δxh

− δ [a]Li.hk
δxj

+ [a]Lm.hj
[a]Limk − [a]Lm.hk

[a]Limj − [a]Ci
.hoΩ

o
.jk,

[a]P i
jks =

∂ [a]Li.jk
∂ys

−
(
∂ [a]Ci

.js

∂xk
+ [a]Li.lk

[a]C l
.js − [a]Ll.jk

[a]Ci
.ls − [a]Lp.sk

[a]Ci
.jp

)

+ [a]Ci
.jp

[a]P p
.ks,

[a]Sijlm =
∂ [a]Ci

.jl

∂ym
− ∂ [a]Ci

.jm

∂yl
+ [a]Ch

.jl
[a]Ci

.hm − [a]Ch
.jm

[a]Ci
hl,

where [a]Lm.hk = [L]L̂i jk + zijk,
[a]Ci

.jk = [L]Ĉi
jk + ci jk, Ωo

.jk = δjN
o
i − δiNo

j and [a]P p
.ks =

∂Np
i /∂y

s − [a]Lp.ks.

The proof consists from a straightforward calculus.

Remark 1.4.3. As a particular case of GLan, we can define a Lagrange–affine space

Lan =
(
V n, g

[L]
ij (x, y), [b]Γα

β

)
, provided with a Lagrange quadratic form g

[L]
ij (x, y) (1.101)

inducing the canonical N–connection structure [cL]N = { [cL]N i
j} (1.102) as in a Lagrange

space Ln = (V n, gij(x, y)) (see Definition 1.4.19)) but with a d–connection structure
[b]Γγ

α = [b]Γγ
αβϑ

β distorted by arbitrary torsion, Tβ , and nonmetricity, Qβγ , d–fields,

[b]Γα
β = [L]Γ̂α

β + [b] Zα
β,

where [L]Γ̂α
β is the canonical Lagrange d–connection (1.104),

[b] Zα
β = eβ⌋ Tα−eα⌋ Tβ +

1

2
(eα⌋eβ⌋ Tγ)ϑ

γ +(eα⌋ Qβγ)ϑ
γ − (eβ⌋ Qαγ)ϑ

γ +
1

2
Qαβ,

and the (co) frames eβ and ϑγ are respectively constructed as in (1.21) and (1.22) by
using [cL]N i

j .
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Remark 1.4.4. The Finsler–affine spaces Fan =
(
V n, F (x, y) , [f ]Γα

β

)
can be introduced

by further restrictions of Lan to a quadratic form g
[F ]
ij (1.85) constructed from a Finsler

metric F (xi, yj) inducing the canonical N–connection structure [F ]N = { [F ]N i
j} (1.86)

as in a Finsler space Fn = (V n, F (x, y)) but with a d–connection structure [f ]Γγ
α =

[f ]Γγ
αβϑ

β distorted by arbitrary torsion, Tβ, and nonmetricity, Qβγ , d–fields,

[f ]Γα
β = [F ]Γ̂α

β + [f ] Zα
β,

where [F ]Γ̂α
β is the canonical Finsler d–connection (1.88),

[f ] Zα
β = eβ⌋ Tα−eα⌋ Tβ +

1

2
(eα⌋eβ⌋ Tγ)ϑ

γ +(eα⌋ Qβγ)ϑ
γ− (eβ⌋ Qαγ)ϑ

γ +
1

2
Qαβ ,

and the (co) frames eβ and ϑγ are respectively constructed as in (1.21) and (1.22) by
using [F ]N i

j .

Remark 1.4.5. By similar geometric constructions (see Remarks 1.4.3 and 1.4.4) on
spaces modelling cotangent bundles, we can define generalized Hamilton–affine spaces
GHan =

(
V n, ǧij(x, p), [a]Γ̌α

β

)
and theirs restrictions to Hamilton–affine

Han = (V n, ǧij[H](x, p),
[b]Γ̌α

β) and Cartan–affine spaces Can =
(
V n, ǧij[K](x, p),

[c]Γ̌α
β

)

(see sections 1.4.3 and 1.4.2) as to contain distorsions induced by nonmetricity Q̌αγ . The
geometric objects have to be adapted to the corresponding N–connection and d–metric/
quadratic form structures (arbitrary Ňij (x, p) and d–metric (1.108), [H]Ňij (x, p) (1.110)

and quadratic form ǧij[H] (1.109) and Ň
[K]
ij (1.99) and ǧij[K] (1.98).

Finally, in this section, we note that Theorems 1.4.8 and 1.4.9 can be reformulated
in the forms stating procedures of computing d–torsions and d–curvatures on every
type of spaces with nonmetricity and local anisotropy by adapting the abstract symbol
and/or coordinate calculations with respect to corresponding N–connection, d–metric
and canonical d–connection structures.

1.5 Conclusions

The method of moving anholonomic frames with associated nonlinear connection (N–
connection) structure elaborated in this work on metric–affine spaces provides a general
framework to deal with any possible model of locally isotropic and/or anisotropic inter-
actions and geometries defined effectively in the presence of generic off–diagonal metric
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and linear connection configurations, in general, subjected to certain anholonomic con-
straints. As it has been pointed out, the metric–affine gravity (MAG) contains various
types of generalized Finsler–Lagrange–Hamilton–Cartan geometries which can be dis-
tinguished by a corresponding N–connection structure and metric and linear connection
adapted to the N–connection structure.

As far as the anholonomic frames, nonmetricity and torsion are considered as fun-
damental quantities, all mentioned geometries can be included into a unique scheme
which can be developed on arbitrary manifolds, vector and tangent bundles and their
dual bundles (co-bundles) or restricted to Riemann–Cartan and (pseudo) Riemannian
spaces. We observe that a generic off–diagonal metric (which can not be diagonalized by
any coordinate transform) defining a (pseudo) Riemannian space induces alternatively
various type of Riemann–Cartan and Finsler like configuratons modelled by respective
frame structures. The constructions are generalized if the linear connection structures
are not constrained to metricity conditions. One can regard this as extensions to metric–
affine spaces provided with N–connection structure modelling also bundle structures and
generalized noncommutative symmetries of metrics and anholonomic frames.

In this paper we have studied the general properties of metric–affine spaces provided
with N–connection structure. We formulated and proved the main theorems concerning
general metric and nonlinear and linear connections in MAG. There were stated the
criteria when the spaces with local isotropy and/or local anisotropy can be modelled
in metric–affine spaces and on vector/ tangent bundles. We elaborated the concept
of generalized Finsler–affine geometry as a unification of metric–affine (with nontrivial
torsion and nonmetricity) and Finsler like spaces (with nontrivial N–connection structure
and locally anisotropic metrics and connections).

In a general sense, we note that the generalized Finsler–affine geometries are con-
tained as anhlonomic and noncommutative configurations in extra dimension gravity
models (string and brane models and certain limits to the Einstein and gauge gravity
defined by off–diagonal metrics and anholonomic constraints). We would like to stress
that the N–connection formalism developed for the metric–affine spaces relates the bulk
geometry in string and/or MAG to gauge theories in vector/tangent bundles and to
various type of non–Riemannian gravity models.

The approach presented here could be advantageous in a triple sense. First, it pro-
vides a uniform treatment of all metric and connection geometries, in general, with
vector/tangent bundle structures which arise in various type of string and brane grav-
ity models. Second, it defines a complete classification of the generalized Finsler–affine
geometries stated in Tables 1-11 from the Appendix. Third, it states a new geometric
method of constructing exact solutions with generic off–diagonal metric ansatz, torsions
and nonmetricity, depending on 2–5 variables, in string and metric–affine gravity, with
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limits to the Einstein gravity, see Refs. [33].

1.6 Appendix: Classification of Generalized Finsler–

Affine Spaces

We outline and give a brief characterization of the main classes of generalized Finsler–
affine spaces (see Tables 1.1–1.11). A unified approach to such very different locally
isotropic and anisotropic geometries, defined in the framework of the metric–affine geom-
etry, can be elaborated only by introducing the concept on N–connection (see Definition
1.2.10).

The N–connection curvature is computed following the formula Ωa
ij = δ[iN

a
j], see

(1.20), for any N–connection Na
i . A d–connection D = [Γα

βγ] = [Li jk, L
a
bk, C

i
jc, C

a
bc] (see

Definition 1.2.11) defines nontrivial d–torsions Tα
βγ = [Li[ jk], C

i
ja,Ω

a
ij, T

a
bj , C

a
[bc]] and

d–curvatures Rα
βγτ = [Ri

jkl, R
a
bkl, P

i
jka, P

c
bka, S

i
jbc, S

a
dbc] adapted to the N–connection

structure (see, respectively, the formulas (1.45) and (1.48)). It is considered that a
generic off–diagonal metric gαβ (see Remark 1.2.1) is associated to a N–connection
structure and reprezented as a d–metric gαβ = [gij, hab] (see formula (1.33)). The
components of a N–connection and a d–metric define the canonical d–connection D =
[Γ̂α

βγ ] = [L̂i jk, L̂
a
bk, Ĉ

i
jc, Ĉ

a
bc] (see (1.56)) with the corresponding values of d–torsions

T̂α
βγ and d–curvatures R̂α

βγτ . The nonmetricity d–fields are computed by using formula
Qαβγ = −Dαgβγ = [Qijk, Qiab, Qajk, Qabc], see (1.35).

1.6.1 Generalized Lagrange–affine spaces

The Table 1.1 outlines seven classes of geometries modelled in the framework of
metric–affine geometry as spaces with nontrivial N–connection structure. There are
emphasized the configurations:

1. Metric–affine spaces (in brief, MA) are those stated by Definition 1.2.9 as certain
manifolds V n+m of necessary smoothly class provided with arbitrary metric, gαβ ,
and linear connection, Γαβγ, structures. For generic off–diagonal metrics, a MA
space always admits nontrivial N–connection structures (see Proposition 1.3.4).
Nevertheless, in general, only the metric field gαβ can be transformed into a d–
metric one gαβ = [gij, hab], but Γαβγ can be not adapted to the N–connection

structure. As a consequence, the general strength fields
(
T αβγ, R

α
βγτ , Qαβγ

)
can be

also not N–adapted. By using the Kawaguchi’s metrization process and Miron’s
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procedure stated by Theorems 1.3.5 and 1.3.6 we can consider alternative geome-
tries with d–connections Γα

βγ (see Definition 1.2.11) derived from the components
of N–connection and d–metric. Such geometries are adapted to the N–connection
structure. They are characterized by d–torsion Tα

βγ , d–curvature Rα
βγτ , and non-

metricity d–field Qαβγ .

2. Distinguished metric–affine spaces (DMA) are defined (see Definition 1.3.17) as
manifolds Vn+m provided with N–connection structure Na

i , d–metric field (1.33)
and arbitrary d–connection Γα

βγ . In this case, all strengths
(
Tα

βγ ,R
α
βγτ ,Qαβγ

)
are

N–adapted.

3. Berwald–affine spaces (BA, see section 1.3.4) are metric–affine spaces provided
with generic off–diagonal metrics with associated N–connection structure and with
a Berwald d–connection [B]D = [ [B]Γα

βγ ] = [L̂i jk, ∂bN
a
k , 0, Ĉ

a
bc], see (1.62), for with

the d–torsions [B]Tα
βγ = [ [B]Li [jk], 0,Ω

a
ij, T

a
bj , C

a
[bc]] and d–curvatures

[B]Rα
βγτ =[B] [Ri

jkl, R
a
bkl, P

i
jka, P

c
bka, S

i
jbc, S

a
dbc]

are computed by introducing the components of [B]Γα
βγ , respectively, in formulas

(1.45) and (1.48). By definition, this space satisfies the metricity conditions on the
h- and v–subspaces, Qijk = 0 and Qabc = 0, but, in general, there are nontrivial
nonmetricity d–fields because Qiab and Qajk are not vanishing (see formulas (1.63)).

4. Berwald–affine spaces with prescribed torsion (BAT, see sections 1.3.4 and 1.3.4)
are described by a more general class of d–connection [BT ]Γα

βγ = [Li jk, ∂bN
a
k , 0, C

a
bc],

with more general h– and v–components, L̂i jk → Li jk and Ĉa
bc → Ca

bc, inducing
prescribed values τ ijk and τabc in d–torsion

[BT ]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij, T

a
bj, C

a
[bc] + τabc],

see (1.65). The components of curvature [BT ]Rα
βγτ have to be computed by in-

troducing [BT ]Γα
βγ into (1.48). There are nontrivial components of nonmetricity

d–fields, [Bτ ]Qαβγ =
(
[Bτ ]Qcij ,

[Bτ ]Qiab

)
.

5. Generalized Lagrange–affine spaces (GLA, see Definition 1.4.23),
GLan = (V n, gij(x, y),

[a]Γα
β), are modelled as distinguished metric–affine spaces

of odd–dimension, Vn+n, provided with generic off–diagonal metrics with associ-
ated N–connection inducing a tangent bundle structure. The d–metric g[a] (1.112)
and the d–connection [a]Γγ

αβ =
(

[a]Lijk,
[a]Ci

jc

)
(1.111) are similar to those for
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the usual Lagrange spaces (see Definition 1.4.20) but with distorsions [a] Zα
β

inducing general nontrivial nonmetricity d–fields [a]Qαβγ . The components of d–

torsions [a]Tα =
(
T ijk, T̃

i
jk

)
and d–curvatures [a]Rα

.βγτ = { [a]Ri
hjk,

[a]P i
jka,

[a]Sijbc}
are computed following Theorems 1.4.8 and 1.4.9.

6. Lagrange–affine spaces (LA, see Remark 1.4.3), Lan = (V n, g
[L]
ij (x, y), [b]Γα

β),

are provided with a Lagrange quadratic form g
[L]
ij (x, y) = 1

2
∂2L2

∂yi∂yj (1.101) induc-

ing the canonical N–connection structure [cL]N = { [cL]N i
j} (1.102) for a Lagrange

space Ln = (V n, gij(x, y)) (see Definition 1.4.19)) but with a d–connection struc-
ture [b]Γγ

α = [b]Γγ
αβϑ

β distorted by arbitrary torsion, Tβ, and nonmetricity

d–fields, Qβγα, when [b]Γα
β = [L]Γ̂α

β + [b] Zα
β . This is a particular case of GLA

spaces with prescribed types of N–connection [cL]N i
j and d–metric to be like in

Lagrange geometry.

7. Finsler–affine spaces (FA, see Remark 1.4.4), Fan =
(
V n, F (x, y) , [f ]Γα

β

)
, in their

turn are introduced by further restrictions of Lan to a quadratic form g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj

(1.85) constructed from a Finsler metric F (xi, yj) . It is induced the canonical
N–connection structure [F ]N = { [F ]N i

j} (1.86) as in the Finsler space Fn =

(V n, F (x, y)) but with a d–connection structure [f ]Γγ
αβ distorted by arbitrary

torsion, Tα
βγ, and nonmetricity, Qβγτ , d–fields, [f ]Γα

β = [F ]Γ̂α
β + [f ] Zα

β,where
[F ]Γ̂α

βγ is the canonical Finsler d–connection (1.88).

1.6.2 Generalized Hamilton–affine spaces

The Table 1.2 outlines geometries modelled in the framework of metric–affine geom-
etry as spaces with nontrivial N–connection structure splitting the space into any con-
ventional a horizontal subspace and vertical subspace being isomorphic to a dual vector
space provided with respective dual coordinates. We can use respectively the classifica-
tion from Table 1.1 when the v–subspace is transformed into dual one as we noted in
Remark 1.4.5 For simplicity, we label such spaces with symbols like Ňai instead Na

i where
”inverse hat” points that the geometric object is defined for a space containing a dual
subspaces. The local h–coordinates are labelled in the usual form, xi, with i = 1, 2, ..., n
but the v–coordinates are certain dual vectors y̌a = pa with a = n+1, n+2, ..., n+m. The
local coordinates are denoted ǔα = (xi, y̌a) = (xi, pa) . The curvature of a N–connection
Ňai is computed as Ω̌iaj = δ[iŇj]a. The h– v–irreducible components of a general d–
connection are parametrized Ď = [Γ̌α

βγ ] = [Li jk, L
b
a k, Č

i c
j , Č

bc
a ], the d–torsions are
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Ťα
βγ = [Li [jk], L

b
a k, Č

i c
j , Č

[bc]
a ] and the d–curvatures

[B]Řα
βγτ = [Ri

jkl, Ř
b
a kl, P̌

i a
jk , P̌

b a
c k , Š

i bc
j , Š dbc

a ].

The nonmetricity d–fields are stated Q̌αβγ = −Ďαǧβγ = [Qijk, Q̌
ab
i , Q̌a

jk, Q̌
abc]. There

are also considered additional labels for the Berwald, Cartan and another type d–
connections.

1. Metric–dual–affine spaces (in brief, MDA) are usual metric–affine spaces with a
prescribed structure of ”dual” local coordinates.

2. Distinguished metric–dual-affine spaces (DMDA) are provided with d–metric and
d–connection structures adapted to a N–connection Ňai defining a global splitting
into a usual h–subspace and a v–dual–subspace being dual to a usual v–subspace.

3. Berwald–dual–affine spaces (BDA) are Berwald–affine spaces with a dual v–subspa-
ce. Their Berwald d–connection is stated in the form

[B]Ď = [[B]Γ̌α
βγ ] = [L̂i jk, ∂bŇai, 0, Č

[bc]
a ]

with induced d–torsions [B]Ťα
βγ = [Li[jk], 0, Ω̌iaj, Ť

b
a j , Č

[bc]
a ] and d–curvatures

[B]Řα
βγτ = [Ri

jkl, Ř
b
a kl, , P̌

i a
jk , P̌

b a
c k , Š

i bc
j , Š dbc

a ]

computed by introducing the components of [B]Γ̌α
βγ , respectively, in formulas (1.45)

and (1.48) re–defined for dual v–subspaces. By definition, this d–connection satis-
fies the metricity conditions in the h- and v–subspaces, Qijk = 0 and Q̌abc = 0 but
with nontrivial components of
[B]Q̌αβγ = − [B]Ďαǧβγ = [Qijk = 0, Q̌ ab

i , Q̌a
jk, Q̌

abc = 0].

4. Berwald–dual–affine spaces with prescribed torsion (BDAT) are described by a
more general class of d–connections [BT ]Γ̌α

βγ = [Li jk, ∂bŇai, 0, Č
bc
a ] , inducing pre-

scribed values τ ijk and τ̌ bc
a for d–torsions

[BT ]Ťα
βγ = [Li [jk] + τ ijk, 0, Ω̌iaj = δ[iŇj]a, T

b
a j , Č

[bc]
a + τ̌ bc

a ].

The components of d–curvatures

[BT ]Řα
βγτ = [Ri

jkl, Ř
b
a kl, P̌

i a
jk , P̌

b a
c k , Š

i bc
j , Š dbc

a ]

have to be computed by introducing [BT ]Γ̌α
βγ into dual form of formulas (1.48).

There are nontrivial components of nonmetricity d–field,

[Bτ ]Qαβγ = − [BT ]Ďαǧβγ = (Qijk = 0, Q̌ ab
i , Q̌a

jk, Q̌
abc = 0).
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5. Generalized Hamilton–affine spaces (GHA), GHan =
(
V n, ǧij(x, p), [a]Γ̌α

β

)
, are

modelled as distinguished metric–affine spaces of odd–dimension, Vn+n, provided
with generic off–diagonal metrics with associated N–connection inducing a cotan-
gent bundle structure. The d–metric ǧ[a] = [gij, ȟ

ab] and the d–connection [a]Γ̌γ
αβ

= ( [a]Lijk,
[a]Č jc

i ) are similar to those for usual Hamilton spaces (see section

1.4.3) but with distorsions [a] Žα
β inducing general nontrivial nonmetricity d–

fields [a]Q̌αβγ . The components of d–torsion and d–curvature, respectively, [a]Ťα
βγ =

[Li [jk], Ω̌iaj , Č
[bc]
a ] and [a]Řα

.βγτ = [Ri
jkl, P̌

i a
jk , Š

dbc
a ], are computed following Theo-

rems 1.4.8 and 1.4.9 reformulated for cotangent bundle structures.

6. Hamilton–affine spaces (HA, see Remark 1.4.5), Han = (V n, ǧij[H](x, p),
[b]Γ̌α

β),

are provided with Hamilton N–connection [H]Ňij (x, p) (1.110) and quadratic form
ǧij[H] (1.109) for a Hamilton space Hn = (V n, H(x, p)) (see section 1.4.3)) but with

a d–connection structure [H]Γ̌γ
αβ = [H][Li jk, Č

bc
a ] distorted by arbitrary torsion,

Ťα
βγ , and nonmetricity d–fields, Q̌βγα, when Γ̌α

β = [H] ̂̌Γ
α

β + [H] Žα
β. This is a

particular case of GHA spaces with prescribed types of N–connection [H]Ňij and

d–metric ǧ
[H]
αβ = [gij[H] = 1

2
∂2H
∂pi∂pi

] to be like in the Hamilton geometry.

7. Cartan–affine spaces (CA, see Remark 1.4.5), Can =
(
V n, ǧij[K](x, p),

[c]Γ̌α
β

)
, are

dual to the Finsler spaces Fan =
(
V n, F (x, y) , [f ]Γα

β

)
. The CA spaces are intro-

duced by further restrictions of Han to a quadratic form ǧij[C] (1.98) and canonical

N–connection Ň
[C]
ij (1.99). They are like usual Cartan spaces, see section 1.4.2) but

contain distorsions induced by nonmetricity Q̌αβγ . The d–metric is parametrized

ǧ
[C]
αβ = [gij[C] = 1

2
∂2K2

∂pi∂pi
] and the curvature [C]Ω̌iaj of N–connection [C]Ňia is com-

puted [C]Ω̌iaj = δ[i
[C]Ňj]a. The Cartan’s d–connection

[C]Γ̌γ
αβ = [C][Li jk, L

i
jk, Č

bc
a , Č bc

a ]

possess nontrivial d–torsions [C]Ť βγ
α = [Li [jk], Ω̌iaj , Č

[bc]
a ] and d–curvatures

[C]Řα
.βγτ = [Ri

jkl, P̌
i a
jk , Š

dbc
a ] computed following Theorems 1.4.8 and 1.4.9 refor-

mulated on cotangent bundles with explicit type of N–connection Ň
[C]
ij d–metric

ǧ
[C]
αβ and d–connection [C]Γ̌γ

αβ. The nonmetricity d–fields are not trivial for such

spaces, [C]Q̌αβγ = − [C]Ďαǧβγ = [Qijk, Q̌
ab
i , Q̌a

jk, Q̌
abc].
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1.6.3 Teleparallel Lagrange–affine spaces

We considered the main properties of teleparallel Finsler–affine spaces in section 1.4.2
(see also section 1.4.1 on locally isotropic teleparallel spaces). Every type of teleparallel
spaces is distinguished by the condition that the curvature tensor vanishes but the torsion
plays a cornerstone role. Modelling generalized Finsler structures on metric–affine spaces,
we do not impose the condition on vanishing nonmetricity (which is stated for usual
teleparallel spaces). For Rα

βγτ = 0, the classification of spaces from Table 1.1 trasforms
in that from Table 1.3.

1. Teleparallel metric–affine spaces (in brief, TMA) are usual metric–affine ones but
with vanishing curvature, modelled on manifolds V n+m of necessary smoothly class
provided, for instance, with the Weitzenbock connection [W ]Γαβγ (1.82). For generic
off–diagonal metrics, a TMA space always admits nontrivial N–connection struc-
tures (see Proposition 1.3.4). We can model teleparallel geometries with local
anisotropy by distorting the Levi–Civita or the canonical d–connection Γα

βγ (see
Definition 1.2.11) both constructed from the components of N–connection and
d–metric. In general, such geometries are characterized by d–torsion Tα

βγ and
nonmetricity d–field Qαβγ both constrained to the condition to result in zero d–
curvatures.

2. Distinguished teleparallel metric–affine spaces (DTMA) are manifolds Vn+m pro-
vided with N–connection structure Na

i , d–metric field (1.33) and d–connection Γα
βγ

with vanishing d–curvatures defined by Weitzenbock–affine d–connection [Wa]Γα
βγ =

Γα
▽ βγ + Ẑα

βγ + Zα
βγ with distorsions by nonmetricity d–fields preserving the con-

dition of zero values for d–curvatures.

3. Teleparallel Berwald–affine spaces (TBA) are defined by distorsions of the Weitzen-
bock connection to any Berwald like structure, [WB]Γα

βγ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ

satisfying the condition that the curvature is zero. All constructions with generic
off–diagonal metrics can be adapted to the N–connection and considered for d–
objects. By definition, such spaces satisfy the metricity conditions in the h- and
v–subspaces, Qijk = 0 and Qabc = 0, but, in general, there are nontrivial non-
metricity d–fields because Qiab and Qajk are not vanishing (see formulas (1.63)).

4. Teleparallel Berwald–affine spaces with prescribed torsion (TBAT) are defined by a
more general class of distorsions resulting in the Weitzenbock type d–connections,
[WBτ ]Γα

βγ = Γα
▽ βγ + Ẑα

βγ +Zα
βγ, with more general h– and v–components, L̂i jk →
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Li jk and Ĉa
bc → Ca

bc, having prescribed values τ ijk and τabc in d–torsion

[WB]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij, T

a
bj , C

a
[bc] + τabc]

and characterized by the condition [WBτ ]Rα
βγτ = 0 with notrivial components of

nonmetricity [WBτ ]Qαβγ = (Qcij, Qiab) .

5. Teleparallel generalized Lagrange–affine spaces (TGLA) are distinguished metric–
affine spaces of odd–dimension, Vn+n, provided with generalized Lagrange d–
metric and associated N–connection inducing a tangent bundle structure with
vanishing d–curvature. The Weitzenblock–Lagrange d–connection [Wa]Γγ

αβ =(
[Wa]Lijk,

[Wa]Ci
jc

)
, where

[WaL]Γα
βγ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ

is defined by a d–metric g[a] (1.112) Zα
β inducing general nontrivial nonmetricity

d–fields [a]Qαβγ and [Wa]Rα
βγτ = 0.

6. Teleparallel Lagrange–affine spaces (TLA 1.4.3) consist a subclass of spaces

Lan =
(
V n, g

[L]
ij (x, y), [b]Γα

β

)
provided with a Lagrange quadratic form g

[L]
ij (x, y) =

1
2
∂2L2

∂yi∂yj (1.101) inducing the canonical N–connection structure [cL]N = { [cL]N i
j}

(1.102) for a Lagrange space Ln = (V n, gij(x, y)) but with vanishing d–curvature.
The d–connection structure [WL]Γγ

αβ (of Weitzenblock–Lagrange type) is the gen-

erated as a distortion by the Weitzenbock d–torsion, [W ]Tβ, and nonmetricity d–

fields, Qβγα, when [WL]Γγ
αβ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ. This is a generalization of

teleparallel Finsler affine spaces (see section (1.4.2)) when g
[L]
ij (x, y) is considered

instead of g
[F ]
ij (x, y).

7. Teleparallel Finsler–affine spaces (TFA) are particular cases of spaces of type

Fan = (V n, F (x, y) , [f ]Γα
β), defined by a quadratic form g

[F ]
ij = 1

2
∂2F 2

∂yi∂yj (1.85)

constructed from a Finsler metric F (xi, yj) . They are provided with a canonical
N–connection structure [F ]N = { [F ]N i

j} (1.86) as in the Finsler space Fn =

(V n, F (x, y)) but with a Finsler–Weitzenbock d–connection structure [WF ]Γγ
αβ ,

respective d–torsion, [WF ]Tβ, and nonmetricity, Qβγτ , d–fields,

[WF ]Γγ
αβ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ ,

where Ẑα
βγ contains distorsions from the canonical Finsler d–connection (1.88).

Such distorsions are constrained to satisfy the condition of vanishing curvature
d–tensors (see section (1.4.2)).
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1.6.4 Teleparallel Hamilton–affine spaces

This class of metric–affine spaces is similar to that outlined in previous subsection,
see Table 1.3 but derived on spaces with dual vector bundle structure and induced
generalized Hamilton–Cartan geometry (section 1.4.3 and Remark 1.4.5). We outline the
main denotations for such spaces and note that they are characterized by the condition
Řα

βγτ = 0.

1. Teleparallel metric dual affine spaces (in brief, TMDA) define teleparalles struc-
tures on metric–affine spaces provided with generic off–diagonal metrics and associ-
ated N–connections modelling splitting with effective dual vector bundle structures.

2. Distinguished teleparallel metric dual affine spaces (DTMDA) are spaces provided
with independent d–metric, d–connection structures adapted to a N–connection in
an effective dual vector bundle and resulting in zero d–curvatures.

3. Teleparallel Berwald dual affine spaces (TBDA) .

4. Teleparallel dual Berwald–affine spaces with prescribed torsion (TDBAT).

5. Teleparallel dual generalized Hamilton–affine spaces (TDGHA).

6. Teleparallel dual Hamilton–affine spaces (TDHA, see section 1.4.3).

7. Teleparallel dual Cartan–affine spaces (TDCA).

1.6.5 Generalized Finsler–Lagrange spaces

This class of geometries is modelled on vector/tangent bundles [14] (see subsections
1.4.2 and 1.4.3) or on metric–affine spaces provided with N–connection structure. There
are also alternative variants when metric–affine structures are defined for vector/tangent
bundles with independent generic off–diagonal metrics and linear connection structures.
The standard approaches to generalized Finsler geometries emphasize the connections
satisfying the metricity conditions. Nevertheless, the Berwald type connections admit
certain nonmetricity d–fields. The classification stated in Table 1.5 is similar to that
from Table 1.1 with that difference that the spaces are defined from the very beginning
to be any vector or tangent bundles. The local coordinates xi are considered for base
subspaces and ya are for fiber type subspaces. We list the short denotations and main
properties of such spaces:
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1. Metric affine vector bundles (in brief, MAVB) are provided with arbitrary metric
gαβ and linear connection Γαβγ structure. For generic off–diagonal metrics, we
can introduce associated nontrivial N–connection structures. In general, only the
metric field gαβ can be transformed into a d–metric gαβ = [gij, hab], but Γαβγ may be
not adapted to the N–connection structure. As a consequence, the general strength
fields

(
T αβγ, R

α
βγτ , Qαβγ = 0

)
, defined in the total space of the vector bundle are

also not N–adapted. We can consider a metric–affine (MA) structure on the total
space if Qαβγ 6= 0.

2. Distinguished metric–affine vector bundles (DMAVB) are provided with N–connec-
tion structure Na

i , d–metric field and arbitrary d–connection Γα
βγ . In this case, all

strengths (Tα
βγ ,R

α
βγτ ,Qαβγ = 0) are N–adapted. A distinguished metric–affine

(DMA) structure on the total space is considered if Qαβγ 6= 0.

3. Berwald metric–affine tangent bundles (BMATB) are provided with Berwald d–
connection structure [B]Γ. By definition, this space satisfies the metricity conditions
in the h- and v–subspaces, Qijk = 0 and Qabc = 0, but, in general, there are
nontrivial nonmetricity d–fields because Qiab and Qajk do not vanish (see formulas
(1.63)).

4. Berwald metric–affine bundles with prescribed torsion (BMATBT) are described
by a more general class of d–connection [BT ]Γα

βγ = [Li jk, ∂bN
a
k , 0, C

a
bc] inducing

prescribed values τ ijk and τabc in d–torsion

[BT ]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij , T

a
bj , C

a
[bc] + τabc],

see (1.65). There are nontrivial nonmetricity d–fields, [Bτ ]Qαβγ = (Qcij, Qiab).

5. Generalized Lagrange metric–affine bundles (GLMAB) are modelled as GLan =
(V n, gij(x, y),

[a]Γα
β) spaces on tangent bundles provided with generic off–diagonal

metrics with associated N–connection. If the d–connection is a canonical one, Γ̂α
βγ ,

the nonmetricity vanish. But we can consider arbitrary d–connections Γα
βγ with

nontrivial nonmetricity d–fields.

6. Lagrange metric–affine bundles (LMAB) are defined on tangent bundles as spaces

Lan =
(
V n, g

[L]
ij (x, y), [b]Γα

β

)
provided with a Lagrange quadratic form g

[L]
ij (x, y) =

1
2
∂2L2

∂yi∂yj inducing the canonical N–connection structure [cL]N = { [cL]N i
j} for a La-

grange space Ln = (V n, gij(x, y)) (see Definition 1.4.19)) but with a d–connection
structure [b]Γγ

α = [b]Γγ
αβϑ

β distorted by arbitrary torsion, Tβ , and nonmetricity
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d–fields, Qβγα, when [b]Γα
β = [L]Γ̂α

β + [b] Zα
β. This is a particular case of GLA

spaces with prescribed types of N–connection [cL]N i
j and d–metric to be like in

Lagrange geometry.

7. Finsler metric–affine bundles (FMAB), are modelled on tangent bundles as spaces

Fan =
(
V n, F (x, y) , [f ]Γα

β

)
with quadratic form g

[F ]
ij = 1

2
∂2F 2

∂yi∂yj (1.85) constructed

from a Finsler metric F (xi, yj) . It is induced the canonical N–connection structure
[F ]N = { [F ]N i

j} as in the Finsler space Fn = (V n, F (x, y)) but with a d–connection

structure [f ]Γγ
αβ distorted by arbitrary torsion, Tα

βγ , and nonmetricity, Qβγτ , d–

fields, [f ]Γα
β = [F ]Γ̂α

β + [f ] Zα
β,where [F ]Γ̂α

βγ is the canonical Finsler d–
connection (1.88).

1.6.6 Generalized Hamilton–Cartan spaces

Such spaces are modelled on vector/tangent dual bundles (see sections subsections
1.4.3 and 1.4.2) as metric–affine spaces provided with N–connection structure. The
classification stated in Table 1.6 is similar to that from Table 1.2 with that difference
that the geometry is modelled from the very beginning as vector or tangent dual bundles.
The local coordinates xi are considered for base subspaces and ya = pa are for cofiber
type subspaces. So, the spaces from Table 1.6 are dual to those from Table 1.7, when
the respective Lagrange–Finsler structures are changed into Hamilton–Cartan structures.
We list the short denotations and main properties of such spaces:

1. The metric–affine dual vector bundles (in brief, MADVB) are defined by metric–
affine independent metric and linear connection structures stated on dual vector
bundles. For generic off–diagonal metrics, there are nontrivial N–connection struc-
tures. The linear connection may be not adapted to the N–connection structure.

2. Distinguished metric-affine dual vector bundles (DMADVB) are provided with d–
metric and d–connection structures adapted to a N–connection Ňai.

3. Berwald metric–affine dual bundles (BMADB) are provided with a Berwald d–con-
nection

[B]Ď = [ [B]Γ̌α
βγ ] = [L̂i jk, ∂bŇai, 0, Č

[bc]
a ].

By definition, on such spaces, there are satisfied the metricity conditions in the
h- and v–subspaces, Qijk = 0 and Q̌abc = 0 but with nontrivial components of
[B]Q̌αβγ = − [B]Ďαǧβγ = [Qijk = 0, Q̌ ab

i , Q̌a
jk, Q̌

abc = 0].
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4. Berwald metrical–affine dual bundles with prescribed torsion (BMADBT) are de-
scribed by a more general class of d–connections [BT ]Γ̌α

βγ = [Li jk, ∂bŇai, 0, Č
bc
a ]

inducing prescribed values τ ijk and τ̌ bc
a for d–torsions

[BT ]Ťα
βγ = [Li [jk] + τ ijk, 0, Ω̌iaj = δ[iŇj]a, T

b
a j, Č

[bc]
a + τ̌ bc

a ].

There are nontrivial components of nonmetricity d–field, [Bτ ]Qαβγ = [BT ]Ďαǧβγ =(
Qijk = 0, Q̌ ab

i , Q̌a
jk, Q̌

abc = 0
)
.

5. Generalized metric–affine Hamilton bundles (GMAHB) are modelled on dual vec-
tor bundles as spaces GHan =

(
V n, ǧij(x, p), [a]Γ̌α

β

)
, provided with generic off–

diagonal metrics with associated N–connection inducing a cotangent bundle struc-
ture. The d–metric ǧ[a] = [gij , ȟ

ab] and the d–connection [a]Γ̌γ
αβ =

(
[a]Lijk,

[a]Č jc
i

)

are similar to those for usual Hamilton spaces, with distorsions [a] Žα
β induc-

ing general nontrivial nonmetricity d–fields [a]Q̌αβγ . For canonical configurations,
[GH]Γ̌γ

αβ , we obtain [GH]Q̌αβγ = 0.

6. Metric–affine Hamilton bundles (MAHB) are defied on dual bundles as spaces

Han =
(
V n, ǧij[H](x, p),

[b]Γ̌α
β

)
, provided with Hamilton N–connection [H]Ňij (x, p)

and quadratic form ǧij[H] for a Hamilton space Hn = (V n, H(x, p)) (see section

1.4.3) with a d–connection structure [H]Γ̌γ
αβ = [H][Li jk, Č

bc
a ] distorted by arbitrary

torsion, Ťα
βγ , and nonmetricity d–fields, Q̌βγα, when Γ̌α

β = [H] ̂̌Γ
α

β + [H] Žα
β .

This is a particular case of GMAHB spaces with prescribed types of N–connection
[H]Ňij and d–metric ǧ

[H]
αβ = [gij[H] = 1

2
∂2H
∂pi∂pi

] to be like in the Hamilton geometry but
with nontrivial nonmetricity.

7. Metric–affine Cartan bundles (MACB) are modelled on dual tangent bundles as

spaces Can =
(
V n, ǧij[K](x, p),

[c]Γ̌α
β

)
being dual to the Finsler spaces. They are

like usual Cartan spaces, see section 1.4.2) but may contain distorsions induced by

nonmetricity Q̌αβγ . The d–metric is parametrized ǧ
[C]
αβ = [gij[C] = 1

2
∂2K2

∂pi∂pi
] and the

curvature [C]Ω̌iaj of N–connection [C]Ňia is computed [C]Ω̌iaj = δ[i
[C]Ňj]a. The Car-

tan’s d–connection [C]Γ̌γ
αβ = [C][Li jk, L

i
jk, Č

bc
a , Č bc

a ] possess nontrivial d–torsions
[C]Ť βγ

α = [Li [jk], Ω̌iaj , Č
[bc]
a ] and d–curvatures [C]Řα

.βγτ = [C][Ri
jkl, P̌

i a
jk , Š

dbc
a ] com-

puted following Theorems 1.4.8 and 1.4.9 reformulated on cotangent bundles with
explicit type of N–connection Ň

[C]
ij d–metric ǧ

[C]
αβ and d–connection [C]Γ̌γ

αβ . Distor-

sions result in d–connection Γ̌α
βγ = [C]Γ̌α

βγ + [C] Žα
βγ . The nonmetricity d–fields

are not trivial for such spaces.
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1.6.7 Teleparallel Finsler–Lagrange spaces

The teleparallel configurations can be modelled on vector and tangent bundles (the
teleparallel Finsler–affine spaces are defined in section 1.4.2, see also section 1.4.1 on
locally isotropic teleparallel spaces) were constructed as subclasses of metric–affine spaces
on manifolds of necessary smoothly class. The classification from Table 1.7 is a similar to
that from Table 1.3 but for direct vector/ tangent bundle configurations with vanishing
nonmetricity. Nevertheless, certain nonzero nonmetricity d–fields can be present if the
Berwald d–connection is considered or if we consider a metric–affine geometry in bundle
spaces.

1. Teleparallel vector bundles (in brief, TVB) are provided with independent metric
and linear connection structures like in metric–affine spaces satisfying the condition
of vanishing curvature. The N–connection is associated to generic off–diagonal met-
rics. The TVB spaces can be provided with a Weitzenbock connection [W ]Γαβγ(1.82)
which can be transformed in a d–connection one with respect to N–adapted frames.
We can model teleparallel geometries with local anisotropy by distorting the Levi–
Civita or the canonical d–connection Γα

βγ (see Definition 1.2.11) both constructed
from the components of N–connection and d–metric. In general, such vector (in
particular cases, tangent) bundle geometries are characterized by d–torsions Tα

βγ

and nonmetricity d–fields Qαβγ both constrained to the condition to result in zero
d–curvatures.

2. Distinguished teleparallel vector bundles (DTVB, or vect. b.) are provided with N–
connection structure Na

i , d–metric field (1.33) and arbitrary d–connection Γα
βγ with

vanishing d–curvatures. The geometric constructions are stated by the Weitzen-
bock–affine d–connection [Wa]Γα

βγ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ with distorsions by non-

metricity d–fields preserving the condition of zero values for d–curvatures. The
standard constructions from Finsler geometry and generalizations are with vanish-
ing nonmetricity.

3. Teleparallel Berwald vector bundles (TBVB) are defined by Weitzenbock connec-
tions of Berwald type structure, [WB]Γα

βγ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ satisfying the

condition that the curvature is zero. By definition, such spaces satisfy the metric-
ity conditions in the h- and v–subspaces, Qijk = 0 and Qabc = 0, but, in general,
there are nontrivial nonmetricity d–fields because Qiab and Qajk do not vanish (see
formulas (1.63)).

4. Teleparallel Berwald vector bundles with prescribed torsion (TBVBT) are defined
by a more general class of distorsions resulting in the Weitzenbock d–connection,
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[WBτ ]Γα
βγ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ with prescribed values τ ijk and τabc in d–torsion,

[WB]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij, T

a
bj, C

a
[bc] + τabc],

characterized by the condition [WBτ ]Rα
βγτ = 0 and nontrivial components of non-

metricity d–field, [WBτ ]Qαβγ = (Qcij , Qiab) .

5. Teleparallel generalized Lagrange spaces (TGL) are modelled on tangent bun-
dles (tang. b.) provided with generalized Lagrange d–metric and associated
N–connection inducing a tangent bundle structure being enabled with zero d–
curvature. The Weitzenblock–Lagrange d–connections

[Wa]Γγ
αβ =

(
[Wa]Lijk,

[Wa]Ci
jc

)
, [WaL]Γα

βγ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ

are defined by a d–metric g[a] (1.112) Zα
β inducing [Wa]Rα

βγτ = 0. For simplicity,

we consider the configurations when nonmetricity d–fields [Wa]Qαβγ = 0.

6. Teleparallel Lagrange spaces (TL) are modelled on tangent bundles provided with

a Lagrange quadratic form g
[L]
ij (x, y) = 1

2
∂2L2

∂yi∂yj (1.101) inducing the canonical N–

connection structure [cL]N = { [cL]N i
j} (1.102) for a Lagrange space

Ln = (V n, gij(x, y)) but with vanishing d–curvature. The d–connection structure
[WL]Γγ

αβ (of Weitzenblock–Lagrange type) is the generated as a distortion by the

Weitzenbock d–torsion, [W ]Tβ when [WL]Γγ
αβ = Γα

▽ βγ+Ẑα
βγ+Zα

βγ . For simplicity,
we can consider configurations with zero nonmetricity d–fields, Qβγα.

7. Teleparallel Finsler spaces (TF) are modelled on tangent bundles provided with a

quadratic form g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj (1.85) constructed from a Finsler metric F (xi, yj) .

They are also enabled with a canonical N–connection structure [F ]N = { [F ]N i
j}

(1.86) as in the Finsler space Fn = (V n, F (x, y)) but with a Finsler–Weitzenbock
d–connection structure [WF ]Γγ

αβ, respective d–torsion, [WF ]Tβ. We can write

[WF ]Γγ
αβ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ ,

where Ẑα
βγ contains distorsions from the canonical Finsler d–connection (1.88).

Such distorsions are constrained to satisfy the condition of vanishing curvature d–
tensors (see section (1.4.2)) and, for simplicity, of vanishing nonmetricity, Qβγτ = 0.
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1.6.8 Teleparallel Hamilton–Cartan spaces

This subclass of Hamilton–Cartan spaces is modelled on dual vector/ tangent bundles
being similar to that outlined in Table 1.4 (on generalized Hamilton–Cartan geometry,
see section 1.4.3 and Remark 1.4.5) and dual to the subclass outlined in Table 1.7.
We outline the main denotations and properties of such spaces and note that they are
characterized by the condition Řα

βγτ = 0 and Q̌α
βγ = 0 with that exception that there

are nontrivial nonmetricity d–fields for Berwald configuratons.

1. Teleparallel dual vector bundles (TDVB, or d. vect. b.) are provided with generic
off–diagonal metrics and associated N–connections. In general, Q̌α

βγ 6= 0.

2. Distinguished teleparallel dual vector bundles spaces (DTDVB) are provided with
independent d–metric, d–connection structures adapted to a N–connection in an
effective dual vector bundle and resulting in zero d–curvatures. In general, Q̌α

βγ 6=
0.

3. Teleparallel Berwald dual vector bundles (TBDVB) are provided with Berwald–
Weitzenbock d–connection structure resulting in vanishing d–curvature.

4. Teleparallel Berwald dual vector bundles with prescribed d–torsion (TBDVB) are
with d–connections [BT ]Γ̌α

βγ = [Li jk, ∂bŇai, 0, Č
bc
a ] inducing prescribed values τ ijk

and τ̌ bc
a for d–torsions [BT ]Ťα

βγ = [Li [jk] + τ ijk, 0, Ω̌iaj = δ[iŇj]a, T
b
a j , Č

[bc]
a + τ̌ bc

a ].
They are described by certain distorsions to a Weitzenbock d–connection.

5. Teleparallel generalized Hamilton spaces (TGH) consist a subclass of generalized
Hamilton spaces with vanishing d–curvature structure, defined on dual tangent
bundles (d. tan. b.). They are described by distorsions to a Weitzenbock d–
connection [Wa]Γ̌γ

αβ. In the simplest case, we consider [Wa]Q̌αβγ = 0.

6. Teleparallel Hamilton spaces (TH, see section 1.4.3), as a particular subclass of
TGH, are provided with d–connection and N–connection structures corresponding
to Hamilton configurations.

7. Teleparallel Cartan spaces (TC) are particular Cartan configurations with absolut
teleparallelism.

1.6.9 Distinguished Riemann–Cartan spaces

A wide class of generalized Finsler geometries can be modelled on Riemann–Cartan
spaces by using generic off–diagonal metrics and associated N–connection structures.
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The locally anisotropic metric–affine configurations from Table 1.1 transform into a
Riemann–Cartan ones if we impose the condition of metricity. For the Berwald type
connections one could be certain nontrivial nonmetricity d–fields on intersection of h-
and v–subspaces. The local coordinates xi are considered as certain holonomic ones and
ya are anholonomic. We list the short denotations and main properties of such spaces:

1. Riemann–Cartan spaces (in brief, RC, see related details in section 1.3.5) are cer-
tain manifolds V n+m of necessary smoothly class provided with metric structure
gαβ and linear connection structure Γαβγ (constructed as a distorsion by torsion of
the Levi–Civita connection) both satisfying the conditions of metric compatibility,
Qαβγ = 0. For generic off–diagonal metrics, a RC space always admits nontrivial
N–connection structures (see Proposition 1.3.4 reformulated for the case of vanish-
ing nonmetricity). In general, only the metric field gαβ can be transformed into a
d–metric one, gαβ = [gij , hab], but Γαβγ may be not adapted to the N–connection
structure.

2. Distinguished Riemann–Cartan spaces (DRC) are manifolds Vn+m provided with
N–connection structure Na

i , d–metric field (1.33) and d–connection Γα
βγ (a distor-

sion of the Levi–Civita connection, or of the canonical d–connection) satisfying the
condition Qαβγ = 0. In this case, the strengths

(
Tα

βγ ,R
α
βγτ

)
are N–adapted.

3. Berwald Riemann–Cartan (BRC) are modelled if a N–connection structure is de-
fined in a Riemann–Cartan space and distorting the connection to a Berwald d–
connection [B]D = [ [B]Γα

βγ ] = [L̂i jk, ∂bN
a
k , 0, Ĉ

a
bc], see (1.62). By definition, this

space satisfies the metricity conditions in the h- and v–subspaces, Qijk = 0 and
Qabc = 0, but, in general, there are nontrivial nonmetricity d–fields because Qiab

and Qajk are not vanishing (see formulas (1.63)). Nonmetricities vanish with re-
spect to holonomic frames.

4. Berwald Riemann–Cartan spaces with prescribed torsion (BRCT) are defined by
a more general class of d–connection [BT ]Γα

βγ = [Li jk, ∂bN
a
k , 0, C

a
bc] inducing pre-

scribed values τ ijk and τabc in d–torsion [BT ]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij , T

a
bj , C

a
[bc] +

τabc], see (1.65). The nontrivial components of nonmetricity d–fields are [Bτ ]Qαβγ =
(Qcij, Qiab) . Such components vanish with respect to holonomic frames.

5. Generalized Lagrange Riemann–Cartan spaces (GLRC) are modelled as distin-
guished Riemann–Cartan spaces of odd–dimension, Vn+n, provided with generic
off–diagonal metrics with associated N–connection inducing a tangent bundle struc-
ture. The d–metric g[a] (1.112) and the d–connection [a]Γγ

αβ =
(

[a]Lijk,
[a]Ci

jc

)

(1.111) are those for the usual Lagrange spaces (see Definition 1.4.20).
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6. Lagrange Riemann–Cartan spaces (LRC, see Remark 1.4.3) are provided with a

Lagrange quadratic form g
[L]
ij (x, y) = 1

2
∂2L2

∂yi∂yj (1.101) inducing the canonical N–

connection structure [cL]N = { [cL]N i
j} (1.102) for a Lagrange space

Ln = (V n, gij(x, y)) (see Definition 1.4.19)) and, for instance, with a canonical
d–connection structure [b]Γγ

α = [b]Γγ
αβϑ

β satisfying metricity conditions for the

d–metric defined by g
[L]
ij (x, y).

7. Finsler Riemann–Cartan spaces (FRC, see Remark 1.4.4) are defined by a quadratic

form g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj (1.85) constructed from a Finsler metric F (xi, yj) . It is induced

the canonical N–connection structure [F ]N = { [F ]N i
j} (1.86) as in the Finsler space

Fn = (V n, F (x, y)) with [F ]Γ̂α
βγ being the canonical Finsler d–connection (1.88).

1.6.10 Distinguished (pseudo) Riemannian spaces

Sections 1.3.5 and 1.4.1 are devoted to modelling of locally anisotropic geometric
configurations in (pseudo) Riemannian spaces enabled with generic off–diagonal metrics
and associated N–connection structure. Different classes of generalized Finsler metrics
can be embedded in (pseudo) Riemannian spaces as certain anholonomic frame configu-
rations. Every such space is characterized by a corresponding off–diagonal metric ansatz
and Levi–Civita connection stated with respect to coordinate frames or, alternatively
(see Theorem 1.3.7), by certain N–connection and induced d–metric and d–connection
structures related to the Levi–Cevita connection with coefficients defined with respect to
N–adapted anholonomic (co) frames. We characterize every such type of (pseudo) Rie-
mannian spaces both by Levi–Civita and induced canonical/or Berwald d–connections
which contain also induced (by former off–diagonal metric terms) nontrivial d–torsion
and/or nonmetricity d–fields.

1. (Pseudo) Riemann spaces (in brief, pR) are certain manifolds V n+m of necessary
smoothly class provided with generic off–diagonal metric structure gαβ of arbitrary
signature inducing the unique torsionless and metric Levi–Civita connection Γα▽βγ.
We can effectively diagonalize such metrics by anholonomic frame transforms with
associated N–connection structure. We can also consider alternatively the canon-
ical d–connection Γ̂α

βγ = [Li jk, L
a
bk, C

i
jc, C

a
bc] (1.56)defined by the coefficients of

d–metric gαβ = [gij, hab] and N–connection Na
i . We have nontrivial d–torsions T̂α

βγ,

but T α▽βγ = 0, Q▽
αβγ = 0 and Q̂αβγ = 0. The simplest anholonomic configurations

are characterized by associated N–connections with vanishing N–connection cur-
vature, Ωa

ij = δ[iN
a
j] = 0. The d–torsions T̂α

βγ = [L̂i[ jk], Ĉ
i
ja,Ω

a
ij, T̂

a
bj, Ĉ

a
[bc]] and
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d–curvatures R̂α
βγτ = [R̂i

jkl, R̂
a
bkl, P̂

i
jka, P̂

c
bka, Ŝ

i
jbc, Ŝ

a
dbc] are computed by intro-

ducing the components of Γ̂α
βγ, respectively, in formulas (1.45) and (1.48).

2. Distinguished (pseudo) Riemannian spaces (DpR) are defined as manifolds Vn+m

provided with N–connection structure Na
i , d–metric field and d–connection Γα

βγ (a
distorsion of the Levi–Civita connection, or of the canonical d–connection) satis-
fying the condition Qαβγ = 0.

3. Berwald (pseudo) Riemann spaces (pRB) are modelled if a N–connection structure
is defined by a generic off–diagonal metric. The Levi–Civita connection is distorted
to a Berwald d–connection [B]D = [ [B]Γα

βγ ] = [L̂i jk, ∂bN
a
k , 0, Ĉ

a
bc], see (1.62). By

definition, this space satisfies the metricity conditions in the h- and v–subspaces,
Qijk = 0 and Qabc = 0, but, in general, there are nontrivial nonmetricity d–fields
because Qiab and Qajk are not vanishing (see formulas (1.63)). Such nonmetricities
vanish with respect to holonomic frames. The torsion is zero for the Levi–Civita
connection but [B]Tα

βγ = [Li [jk], 0,Ω
a
ij, T

a
bj, C

a
[bc]] is not trivial.

4. Berwald (pseudo) Riemann spaces with prescribed d–torsion (pRBT) are defined
by a more general class of d–connection [BT ]Γα

βγ = [Li jk, ∂bN
a
k , 0, C

a
bc] inducing pre-

scribed values τ ijk and τabc in d–torsion [BT ]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij , T

a
bj , C

a
[bc] +

τabc], see (1.65). The nontrivial components of nonmetricity d–fields are [Bτ ]Qαβγ =(
[Bτ ]Qcij,

[Bτ ]Qiab

)
. Such components vanish with respect to holonomic frames.

5. Generalized Lagrange (pseudo) Riemannian spaces (pRGL) are modelled as dis-
tinguished Riemann spaces of odd–dimension, Vn+n, provided with generic off–
diagonal metrics with associated N–connection inducing a tangent bundle struc-
ture. The d–metric g[a] (1.112) and the d–connection [a]Γγ

αβ =
(

[a]Lijk,
[a]Ci

jc

)

(1.111) are those for the usual Lagrange spaces (see Definition 1.4.20) but on a
(pseudo) Riemann manifold with prescribed N–connection structure.

6. Lagrange (pseudo) Riemann spaces (pRL) are provided with a Lagrange quadratic

form g
[L]
ij (x, y) = 1

2
∂2L2

∂yi∂yj (1.101) inducing the canonical N–connection structure
[cL]N = { [cL]N i

j} (1.102) for a Lagrange space Ln = (V n, gij(x, y)) and, for instance,

provided with a canonical d–connection structure [b]Γγ
α = [b]Γγ

αβϑ
β satisfying

metricity conditions for the d–metric defined by g
[L]
ij (x, y). There is an alternative

construction with Levi–Civita connection.

7. Finsler (pseudo) Riemann (FpR) are defined by a quadratic form g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj

(1.85) constructed from a Finsler metric F (xi, yj) . It is induced the canonical
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N–connection structure [F ]N = { [F ]N i
j} (1.86) as in the Finsler space Fn =

(V n, F (x, y)) with [F ]Γ̂α
βγ being the canonical Finsler d–connection (1.88).

1.6.11 Teleparallel spaces

Teleparallel spaces were considered in sections 1.4.1 and 1.4.2. Here we classify what
type of locally isotropic and anisotropic structures can be modelled in by anholonomic
transforms of (pseudo) Riemannian spaces to teleparallel ones. The anholonomic frame
structures are with associated N–connection with the components defined by the off–
diagonal metric coefficients.

1. Teleparallel spaces (in brief, T) are usual ones with vanishing curvature, modelled
on manifolds V n+m of necessary smoothly class provided, for instance, with the
Weitzenbock connection [W ]Γαβγ(1.82) which can be transformed in a d–connection
one with respect to N–adapted frames. In general, such geometries are character-
ized by torsion [W ]T αβγ constrained to the condition to result in zero d–curvatures.
The simplest theories are with vanishing nonmetricity.

2. Distinguished teleparallel spaces (DT) are manifolds Vn+m provided with N–con-
nection structure Na

i , d–metric field (1.33) and arbitrary d–connection Γα
βγ with

vanishing d–curvatures. The geometric constructions are stated by the Weitzen-
bock d–connection [Wa]Γα

βγ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ with distorsions without non-

metricity d–fields preserving the condition of zero values for d–curvatures.

3. Teleparallel Berwald spaces (TB) are defined by distorsions of the Weitzenbock
connection on a manifold V n+m to any Berwald like structure, [WB]Γα

βγ = Γα
▽ βγ +

Ẑα
βγ + Zα

βγ satisfying the condition that the curvature is zero. All constructions
with effective off–diagonal metrics can be adapted to the N–connection and con-
sidered for d–objects. Such spaces satisfy the metricity conditions in the h- and
v–subspaces, Qijk = 0 and Qabc = 0, but, in general, there are nontrivial non-
metricity d–fields, Qiab and Qajk.

4. Teleparallel Berwald spaces with prescribed torsion (TBT) are defined by a more
general class of distorsions resulting in the Weitzenbock d–connection,

[WBτ ]Γα
βγ = Γα

▽ βγ + Ẑα
βγ + Zα

βγ,

having prescribed values τ ijk and τabc in d–torsion

[WB]Tα
βγ = [Li [jk],+τ

i
jk, 0,Ω

a
ij, T

a
bj , C

a
[bc] + τabc]
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and characterized by the condition [WBτ ]Rα
βγτ = 0 with certain nontrivial non-

metricity d–fields, [WBτ ]Qαβγ =
(
[WBτ ]Qcij,

[WBτ ]Qiab

)
.

5. Teleparallel generalized Lagrange spaces (TGL) are modelled as Riemann–Cartan
spaces of odd–dimension, Vn+n, provided with generalized Lagrange d–metric
and associated N–connection inducing a tangent bundle structure with zero d–
curvature. The Weitzenblock–Lagrange d–connection [Wa]Γγ

αβ = ( [Wa]Lijk,
[Wa]Ci

jc), where [Wa]Γα
βγ = Γα

▽ βγ+Ẑα
βγ+Zα

βγ , are defined by a d–metric g[a] (1.112)

with Zα
β inducing zero nonmetricity d–fields, [a]Qαβγ = 0 and zero d–curvature,

[Wa]Rα
βγτ = 0.

6. Teleparallel Lagrange spaces (TL, see section 1.4.3) are Riemann–Cartan spaces

Vn+n provided with a Lagrange quadratic form g
[L]
ij (x, y) = 1

2
∂2L2

∂yi∂yj (1.101) inducing

the canonical N–connection structure [cL]N = { [cL]N i
j} (1.102) for a Lagrange space

Ln = (V n, gij(x, y)) but with vanishing d–curvature. The d–connection structure
[WL]Γγ

αβ (of Weitzenblock–Lagrange type) is the generated as a distortion by the

Weitzenbock d–torsion, [W ]Tβ, but zero nonmetricity d–fields, [WL]Qβγα = 0, when
[WL]Γγ

αβ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ .

7. Teleparallel Finsler spaces (TF) are Riemann–Cartan manifolds Vn+n defined by

a quadratic form g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj (1.85) and a Finsler metric F (xi, yj) . They are

provided with a canonical N–connection structure [F ]N = { [F ]N i
j} (1.86) as in the

Finsler space Fn = (V n, F (x, y)) but with a Finsler–Weitzenbock d–connection
structure [WF ]Γγ

αβ, respective d–torsion, [WF ]Tβ, and vanishing nonmetricity,
[WF ]Qβγτ = 0, d–fields, [WF ]Γγ

αβ = Γα
▽ βγ + Ẑα

βγ + Zα
βγ,where Ẑα

βγ contains
a distorsion from the canonical Finsler d–connection (1.88).
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. MA
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

Γαβγ
T αβγ

Rα
βγτ

Qαβγ

2. DMA
Na
i ,Ω

a
ij

gαβ = [gij, hab]
Γα
βγ

Tα
βγ

Rα
βγτ

Qαβγ

3. BA
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

[B]Γα
βγ

[B]Tα
βγ

[B]Rα
βγτ

[B]Qαβγ = [Qiab, Qajk]

4. BAT
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

[BT ]Γα
βγ

[BT ]Tα
βγ

[BT ]Rα
βγτ

[BT ]Qαβγ = [Qiab, Qajk]

5. GLA

dim i = dim a
Na
i ,Ω

a
ij

off.d.m. gαβ,
g[a] = [gij, hkl]

[a]Γγ
αβ

[a]Tα
βγ

[a]Rα
βγτ

[a]Qαβγ

6. LA

dim i = dim a
[cL]N i

j ,
[cL]Ωa

ij

d–metr.g
[L]
αβ

[b]Γγ
αβ

[b]Tα
βγ

[b]Rα
βγτ

[b]Qαβγ = − [b]Dαg
[L]
βγ

7. FA

dim i = dim a
[F ]N i

j ;
[F ]Ωk

ij

d–metr.g
[F ]
αβ

[f ]Γγ
αβ

[f ]Tα
βγ

[f ]Rα
βγτ

[f ]Qαβγ = − [f ]Dαg
[F ]
βγ

Table 1.1: Generalized Lagrange–affine spaces



82 CHAPTER 1. LAGRANGE AND FINSLER–AFFINE GRAVITY

Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. MDA
Ňai, Ω̌iaj

off.d.m. ǧαβ
ǧαβ = [gij , ȟ

ab]

Γ̌αβγ
Ť αβγ

Řα
βγτ

Q̌αβγ = −Ďαǧβγ

2. DMDA
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

Γ̌α
βγ

Ťα
βγ

Řα
βγτ

Q̌αβγ

3. BDA
Ňai, Ω̌iaj

off.d.m. gαβ ,

ǧαβ = [gij , ȟ
ab]

[B]Γ̌α
βγ

[B]Ťα
βγ

[B]Řα
βγτ

[B]Q̌αβγ = [0, Q̌ ab
i , Q̌a

jk, 0]

4. BDAT
Ňai, Ω̌iaj

off.d.m. gαβ ,

ǧαβ = [gij , ȟ
ab]

[BT ]Γ̌α
βγ

[BT ]Ťα
βγ

[BT ]Řα
βγτ

[BT ]Q̌
[BT ]
αβγ = [0, Q̌ ab

i , Q̌a
jk, 0]

5. GHA

dim i = dim a.
Ňia, Ω̌iaj

off.d.m. gαβ ,

ǧ[a] = [gij, ȟ
ij]

[a]Γ̌γ
αβ

[a]Ťα
βγ

[a]Řα
βγτ

[a]Q̌αβγ

6. HA

dim i = dim a
[H]Ňia,

[H]Ω̌iaj

d–metr.ǧ
[H]
αβ

[H]Γ̌γ
αβ

[H]Ťα
βγ

[H]Řα
βγτ

[H]Q̌αβγ = − [H]Ďαǧ
[L]
βγ

7. CA

dim i = dim a
[C]Ňia;

[C]Ω̌iaj

d–metr. ǧ
[C]
αβ

[C]Γ̌α
βγ

[C]Ťα
βγ

[C]Řα
βγτ

[C]Q̌αβγ = − [C]Dαg
[C]
βγ

Table 1.2: Generalized Hamilton–affine spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. TMA
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

[W ]Γαβγ
[W ]T αβγ

[W ]Rα
βγτ = 0

[W ]Qαβγ

2. DTMA
Na
i ,Ω

a
ij

gαβ = [gij, hab]

[Wa]Γα
βγ

[Wa]Tα
βγ

[Wa]Rα
βγτ = 0

[Wa]Qαβγ

3. TBA
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

[WB]Γα
βγ

[WB]Tα
βγ

[WB]Rα
βγτ = 0

[WB]Qαβγ = [Qiab, Qajk]

4. TBAT
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

[WBτ ]Γα
βγ

[WBτ ]Tα
βγ

[WBτ ]]Rα
βγτ = 0

[WBτ ]Qαβγ = [Qiab, Qajk]

5. TGLA

dim i = dim a
Na
i ,Ω

a
ij

off.d.m. gαβ,
g[a] = [gij, hkl]

[Wa]Γγ
αβ

[Wa]Tα
βγ

[Wa]Rα
βγτ = 0

[Wa]Qαβγ

6. TLA

dim i = dim a
[cL]N i

j ,
[cL]Ωa

ij

d–metr.g
[L]
αβ

[WL]Γγ
αβ

[WL]Tα
βγ

[WL]Rα
βγτ = 0

Qαβγ = −Dαg
[L]
βγ

7. TFA

dim i = dim a
[F ]N i

j ;
[F ]Ωk

ij

d–metr.g
[F ]
αβ

[WF ]Γγ
αβ

[WF ]Tα
βγ

[WF ]Rα
βγτ = 0

Qαβγ = −Dαg
[F ]
βγ

Table 1.3: Teleparallel Lagrange–affine spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. TMDA
Ňai, Ω̌iaj = δ[iŇj]a

off.d.m. ǧαβ
ǧαβ = [gij, ȟ

ab]

[W ]Γ̌αβγ
[W ]Ť αβγ

Řα
βγτ = 0

Q̌αβγ

2. DTMDA
Ňai, Ω̌iaj = δ[iŇj]a

ǧαβ = [gij , ȟ
ab]

[Wa]Γ̌α
βγ

[Wa]Ťα
βγ

[Wa]Řα
βγτ = 0

[Wa]Q̌αβγ

3. TBDA
Ňai, Ω̌iaj = δ[iŇj]a

off.d.m. gαβ,

ǧαβ = [gij, ȟ
ab]

[WB]Γ̌α
βγ

[WB]Ťα
βγ

[B]Řα
βγτ = 0

[B]Q̌αβγ = [Q̌ ab
i , Q̌a

jk]

4. TDBAT
Ňai, Ω̌iaj = δ[iŇj]a

off.d.m. gαβ,

ǧαβ = [gij, ȟ
ab]

[WBτ ]Γ̌α
βγ

[WBτ ]Ťα
βγ

[WBτ ]Řα
βγτ = 0

[WBτ ]Q̌αβγ = [Q̌ ab
i , Q̌a

jk]

5. TDGHA

dim i = dim a.
Ňia, Ω̌iaj

ǧαβ = [gij , ȟ
ij]

[Wa]Γ̌α
βγ

[Wa]Ťα
βγ

[Wa]Řα
βγτ = 0

[a]Q̌αβγ

6. TDHA

dim i = dim a
[H]Ňia,

[H]Ω̌iaj

d–metr.ǧ
[H]
αβ

[WH]Γ̌α
βγ

[WH]Ťα
βγ

[WH]Řα
βγτ = 0

[H]Q̌αβγ = − [H]Ďαǧ
[L]
βγ

7. TDCA

dim i = dim a
[C]Ňia;

[C]Ω̌iaj

d–metr. ǧ
[C]
αβ

[CW ]Γ̌α
βγ

[CW ]Ťα
βγ

[CW ]Řα
βγτ = 0

[CW ]Q̌αβγ = − [CW ]Ďαǧ
[C]
βγ

Table 1.4: Teleparallel Hamilton–affine spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. MAVB

Na
i ,Ω

a
ij ,off.d.m

vect.bundle
gαβ, total space
gαβ = [gij, hab]

Γαβγ , total space
T αβγ

Rα
βγτ

Qαβγ = 0;
Qαβγ 6= 0
for MA str.

2. DMAVB
Na
i ,Ω

a
ij

gαβ = [gij, hab]
Γα
βγ

Tα
βγ

Rα
βγτ

Qαβγ = 0;
Qαβγ 6= 0
for DMA str.

3. BMATB
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij, hab]

[B]Γα
βγ

[B]Tα
βγ

[B]Rα
βγτ

[B]Qαβγ = [Qiab, Qajk]

4. BMATBT
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij, hab]

[BT ]Γα
βγ

[BT ]Tα
βγ

[BT ]Rα
βγτ

[BT ]Qαβγ = [Qiab, Qajk]

5. GLMAB

dim i = dim a
Na
i ,Ω

a
ij

off.d.m. gαβ,
g[gL] = [gij, hkl]

Γ̂α
βγ ,Γ

α
βγ

T̂α
βγ,T

α
βγ

R̂α
βγτ ,R

α
βγτ

Q̂αβγ = 0
Qαβγ 6= 0

6. LMAB

dim i = dim a
[L]Na

i ,
[L]Ωa

ij

d–metr.g
[L]
αβ =

[g
[L]
ij = 1

2
∂2L2

∂yi∂yj ]

[L]Γα
βγ

[b]
Γα
βγ

[L]Tα
βγ ,

[b]Tα
βγ

[L]Rα
βγτ

[b]Rα
βγτ

[L]Qαβγ = 0
[b]Qαβγ 6= 0

7. FMAB

dim i = dim a
[F ]N i

j ;
[F ]Ωk

ij

d–metr.g
[F ]
αβ =

[g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj ]

[F ]Γ̂α
βγ

[f ]Γα
βγ

[F ]T̂α
βγ

[f ]Tα
βγ

[F ]Rα
βγτ

[f ]Rα
βγτ

[F ]Qαβγ = 0
[f ]Qαβγ 6= 0

Table 1.5: Generalized Finsler–Lagrange spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. MADVB

Ňai, Ω̌iaj

total space
off.d.m. ǧαβ
ǧαβ = [gij, ȟ

ab]

Γ̌αβγ
Ť αβγ

Řα
βγτ

Q̌αβγ = −Ďαǧβγ

2. DMADVB
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

Γ̌α
βγ

Ťα
βγ

Řα
βγτ

Q̌αβγ

3. BMADB
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

[B]Γ̌α
βγ

[B]Ťα
βγ

[B]Řα
βγτ

[B]Q̌αβγ = [Q̌ ab
i , Q̌a

jk]

4. BMADBT
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

[BT ]Γ̌α
βγ

[BT ]Ťα
βγ

[BT ]Řα
βγτ

[BT ]Q̌αβγ = [Q̌ ab
i , Q̌a

jk]

5. GMAHB

dim i = dim a
Ňia, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

[a]Γ̌γ
αβ,

[GH] Γ̌γ
αβ

[a]Ťα
βγ ,

[GH] Ťα
βγ

[a]Řα
βγτ ,

[GH] Řα
βγτ

[a]Q̌αβγ 6= 0
[H]Q̌αβγ = 0

6. MAHB

dim i = dim a
[H]Ňia,

[H]Ω̌iaj

d–metr.ǧ
[H]
αβ

[H]Γ̌γ
αβ , Γ̌

γ
αβ

[H]Ťα
βγ, Ť

α
βγ

[H]Řα
βγτ , Ř

α
βγτ

[H]Q̌αβγ = 0
Q̌αβγ 6= 0

7. MACB

dim i = dim a
[C]Ňia;

[C]Ω̌iaj

d–metr. ǧ
[C]
αβ

[C]Γ̌α
βγ , Γ̌

α
βγ

[C]Ťα
βγ, Ť

α
βγ

[C]Řα
βγτ , Ř

α
βγτ

[C]Q̌αβγ = 0
[C]Q̌αβγ 6= 0

Table 1.6: Generalized Hamilton–Cartan spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. MADVB

Ňai, Ω̌iaj

total space
off.d.m. ǧαβ
ǧαβ = [gij, ȟ

ab]

Γ̌αβγ
Ť αβγ

Řα
βγτ

Q̌αβγ = −Ďαǧβγ

2. DMADVB
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

Γ̌α
βγ

Ťα
βγ

Řα
βγτ

Q̌αβγ

3. BMADB
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

[B]Γ̌α
βγ

[B]Ťα
βγ

[B]Řα
βγτ

[B]Q̌αβγ = [Q̌ ab
i , Q̌a

jk]

4. BMADBT
Ňai, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

[BT ]Γ̌α
βγ

[BT ]Ťα
βγ

[BT ]Řα
βγτ

[BT ]Q̌αβγ = [Q̌ ab
i , Q̌a

jk]

5. GMAHB

dim i = dim a
Ňia, Ω̌iaj

ǧαβ = [gij, ȟ
ab]

[a]Γ̌γ
αβ,

[GH] Γ̌γ
αβ

[a]Ťα
βγ ,

[GH] Ťα
βγ

[a]Řα
βγτ ,

[GH] Řα
βγτ

[a]Q̌αβγ 6= 0
[H]Q̌αβγ = 0

6. MAHB

dim i = dim a
[H]Ňia,

[H]Ω̌iaj

d–metr.ǧ
[H]
αβ

[H]Γ̌γ
αβ , Γ̌

γ
αβ

[H]Ťα
βγ, Ť

α
βγ

[H]Řα
βγτ , Ř

α
βγτ

[H]Q̌αβγ = 0
Q̌αβγ 6= 0

7. MACB

dim i = dim a
[C]Ňia;

[C]Ω̌iaj

d–metr. ǧ
[C]
αβ

[C]Γ̌α
βγ , Γ̌

α
βγ

[C]Ťα
βγ, Ť

α
βγ

[C]Řα
βγτ , Ř

α
βγτ

[C]Q̌αβγ = 0
[C]Q̌αβγ 6= 0

Table 1.7: Teleparallel Finsler–Lagrange spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. TDVB
Ňai, Ω̌iaj = δ[iŇj]a

ǧαβ, d. vect. b.

ǧαβ = [gij, ȟ
ab],

[W ]Γ̌αβγ
[W ]Ť αβγ

Řα
βγτ = 0

Q̌αβγ

2. DTDVB
Ňai, Ω̌iaj = δ[iŇj]a

ǧαβ = [gij , ȟ
ab]

[Wa]Γ̌α
βγ

[Wa]Ťα
βγ

[Wa]Řα
βγτ = 0

[Wa]Q̌αβγ

3. TBDVB
Ňai, Ω̌iaj = δ[iŇj]a

ǧαβ = [gij , ȟ
ab]

[WB]Γ̌α
βγ

[WB]Ťα
βγ

[WB]Řα
βγτ = 0

[WB]Q̌αβγ = [Q̌iab, Q̌ajk]

4. TBDVB
Ňai, Ω̌iaj = δ[iŇj]a

ǧαβ = [gij , ȟ
ab]

[WBτ ]Γ̌α
βγ

[WBτ ]Ťα
βγ

[WBτ ]Řα
βγτ = 0

[WBτ ]Q̌αβγ = [Q̌iab, Q̌ajk]

5. TGH

dim i = dim a
Ňia, Ω̌iaj ,
d. tan. b.

ǧαβ = [gij , ȟ
ij]

[Wa]Γ̌α
βγ

[Wa]Ťα
βγ

[Wa]Řα
βγτ = 0

[Wa]Q̌αβγ = 0

6. TH

dim i = dim a
[H]Ňia,

[H]Ω̌iaj

d–metr.ǧ
[H]
αβ

[WH]Γ̌α
βγ

[WH]Ťα
βγ

[WH]Řα
βγτ = 0

[WH]Q̌αβγ = 0

7. TC

dim i = dim a.
[C]Ňia;

[C]Ω̌iaj

d–metr. ǧ
[C]
αβ

[CW ]Γ̌α
βγ

[CW ]Ťα
βγ

[CW ]Řα
βγτ = 0

[CW ]Q̌αβγ = 0

Table 1.8: Teleparallel Hamilton–Cartan spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. RC
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij, hab]

Γαβγ
T αβγ

Rα
βγτ

Qαβγ = 0

2. DRC
Na
i ,Ω

a
ij

gαβ = [gij, hab]
Γα
βγ

Tα
βγ

Rα
βγτ

Qαβγ = 0

3. BRC
Na
i ,Ω

a
ij

off diag. gαβ,
gαβ = [gij, hab]

[B]Γα
βγ

[B]Tα
βγ

[B]Rα
βγτ

[B]Qαβγ = [Qiab, Qajk]

4. BRCT
Na
i ,Ω

a
ij

off diag. gαβ,
gαβ = [gij, hab]

[BT ]Γα
βγ

[BT ]Tα
βγ

[BT ]Rα
βγτ

[BT ]Qαβγ = [Qiab, Qajk]

5. GLRC

dim i = dim a
Na
i ,Ω

a
ij

off diag. gαβ,
g[a] = [gij , hkl]

[a]Γα
βγ

[a]Tα
βγ

[a]Rα
βγτ

[a]Qαβγ = 0

6. LRC

dim i = dim a
[cL]N i

j ,
[cL]Ωa

ij

d–metr.g
[L]
αβ

Γ̂γ
αβ

T̂α
βγ

R̂α
βγτ

Q̂αβγ = 0

7. FRC

dim i = dim a.
[F ]N i

j ;
[F ]Ωk

ij

d–metr.g
[F ]
αβ

[F ]Γ̂α
βγ

[F ]T̂α
βγ

[F ]R̂α
βγτ

[F ]Q̂αβγ = 0

Table 1.9: Distinguished Riemann–Cartan spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. pR

Na
i , off-d.metr.

Ωa
ij = 0, 6= 0

gαβ , gαβ =
[gij , hab]

▽ = [Γα▽βγ]

D̂ = [Γ̂α
βγ ]

T α▽ βγ = 0

T̂α
βγ 6= 0

Rα
▽βγτ

R̂α
βγτ

Q▽
αβγ = 0

Q̂αβγ = 0

2. DpR

Na
i , off-d.metr.

Ωa
ij = 0, 6= 0

gαβ , gαβ =
[gij , hab]

▽ = [Γα▽βγ]
D = [Γα

βγ ]
T α▽ βγ = 0
Tα

βγ 6= 0

Rα
▽βγτ

Rα
βγτ

Q▽
αβγ = 0

Qαβγ = 0

3. pRB

Na
i , off-d.metr.

Ωa
ij = 0, 6= 0

gαβ , gαβ =
[gij , hab]

▽ = [Γα▽βγ]
[B]D = [ [B]Γα

βγ ]
T α▽ βγ = 0
[B]Tα

βγ

Rα
▽βγτ

[B]Rα
βγτ

Q▽
αβγ = 0

[B]Qαβγ 6= 0

4. pRBT

Na
i , off-d.metr.

Ωa
ij = 0, 6= 0

gαβ , gαβ =
[gij , hab]

▽ = [Γα▽βγ]
[BT ]D = [[BT ]Γα

βγ]
T α▽ βγ = 0
[BT ]Tα

βγ

Rα
▽βγτ

[BT ]Rα
βγτ

Q▽
αβγ = 0

[BT ]Qαβγ 6= 0

5. pRGL

Na
i ; dim i = dim a

Ωa
ij = 0, 6= 0

gαβ =
[gij , hab]

▽ = [Γα▽βγ]

D̂ = [Γ̂α
βγ ]

T α▽ βγ = 0

T̂α
βγ

Rα
▽βγτ

R̂α
βγτ

Q▽
αβγ = 0

Q̂αβγ = 0

6. pRL

[L]Na
i ; dim i = dim a

[L]Ωa
ij = 0, 6= 0

g
[L]
αβ = [g

[L]
ij , g

[L]
ij ]

[g
[L]
ij = 1

2
∂2L2

∂yi∂yj ]

▽ = [Γα▽βγ]
[L]D = [ [L]Γα

βγ ]
T α▽ βγ = 0
[L]Tα

βγ

Rα
▽βγτ

[L]Rα
βγτ

Q▽
αβγ = 0

[L]Qαβγ = 0

7. pRF

[F ]Na
i ; dim i = dim a

[F ]Ωa
ij = 0, 6= 0

g
[F ]
αβ = [g

[F ]
ij ]

[g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj ]

▽ = [Γα▽βγ]
[F ]D̂ = [ [F ]Γ̂α

βγ ]
T α▽ βγ = 0
[F ]T̂α

βγ

Rα
▽βγτ

[F ]R̂α
βγτ

Q▽
αβγ = 0

[F ]Q̂αβγ = 0

Table 1.10: Distinguished (pseudo) Riemannian spaces
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. T
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij, hab]

[W ]Γαβγ
[W ]T αβγ

Rα
βγτ = 0

Qαβγ = 0

2. DT
Na
i ,Ω

a
ij

gαβ = [gij, hab]

[Wa]Γα
βγ

[Wa]Tα
βγ

[Wa]Rα
βγτ = 0

[Wa]Qαβγ = 0

3. TB
Na
i ,Ω

a
ij

gαβ = [gij, hab]

[WB]Γα
βγ

[WB]Tα
βγ

[WB]Rα
βγτ = 0

[WB]Qαβγ = [Qiab, Qajk]

4. TBT
Na
i ,Ω

a
ij

gαβ = [gij, hab]

[WBτ ]Γα
βγ

[WBτ ]Tα
βγ

[WBτ ]Rα
βγτ = 0

[WBτ ]Qαβγ = [Qiab, Qajk]

5. TGL
dim i = dim a
Na
i ,Ω

a
ij

g[a] = [gij , hkl]

[Wa]Γγ
αβ

[Wa]Tα
βγ

[Wa]Rα
βγτ = 0

[Wa]Qαβγ = 0

6. TL

dim i = dim a
[cL]N i

j ,
[cL]Ωa

ij

d–metr.g
[L]
αβ

[WL]Γγ
αβ

[WL]Tα
βγ

[WL]Rα
βγτ = 0

[WL]Qαβγ = 0

7. TF

dim i = dim a
[F ]N i

j ;
[F ]Ωk

ij

d–metr.g
[F ]
αβ

[WF ]Γγ
αβ

[WF ]Tα
βγ

[WF ]Rα
βγτ = 0

[WF ]Qαβγ = 0

Table 1.11: Teleparallel spaces
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(1986); f.3, 32, 7 (1986).

[61] S. Vacaru, A New Method of Constructing Black Hole Solutions in Einstein and 5D
Dimension Gravity, hep-th/0110250.



100 BIBLIOGRAPHY



Chapter 2

A Method of Constructing
Off–Diagonal Solutions in
Metric–Affine and String Gravity

Abstract 1

The anholonomic frame method is generalized for non–Riemannian gravity models de-
fined by string corrections to the general relativity and metric–affine gravity (MAG) the-
ories. Such spacetime configurations are modelled as metric–affine spaces provided with
generic off–diagonal metrics (which can not be diagonalized by coordinate transforms)
and anholonomic frames with associated nonlinear connection (N–connection) structure.
We investigate the field equations of MAG and string gravity with mixed holonomic and
anholonomic variables. There are proved the main theorems on irreducible reduction to
effective Einstein–Proca equations with respect to anholonomic frames adapted to N–
connections. String corrections induced by the antisymmetric H–fields are considered.
There are also proved the theorems and criteria stating a new method of constructing
exact solutions with generic off–diagonal metric ansatz depending on 3-5 variables and
describing various type of locally anisotropic gravitational configurations with torsion,
nonmetricity and/or generalized Finsler–affine effective geometry. We analyze solutions,
generated in string gravity, when generalized Finsler–affine metrics, torsion and non-
metricity interact with three dimensional solitons.

Pacs: 04.50.+h, 04.20.JB, 02.40.-k,

MSC numbers: 83D05, 83C15, 83E15, 53B40, 53C07, 53C60
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2.1 Introduction

Nowadays, there exists an interest to non–Riemannian descriptions of gravity inter-
actions derived in the low energy string theory [1] and/or certain noncommutative [2]
and quantum group generalizations [3] of gravity and field theory. Such effective models
can be expressed in terms of geometries with torsion and nonmetricity in the framework
of metric–affine gravity (MAG) [4] and a subclass of such theories can be expressed as
an effective Einstein–Proca gravity derived via irreducible decompositions [5].

In a recent work [6] we developed a unified scheme to the geometry of anholo-
nomic frames with associated nonlinear connection (N–connection) structure for a large
number of gauge and gravity models with locally isotropic and anisotropic interactions
and nontrivial torsion and nonmetricity contributions and effective generalized Finsler–
Weyl–Riemann–Cartan geometries derived from MAG. The synthesis of metric–affine
and Finsler like theories was inspired by a number of exact solutions parametrized by
generic off–diagonal metrics and anholonomic frames in Einstein, Einstein–Cartan, gauge
and string gravity [7, 8]. The resulting formalism admits inclusion of locally anisotropic
spinor interactions and extensions to noncommutative geometry and string/brane grav-
ity [9, 10]. We concluded that the geometry of metric–affine spaces enabled with an
additional N–connection structure is sufficient not only to model the bulk of physically
important non–Riemannian geometries on (pseudo) Riemannian spaces but also states
the conditions when such effective spaces with generic anisotropy can be defined as cer-
tain generalized Finsler–affine geometric configurations constructed as exact solutions of
field equations. It was elaborated a detailed classification of such spacetimes provided
with N–connection structure.

If in the Ref. [6] we paid attention to the geometrical (pre–dynamical) aspects of the
generalized Finsler–affine configurations derived in MAG, the aim of this paper (the sec-
ond partner) is to formulate a variatonal formalism of deriving field equations on metric–
affine spaces provided with N–connection structure and to state the main theorems for
constructing exact off–diagonal solutions in such generalized non–Riemannian gravity
theories. We emphasize that generalized Finsler metrics can be generated in string grav-
ity connected to anholonomic metric–affine configurations. In particular, we investigate
how the so–called Obukhov’s equivalence theorem [5] should be modified as to include
various type of Finsler–Lagrange–Hamilton–Cartan metrics, see Refs. [11, 12, 13]. The
results of this paper consist a theoretical background for constructing exact solutions in
MAG and string gravity in the third partner paper [14] derived as exact solutions of grav-
itational and matter field equations parametrized by generic off–diagonal metrics (which
can not be diagonalized by local coordinate transforms) and anholonomic frames with
associated N–connection structure. Such solutions depending on 3-5 variables (general-
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izing to MAG the results from [7, 8, 9, 10, 15]) differ substantially from those elaborated
in Refs. [16]; they define certain extensions to nontrivial torsion and nonmetricity fields
of certain generic off–diagonal metrics in general relativity theory.

The plan of the paper is as follows: In Sec. 2 we outline the necessary results on
Finsler–affine geometry. Next, in Sec. 3, we formulate the field equations on metric–
affine spaces provided with N–connection structure. We consider Lagrangians and derive
geometrically the field equations of Finsler–affine gravity. We prove the main theorems
for the Einstein–Proca systems distinguished by N–connection structure and analyze
possible string gravity corrections by H–fields from the bosonic string theory. There
are defined the restrictions on N–connection structures resulting in Einstein–Cartan and
Einstein gravity. Section 4 is devoted to extension of the anholonomic frame method
in MAG and string gravity. We formulate and prove the main theorems stating the
possibility of constructing exact solutions parametrized by generic off–diagonal metrics,
nontrivial torsion and nonmetricity structures and possible sources of matter fields. In
Sec. 5 we construct three classes of exact solutions. The first class of solutions is stated
for five subclasses of two dimensional generalized Finsler geometries modelled in MAG
with possible string corrections. The second class of solutions is for MAG with effective
variable and inhomogeneous cosmological constant. The third class of solutions are for
the string Finsler–affine gravity (i. e. string gravity containing in certain limits Finsler
like metrics) with possible nonlinear three dimensional solitonic interactions, Proca fields
with almost vanishing masses, nontrivial torsions and nonmetricity. In Sec. 6 we present
the final remarks. In Appendices A, B and C we give respectively the details on the proof
of the Theorem 4.1 (stating the components of the Ricci tensor for generalized Finsler–
affine spaces), analyze the reduction of nonlinear solutions from five to four dimensions
and present a short characterization of five classes of generalized Finsler–affine spaces.

Our basic notations and conventions are those from Ref. [6] and contain an interfer-
ence of approaches elaborated in MAG and generalized Finsler geometry. The spacetime
is considered to be a manifold V n+m of necessary smoothly class of dimension n + m.
The Greek indices α, β, ... split into subclasses like α = (i, a) , β = (j, b) ... where the
Latin indices i, j, k, ... run values 1, 2, ...n and a, b, c, ... run values n+1, n+2, ..., n+m.
We follow the Penrose convention on abstract indices [17] and use underlined indices like
α = (i, a) , for decompositions with respect to coordinate frames. The symbol ” +” will
be used is some formulas will be introduced by definition and the end of proofs will be
stated by symbol �. The notations for connections Γαβγ, metrics gαβ and frames eα and

coframes ϑβ, or another geometrical and physical objects, are the standard ones from
MAG if a nonlinear connection (N–connection) structure is not emphasized on the space-
time. If a N–connection and corresponding anholonomic frame structure are prescribed,
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we use ”boldfaced” symbols with possible splitting of the objects and indices like

Vn+m, Γα
βγ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
, gαβ = (gij, hab) , eα = (ei, ea) , ...

being distinguished by N–connection (in brief, there are used the terms d–objects, d–
tensor, d–connection).

2.2 Metric–Affine and Generalized Finsler Gravity

In this section we recall some basic facts on metric–affine spaces provided with non-
linear connection (N–connection) structure and generalized Finsler–affine geometry [6].

The spacetime is modelled as a manifold V n+m of dimension n+m, with n ≥ 2 and
m ≥ 1, admitting (co) vector/ tangent structures. It is denoted by πT : TV n+m → TV n

the differential of the map π : V n+m → V n defined as a fiber–preserving morphism of
the tangent bundle (TV n+m, τE , V

n) to V n+m and of tangent bundle (TV n, τ, V n) . We
consider also the kernel of the morphism πT as a vector subbundle of the vector bundle
(TV n+m, τE, V

n+m) . The kernel defines the vertical subbundle over V n+m, s denoted
as (vV n+m, τV , V

n+m) . We parametrize the local coordinates of a point u ∈ V n+m as
uα = (xi, ya) , where the values of indices are i, j, k, ... = 1, 2, ..., n and a, b, c, ... =
n + 1, n+ 2, ..., n+m. The inclusion mapping is written as i : vV n+m → TV n+m.

A nonlinear connection (N–connection) N in a space (V n+m, π, V n) is a morphism of
manifolds N : TV n+m → vV n+m defined by the splitting on the left of the exact sequence

0→ vV n+m → TV n+m/vV n+m → 0. (2.1)

The kernel of the morphism N is a subbundle of (TV n+m, τE , V
n+m) , called the

horizontal subspace and denoted by (hV n+m, τH , V
n+m) . Every tangent bundle (TV n+m,

τE , V
n+m) provided with a N–connection structure is a Whitney sum of the vertical and

horizontal subspaces (in brief, h- and v– subspaces), i. e.

TV n+m = hV n+m ⊕ vV n+m. (2.2)

We note that the exact sequence (2.1) defines the N–connection in a global coordinate
free form resulting in invariant splitting (2.2) (see details in Refs. [18, 12] stated for
vector and tangent bundles and generalizations on covector bundles, superspaces and
noncommutative spaces [13] and [9]).
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A N–connection structure prescribes a class of vielbein transforms

A α
α (u) = e α

α =

[
e i
i (u) N b

i (u)e
a
b (u)

0 e a
a (u)

]
, (2.3)

Aββ(u) = eββ =

[
ei i(u) −N b

k(u)e
k
i (u)

0 eaa(u)

]
, (2.4)

in particular case e i
i = δii and e a

a = δaa with δii and δaa being the Kronecker symbols,
defining a global splitting of Vn+m into ”horizontal” and ”vertical” subspaces with the
N–vielbein structure

eα = e α
α ∂α and ϑβ = eββdu

β.

We adopt the convention that for the spaces provided with N–connection structure the
geometrical objects can be denoted by ”boldfaced” symbols if it would be necessary to
distinguish such objects from similar ones for spaces without N–connection.

A N–connection N in a space Vn+m is parametrized by its components Na
i (u) =

Na
i (x, y),

N = Na
i (u)d

i ⊗ ∂a
and characterized by the N–connection curvature

Ω =
1

2
Ωa
ijd

i ∧ dj ⊗ ∂a,

with N–connection curvature coefficients

Ωa
ij = δ[jN

a
i] =

∂Na
i

∂xj
− ∂Na

j

∂xi
+N b

i

∂Na
j

∂yb
−N b

j

∂Na
i

∂yb
. (2.5)

On spaces provided with N–connection structure, we have to use ’N–elongated’ operators
like δj in (2.5) instead of usual partial derivatives. They are defined by the vielbein
configuration induced by the N–connection, the N–elongated partial derivatives (in brief,
N–derivatives)

eα + δα = (δi, ∂a) ≡
δ

δuα
=

(
δ

δxi
= ∂i −Na

i (u) ∂a,
∂

∂ya

)
(2.6)

and the N–elongated differentials (in brief, N–differentials)

ϑβ + δ β =
(
di, δa

)
≡ δuα =

(
δxi = dxi, δya = dya +Na

i (u) dxi
)

(2.7)
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called also, respectively, the N–frame and N–coframe. There are used both type of
denotations eα + δα and ϑβ + δ α in order to preserve a connection to denotations from
Refs. [12, 7, 8, 9]. The ’boldfaced’ symbols eα and ϑβ will be considered in order to
emphasize that they define N–adapted vielbeins but the symbols δα and δ β will be used
for the N–elongated partial derivatives and, respectively, differentials.

The N–coframe (2.7) satisfies the anholonomy relations

[δα, δβ] = δαδβ − δβδα = wγ
αβ (u) δγ (2.8)

with nontrivial anholonomy coefficients wα
βγ (u) computed as

wa
ji = −wa

ij = Ωa
ij , wb

ia = −wb
ai = ∂aN

b
i . (2.9)

The distinguished objects (by a N–connection on a spaces Vn+m) are introduced in
a coordinate free form as geometric objects adapted to the splitting (2.2). In brief, they
are called d–objects, d–tensor, d–connections, d–metrics....

There is an important class of linear connections adapted to the N–connection struc-
ture:

A d–connection D on a space Vn+m is defined as a linear connection D conserving
under a parallelism the global decomposition (2.2).

The N–adapted components Γα
βγ of a d-connection Dα = (δα⌋D) are defined by the

equations
Dαδβ = Γγ

αβδγ,

from which one immediately follows

Γγ
αβ (u) = (Dαδβ)⌋δγ. (2.10)

The operations of h- and v-covariant derivations, D
[h]
k = {Lijk, Labk } and D

[v]
c = {Ci

jk, C
a
bc}

are introduced as corresponding h- and v–parametrizations of (2.10),

Lijk = (Dkδj)⌋di, Labk = (Dk∂b)⌋δa, Ci
jc = (Dcδj)⌋di, Ca

bc = (Dc∂b)⌋δa.

The components Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
completely define a d–connection D in Vn+m.

A metric structure g on a space Vn+m is defined as a symmetric covariant tensor
field of type (0, 2) , gαβ, being nondegenerate and of constant signature on Vn+m. A N–

connection N ={N b
i (u)} and a metric structure g = gαβdu

α⊗duβ on Vn+m are mutually
compatible if there are satisfied the conditions

g (δi, ∂a) = 0, or equivalently, gia (u)−N b
i (u)hab (u) = 0,
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where hab + g (∂a, ∂b) and gia + g (∂i, ∂a) resulting in

N b
i (u) = hab (u) gia (u)

(the matrix hab is inverse to hab; for simplicity, we do not underline the indices in the
last formula). In consequence, we define an invariant h–v–decomposition of metric (in
brief, a d–metric)

g(X, Y )=hg(X, Y ) + vg(X, Y ).

With respect to a N–coframe (2.7), the d–metric is written

g = gαβ (u) δα ⊗ δβ = gij (u) di ⊗ dj + hab (u) δ
a ⊗ δb, (2.11)

where gij + g (δi, δj) . The d–metric (2.11) can be equivalently written in ”off–diagonal”
with respect to a coordinate basis defined by usual local differentials duα = (dxi, dya) ,

g
αβ

=

[
gij +Na

i N
b
jhab N e

j hae
N e
i hbe hab

]
. (2.12)

A metric, for instance, parametrized in the form (2.12) is generic off–diagonal if it can
not be diagonalized by any coordinate transforms. The anholonomy coefficients (2.9) do
not vanish for the off–diagonal form (2.12) and the equivalent d–metric (2.11).

The nonmetricity d–field

Q = Qαβϑ
α ⊗ ϑβ = Qαβδ

α ⊗ δβ

on a space Vn+m provided with N–connection structure is defined by a d–tensor field
with the coefficients

Qαβ + −Dgαβ (2.13)

where the covariant derivative D is for a d–connection (2.10) Γγ
α = Γγ

αβϑ
β with Γγ

αβ =(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
.

A linear connection DX is compatible with a d–metric g if

DXg = 0, (2.14)

i. e. if Qαβ ≡ 0. In a space provided with N–connection structure, the metricity condition
(2.14) may split into a set of compatibility conditions on h- and v– subspaces,

D[h](hg) = 0, D[v](hg) = 0, D[h](vg) = 0, D[v](vg) = 0. (2.15)
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For instance, if D[v](hg) = 0 and D[h](vg) = 0, but, in general, D[h](hg) 6= 0 and
D[v](vg) 6= 0 we have a nontrivial nonmetricity d–field Qαβ = Qγαβϑ

γ with irreducible
h–v–components Qγαβ = (Qijk, Qabc) .

In a metric–affine space, by acting on forms with a covariant derivative D, we can
also define another very important geometric objects (the ’gravitational field potentials’,
the torsion and, respectively, curvature; see [4]):

Tα + Dϑα = δϑα + Γγ
β ∧ ϑβ (2.16)

and
Rα

β + DΓα
β = δΓα

β − Γγ
β ∧ Γα

γ (2.17)

For spaces provided with N–connection structures, we consider the same formulas but
for ”boldfaced” symbols and change the usual differential d into N-adapted operator δ.

A general affine (linear) connection D = ▽+ Z = {Γγβα = Γγ▽βα + Zγ
βα}

Γγα = Γγαβϑ
β , (2.18)

can always be decomposed into the Riemannian Γα▽ β and post–Riemannian Zα
β parts

[4, 5],
Γαβ = Γα▽ β + Zα

β. (2.19)

The distorsion 1-form Zα
β from (2.19) is expressed in terms of torsion and nonmetricity,

Zαβ = eβ⌋Tα − eα⌋Tβ +
1

2
(eα⌋eβ⌋Tγ)ϑγ + (eα⌋Qβγ)ϑ

γ − (eβ⌋Qαγ)ϑ
γ +

1

2
Qαβ (2.20)

where Tα is defined as (2.16) and Qαβ + −Dgαβ . (We note that Zα
β are Nαβ from Ref.

[5], but in our works we use the symbol N for N–connections .) For Qβγ = 0, we obtain
from (2.20) the distorsion for the Riemannian–Cartan geometry [19].

By substituting arbitrary (co) frames, metrics and linear connections into N–adapted
ones,

eα → eα, ϑ
β → ϑβ , gαβ → gαβ = (gij, hab) ,Γ

γ
α → Γγ

α,

with Qαβ = Qγαβϑ
γ and Tα as in (2.16), into respective formulas (2.18), (2.19) and

(2.20), we can define an affine connection D = ▽+ Z = [Γγ
βα] with respect to N–

adapted (co) frames,
Γγ

α = Γγ
αβϑ

β , (2.21)

with
Γα

β = Γα
▽ β + Zα

β, (2.22)
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where

Γ▽
γα =

1

2

[
eγ⌋ δϑα − eα⌋ δϑγ − (eγ⌋ eα⌋ δϑβ) ∧ ϑβ

]
, (2.23)

and

Zαβ = eβ⌋Tα − eα⌋Tβ +
1

2
(eα⌋eβ⌋Tγ)ϑ

γ + (eα⌋Qβγ)ϑ
γ − (eβ⌋Qαγ)ϑ

γ +
1

2
Qαβ. (2.24)

The h– and v–components of Γα
β from (2.22) consists from the components of Γα

▽ β

(considered for (2.23)) and of Zαβ with Zα
γβ =

(
Z i
jk, Z

a
bk, Z

i
jc, Z

a
bc

)
. We note that for

Qαβ = 0, the distorsion 1–form Zαβ defines a Riemann–Cartan geometry adapted to the
N–connection structure.

A distinguished metric–affine space Vn+m is defined as a usual metric–affine space
additionally enabled with a N–connection structure N = {Na

i } inducing splitting into re-
spective irreducible horizontal and vertical subspaces of dimensions n and m. This space
is provided with independent d–metric (2.11) and affine d–connection (2.10) structures
adapted to the N–connection.

If a space Vn+m is provided with both N–connection N and d–metric g structures,
there is a unique linear symmetric and torsionless connection ▽, called the Levi–Civita
connection, being metric compatible such that ▽γgαβ = 0 for gαβ = (gij, hab) , see
(2.11), with the coefficients

Γ▽
αβγ = g (δα,▽γδβ) = gατΓ

τ
▽βγ ,

computed as

Γ▽
αβγ =

1

2

[
δβgαγ + δγgβα − δαgγβ + gατw

τ
γβ + gβτw

τ
αγ − gγτw

τ
βα

]
(2.25)

with respect to N–frames eβ + δβ (2.6) and N–coframes ϑα + δα (2.7).
We note that the Levi–Civita connection is not adapted to the N–connection struc-

ture. Se, we can not state its coefficients in an irreducible form for the h– and v–subspaces.
There is a type of d–connections which are similar to the Levi–Civita connection but sat-
isfying certain metricity conditions adapted to the N–connection. They are introduced
as metric d–connections D =

(
D[h], D[v]

)
in a space Vn+m satisfying the metricity con-

ditions if and only if

D
[h]
k gij = 0, D[v]

a gij = 0, D
[h]
k hab = 0, D[h]

a hab = 0. (2.26)

Let us consider an important example: The canonical d–connection D̂ =
(
D̂[h], D̂[v]

)
,

equivalently Γ̂γ
α = Γ̂γ

αβϑ
β, is defined by the h– v–irreducible components Γ̂γ

αβ =
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(L̂ijk, L̂
a
bk, Ĉ

i
jc, Ĉ

a
bc), where

L̂ijk =
1

2
gir
(
δgjk
δxk

+
δgkr
δxj
− δgjk
δxr

)
, (2.27)

L̂abk =
∂Na

k

∂yb
+

1

2
hac
(
δhbc
δxk
− ∂Nd

k

∂yb
hdc −

∂Nd
k

∂yc
hdb

)
,

Ĉi
jc =

1

2
gik

∂gjk
∂yc

,

Ĉa
bc =

1

2
had
(
∂hbd
∂yc

+
∂hcd
∂yb
− ∂hbc
∂yd

)
.

satisfying the torsionless conditions for the h–subspace and v–subspace, respectively,
T̂ ijk = T̂ abc = 0.

The components of the Levi–Civita connection Γτ
▽βγ and the irreducible components

of the canonical d–connection Γ̂τ
βγ are related by formulas

Γτ
▽βγ =

(
L̂ijk, L̂

a
bk −

∂Na
k

∂yb
, Ĉi

jc +
1

2
gikΩa

jkhca, Ĉ
a
bc

)
, (2.28)

where Ωa
jk is the N–connection curvature (2.5).

We can define and calculate the irreducible components of torsion and curvature in a
space Vn+m provided with additional N–connection structure (these could be any metric–
affine spaces [4], or their particular, like Riemann–Cartan [19], cases with vanishing
nonmetricity and/or torsion, or any (co) vector / tangent bundles like in Finsler geometry
and generalizations).

The torsion

Tα
.βγ = (T i.jk, T

i
ja, T

a
.ij, T

a
.bi, T

a
.bc)

of a d–connection Γγ
αβ = (Lijk, L

a
bk, C

i
jc, C

a
bc) (2.10) has irreducible h- v–components (d–

torsions)

T i.jk = −T ikj = Lijk − Likj , T ija = −T iaj = Ci
.ja, T

a
.ji = −T a.ij =

δNa
i

δxj
− δNa

j

δxi
= Ωa

.ji,

T a.bi = −T a.ib = P a
.bi =

∂Na
i

∂yb
− La.bj, T a.bc = −T a.cb = Sa.bc = Ca

bc − Ca
cb. (2.29)

We note that on (pseudo) Riemanian spacetimes the d–torsions can be induced by
the N–connection coefficients and reflect an anholonomic frame structure. Such objects
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vanish when we transfer our considerations with respect to holonomic bases for a trivial
N–connection and zero ”vertical” dimension.

The curvature

Rα
.βγτ = (Ri

hjk, R
a
bjk, P

i
jka, P

c
bka, S

i
jbc, S

a
bcd)

of a d–connection Γγ
αβ = (Lijk, L

a
bk, C

i
jc, C

a
bc) (2.10) has irreducible h- v–components (d–

curvatures)

Ri
hjk =

δLi.hj
δxk

− δLi.hk
δxj

+ Lm.hjL
i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk, (2.30)

Ra
bjk =

δLa.bj
δxk

− δLa.bk
δxj

+ Lc.bjL
a
.ck − Lc.bkLa.cj − Ca

.bc Ωc
.jk,

P i
jka =

∂Li.jk
∂yk

−
(
∂Ci

.ja

∂xk
+ Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc

)
+ Ci

.jbP
b
.ka,

P c
bka =

∂Lc.bk
∂ya

−
(
∂Cc

.ba

∂xk
+ Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd

)
+ Cc

.bdP
d
.ka,

Sijbc =
∂Ci

.jb

∂yc
− ∂Ci

.jc

∂yb
+ Ch

.jbC
i
.hc − Ch

.jcC
i
hb,

Sabcd =
∂Ca

.bc

∂yd
− ∂Ca

.bd

∂yc
+ Ce

.bcC
a
.ed − Ce

.bdC
a
.ec.

The components of the Ricci tensor

Rαβ = Rτ
αβτ

with respect to a locally adapted frame (2.6) has four irreducible h- v–components Rαβ =
(Rij , Ria, Rai, Sab), where

Rij = Rk
ijk, Ria = − 2Pia = −P k

ika, (2.31)

Rai = 1Pai = P b
aib, Sab = Scabc.

We point out that because, in general, 1Pai 6= 2Pia the Ricci d–tensor is non symmetric.

Having defined a d–metric of type (2.11) in Vn+m, we can introduce the scalar cur-
vature of a d–connection D,

←−
R = gαβRαβ = R+ S, (2.32)
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where R = gijRij and S = habSab and define the distinguished form of the Einstein
tensor (the Einstein d–tensor),

Gαβ + Rαβ −
1

2
gαβ
←−
R . (2.33)

The introduced geometrical objects are extremely useful in definition of field equa-
tions of MAG and string gravity with nontrivial N–connection structure.

2.3 N–Connections and Field Equations

The field equations of metric–affine gravity (in brief, MAG) [4, 5] can be reformulated
with respect to frames and coframes consisting from mixed holonomic and anholonomic
components defined by the N–connection structure. In this case, various type of (pseudo)
Riemannian, Riemann–Cartan and generalized Finsler metrics and additional torsion and
nonmetricity sructures with very general local anisotropy can be embedded into MAG.
It is known that in a metric–affine spacetime the curvature, torsion and nonmetricity
have correspondingly eleven, three and four irreducible pieces. If the N–connection
is defined in a metric–affine spacetime, every irreducible component of curvature splits
additionally into six h- and v– components (2.30), every irreducible component of torsion
splits additionally into five h- and v– components (2.29) and every irreducible component
of nonmetricity splits additionally into two h- and v– components (defined by splitting
of metrics into block ansatz (2.11)).

2.3.1 Lagrangians and field equations for Finsler–affine theories

For an arbitrary d–connection Γα
β in a metric–affine space Vn+m provided with N–

connection structure (for simplicity, we can take n + m = 4) one holds the respective
decompositions for d–torsion and nonmetricity d–field,

(2)Tα +
1

3
ϑα ∧T, for T + eα⌋Tα, (2.34)

(3)Tα +
1

3
∗ (ϑα ∧P) , for P + ∗ (Tα ∧ ϑα) ,

(1)Tα + Tα −(2) Tα −(3) Tα
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and

(2)Qαβ +
1

3
∗ (ϑα ∧ Sβ + ϑβ ∧ Sα) ,

(4)Qαβ + gαβQ,

(3)Qαβ +
2

9

[
(ϑαeβ + ϑβeα)⌋Λ−

1

2
gαβΛ

]
, (2.35)

(1)Qαβ + Qαβ − (2)Qαβ − (3)Qαβ − (4)Qαβ ,

where

Q +
1

4
gαβQαβ, Λ + ϑαeβ⌋

(
Qαβ −Qgαβ

)
,

Θα + ∗
[(

Qαβ −Qgαβ
)
∧ ϑβ

]
,

Sα + Θα −
1

3
eα⌋

(
ϑβ ∧Θβ

)

and the Hodge dual ”∗” is such that η + ∗1 is the volume 4–form and

ηα + eα⌋η = ∗ϑα, ηαβ + eα⌋ηβ= ∗ (ϑα ∧ ϑβ) , ηαβγ + eγ⌋ηαβ , ηαβγτ + eτ⌋ηαβγ

with ηαβγτ being totally antisymmetric. In higher dimensions, we have to consider η +

∗1 as the volume (n +m)–form. For N–adapted h- and v–constructions, we have to
consider couples of ’volume’ forms η +

(
η[g] = ∗[g]1, η[h] = ∗[h]1

)
defined correspondingly

by gαβ = (gij , hab) .

With respect to N–adapted (co) frames eβ = (δi, ∂a) (2.6) and ϑα = (di, δa) (2.7), the
irreducible decompositions (2.34) split into h- and v–components (A)Tα =

(
(A)Ti, (A)Ta

)

for every A = 1, 2, 3, 4. Because, by definition, Qαβ + Dgαβ and gαβ = (gij, hab)
is a d–metric field, we conclude that in a similar form can be decomposed the non-
metricity, Qαβ = (Qij , Qab) . The symmetrizations in formulas (2.35) hide splitting for
(1)Qαβ ,

(2) Qαβ and (3)Qαβ . Nevertheless, the h– and v– decompositions can be derived
separately on h– and v–subspaces by distinguishing the interior product ⌋ =

(
⌋[h], ⌋[v]

)
as

to have ηα = (ηi = δi⌋η, ηa = ∂a⌋η)...and all formulas after decompositions with respect
to N–adapted frames (co resulting into a separate relations in h– and v–subspaces, when
(A)Qαβ =

(
(A)Qij ,

(A)Qab

)
for every A = 1, 2, 3, 4.

A generalized Finsler–affine theory is described by a Lagrangian

L = LGFA + Lmat,
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where Lmat represents the Lagrangian of matter fields and

LGFA =
1

2κ
[−a0[Rh]R

ij ∧ ηij − a0[Rv]R
ab ∧ ηab − a0[Ph]P

ij ∧ ηij − a0[Pv]P
ab ∧ ηab

−a0[Sh]S
ij ∧ ηij − a0[Sv]S

ab ∧ ηab − 2λ[h]η[h] − 2λ[v]η[v] (2.36)

+Ti ∧ ∗[h]




3∑

[A]=1

a[hA]
[A]Ti


+ Ta ∧ ∗[v]




3∑

[A]=1

a[vA]
[A]Ta




+2




4∑

[I]=2

c[hI]
[I]Qij


 ∧ ϑi ∧ ∗[h] Tj + 2




4∑

[I]=2

c[vI]
[I]Qab


 ∧ ϑa ∧ ∗[v]Tb

+Qij ∧




4∑

[I]=1

b[hI]
[I]Qij


+ Qab ∧




4∑

[I]=1

b[vI]
[I]Qab




+b[h5]

(
[3]Qij ∧ ϑi

)
∧ ∗[h]

(
[4]Qkj ∧ ϑk

)
+ b[v5]

(
[3]Qij ∧ ϑi

)
∧ ∗[v]

(
[4]Qkj ∧ ϑk

)
]

− 1

2ρ[Rh]

Rij ∧ ∗[h]{
6∑

[I]=1

w[RhI] ([I]Rij − [I]Rji) + w[Rh7]ϑi ∧ [ek⌋[h] ( [5]Rk
j − [5]R k

j )]

+

5∑

[I]=1

z[RhI] ([I]Rij + [I]Rji) + z[Rh6]ϑk ∧ [ei⌋[h] ( [2]Rk
j − [2]R k

j )]

+

9∑

[I]=7

z[RhI]ϑi ∧ [ek⌋[h] ( [I−4]Rk
j − [I−4]R k

j )]}

− 1

2ρ[Rv]

Rab ∧ ∗[v]{
6∑

[I]=1

w[RvI] ([I]Rab − [I]Rba) + w[Rv7]ϑa ∧ [ec⌋[v] ( [5]Ra
b − [5]R a

b )]

+
5∑

[I]=1

z[RvI] ([I]Rab + [I]Rba) + z[Rv6]ϑc ∧ [ea⌋[v] ( [2]Rc
b − [2]R c

b )]

+

9∑

[I]=7

z[RvI]ϑa ∧ [ec⌋[v] ( [I−4]Rc
b − [I−4]R c

b )]}
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− 1

2ρ[Ph]

Pij ∧ ∗[h]{
6∑

[I]=1

w[PhI] ([I]Pij − [I]Pji) + w[Ph7]ϑi ∧ [ek⌋[h] ( [5]Pk
j − [5]P k

j )]

+
5∑

[I]=1

z[PhI] ([I]Pij + [I]Pji) + z[Ph6]ϑk ∧ [ei⌋[h] ( [2]Pk
j − [2]P k

j )]

+

9∑

[I]=7

z[PhI]ϑi ∧ [ek⌋[h] ( [I−4]Pk
j − [I−4]P k

j )]}−

1

2ρ[Pv]

Pab ∧ ∗[v]{
6∑

[I]=1

w[PvI] ([I]Pab − [I]Pba) + w[Pv7]ϑa ∧ [ec⌋[v] ( [5]Pa
b − [5]P a

b )]

+

5∑

[I]=1

z[PvI] ([I]Pab + [I]Pba) + z[Pv6]ϑc ∧ [ea⌋[v] ( [2]Pc
b − [2]P c

b )]

+

9∑

[I]=7

z[PvI]ϑa ∧ [ec⌋[v] ( [I−4]Pc
b − [I−4]P c

b )]}

− 1

2ρ[Sh]

Sij ∧ ∗[h]{
6∑

[I]=1

w[ShI] ([I]Sij − [I]Sji) + w[Sh7]ϑi ∧ [ek⌋[h] ( [5]Sk j − [5]S k
j )]

+

5∑

[I]=1

z[ShI] ([I]Sij + [I]Sji) + z[Sh6]ϑk ∧ [ei⌋[h] ( [2]Sk j − [2]S k
j )]

+
9∑

[I]=7

z[ShI]ϑi ∧ [ek⌋[h] ( [I−4]Sk j − [I−4]S k
j )]}−

1

2ρ[Sv]

Sab ∧ ∗[v]{
6∑

[I]=1

w[SvI] ([I]Sab − [I]Sba) + w[Sv7]ϑa ∧ [ec⌋[v] ( [5]Sa b − [5]S a
b )]

+
5∑

[I]=1

z[SvI] ([I]Sab + [I]Sba) + z[Sv6]ϑc ∧ [ea⌋[v] ( [2]Sc b − [2]S c
b )]

+

9∑

[I]=7

z[SvI]ϑa ∧ [ec⌋[v] ( [I−4]Sc b − [I−4]S c
b )]}.
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Let us explain the denotations used in (2.36): The signature is adapted in the form
(−+ ++) and there are considered two Hodge duals, ∗[h]for h–subspace and ∗[v]for v–
subspace, and respectively two cosmological constants, λ[h] and λ[v]. The strong gravity
coupling constants ρ[Rh], ρ[Rv], ρ[Ph], ...., the constants a0[Rh], a0[Rv], a0[Ph], ..., a[hA], a[vA], ...
c[hI], c[vI], ... are dimensionless and provided with labels [R], [P ], [h], [v], emphasizing that
the constants are related, for instance, to respective invariants of curvature, torsion,
nonmetricity and their h- and v–decompositions.

The action (2.36) describes all possible models of Einstein, Einstein–Cartan and all
type of Finsler–Lagrange–Cartan–Hamilton gravities which can be modelled on metric
affine spaces provided with N–connection structure (i. e. with generic off–diagonal
metrics) and derived from quadratic MAG–type Lagrangians.

We can reduce the number of constants in LGFA → L′
GFA if we select the limit

resulting in the usual quadratic MAG–Lagrangian [4] for trivial N–connection structure.
In this case, all constants for h– and v– decompositions coincide with those from MAG
without N–connection structure, for instance,

a0 = a0[Rh] = a0[Rv] = a0[Ph] = ..., a[A] = a[hA] = a[vA] = ..., ..., c[I] = c[hI] = c[vI], ...

The Lagrangian (2.36) can be reduced to a more simple one written in terms of boldfaced
symbols (emphasizing a nontrivial N–connection structure) provided with Greek indices,

L′
GFA =

1

2κ
[−a0R

αβ ∧ ηαβ − 2λη + Ti ∧ ∗




3∑

[A]=1

a[A]
[A]Ti




+2




4∑

[I]=2

c[I]
[I]Qαβ


 ∧ ϑα ∧ ∗ Tβ + Qαβ ∧




4∑

[I]=1

b[I]
[I]Qαβ


 (2.37)

+Qαβ ∧




4∑

[I]=1

b[I]
[I]Qαβ


+ b[5]

(
[3]Qαβ ∧ ϑα

)
∧ ∗
(
[4]Qγβ ∧ ϑγ

)
]

− 1

2ρ
Rαβ ∧ ∗[

6∑

[I]=1

w[I]
[I]Wαβ + w[7]ϑα ∧

(
eγ⌋ [5]Wγ

β

)

+
5∑

[I]=1

z[I]
[I]Yαβ + z[6]ϑγ ∧

(
eα⌋ [2]Yγ

β

)
+

9∑

[I]=7

z[I]ϑα ∧ (eγ⌋ [I−4]Yγ
β)].

where [I]Wαβ = [I]Rαβ − [I]Rβα and [I]Yαβ = [I]Rαβ + [I]Rβα. This action is just
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for the MAG quadratic theory but with eα and ϑβ being adapted to the N–connection
structure as in (2.6) and (2.7) with a corresponding splitting of geometrical objects.

The field equations of a metric–affine space provided with N–connection structure,

Vn+m =
[
Na
i , gαβ = (gij, hab) ,Γ

γ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)]
,

can be obtained by the Noether procedure in its turn being N–adapted to (co) frames
eα and ϑβ . At the first step, we parametrize the generalized Finsler–affine Lagrangian
and matter Lagrangian respectively as

L′
GFA = L[fa]

(
Na
i , gαβ, ϑ

γ ,Qαβ,T
α, Rα

β

)

and
Lmat = L[m] (N

a
i , gαβ, ϑ

γ ,Ψ,DΨ) ,

where Tα and Rα
β are the curvature of arbitrary d–connection D and Ψ represents the

matter fields as a p–form. The action S on Vn+m is written

S =

∫
δn+mu

√
|gαβ|

[
L[fa] + L[m]

]
(2.38)

which results in the matter and gravitational (generalized Finsler–affine type) field equa-
tions.

Theorem 2.3.1. The Yang–Mills type field equations of the generalized Finsler–affine
gravity with matter derived by a variational procedure adapted to the N–connection struc-
ture are defined by the system

D

(
∂L[m]

∂ (DΨ)

)
− (−1)p

∂L[m]

∂Ψ
= 0, (2.39)

D

(
∂L[fa]

∂Qαβ

)
+ 2

∂L[fa]

∂gαβ
= −σαβ ,

D

(
∂L[fa]

∂Tα

)
+ 2

∂L[fa]

∂ϑα
= −Σα,

D

(
∂L[fa]

∂Rα
β

)
+ ϑβ ∧ ∂L[fa]

∂Tα
= −∆ β

α ,

where the material currents are defined

σαβ + 2
δL[m]

δgαβ
, Σα +

δL[m]

δϑα
, ∆ β

α =
δL[m]

δΓα
β

for variations ”boldfaced” δL[m]/δ computed with respect to N–adapted (co) frames.
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The proof of this theorem consists from N–adapted variational calculus. The equa-
tions (2.39) transforms correspondingly into ”MATTER, ZEROTH, FIRST, SECOND”
equations of MAG [4] for trivial N–connection structures.

Corollary 2.3.1. The system (2.39) has respectively the h– and v–irreducible components

D[h]

(
∂L[m]

∂ (D[h]Ψ)

)
+D[v]

(
∂L[m]

∂ (D[v]Ψ)

)
− (−1)p

∂L[m]

∂Ψ
= 0,

D[h]

(
∂L[fa]

∂Qij

)
+D[v]

(
∂L[fa]

∂Qij

)
+ 2

∂L[fa]

∂gij
= −σij , (2.40)

D[h]

(
∂L[fa]

∂Qab

)
+D[v]

(
∂L[fa]

∂Qab

)
+ 2

∂L[fa]

∂gab
= −σab,

D[h]

(
∂L[fa]

∂T i

)
+D[v]

(
∂L[fa]

∂T i

)
+ 2

∂L[fa]

∂ϑi
= −Σi,

D[h]

(
∂L[fa]

∂T a

)
+D[v]

(
∂L[fa]

∂T a

)
+ 2

∂L[fa]

∂ϑa
= −Σa,

D[h]

(
∂L[fa]

∂Ri
j

)
+D[v]

(
∂L[fa]

∂Ri
j

)
+ ϑj ∧ ∂L[fa]

∂T i
= −∆ j

i ,

D[h]

(
∂L[fa]

∂Ra
b

)
+D[v]

(
∂L[fa]

∂Ra
b

)
+ ϑb ∧ ∂L[fa]

∂T a
= −∆ b

a ,

where

σαβ =
(
σij , σab

)
for σij + 2

δL[m]

δgij
, σab + 2

δL[m]

δhab
,

Σα = (Σi,Σa) for Σi +
δL[m]

δϑi
, Σa +

δL[m]

δϑa
,

∆ β
α =

(
∆ j
i ,∆

b
a

)
for ∆ j

i =
δL[m]

δΓi j
, ∆ b

a =
δL[m]

δΓab
.

It should be noted that the complete h– v–decomposition of the system (2.40) can
be obtained if we represent the d–connection and curvature forms as

Γi j = Li jkdx
j + Ci

jaδy
a and Γab = Labkdx

k + Ca
bc δy

c,
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see the d–connection components (2.10) and

2Ri
j = Ri

jkldx
k ∧ dxl + P i

jkadx
k ∧ δya + Sijbaδy

b ∧ δya,
2Re

f = Re
fkldx

k ∧ dxl + P e
fkadx

k ∧ δya + Sefbaδy
a ∧ δya,

see the d–curvature components (2.30).

Remark 2.3.1. For instance, a Finsler configuration can be modelled on a metric affine

space provided with N–connection structure, Vn+m =
[
Na
i , gαβ = (gij, hab) ,

[F ]Γ̂γ
αβ

]
, if

n = m, the ansatz for N–connection is of Cartan–Finsler type

Na
j → [F ]N i

j =
1

8

∂

∂yj

[
ylykgih[F ]

(
∂g

[F ]
hk

∂xl
+
∂g

[F ]
lh

∂xk
− ∂g

[F ]
lk

∂xh

)]
,

the d–metric gαβ = g
[F ]
αβ is defined by (2.11) with

g
[F ]
ij = gij = hij =

1

2
∂2F/∂yi∂yj

and [F ]Γ̂γ
αβ is the Finsler canonical d–connection computed as (2.27). The data should

define an exact solution of the system of field equation (2.40) (equivalently of (2.39)).

Similar Remarks hold true for all types of generalized Finsler–affine spaces considered
in Tables 1–11 from Ref. [6]. We shall analyze the possibility of modelling various type
of locally anisotropic geometries by the Einstein–Proca systems and in string gravity in
next subsection.

2.3.2 Effective Einstein–Proca systems and N–connections

Any affine connection can always be decomposed into (pseudo) Riemannian, Γα▽ β,
and post–Riemannian, Zα

β, parts as Γαβ = Γα▽ β + Zα
β, see formulas (2.19) and (2.20)

(or (2.22) and (2.24) if any N–connection structure is prescribed). This mean that it is
possible to split all quantities of a metric–affine theory into (pseudo) Riemannian and
post–Riemannian pieces, for instance,

Rα
β = Rα

▽ β +▽Zα
β + Zα

γ ∧ Zγ
β. (2.41)

Under certain assumptions one holds the Obukhov’s equivalence theorem according to
which the field vacuum metric–affine gravity equations are equivalent to Einstein’s equa-
tions with an energy–momentum tensor determined by a Proca field [5, 20]. We can
generalize the constructions and reformulate the equivalence theorem for generalized
Finsler–affine spaces and effective spaces provided with N–connection structure.
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Theorem 2.3.2. The system of effective field equations of MAG on spaces provided with
N–connection structure (2.39) (equivalently, (2.40)) for certain ansatz for torsion and
nonmetricity fields (see (2.34) and (2.35))

(1)Tα = (2)Tα = 0, (1)Qαβ = (2)Qαβ = 0, (2.42)

Q = k0φ, Λ =k1φ, T =k2φ,

where k0, k1, k2 = const and the Proca 1–form is φ =φαϑ
α = φidx

i + φaδy
a, reduces to

the Einstein–Proca system of equations for the canonical d–connection Γ̂γ
αβ (2.27) and

massive d–field φα,

a0

2
ηαβγ ∧ R̂βγ = k Σα,

δ (∗H) + µ2φ= 0, (2.43)

where H +δφ, the mass µ = const and the energy–momentum is given by

Σα = Σ[φ]
α + Σ[m]

α ,

Σ[φ]
α +

z4k
2
0

2ρ
{(eα⌋ H) ∧ ∗H− (eα⌋ ∗H) ∧H+µ2[(eα⌋ φ) ∧ ∗φ− (eα⌋ ∗ φ) ∧ φ]}

is the energy–momentum current of the Proca d–field and Σ
[µ]
α is the energy–momentum

current of the additional matter d–fields satisfying the corresponding Euler–Largange
equations.

The proof of the Theorem is just the reformulation with respect to N–adapted (co)
frames (2.6) and (2.7) of similar considerations in Refs. [5, 20]. The constants k0, k1.... are
taken in terms of the gravitational coupling constants like in [21] as to have connection
to the usual MAG and Einstein theory for trivial N–connection structures and for the
dimension m→ 0. We use the triplet ansatz sector (2.42) of MAG theories [5, 20]. It is
a remarkable fact that the equivalence Theorem 2.3.2 holds also in presence of arbitrary
N–connections i. e. for all type of anholonomic generalizations of the Einstein, Einstein–
Cartan and Finsler–Lagrange and Cartan–Hamilton geometries by introducing canonical
d–connections (we can also consider Berwald type d–connections).

Corollary 2.3.2. In abstract index form, the effective field equations for the generalized
Finsler–affine gravity following from (2.43) are written

R̂αβ −
1

2
gαβ
←−̂
R = κ̃

(
Σ

[φ]
αβ + Σ

[m]
αβ

)
, (2.44)

D̂νH
νµ = µ2φµ,
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with Hνµ + D̂νφµ − D̂µφν + wγµνφγ being the field strengths of the Abelian Proca field
φµ, κ̃ = const, and

Σ
[φ]
αβ = H µ

α Hβµ −
1

4
gαβHµνH

µν + µ2φαφβ −
µ2

2
gαβφµφ

µ. (2.45)

The Ricci d–tensor R̂αβ and scalar
←−̂
R from (2.44) can be decomposed in irreversible

h– and v–invariant components like (2.31) and (2.32),

R̂ij −
1

2
gij

(
R̂ + Ŝ

)
= κ̃

(
Σ

[φ]
ij + Σ

[m]
ij

)
, (2.46)

Ŝab −
1

2
hab

(
R̂ + Ŝ

)
= κ̃

(
Σ

[φ]
ab + Σ

[m]
ab

)
, (2.47)

1Pai = κ̃
(
Σ

[φ]
ai + Σ

[m]
ai

)
, (2.48)

−2Pia = κ̃
(
Σ

[φ]
ia + Σ

[m]
ia

)
. (2.49)

The constants are those from [5] being related to the constants from (2.37),

µ2 =
1

zkκ

(
−4β4 +

k1

2k0
β5 +

k2

k0
γ4

)
,

where

k0 = 4α2β3 − 3(γ3)
2 6= 0, k1 = 9

(
1

2
α5β5 − γ3γ4

)
, k2 = 3

(
4β3γ4 −

3

2
β5γ3

)
,

α2 = a2 − 2a0, β3 = b3 +
a0

8
, β4 = b4 −

3a0

8
, γ3 = c3 + a0, γ4 = c4 + a0.

If

β4 →
1

4k0

(
1

2
β5k1 + k2γ4

)
, (2.50)

the mass of Proca field µ2 → 0. The system becomes like the Einstein–Maxwell one with
the source (2.45) defined by the antisymmetric field Hµν in its turn being determined

by a solution of D̂νD̂
νφα = 0 (a wave like equation in a curved space provided with

N–connection). Even in this case the nonmetricity and torsion can be nontrivial, for
instance, oscillating (see (2.42)).

We note that according the Remark 2.3.1, the system (2.44) defines, for instance, a

Finsler configuration if the d–metric gαβ , the d–connection D̂ν and the N–connection
are of Finsler type (or contains as imbedding such objects).
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2.3.3 Einstein–Cartan gravity and N–connections

The Einstein–Cartan gravity contains gravitational configurations with nontrivial N–
connection structure. The simplest model with local anisotropy is to write on a space
Vn+m the Einstein equations for the canonical d–connection Γ̂γ

αβ (2.27) introduced in
the Einstein d–tensor (2.33),

R̂αβ −
1

2
gαβ
←−̂
R = κΣ

[m]
αβ ,

or in terms of differential forms,

ηαβγ ∧ R̂βγ = κΣ[m]
α (2.51)

which is a particular case of equations (2.43). The model contains nontrivial d–torsions,

T̂γ
αβ, computed by introducing the components of (2.27) into formulas (2.29). We can

consider that specific distributions of ”spin dust/fluid” of Weyssenhoff and Raabe type,
or any generalizations, adapted to the N–connection structure, can constitute the source
of certain algebraic equations for torsion (see details in Refs. [19]) or even to consider
generalizations for dynamical equations for torsion like in gauge gravity theories [22].

A more special case is defined by the theories when the d–torsions T̂γ
αβ are induced

by specific frame effects of N–connection structures. Such models contain all possible
distorsions to generalized Finsler–Lagrange–Cartan spacetimes of the Einstein gravity
and emphasize the conditions when such generalizations to locally anisotropic gravity
preserve the local Lorentz invariance or even model Finsler like configurations in the
framework of general relativity.

Let us express the 1–form of the canonical d–connection Γ̂γ
α as the deformation of

the Levi–Civita connection Γγ
▽ α,

Γ̂γ
α = Γγ

▽ α + Ẑγ
α (2.52)

where

Ẑαβ = eβ⌋T̂α − eα⌋T̂β +
1

2

(
eα⌋eβ⌋T̂γ

)
ϑγ (2.53)

being a particular case of formulas (2.22) and (2.24) when nonmetricity vanishes, Qαβ =
0. This induces a distorsion of the curvature tensor like (2.41) but for d–objects, express-
ing (2.51) in the form

ηαβγ ∧Rβγ
▽ + ηαβγ ∧ Zβγ

▽ = κΣ[m]
α (2.54)

where
Zβ

▽ γ = ▽Zβ
γ + Zβ

α ∧ Zα
γ .
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Theorem 2.3.3. The Einstein equations (2.51) for the canonical d–connection Γ̂γ
α con-

structed for a d–metric field gαβ = [gij, hab] (2.11) and N–connection Na
i is equivalent to

the gravitational field equations for the Einstein–Cartan theory with torsion T̂γ
α defined

by the N–connection, see formulas (2.29).

Proof: The proof is trivial and follows from decomposition (2.52).

Remark 2.3.2. Every type of generalized Finsler–Lagrange geometries is characterized
by a corresponding N– and d–connection and d–metric structures, see Tables 1–11 in Ref.
[6]. For the canonical d–connection such locally anisotropic geometries can be modelled
on Riemann–Cartan manifolds as solutions of (2.51) for a prescribed type of d–torsions
(2.29).

Corollary 2.3.3. A generalized Finsler geometry can be modelled in a (pseudo) Riemann
spacetime by a d–metric gαβ = [gij, hab] (2.11), equivalently by generic off–diagonal met-
ric (2.12), satisfying the Einstein equations for the Levi–Civita connection,

ηαβγ ∧Rβγ
▽ = κΣ[m]

α (2.55)

if and only if
ηαβγ ∧ Zβγ

▽ = 0. (2.56)

The proof follows from equations (2.54). We emphasize that the conditions (2.56) are
imposed for the deformations of the Ricci tensors computed from distorsions of the Levi–
Civita connection to the canonical d–connection. In general, a solution gαβ = [gij , hab]
of the Einstein equations (2.55) can be characterized alternatively by d–connections and
N–connections as follows from relation (2.28). The alternative geometric description
contains nontrivial torsion fields. The simplest such anholonomic configurations can be
defined by the condition of vanishing of N–connection curvature (2.5), Ωa

ij = 0, but even
in such cases there are nontrivial anholonomy coefficients, see (2.9), wb

ia = −wb
ai =

∂aN
b
i , and nonvanishing d–torsions (2.29),

T̂ ija = −T̂ iaj = Ĉi
.ja and T̂ a.bi = −T̂ a.ib = P̂ a

.bi =
∂Na

i

∂yb
− L̂a.bj ,

being induced by off–diagonal terms in the metric (2.12).

2.3.4 String gravity and N–connections

The subjects concerning generalized Finsler (super) geometry, spinors and (super)
strings are analyzed in details in Refs. [9]. Here, we consider the simplest examples
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when Finsler like geometries can be modelled in string gravity and related to certain
metric–affine structures.

For instance, in the sigma model for bosonic string (see, [1]), the background connec-
tion is taken to be not the Levi–Civita one, but a certain deformation by the strength
(torsion) tensor

Hµνρ + δµBνρ + δρBµν + δνBρµ

of an antisymmetric field Bνρ, defined as

Dµ = ▽µ +
1

2
H ρ
µν .

We consider theH–field defined by using N–elongated operators (2.6) in order to compute
the coefficients with respect to anholonomic frames.

The condition of the Weyl invariance to hold in two dimensions in the lowest nontrivial
approximation in string constant α′, see [9], turn out to be

Rµν = −1

4
H νρ
µ Hνλρ + 2▽µ▽νΦ,

▽λH
λ
µν = 2 (▽λΦ)Hλ

µν ,

(▽Φ)2 = ▽λ▽λ Φ +
1

4
R +

1

48
HµνρH

µνρ.

where Φ is the dilaton field. For trivial dilaton configurations, Φ = 0, we may write

Rµν = −1

4
H νρ
µ Hνλρ,

▽λH
λ
µν = 0.

In Refs. [9] we analyzed string gravity models derived from superstring effective actions,
for instance, from the 4D Neveu-Schwarz action. In this paper we consider, for simplicity,
a model with zero dilaton field but with nontrivial H–field related to the d–torsions
induced by the N–connection and canonical d–connection.

A class of Finsler like metrics can be derived from the bosonic string theory if Hνλρ

and Bνρ are related to the d–torsions components, for instance, with T̂γ
αβ. Really, we

can take an ansatz

Bνρ = [Bij, Bia, Bab]

and consider that

Hνλρ = Ẑ νλρ + Ĥνλρ (2.57)
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where Ẑ νλρ is the distorsion of the Levi–Civita connection induced by T̂γ
αβ, see (2.53).

In this case the induced by N–connection torsion structure is related to the antisymmetric
H–field and correspondingly to the B–field from string theory. The equations

▽νHνλρ = ▽ν(Ẑ νλρ + Ĥνλρ) = 0 (2.58)

impose certain dynamical restrictions to the N–connection coefficients Na
i and d–metric

gαβ = [gij , hab] contained in T̂γ
αβ . If on the background space it is prescribed the

canonical d–connection D̂, we can state a model with (2.58) redefined as

D̂νHνλρ = D̂ν(Ẑ νλρ + Ĥνλρ) = 0, (2.59)

where Ĥνλρ are computed for stated values of T̂γ
αβ . For trivial N–connections when

Ẑ νλρ → 0 and D̂ν → ▽ν, the Ĥνλρ transforms into usual H–fields.

Proposition 2.3.1. The dynamics of generalized Finsler–affine string gravity is defined
by the system of field equations

R̂αβ −
1

2
gαβ
←−̂
R = κ̃

(
Σ

[φ]
αβ + Σ

[m]
αβ + Σ

[T]
αβ

)
, (2.60)

D̂νH
νµ = µ2φµ,

D̂ν(Ẑ νλρ + Ĥνλρ) = 0

with Hνµ + D̂νφµ − D̂µφν + wγµνφγ being the field strengths of the Abelian Proca field
φµ, κ̃ = const,

Σ
[φ]
αβ = H µ

α Hβµ −
1

4
gαβHµνH

µν + µ2φαφβ −
µ2

2
gαβφµφ

µ,

and
Σ

[T]
αβ = Σ

[T]
αβ

(
T̂,Φ

)

contains contributions of T̂ and Φ fields.

Proof: It follows as an extension of the Corollary 2.3.2 to sources induced by string
corrections. The system (2.60) should be completed by the field equations for the matter

fields present in Σ
[m]
αβ .

Finally, we note that the equations (2.60) reduce to equations of type (2.54) (for
Riemann–Cartan configurations with zero nonmetricity),

ηαβγ ∧Rβγ
▽ + ηαβγ ∧ Zβγ

▽ = κΣ[T]
α ,
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and to equations of type (2.55) and (2.56) (for (pseudo) Riemannian configurations)

ηαβγ ∧Rβγ
▽ = κΣ[T]

α , (2.61)

ηαβγ ∧ Zβγ
▽ = 0

with sources defined by torsion (related to N–connection) from string theory.

2.4 The Anholonomic Frame Method

in MAG and String Gravity

In a series of papers, see Refs. [7, 8, 10, 15], the anholonomic frame method of
constructing exact solutions with generic off–diagonal metrics (depending on 2-4 vari-
ables) in general relativity, gauge gravity and certain extra dimension generalizations was
elaborated. In this section, we develop the method in MAG and string gravity with ap-
plications to different models of five dimensional (in brief, 5D) generalized Finsler–affine
spaces.

We consider a metric–affine space provided with N–connection structure
N = [N4

i (u
α), N5

i (u
α)] where the local coordinates are labelled uα = (xi, y4 = v, y5), for

i = 1, 2, 3. We state the general condition when exact solutions of the field equations
of the generalized Finsler–affine string gravity depending on holonomic variables xi and
on one anholonomic (equivalently, anisotropic) variable y4 = v can be constructed in
explicit form. Every coordinate from a set uα can may be time like, 3D space like, or
extra dimensional. For simplicity, the partial derivatives are denoted a× = ∂a/∂x1, a• =
∂a/∂x2, a′ = ∂a/∂x3, a∗ = ∂a/∂v.

The 5D metric
g = gαβ

(
xi, v

)
duα ⊗ duβ (2.62)

has the metric coefficients gαβ parametrized with respect to the coordinate dual basis
by an off–diagonal matrix (ansatz)



g1 + w 2
1 h4 + n 2

1 h5 w1w2h4 + n1n2h5 w1w3h4 + n1n3h5 w1h4 n1h5

w1w2h4 + n1n2h5 g2 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w1w3h4 + n1n3h5 w2w3h4 + n2n3h5 g3 + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0
n1h5 n2h5 n3h5 0 h5



, (2.63)

with the coefficients being some necessary smoothly class functions of type

g1 = ±1, g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

i, v),

wi = wi(x
i, v), ni = ni(x

i, v),
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where the N–coefficients from (2.6) and (2.7) are parametrized N4
i = wi and N5

i = ni.

Theorem 2.4.4. The nontrivial components of the 5D Ricci d–tensors (2.31), R̂αβ =

(R̂ij , R̂ia, R̂ai, Ŝab), for the d–metric (2.11) and canonical d–connection Γ̂γ
αβ(2.27) both

defined by the ansatz (2.63), computed with respect to anholonomic frames (2.6) and
(2.7), consist from h- and v–irreducible components:

R2
2 = R3

3 = − 1

2g2g3

[g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

], (2.64)

S4
4 = S5

5 = − 1

2h4h5

[
h∗∗5 − h∗5

(
ln
√
|h4h5|

)
]∗
]
, (2.65)

R4i = −wi
β

2h5
− αi

2h5
, (2.66)

R5i = − h5

2h4
[n∗∗
i + γn∗

i ] , (2.67)

where

αi = ∂ih
∗
5 − h∗5∂i ln

√
|h4h5|, β = h∗∗5 − h∗5[ln

√
|h4h5|]∗, γ = 3h∗5/2h5 − h∗4/h4 (2.68)

h∗4 6= 0, h∗5 6= 0 cases with vanishing h∗4 and/or h∗5 should be analyzed additionally.

The proof of Theorem 2.4.4 is given in Appendix 2.7.
We can generalize the ansatz (2.63) by introducing a conformal factor ω(xi, v) and

additional deformations of the metric via coefficients ζı̂(x
i, v) (here, the indices with ’hat’

take values like î = 1, 2, 3, 5), i. e. for metrics of type

g[ω] = ω2(xi, v)ĝαβ
(
xi, v

)
duα ⊗ duβ, (2.69)

were the coefficients ĝαβ are parametrized by the ansatz




g1 + (w 2
1 + ζ 2

1 )h4 + n 2
1 h5 (w1w2 + ζ1ζ2)h4 + n1n2h5 (w1w3 + ζ1ζ3)h4 + n1n3h5 (w1 + ζ1)h4 n1h5

(w1w2 + ζ1ζ2)h4 + n1n2h5 g2 + (w 2
2 + ζ 2

2 )h4 + n 2
2 h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 (w2 + ζ2)h4 n2h5

(w1w3 + ζ1ζ3)h4 + n1n3h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 g3 + (w 2
3 + ζ 2

3 )h4 + n 2
3 h5 (w3 + ζ3)h4 n3h5

(w1 + ζ1)h4 (w2 + ζ2)h4 (w3 + ζ3)h4 h4 0
n1h5 n2h5 n3h5 0 h5 + ζ5h4


 .

(2.70)

Such 5D metrics have a second order anisotropy [9, 13] when the N–coefficients are
parametrized in the first order anisotropy like N4

i = wi and N5
i = ni (with three an-

holonomic, xi, and two anholonomic, y4 and y5, coordinates) and in the second order
anisotropy (on the second ’shell’, with four holonomic, (xi, y5), and one anholonomic,y4,
coordinates) with N5

î
= ζî, in this work we state, for simplicity, ζ5 = 0. For trivial values

ω = 1 and ζı̂ = 0, the metric (2.69) transforms into (2.62).
The Theorem 2.4.4 can be extended as to include the ansatz (2.69):
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Theorem 2.4.5. The nontrivial components of the 5D Ricci d–tensors (2.31), R̂αβ =

(R̂ij , R̂ia, R̂ai, Ŝab), for the metric (2.11) and canonical d–connection Γ̂γ
αβ (2.27) defined

by the ansatz (2.70), computed with respect to the anholonomic frames (2.6) and (2.7),
are given by the same formulas (2.64)–(2.67) if there are satisfied the conditions

δ̂ih4 = 0 and δ̂iω = 0 (2.71)

for δ̂i = ∂i− (wi + ζi) ∂4 + ni∂5 when the values ζ̃i = (ζi, ζ5 = 0) are to be defined as any
solutions of (2.71).

The proof of Theorem 2.4.5 consists from a straightforward calculation of the com-
ponents of the Ricci tensor (2.31) like in Appendix 2.7. The simplest way to do this is
to compute the deformations by the conformal factor of the coefficients of the canonical
connection (2.27) and then to use the calculus for Theorem 2.4.4. Such deformations
induce corresponding deformations of the Ricci tensor (2.31). The condition that we
have the same values of the Ricci tensor for the (2.12) and (2.70) results in equations
(2.71) which are compatible, for instance, if for instance, if

ωq1/q2 = h4 (q1 and q2 are integers), (2.72)

and ζi satisfy the equations
∂iω − (wi + ζi)ω

∗ = 0. (2.73)

There are also different possibilities to satisfy the condition (2.71). For instance, if

ω = ω1 ω2, we can consider that h4 = ω
q1/q2
1 ω

q3/q4
2 for some integers q1, q2, q3 and q4�

There are some important consequences of the Theorems 2.4.4 and 2.4.5:

Corollary 2.4.4. The non–trivial components of the Einstein tensor [see (2.33) for the

canonical d–connection] Ĝα
β = R̂α

β − 1
2

←−̂
Rδαβ for the ansatz (2.63) and (2.70) given with

respect to the N–adapted (co) frames are

G1
1 = −

(
R2

2 + S4
4

)
, G2

2 = G3
3 = −S4

4 , G
4
4 = G5

5 = −R2
2. (2.74)

The relations (2.74) can be derived following the formulas for the Ricci tensor (2.64)–
(2.67). They impose the condition that the dynamics of such gravitational fields is defined
by two independent components R2

2 and S4
4 and result in

Corollary 2.4.5. The system of effective 5D Einstein–Proca equations on spaces pro-
vided with N–connection structure (2.44) (equivalently, the system (2.46)–(2.49) is com-
patible for the generic off–diagonal ansatz (2.63) and (2.70) if the energy–momentum
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tensor Υαβ = κ̃(Σ
[φ]
αβ + Σ

[m]
αβ ) of the Proca and matter fields given with respect to N–

frames is diagonal and satisfies the conditions

Υ2
2 = Υ3

3 = Υ2(x
2, x3, v), Υ4

4 = Υ5
5 = Υ4(x

2, x3), and Υ1 = Υ2 + Υ4. (2.75)

Remark 2.4.3. Instead of the energy–momentum tensor Υαβ = κ̃(Σ
[φ]
αβ + Σ

[m]
αβ ) for the

Proca and matter fields we can consider any source, for instance, with string corrections,

when Υ
[str]
αβ = κ̃

(
Σ

[φ]
αβ + Σ

[m]
αβ + Σ

[T]
αβ

)
like in (2.60) satisfying the conditions (2.75).

If the conditions of the Corollary 2.4.5, or Remark 2.4.3, are satisfied, the h- and
v– irreducible components of the 5D Einstein–Proca equations (2.46) and (2.49), or of
the string gravity equations (2.60), for the ansatz (2.63) and (2.70) transform into the
system

R2
2 = R3

3 = − 1

2g2g3
[g••3 −

g•2g
•
3

2g2
− (g•3)

2

2g3
+ g

′′

2 −
g

′

2g
′

3

2g3
− (g

′

2)
2

2g2
] = −Υ4(x

2, x3),(2.76)

S4
4 = S5

5 = − 1

2h4h5

[
h∗∗5 − h∗5

(
ln
√
|h4h5|

)∗
]
]

= −Υ2(x
2, x3, v). (2.77)

R4i = −wi
β

2h5

− αi
2h5

= 0, (2.78)

R5i = − h5

2h4

[n∗∗
i + γn∗

i ] = 0. (2.79)

A very surprising result is that we are able to construct exact solutions of the 5D
Einstein–Proca equations with anholonomic variables and generic off–diagonal metrics:

Theorem 2.4.6. The system of second order nonlinear partial differential equations
(2.76)–(2.79) and (2.73) can be solved in general form if there are given certain values
of functions g2(x

2, x3) (or, inversely, g3(x
2, x3)), h4 (xi, v) (or, inversely, h5 (xi, v)),

ω (xi, v) and of sources Υ2(x
2, x3, v) and Υ4(x

2, x3).

We outline the main steps of constructing exact solutions and proving this Theorem.

• The general solution of equation (2.76) can be written in the form

̟ = g[0] exp[a2x̃
2
(
x2, x3

)
+ a3x̃

3
(
x2, x3

)
], (2.80)

were g[0], a2 and a3 are some constants and the functions x̃2,3 (x2, x3) define any co-
ordinate transforms x2,3 → x̃2,3 for which the 2D line element becomes conformally
flat, i. e.

g2(x
2, x3)(dx2)2 + g3(x

2, x3)(dx3)2 → ̟(x2, x3)
[
(dx̃2)2 + ǫ(dx̃3)2

]
, (2.81)
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where ǫ = ±1 for a corresponding signature. In coordinates x̃2,3, the equation
(2.76) transform into

̟ ( ¨̟ +̟′′)− ˙̟ −̟′ = 2̟2Υ4(x̃
2, x̃3)

or
ψ̈ + ψ′′ = 2Υ4(x̃

2, x̃3), (2.82)

for ψ = ln |̟|. The integrals of (2.82) depends on the source Υ4. As a particular
case we can consider that Υ4 = 0. There are three alternative possibilities to
generate solutions of (2.76). For instance, we can prescribe that g2 = g3 and get
the equation (2.82) for ψ = ln |g2| = ln |g3|. If we suppose that g

′

2 = 0, for a given
g2(x

2), we obtain from (2.76)

g••3 −
g•2g

•
3

2g2
− (g•3)

2

2g3
= 2g2g3Υ4(x

2, x3)

which can be integrated explicitly for given values of Υ4. Similarly, we can generate
solutions for a prescribed g3(x

3) in the equation

g
′′

2 −
g

′

2g
′

3

2g3
− (g

′

2)
2

2g2
= 2g2g3Υ4(x

2, x3).

We note that a transform (2.81) is always possible for 2D metrics and the explicit
form of solutions depends on chosen system of 2D coordinates and on the signature
ǫ = ±1. In the simplest case with Υ4 = 0 the equation (2.76) is solved by arbitrary
two functions g2(x

3) and g3(x
2).

• For Υ2 = 0, the equation (2.77) relates two functions h4 (xi, v) and h5 (xi, v) fol-
lowing two possibilities:

a) to compute

√
|h5| = h5[1]

(
xi
)

+ h5[2]

(
xi
) ∫ √

|h4 (xi, v) |dv, h∗4
(
xi, v

)
6= 0;

= h5[1]

(
xi
)

+ h5[2]

(
xi
)
v, h∗4

(
xi, v

)
= 0, (2.83)

for some functions h5[1,2] (x
i) stated by boundary conditions;

b) or, inversely, to compute h4 for a given h5 (xi, v) , h∗5 6= 0,

√
|h4| = h[0]

(
xi
)
(
√
|h5 (xi, v) |)∗, (2.84)
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with h[0] (x
i) given by boundary conditions. We note that the sourceless equation

(2.77) is satisfied by arbitrary pairs of coefficients h4 (xi, v) and h5[0] (x
i) . Solutions

with Υ2 6= 0 can be found by ansatz of type

h5[Υ2] = h5, h4[Υ2] = ς4
(
xi, v

)
h4, (2.85)

where h4 and h5 are related by formula (2.83), or (2.84). Substituting (2.85), we
obtain

ς4
(
xi, v

)
= ς4[0]

(
xi
)
−
∫

Υ2(x
2, x3, v)

h4h5

4h∗5
dv, (2.86)

where ς4[0] (x
i) are arbitrary functions.

• The exact solutions of (2.78) for β 6= 0 are defined from an algebraic equation,
wiβ + αi = 0, where the coefficients β and αi are computed as in formulas (2.68)
by using the solutions for (2.76) and (2.77). The general solution is

wk = ∂k ln[
√
|h4h5|/|h∗5|]/∂v ln[

√
|h4h5|/|h∗5|], (2.87)

with ∂v = ∂/∂v and h∗5 6= 0. If h∗5 = 0, or even h∗5 6= 0 but β = 0, the coefficients
wk could be arbitrary functions on (xi, v) . For the vacuum Einstein equations this
is a degenerated case imposing the the compatibility conditions β = αi = 0, which
are satisfied, for instance, if the h4 and h5 are related as in the formula (2.84) but
with h[0] (x

i) = const.

• Having defined h4 and h5 and computed γ from (2.68) we can solve the equation
(2.79) by integrating on variable ”v” the equation n∗∗

i +γn∗
i = 0. The exact solution

is

nk = nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[h4/(
√
|h5|)3]dv, h∗5 6= 0;

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

h4dv, h∗5 = 0; (2.88)

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[1/(
√
|h5|)3]dv, h∗4 = 0,

for some functions nk[1,2] (x
i) stated by boundary conditions.

The exact solution of (2.73) is given by some arbitrary functions ζi = ζi (x
i, v) if both

∂iω = 0 and ω∗ = 0, we chose ζi = 0 for ω = const, and

ζi = −wi + (ω∗)−1∂iω, ω∗ 6= 0, (2.89)

= (ω∗)−1∂iω, ω∗ 6= 0, for vacuum solutions.
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The Theorem 2.4.6 states a general method of constructing exact solutions in MAG,
of the Einstein–Proca equations and various string gravity generalizations with generic
off–diagonal metrics. Such solutions are with associated N–connection structure. This
method can be also applied in order to generate, for instance, certain Finsler or Lagrange
configurations as v-irreducible components. The 5D ansatz can not be used to generate
standard Finsler or Lagrange geometries because the dimension of such spaces can not be
an odd number. Nevertheless, the anholonomic frame method can be applied in order to
generate 4D exact solutions containing Finsler–Lagrange configurations, see Appendix
2.8.

Summarizing the results for the nondegenerated cases when h∗4 6= 0 and h∗5 6= 0 and
(for simplicity, for a trivial conformal factor ω), we derive an explicit result for 5D exact

solutions with local coordinates uα = (xi, ya) when xi =
(
x1, xî

)
, xî = (x2, x3) , ya =

(y4 = v, ya) and arbitrary signatures ǫα = (ǫ1, ǫ2, ǫ3, ǫ4, ǫ5) (where ǫα = ±1) :

Corollary 2.4.6. Any off–diagonal metric

δs2 = ǫ1(dx
1)2 + ǫk̂gk̂

(
xî
)

(dxk̂)2 +

ǫ4h
2
0(x

i)
[
f ∗ (xi, v

)]2 |ςΥ
(
xi, v

)
| (δv)2 + ǫ5f

2
(
xi, v

) (
δy5
)2
,

δv = dv + wk
(
xi, v

)
dxk, δy5 = dy5 + nk

(
xi, v

)
dxk, (2.90)

with coefficients of necessary smooth class, where gk̂

(
xî
)

is a solution of the 2D equation

(2.76) for a given source Υ4

(
xî
)
,

ςΥ
(
xi, v

)
= ς4

(
xi, v

)
= ς4[0]

(
xi
)
− ǫ4

16
h2

0(x
i)

∫
Υ2(x

k̂, v)[f 2
(
xi, v

)
]2dv,

and the N–connection coefficients N4
i = wi(x

k, v) and N5
i = ni(x

k, v) are

wi = −∂iςΥ
(
xk, v

)

ς∗Υ (xk, v)
(2.91)

and

nk = nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫ [f ∗ (xi, v)]

2

[f (xi, v)]2
ςΥ
(
xi, v

)
dv, (2.92)

define an exact solution of the system of Einstein equations with holonomic and anholo-
nomic variables (2.76)–(2.79) for arbitrary nontrivial functions f (xi, v) (with f ∗ 6= 0),
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h2
0(x

i), ς4[0] (x
i) , nk[1] (x

i) and nk[2] (x
i) , and sources Υ2(x

k̂, v),Υ4

(
xî
)

and any integra-

tion constants and signatures ǫα = ±1 to be defined by certain boundary conditions and
physical considerations.

Any metric (2.90) with h∗4 6= 0 and h∗5 6= 0 has the property to be generated by
a function of four variables f (xi, v) with emphasized dependence on the anisotropic

coordinate v, because f ∗ + ∂vf 6= 0 and by arbitrary sources Υ2(x
k̂, v),Υ4

(
xî
)
. The

rest of arbitrary functions not depending on v have been obtained in result of integration
of partial differential equations. This fix a specific class of metrics generated by using
the relation (2.84) and the first formula in (2.88). We can generate also a different
class of solutions with h∗4 = 0 by considering the second formula in (2.83) and respective
formulas in (2.88). The ”degenerated” cases with h∗4 = 0 but h∗5 6= 0 and inversely, h∗4 6= 0
but h∗5 = 0 are more special and request a proper explicit construction of solutions.
Nevertheless, such type of solutions are also generic off–diagonal and they could be of
substantial interest.

The sourceless case with vanishing Υ2 and Υ4 is defined following

Remark 2.4.4. Any off–diagonal metric (2.90) with ςΥ = 1, h2
0(x

i) = h2
0 = const,

wi = 0 and nk computed as in (2.92) but for ςΥ = 1, defines a vacuum solution of 5D
Einstein equations for the canonical d–connection (2.27) computed for the ansatz (2.90).

By imposing additional constraints on arbitrary functions from N5
i = ni and N5

i =
wi, we can select off–diagonal gravitational configurations with distorsions of the Levi–
Civita connection resulting in canonical d–connections with the same solutions of the
vacuum Einstein equations. For instance, we can model Finsler like geometries in general
relativity, see Corollary 2.3.3. Under similar conditions the ansatz (2.63) was used for
constructing exact off–diagonal solutions in the 5D Einstein gravity, see Refs. [7, 8, 9].

Let us consider the procedure of selecting solutions with off–diagonal metrics from
an ansatz (2.90) with trivial N–connection curvature (such metrics consists a simplest
subclass which can be restricted to (pseudo) Riemannian ones). The corresponding
nontrivial coefficients the N–connection curvature (2.5) are computed

Ω4
ij = ∂iwj − ∂jwi + wiw

∗
j − wjw∗

i and Ω5
ij = ∂inj − ∂jni + win

∗
j − wjn∗

i .

So, there are imposed six constraints, Ω4
ij = Ω5

ij = 0, for i, j... = 1, 2, 4 on six functions wi
and ni computed respectively as (2.92) and (2.92) which can be satisfied by a correspond-
ing subclass of functions f (xi, v) (with f ∗ 6= 0), h2

0(x
i), ς4[0] (x

i) , nk[1] (x
i) , nk[2] (x

i) and

Υ2(x
k̂, v),Υ4

(
xî
)

(in general, we have to solve certain first order partial derivative equa-

tions with may be reduced to algebraic relations by corresponding parametrizations). For



134 CHAPTER 2. OFF–DIAGONAL SOLUTIONS ...

instance, in the vacuum case when wj = 0, we obtain Ω5
ij = ∂inj − ∂jni. The simplest

example when condition Ω5
îĵ

= ∂̂inĵ − ∂ĵnî = 0, with î, ĵ = 2, 3 (reducing the metric

(2.90) to a 4D one trivially embedded into 5D) is satisfied is to take n3[1] = n3[2] = 0 in
(2.92) and consider that f = f (x2, v) with n2[1] = n2[1] (x

2) and n2[2] = n2[2] (x
2) , i. e.

by eliminating the dependence of the coefficients on x3. This also results in a generic off–
diagonal solution, because the anholonomy coefficients (2.9) are not trivial, for instance,
w5

24 = n∗
2 and w5

14 = n∗
1.

Another interesting remark is that even we have reduced the canonical d–connection
to the Levi–Civita one [with respect to N–adapted (co) frames; this imposes the metric
to be (pseudo) Riemannian] by selecting the arbitrary functions as to have Ωa

ij = 0, one
could be nonvanishing d–torsion components like T 5

41 = P 5
41 and T 5

41 = P 5
41 in (2.29). Such

objects, as well the anholonomy coefficients w5
24 and w5

14 (which can be also considered
as torsion like objects) are constructed by taking certain ”scarps” from the coefficients
of off–diagonal metrics and anholonomic frames. They are induced by the frame an-
holonomy (like ”torsions” in rotating anholonomic systems of reference for the Newton
gravity and mechanics with constraints) and vanish if we transfer the constructions with
respect to any holonomic basis.

The above presented results are for generic 5D off–diagonal metrics, anholonomic
transforms and nonlinear field equations. Reductions to a lower dimensional theory are
not trivial in such cases. We emphasize some specific points of this procedure in the
Appendix 2.8 (see details in [15]).

2.5 Exact Solutions

There were found a set of exact solutions in MAG [16, 20, 5] describing various
configuration of Einstein–Maxwell of dilaton gravity emerging from low energy string
theory, soliton and multipole solutions and generalized Plebanski–Demianski solutions,
colliding waves and static black hole metrics. In this section we are going to look for
some classes of 4D and 5D solutions of the Einstein–Proca equations in MAG related
to string gravity modelling generalized Finsler–affine geometries and extending to such
spacetimes some our previous results [7, 8, 9].

2.5.1 Finsler–Lagrange metrics in string and metric–affine gra-
vity

As we discussed in section 2, the generalized Finsler–Lagrange spaces can be modelled
in metric–affine spacetimes provided with N–connection structure. In this subsection,
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we show how such two dimensional Finsler like spaces with d–metrics depending on one
anisotropic coordinate y4 = v (denoted as F2 = [V 2, F (x2, x3, y)] , L2 = [V 2, L (x2, x3, y)]
and GL2 = [V 2, gij (x

2, x3, y)] according to Ref. [6]) can be modelled by corresponding
diad transforms on spacetimes with 5D (or 4D) d–metrics being exact solutions of the
field equations for the generalized Finsler–affine string gravity (2.60) (as a particular
case we can consider the Einstein–Proca system (2.76)–(2.79) and (2.73)). For every
particular case of locally anisotropic spacetime, for instance, outlined in Appendix C,
see Table 2.1, the quadratic form g̃ij, d–metric g̃αβ = [g̃ij, g̃ij] and N–connection Ña

j one
holds

Theorem 2.5.7. Any 2D locally anisotropic structure given by g̃αβ and Ña
j can be

modelled on the space of exact solutions of the 5D (or 4D) the generalized Finsler–affine
string gravity system defined by the ansatz (2.70) (or (2.126)).

We give the proof via an explicit construction. Let us consider

gαβ = [gij , hab] =
[
ωg2

(
x2, x3

)
, ωg3

(
x2, x3

)
, ωh4

(
x2, x3, v

)
, ωh5

(
x2, x3, v

)]

for ω = ω (x2, x3, v) and

Na
i =

[
N4
i = wi

(
x2, x3, v

)
, N5

i = ni
(
x2, x3, v

)]
,

where indices are running the values a = 4, 5 and i = 2, 3 define an exact 4D solution of
the equations (2.60) (or, in the particular case, of the system (2.76)–(2.79), for simplicity,

we put ω (x2, x3, v) = 1). We can relate the data (gαβ, N
a
i ) to any data

(
g̃αβ, Ñ

a
j

)

via nondegenerate diadic transforms ei
′

i = ei
′

i (x2, x3, v) , li
′

a = li
′

a (x2, x3, v) and qi
′

a =
qi

′

a (x2, x3, v) (and theirs inverse matrices)

gij = ei
′

i e
j′

j g̃i′j′, hab = li
′

a l
i′

b g̃i′j′, N
a
i′ = qaa′Ñ

a′

j′ . (2.93)

Such transforms may be associated to certain tetradic transforms of the N–elongated

(co) frames ((2.7)) (2.6). If for the given data (gαβ , N
a
i ) and

(
g̃αβ , Ñ

a
j

)
in (2.93), we can

solve the corresponding systems of quadratic algebraic equations and define nondegen-
erate matrices

(
ei

′

i

)
,
(
li

′

a

)
and (qai′) , we argue that the 2D locally anisotropic spacetime(

g̃αβ, Ñ
a
j

)
(really, it is a 4D spacetime with generic off–diagonal metric and associated

N–connection structure) can be modelled on by a class of exact solutions of effective
Einstein–Proca equations for MAG.�

The d–metric with respect to transformed N–adapted diads is written in the form

g =g̃i′j′e
i′ ⊗ ej

′

+ g̃i′j′ ẽ
i′ ⊗ ẽj

′

(2.94)
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where
ei

′

= ei
′

i dx
i, ẽi

′

= li
′

a ẽ
a, ẽa = dya + Ña

j′ ẽ
j′

[N ], ẽj
′

[N ] = qj
′

i dx
i.

The d–metric (2.94) has the coefficients corresponding to generalized Finsler–Lagrange
spaces and emphasizes that any quadratic form g̃i′j′ from Table 2.1 can be related via
an exact solution (gij, hab, N

a
i′) .

We note that we can define particular cases of imbedding with hab = li
′

a l
i′

b g̃i′j′ and
Na
j′ = qai′Ñ

i′

j′ for a prescribed value of gij = g̃i′j′ and try to model only the quadratic form

h̃i′j′ in MAG. Similar considerations were presented for particular cases of modelling
Finsler structures and generalizations in Einstein and Einstein–Cartan spaces [7, 9], see
the conditions (2.61).

2.5.2 Solutions in MAG with effective variable cosmological

constant

A class of 4D solutions in MAG with local anisotropy can be derived from (2.44)

for Σ
[m]
αβ = 0 and almost vanishing mass µ→ 0 of the Proca field in the source Σ

[φ]
αβ. This

holds in absence of matter fields and when the constant in the action for the Finsler–affine
gravity are subjected to the condition (2.50). We consider that φµ =

(
φî

(
xk̂
)
, φa = 0

)
,

where î, k̂, ... = 2, 3 and a, b, ... = 4, 5, with respect to a N–adapted coframe (2.7) and
choose a metric ansatz of type (2.124) with g2 = 1 and g3 = −1 which select a flat
h–subspace imbedded into a general anholonomic 4D background with nontrivial hab
and N–connection structure Na

i . The h–covariant derivatives are D̂[h] φî = (∂2φî, ∂3φî)

because the coefficients L̂i jk and Ĉi
ja are zero in (2.27) and any contraction with φa = 0

results in zero values. In this case the Proca equations, D̂νH
νµ = µ2φµ, transform in a

Maxwell like equation,
∂2(∂2φî)− ∂3(∂3φî) = 0, (2.95)

for the potential φî, with the dynamics in the h–subspace distinguished by a N–connecti-
on structure to be defined latter. We note that φi is not an electromagnetic field, but a
component of the metric–affine gravity related to nonmetricity and torsion. The relation
Q = k0φ, Λ =k1φ, T =k2φ from (2.42) transforms into Qî = k0φî,Λî = k1φî, Ti = k2φî,
and vanishing Qa,Λa and Ta, defined, for instance, by a wave solution of (2.95),

φî = φ[0]̂i cos
(
̺ix

i + ϕ[0]

)
(2.96)

for any constants φ[0]2,3, ϕ[0] and (̺2)
2−(̺3)

2 = 0. In this simplified model we have related
plane waves of nonmetricity and torsion propagating on an anholonomic background
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provided with N–connection. Such nonmetricity and torsion do not vanish even µ → 0
and the Proca field is approximated by a massless vector field defined in the h–subspace.

The energy–momentum tensor Σ
[φ]
αβ for the massless field (2.96) is defined by a non-

trivial value

H23 = ∂2φ3 − ∂3φ2 = ε23λ[h] sin
(
̺ix

i + ϕ[0]

)

with antisymmetric ε23, ε23 = 1, and constant λ[h] taken for a normalization ε23λ[h] =

̺2φ[0]3 − ̺3φ[0]2. This tensor is diagonal with respect to N–adapted (co) frames, Σ
[φ]β
α =

{Υ2,Υ2, 0, 0} with

Υ2

(
x2, x3

)
= −λ2

[h] sin
2
(
̺ix

i + ϕ[0]

)
. (2.97)

So, we have the case from (2.135) and (2.136) with Υ2 (x2, x2, v) → Υ2 (x2, x2) and Υ4,
i. e.

G2
2 = G3

3 = −S4
4 = Υ2

(
x2, x2

)
and G4

4 = G4
4 = −R2

2 = 0. (2.98)

There are satisfied the compatibility conditions from Corollary 2.4.5. For the above
stated ansatz for the d–metric and φ–field, the system (2.44) reduces to a particular
case of (2.76)–(2.79), when the first equation is trivially satisfied by g2 = 1 and g3 = −1
but the second one is

S4
4 = S5

5 = − 1

2h4h5

[
h∗∗5 − h∗5

(
ln
√
|h4h5|

)∗
]
]

= λ2
[h] sin

2
(
̺ix

i + ϕ[0]

)
. (2.99)

The right part of this equation is like a ”cosmological constant”, being nontrivial in the
h–subspace and polarized by a nonmetricity and torsion wave (we can state x2 = t and
choose the signature (−+−−−)).

The exact solution of (2.99) exists according the Theorem 2.4.6 (see formulas (2.83)–
(2.86)). Taking any h4 = h4[λ[h] = 0] and h5 = h5[λ[h] = 0] solving the equation with
λ[h] = 0, for instance, like in (2.84), we can express the general solution with nontrivial
source like

h5[λ[h]] = h5, h4[λ[h]] = ς[λ]

(
xi, v

)
h4,

where (for an explicit source (2.97) in (2.86))

ς[λ]

(
t, x3, v

)
= ς4[0]

(
t, x3

)
−
λ2

[h]

4
sin2

(
̺2t+ ̺3x

3 + ϕ[0]

) ∫ h4h5

h∗5
dv,

where ς4[0] (t, x
3) = 1 if we want to have ς[λ] for λ2

[h] → 0. A particular class of 4D

off–diagonal exact solutions with h∗4,5 6= 0 (see the Corollary 2.4.6 with x2 = t stated to
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be the time like coordinate and x1 considered as the extra 5th dimensional one to be
eliminated for reductions 5D→4D) is parametrized by the generic off–diagonal metric

δs2 = (dt)2 −
(
dx3
)
− h2

0(t, x
3)
[
f ∗ (t, x3, v

)]2 |ς[λ]

(
t, x3, v

)
| (δv)2 − f 2

(
t, x3, v

) (
δy5
)2

δv = dv + wk̂
(
t, x3, v

)
dxk̂, δy5 = dy5 + nk̂

(
t, x3, v

)
dxk̂, (2.100)

with coefficients of necessary smooth class, where gk̂

(
xî
)

is a solution of the 2D equation

(2.76) for a given source Υ4

(
xî
)
,

ς[λ]

(
t, x3, v

)
= 1 +

λ2
[h]

16
h2

0(t, x
3) sin2

(
̺2t+ ̺3x

3 + ϕ[0]

)
f 2
(
t, x3, v

)
,

and the N–connection coefficients N4
î

= wî(t, x
3, v) and N5

î
= nî(t, x

3, v) are

w2,3 = −∂2,3ς[λ] (t, x
3, v)

ς∗[λ] (t, x
3, v)

and

n2,3

(
t, x3, v

)
= n2,3[1]

(
t, x3

)
+ n2,3[2]

(
t, x3

) ∫ [f ∗ (t, x3, v)]
2

[f (t, x3, v)]2
ς[λ]

(
t, x3, v

)
dv,

define an exact 4D solution of the system of Einstein–Proca equations (2.46)–(2.49) for
vanishing mass µ→ 0, with holonomic and anholonomic variables and 1-form field

φµ =
[
φî = φ[0]̂i cos

(
̺2t+ ̺3x

3 + ϕ[0]

)
, φ4 = 0, φ0 = 0

]

for arbitrary nontrivial functions f (t, x3, v) (with f ∗ 6= 0), h2
0(t, x

3), nk[1,2] (t, x
3) and

sources Υ2 (t, x3) = −λ2
[h] sin

2
(
̺2t+ ̺3x

3 + ϕ[0]

)
and Υ4 = 0 and any integration con-

stants to be defined by certain boundary conditions and additional physical arguments.
For instance, we can consider ellipsoidal symmetries for the set of space coordinates
(x3, y4 = v, y5) considered on possibility to be ellipsoidal ones, or even with topologi-
cally nontrivial configurations like torus, with toroidal coordinates. Such exact solutions
emphasize anisotropic dependencies on coordinate v and do not depend on y5.

2.5.3 3D solitons in string Finsler–affine gravity

The d–metric (2.100) can be extended as to define a class of exact solutions of gen-
eralized Finsler affine string gravity (2.60), for certain particular cases describing 3D
solitonic configurations.
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We start with the the well known ansatz in string theory (see, for instance, [24]) for
the H–field (2.57) when

Hνλρ = Ẑ νλρ + Ĥνλρ = λ[H]

√
|gαβ|ενλρ (2.101)

where ενλρ is completely antisymmetric and λ[H] = const, which satisfies the field equa-
tions for Hνλρ, see (2.59). The ansatz (2.101) is chosen for a locally anisotropic back-

ground with Ẑ νλρ defined by the d–torsions for the canonical d–connection. So, the

values Ĥνλρ are constrained to solve the equations (2.101) for a fixed value of the cosmo-
logical constant λ[H] effectively modelling some corrections from string gravity. In this
case, the source (2.97) is modified to

Σ[φ]β
α + Σ[H]β

α = {Υ2 +
λ2

[H]

4
,Υ2 +

λ2
[H]

4
,
λ2

[H]

4
,
λ2

[H]

4
}

and the equations (2.98) became more general,

G2
2 = G3

3 = −S4
4 = Υ2

(
x2, x2

)
+
λ2

[H]

4
and G4

4 = G4
4 = −R2

2 =
λ2

[H]

4
, (2.102)

or, in component form

R2
2 = R3

3 = − 1

2g2g3

[g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

] = −
λ2

[H]

4
, (2.103)

S4
4 = S5

5 = − 1

2h4h5

[
h∗∗5 − h∗5

(
ln
√
|h4h5|

)∗
]
]

= −
λ2

[H]

4
+ λ2

[h] sin
2
(
̺ix

i + ϕ[0]

)
.(2.104)

The solution of (2.103) can be found as in the case for (2.82), when ψ = ln |g2| = ln |g3|
is a solution of

ψ̈ + ψ′′ = −
λ2

[H]

2
, (2.105)

where, for simplicity we choose the h–variables x2 = x̃2 and x3 = x̃3.
The solution of (2.104) can be constructed similarly to the equation (2.99) but for

a modified source (see Theorem 2.4.6 and formulas (2.83)–(2.86)). Taking any h4 =
h4[λ[h] = 0, λ[H] = 0] and h5 = h5[λ[h] = 0, λ[H] = 0] solving the equation with λ[h] = 0
and λ[H] = 0 like in (2.84), we can express the general solution with nontrivial source
like

h5[λ[h], λ[H]] = h5, h4[λ[h], λ[H]] = ς[λ,H]

(
xi, v

)
h4,
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where (for an explicit source from (2.104) in (2.86))

ς[λ,H]

(
t, x3, v

)
= ς4[0]

(
t, x3

)
− 1

4

[
λ2

[h] sin
2
(
̺2t+ ̺3x

3 + ϕ[0]

)
−
λ2

[H]

4

]∫
h4h5

h∗5
dv,

where ς4[0] (t, x
3) = 1 if we want to have ς[λ] for λ2

[h], λ
2
[H] → 0.

We define a class of 4D off–diagonal exact solutions of the system (2.60) with h∗4,5 6=
0 (see the Corollary 2.4.6 with x2 = t stated to be the time like coordinate and x1

considered as the extra 5th dimensional one to be eliminated for reductions 5D→4D) is
parametrized by the generic off–diagonal metric

δs2 = eψ(t,x3)(dt)2 − eψ(t,x3)
(
dx3
)
− f 2

(
t, x3, v

) (
δy5
)2

−h2
0(t, x

3)
[
f ∗ (t, x3, v

)]2 |ς[λ,H]

(
t, x3, v

)
| (δv)2 , (2.106)

δv = dv + wk̂
(
t, x3, v

)
dxk̂, δy5 = dy5 + nk̂

(
t, x3, v

)
dxk̂,

with coefficients of necessary smooth class, where gk̂

(
xî
)

is a solution of the 2D equation

(2.76) for a given source Υ4

(
xî
)
,

ς[λ,H]

(
t, x3, v

)
= 1 +

h2
0(t, x

3)

16

[
λ2

[h] sin
2
(
̺2t+ ̺3x

3 + ϕ[0]

)
−
λ2

[H]

4

]
f 2
(
t, x3, v

)
,

and the N–connection coefficients N4
î

= wî(t, x
3, v) and N5

î
= nî(t, x

3, v) are

w2,3 = −∂2,3ς[λ,H] (t, x
3, v)

ς∗[λ,H] (t, x
3, v)

and

n2,3

(
t, x3, v

)
= n2,3[1]

(
t, x3

)
+ n2,3[2]

(
t, x3

) ∫ [f ∗ (t, x3, v)]
2

[f (t, x3, v)]2
ς[λ,H]

(
t, x3, v

)
dv,

define an exact 4D solution of the system of generalized Finsler–affine gravity equations
(2.60) for vanishing Proca mass µ → 0, with holonomic and anholonomic variables,
1-form field

φµ =
[
φî = φ[0]̂i(t, x

3) cos
(
̺2t+ ̺3x

3 + ϕ[0]

)
, φ4 = 0, φ0 = 0

]
(2.107)
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and nontrivial effective H–field Hνλρ = λ[H]

√
|gαβ|ενλρ for arbitrary nontrivial functions

f (t, x3, v) (with f ∗ 6= 0), h2
0(t, x

3), nk[1,2] (t, x
3) and sources

Υ2

(
t, x3

)
= λ2

[H]/4− λ2
[h](t, x

3) sin2
(
̺2t+ ̺3x

3 + ϕ[0]

)
and Υ4 = λ2

[H]/4

and any integration constants to be defined by certain boundary conditions and ad-
ditional physical arguments. The function φ[0]̂i(t, x

3) in (2.107) is taken to solve the
equation

∂2[e
−ψ(t,x3)∂2φk]− ∂3[e

−ψ(t,x3)∂3φk] = Ljki∂
iφj − Liij∂jφk (2.108)

where Ljki are computed for the d–metric (2.106) following the formulas (2.27). For
ψ = 0, we obtain just the plane wave equation (2.95) when φ[0]̂i and λ2

[h](t, x
3) reduce to

constant values. We do not fix here any value of ψ (t, x3) solving (2.105) in order to define
explicitly a particular solution of (2.108). We note that for any value of ψ (t, x3) we can
solve the inhomogeneous wave equation (2.108) by using solutions of the homogeneous
case.

For simplicity, we do not present here the explicit value of
√
|gαβ| computed for the

d–metric (2.106) as well the values for distorsions Ẑ νλρ, defined by d–torsions of the
canonical d–connection, see formulas (2.53) and (2.29) (the formulas are very cumber-

some and do not reflect additional physical properties). Having defined Ẑ νλρ, we can
compute

Ĥνλρ = λ[H]

√
|gαβ|ενλρ − Ẑ νλρ.

We note that the torsion T̂ν
λρ contained in Ẑ νλρ, related to string corrections by

the H–field, is different from the torsion T =k2φ and nontrivial nonmetricity Q =
k0φ, Λ =k1φ, from the metric–affine part of the theory, see (2.42).

We can choose the function f (t, x3, v) from (2.106), or (2.100), as it would be a
solution of the Kadomtsev–Petviashvili (KdP) equation [25], i. e. to satisfy

f •• + ǫ (f ′ + 6ff ∗ + f ∗∗∗)
∗

= 0, ǫ = ±1,

or, for another locally anisotropic background, to satisfy the (2 + 1)–dimensional sine–
Gordon (SG) equation,

−f •• + f́́ + f ∗∗ = sin f,

see Refs. [26] on gravitational solitons and theory of solitons. In this case, we define
a nonlinear model of gravitational plane wave and 3D solitons in the framework of the
MAG with string corrections by H–field. Such solutions generalized those considered in
Refs. [7] for 4D and 5D gravity.
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We can also consider that F/L = f 2 (t, x3, v) is just the generation function for a
2D model of Finsler/Lagrange geometry (being of any solitonic or another type nature).
In this case, the geometric background is characterized by this type locally anisotropic
configurations (for Finsler metrics we shall impose corresponding homogeneity conditions
on coordinates).

2.6 Final Remarks

In this paper we have investigated the dynamical aspects of metric–affine gravity
(MAG) with certain additional string corrections defined by the antisymmetric H–field
when the metric structure is generic off–diagonal and the spacetime is provided with
an anholonomic frame structure with associated nonlinear connection (N–connection).
We analyzed the corresponding class of Lagrangians and derived the field equations
of MAG and string gravity with mixed holonomic and anholonomic variables. The
main motivation for this work is to determine the place and significance of such models
of gravity which contain as exact solutions certain classes of metrics and connections
modelling Finsler like geometries even in the limits to the general relativity theory.

The work supports the results of Refs. [7, 8] where various classes of exact solu-
tions in Einstein, Einstein–Cartan, gauge and string gravity modelling Finsler–Lagrange
configurations were constructed. We provide an irreducible decomposition techniques
(in our case with additional N–connection splitting) and study the dynamics of MAG
fields generating the locally anisotropic geometries and interactions classified in Ref. [6].
There are proved the main theorems on irreducible reduction to effective Einstein–Proca
equations with string corrections and formulated a new method of constructing exact
solutions.

As explicit examples of the new type of locally anisotropic configurations in MAG
and string gravity, we have elaborated three new classes of exact solutions depending
on 3-4 variables possessing nontrivial torsion and nonmetricity fields, describing plane
wave and three dimensional soliton interactions and induced generalized Finsler–affine
effective configurations.

Finally, it seems worthwhile to note that such Finsler like configurations do not
violates the postulates of the general relativity theory in the corresponding limits to the
four dimensional Einstein theory because such metrics transform into exact solutions of
this theory. The anisotropies are modelled by certain anholonomic frame constraints
on a (pseudo) Riemannian spacetime. In this case the restrictions imposed on physical
applications of the Finsler geometry, derived from experimental data on possible limits
for brocken local Lorentz invariance (see, for instance, Ref. [27]), do not hold.
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2.7 Appendix A: Proof of Theorem 2.4.4

We give some details on straightforward calculations outlined in Ref. [15] for (pseudo)
Riemannian and Riemann–Cartan spaces. In brief, the proof of Theorem 2.4.4 is to be
performed in this way: Introducing N4

i = wi and N5
i = ni in (2.6) and (2.7) and re–

writing (2.63) into a diagonal (in our case) block form (2.11), we compute the h- and v–
irreducible components of the canonical d–connection (2.27). The next step is to compute
d–curvatures (2.30) and by contracting of indices to define the components of the Ricci
d–tensor (2.31) which results in (2.64)–(2.67). We emphasize that such computations
can not be performed directly by applying any Tensor, Maple of Mathematica macros
because, in our case, we consider canonical d–connections instead of the Levi–Civita
connection [23]. We give the details of such calculus related to N–adapted anholonomic
frames.

The five dimensional (5D) local coordinates are xi and ya = (v, y) , i. e. y4 = v,
y5 = y, were indices i, j, k... = 1, 2, 3 and a, b, c, ... = 4, 5. Our reductions to 4D will be
considered by excluding dependencies on the variable x1 and for trivial embedding of 4D
off–diagonal ansatz into 5D ones. The signatures of metrics could be arbitrary ones. In
general, the spacetime could be with torsion, but we shall always be interested to define
the limits to (pseudo) Riemannian spaces.

The d–metric (2.11) for an ansatz (2.63) with g1 = const, is written

δs2 = g1(dx
1)

2
+ g2

(
(x2, x3

)
(dx2)

2
+ g3

(
xk
)
(dx3)

2

+h4

(
xk, v

)
(δv)2 + h5

(
xk, v

)
(δy)2,

δv = dv + wi
(
xk, v

)
dxi, δy = dy + ni

(
xk, v

)
dxi (2.109)

when the generic off–diagonal metric (2.62) is associated to a N–connection structure
Na
i with N4

i = wi
(
xk, v

)
and N5

i = ni
(
xk, v

)
. We note that the metric (2.109) does

not depend on variable y5 = y, but emphasize the dependence on ”anisotropic” variable
y4 = v.

If we regroup (2.109) with respect to true differentials duα = (dxi, dya) we obtain just
the ansatz (2.63). It is a cumbersome task to perform tensor calculations (for instance,
of curvature and Ricci tensors) with such generic off–diagonal ansatz but the formulas
simplify substantially with respect to N–adapted frames of type(2.6) and (2.7) and for
effectively diagonalized metrics like (2.109).

So, the metric (2.62) transform in a diagonal one with respect to the pentads (frames,
funfbeins)

ei = dxi, e4 = δv = dv + wi
(
xk, v

)
dxi, e5 = δy = dy + ni

(
xk, v

)
dxi (2.110)
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or

δuα =
(
dxi, δya = dya +Na

i dx
i
)

being dual to the N–elongated partial derivative operators,

e1 = δ1 =
∂

∂x1
−Na

1

∂

∂ya
=

∂

∂x1
− w1

∂

∂v
− n1

∂

∂y
, (2.111)

e2 = δ2 =
∂

∂x2
−Na

2

∂

∂ya
=

∂

∂x2
− w2

∂

∂v
− n2

∂

∂y
,

e3 = δ3 =
∂

∂x3
−Na

3

∂

∂ya
=

∂

∂x3
− w3

∂

∂v
− n3

∂

∂y
,

e4 =
∂

∂y4
=

∂

∂v
, e5 =

∂

∂y5
=

∂

∂y

when δα = δ
∂uα =

(
δ
∂xi = ∂

∂xi −Na
i

∂
∂ya ,

∂
∂yb

)
.

The N–elongated partial derivatives of a function f (uα) = f (xi, ya) = f (x, r, v, y)
are computed in the form when the N–elongated derivatives are

δ2f =
δf

∂u2
=

δf

∂x2
=
δf

∂x
=
∂f

∂x
−Na

2

∂f

∂ya
=
∂f

∂x
− w2

∂f

∂v
− n2

∂f

∂y
= f • − w2 f

′ − n2 f
∗

where

f • =
∂f

∂x2
=
∂f

∂x
, f ′ =

∂f

∂x3
=
∂f

∂r
, f ∗ =

∂f

∂y4
=
∂f

∂v
.

The N–elongated differential is

δf =
δf

∂uα
δuα.

The N–elongated differential calculus should be applied if we work with respect to N–
adapted frames.

2.7.1 Calculation of N–connection curvature

We compute the coefficients (2.5) for the d–metric (2.109) (equivalently, the ansatz
(2.63)) defining the curvature of N–connection Na

i , by substituting N4
i = wi

(
xk, v

)
and

N5
i = ni

(
xk, v

)
, where i = 2, 3 and a = 4, 5. The result for nontrivial values is

Ω4
23 = −Ω4

23 = w′
2 − w·

3 − w3w
∗
2 − w2w

∗
3, (2.112)

Ω5
23 = −Ω5

23 = n′
2 − n·

3 − w3n
∗
2 − w2n

∗
3.
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The canonical d–connection Γ̂γ
αβ =

(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
(2.27) defines the covariant

derivative D̂, satisfying the metricity conditions D̂αgγδ = 0 for gγδ being the metric

(2.109) with the coefficients written with respect to N–adapted frames. Γ̂γ
αβ has non-

trivial d–torsions.
We compute the Einstein tensors for the canonical d–connection Γ̂γ

αβ defined by the
ansatz (2.109) with respect to N–adapted frames (2.110) and (2.111). This results in
exactly integrable vacuum Einstein equations and certain type of sources. Such solutions
could be with nontrivial torsion for different classes of linear connections from Riemann–
Cartan and generalized Finsler geometries. So, the anholonomic frame method offers
certain possibilities to be extended to in string gravity where the torsion could be not
zero. But we can always select the limit to Levi–Civita connections, i. e. to (pseudo)
Riemannian spaces by considering additional constraints, see Corollary 2.3.3 and/or
conditions (2.61).

2.7.2 Calculation of the canonical d–connection

We compute the coefficients (2.27) for the d–metric (2.109) (equivalently, the ansatz
(2.63)) when gjk = {gj} and hbc = {hb} are diagonal and gik depend only on x2 and x3

but not on ya.
We have

δkgij = ∂kgij − wkg∗ij = ∂kgij, δkhb = ∂khb − wkh∗b (2.113)

δkwi = ∂kwi − wkw∗
i , δkni = ∂kni − wkn∗

i

resulting in formulas

L̂ijk =
1

2
gir
(
δgjk
δxk

+
δgkr
δxj
− δgjk
δxr

)
=

1

2
gir
(
∂gjk
δxk

+
∂gkr
δxj
− ∂gjk

δxr

)

The nontrivial values of L̂ijk are

L̂2
22 =

g•2
2g2

= α•
2, L̂

2
23 =

g′2
2g2

= α
′

2, L̂
2
33 = − g•3

2g2
(2.114)

L̂3
22 = − g′2

2g3

, L̂3
23 =

g•3
2g3

= α•
3, L̂3

33 =
g′3
2g3

= α
′

3.

In a similar form we compute the components

L̂abk = ∂bN
a
k +

1

2
hac
(
∂khbc −Nd

k

∂hbc
∂yd
− hdc∂bNd

k − hdb∂cNd
k

)
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having nontrivial values

L̂4
42 =

1

2h4

(h•4 − w2h
∗
4) = δ2 ln

√
|h4| + δ2β4, (2.115)

L̂4
43 =

1

2h4

(
h

′

4 − w3h
∗
4

)
= δ3 ln

√
|h4| + δ3β4

L̂4
5k = − h5

2h4

n∗
k, L̂

5
bk = ∂bnk +

1

2h5

(∂khb5 − wkh∗b5 − h5∂bnk) , (2.116)

L̂5
4k = n∗

k +
1

2h5

(−h5n
∗
k) =

1

2
n∗
k, (2.117)

L̂5
5k =

1

2h5
(∂kh5 − wkh∗5) = δk ln

√
|h4| = δkβ4.

We note that

Ĉi
jc =

1

2
gik

∂gjk
∂yc

+ 0 (2.118)

because gjk = gjk (xi) for the considered ansatz.
The values

Ĉa
bc =

1

2
had
(
∂hbd
∂yc

+
∂hcd
∂yb
− ∂hbc
∂yd

)

for hbd = [h4, h5] from the ansatz (2.63) have nontrivial components

Ĉ4
44 =

h∗4
2h4

+ β∗
4 , Ĉ

4
55 = − h∗5

2h4
, Ĉ5

45 =
h∗5
2h5

+ β∗
5 . (2.119)

The set of formulas (2.114)–(2.119) define the nontrivial coefficients of the canonical

d–connection Γ̂γ
αβ =

(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
(2.27) for the 5D ansatz (2.109).

2.7.3 Calculation of torsion coefficients

We should put the nontrivial values (2.114)– (2.119) into the formulas for d–torsion
(2.29).

One holds T i.jk = 0 and T a.bc = 0, because of symmetry of coefficients Lijk and Ca
bc.

We have computed the nontrivial values of Ωa
.ji, see (2.112) resulting in

T 4
23 = Ω4

23 = −Ω4
23 = w′

2 − w•
3 − w3w

∗
2 − w2w

∗
3, (2.120)

T 5
23 = Ω5

23 = −Ω5
23 = n′

2 − n•
3 − w3n

∗
2 − w2n

∗
3.
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One follows

T ija = −T iaj = Ci
.ja = Ĉi

jc =
1

2
gik

∂gjk
∂yc

+ 0,

see (2.118).

For the components

T a.bi = −T a.ib = P a
.bi =

∂Na
i

∂yb
− La.bj ,

i. e. for

P̂ 4
.bi =

∂N4
i

∂yb
− L̂4

.bj = ∂bwi − L̂4
.bj and P̂ 5

.bi =
∂N5

i

∂yb
− L̂5

.bj = ∂bni − L̂5
.bj ,

we have the nontrivial values

P̂ 4
.4i = w∗

i −
1

2h4
(∂ih4 − wih∗4) = w∗

i − δiβ4, P̂
4
.5i =

h5

2h4
n∗
i ,

P̂ 5
.4i =

1

2
n∗
i , P̂

5
.5i = − 1

2h5
(∂ih5 − wih∗5) = −δiβ5. (2.121)

The formulas (2.120) and (2.121) state the nontrivial coefficients of the canonical
d–connection for the chosen ansatz (2.109).

2.7.4 Calculation of the Ricci tensor

Let us compute the value Rij = Rk
ijk as in (2.31) for

Ri
hjk =

δLi.hj
δxk

− δLi.hk
δxj

+ Lm.hjL
i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk,

from (2.30). It should be noted that Ci
.ha = 0 for the ansatz under consideration, see

(2.118). We compute

δLi.hj
δxk

= ∂kL
i
.hj +Na

k∂aL
i
.hj = ∂kL

i
.hj + wk

(
Li.hj

)∗
= ∂kL

i
.hj

because Li.hj do not depend on variable y4 = v.
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Derivating (2.114), we obtain

∂2L
2
22 =

g••2

2g2
− (g•2)

2

2 (g2)
2 , ∂2L

2
23 =

g•
′

2

2g2
− g•2g

′

2

2 (g2)
2 , ∂2L

2
33 = − g

••
3

2g2
+

g•2g
•
3

2 (g2)
2 ,

∂2L
3
22 = − g

•′
2

2g3
+

g•2g
′

3

2 (g3)
2 , ∂2L

3
23 =

g••3

2g3
− (g•3)

2

2 (g3)
2 , ∂2L

3
33 =

g•
′

3

2g3
− g•3g

′

3

2 (g3)
2 ,

∂3L
2
22 =

g•
′

2

2g2
− g•2g

′

2

2 (g2)
2 , ∂3L

2
23 =

gll2
2g2
−
(
gl2
)2

2 (g2)
2 , ∂3L

2
33 = − g

•′
3

2g2
+

g•3g
′

2

2 (g2)
2 ,

∂3L
3
22 = − g

′′

2

2g3

+
g•2g

′

2

2 (g3)
2 , ∂3L

3
23 =

g•
′

3

2g3

− g•3g
′

3

2 (g3)
2 , ∂3L

3
33 =

gll3
2g3

−
(
gl3
)2

2 (g3)
2 .

For these values and (2.114), there are only 2 nontrivial components,

R2
323 =

g••3

2g2
− g•2g

•
3

4 (g2)
2 −

(g•3)
2

4g2g3
+

gll2
2g2
− gl2g

l
3

4g2g3
−
(
gl2
)2

4 (g2)
2

R3
223 = − g

••
3

2g3

+
g•2g

•
3

4g2g3

+
(g•3)

2

4(g3)2
− gll2

2g3

+
gl2g

l
3

4(g3)2
+

(
gl2
)2

4g2g3

with
R22 = −R3

223 and R33 = R2
323,

or

R2
2 = R3

3 = − 1

2g2g3

[
g••3 −

g•2g
•
3

2g2
− (g•3)

2

2g3
+ g′′2 −

gl2g
l
3

2g3
−
(
gl2
)2

2g2

]

which is (2.64).
Now, we consider

P c
bka =

∂Lc.bk
∂ya

−
(
∂Cc

.ba

∂xk
+ Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd

)
+ Cc

.bdP
d
.ka

=
∂Lc.bk
∂ya

− Cc
.ba|k + Cc

.bdP
d
.ka

from (2.30). Contracting indices, we have

Rbk = P a
bka =

∂La.bk
∂ya

− Ca
.ba|k + Ca

.bdP
d
.ka
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Let us denote Cb = Cc
.ba and write

C.b|k = δkCb − LdbkCd = ∂kCb −N e
k∂eCb − LdbkCd = ∂kCb − wkC∗

b − LdbkCd.
We express

Rbk = [1]Rbk + [2]Rbk + [3]Rbk

where

[1]Rbk =
(
L4
bk

)∗
,

[2]Rbk = −∂kCb + wkC
∗
b + LdbkCd,

[3]Rbk = Ca
.bdP

d
.ka = C4

.b4P
4
.k4 + C4

.b5P
5
.k4 + C5

.b4P
4
.k5 + C5

.b5P
5
.k5

and

C4 = C4
44 + C5

45 =
h∗4
2h4

+
h∗5
2h5

= β∗
4 + β∗

5 , (2.122)

C5 = C4
54 + C5

55 = 0

see(2.119) .
We compute

R4k = [1]R4k + [2]R4k + [3]R4k

with

[1]R4k =
(
L4

4k

)∗
= (δkβ4)

∗

[2]R4k = −∂kC4 + wkC
∗
4 + L4

4kC4, L
4
4k = δkβ4 see (2.115

= −∂k (β∗
4 + β∗

5) + wk (β∗
4 + β∗

5)
∗ + L4

4k (β∗
4 + β∗

5)

[3]R4k = C4
.44P

4
.k4 + C4

.45P
5
.k4 + C5

.44P
4
.k5 + C5

.45P
5
.k5

= β∗
4 (w∗

k − δkβ4)− β∗
5δkβ5

Summarizing, we get

R4k = wk
[
β∗∗

5 + (β∗
5)

2 − β∗
4β

∗
5

]
+ β∗

5∂k (β4 + β5)− ∂kβ∗
5

or, for

β∗
4 =

h∗4
2h4

, ∂kβ4 =
∂kh4

2h4

, β∗
5 =

h∗5
2h5

, β∗∗
5 =

h∗∗5 h5 − (h∗5)
2

2 (h5)
5 ,

we can write

2h5R4k = wk

[
h∗∗5 −

(h∗5)
2

2h5
− h∗4h

∗
5

2h4

]
+
h∗5
2

(
∂kh4

h4
+
∂kh5

h5

)
− ∂kh∗5
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which is equivalent to (2.66)
In a similar way, we compute

R5k = [1]R5k + [2]R5k + [3]R5k

with

[1]R5k =
(
L4

5k

)∗
,

[2]R5k = −∂kC5 + wkC
∗
5 + L4

5kC4,

[3]R5k = C4
.54P

4
.k4 + C4

.55P
5
.k4 + C5

.54P
4
.k5 + C5

.55P
5
.k5.

We have

R5k =
(
L4

5k

)∗
+ L4

5kC4 + C4
.55P

5
.k4 + C5

.54P
4
.k5

=

(
−h5

h4

n∗
k

)∗
− h5

h4

n∗
k

(
h∗4
2h4

+
h∗5
2h5

)
+

h∗5
2h5

h5

2h4

n∗
k −

h∗5
2h4

1

2
n∗
k

which can be written

2h4R5k = h5n
∗∗
k +

(
h5

h4
h∗4 −

3

2
h∗5

)
n∗
k

i. e. (2.67)
For the values

P i
jka =

∂Li.jk
∂yk

−
(
∂Ci

.ja

∂xk
+ Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc

)
+ Ci

.jbP
b
.ka

from (2.30), we obtain zeros because Ci
.jb = 0 and Li.jk do not depend on yk. So,

Rja = P i
jia = 0.

Taking

Sabcd =
∂Ca

.bc

∂yd
− ∂Ca

.bd

∂yc
+ Ce

.bcC
a
.ed − Ce

.bdC
a
.ec.

from (2.30) and contracting the indices in order to obtain the Ricci coefficients,

Rbc =
∂Cd

.bc

∂yd
− ∂Cd

.bd

∂yc
+ Ce

.bcC
d
.ed − Ce

.bdC
d
.ec

with Cd
.bd = Cb already computed, see (2.122), we obtain

Rbc =
(
C4
.bc

)∗ − ∂cCb + C4
.bcC4 − C4

.b4C
4
.4c − C4

.b5C
5
.4c − C5

.b4C
4
.5c − C5

.b5C
5
.5c.
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There are nontrivial values,

R44 =
(
C4
.44

)∗ − C∗
4 + C4

44(C4 − C4
44)−

(
C5
.45

)2

= β∗∗
4 − (β∗

4 + β∗
5)

∗ + β∗
4 (β∗

4 + β∗
5 − β∗

4)− (β∗
5)

∗

R55 =
(
C4
.55

)∗ − C4
.55

(
−C4 + 2C5

.45

)

= −
(
h∗5
2h4

)∗
+

h∗5
2h4

(2β∗
5 + β∗

4 − β∗
5)

Introducing

β∗
4 =

h∗4
2h4

, β∗
5 =

h∗5
2h5

we get

R4
4 = R5

5 =
1

2h4h5

[
−h∗∗5 +

(h∗5)
2

2h5
+
h∗4h

∗
5

2h4

]

which is just (2.65).
Theorem 2.4.4 is proven.

2.8 Appendix B: Reductions from 5D to 4D

To construct a 5D → 4D reduction for the ansatz (2.63) and (2.70) is to eliminate
from formulas the variable x1 and to consider a 4D space (parametrized by local co-
ordinates (x2, x3, v, y5)) being trivially embedded into 5D space (parametrized by local
coordinates (x1, x2, x3, v, y5) with g11 = ±1, g1α̂ = 0, α̂ = 2, 3, 4, 5) with possible 4D
conformal and anholonomic transforms depending only on variables (x2, x3, v) . We sup-
pose that the 4D metric gα̂β̂ could be of arbitrary signature. In order to emphasize that
some coordinates are stated just for a such 4D space we put ”hats” on the Greek in-
dices, α̂, β̂, ... and on the Latin indices from the middle of alphabet, î, ĵ, ... = 2, 3, where

uα̂ =
(
xî, ya

)
= (x2, x3, y4, y5) .

In result, the Theorems 2.4.4 and 2.4.5, Corollaries 2.4.4 and 2.4.5 and Theorem 2.4.6
can be reformulated for 4D gravity with mixed holonomic–anholonomic variables. We
outline here the most important properties of a such reduction.

• The metric (2.62) with ansatz (2.63) and metric (2.69) with (2.70) are respectively
transformed on 4D spaces to the values:

The first type 4D off–diagonal metric is taken

g = gα̂β̂

(
xî, v

)
duα̂ ⊗ duβ̂ (2.123)
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with the metric coefficients gα̂β̂ parametrized




g2 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w2w3h4 + n2n3h5 g3 + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w2h4 w3h4 h4 0
n2h5 n3h5 0 h5


 , (2.124)

where the coefficients are some necessary smoothly class functions of type:

g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

k̂, v),

wî = wî(x
k̂, v), nî = nî(x

k̂, v); î, k̂ = 2, 3.

The anholonomically and conformally transformed 4D off–diagonal metric is

g = ω2(xî, v)ĝα̂β̂

(
xî, v

)
duα̂ ⊗ duβ̂, (2.125)

were the coefficients ĝα̂β̂ are parametrized by the ansatz




g2 + (w 2
2 + ζ 2

2 )h4 + n 2
2 h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 (w2 + ζ2)h4 n2h5

(w2w3 + +ζ2ζ3)h4 + n2n3h5 g3 + (w 2
3 + ζ 2

3 )h4 + n 2
3 h5 (w3 + ζ3)h4 n3h5

(w2 + ζ2)h4 (w3 + ζ3)h4 h4 0
n2h5 n3h5 0 h5 + ζ5h4




(2.126)

where ζ̂i = ζ̂i

(
xk̂, v

)
and we shall restrict our considerations for ζ5 = 0.

• We obtain a quadratic line element

δs2 = g2(dx
2)2 + g3(dx

3)2 + h4(δv)
2 + h5(δy

5)2, (2.127)

written with respect to the anholonomic co–frame
(
dxî, δv, δy5

)
, where

δv = dv + wîdx
î and δy5 = dy5 + nîdx

î (2.128)

is the dual of (δ̂i, ∂4, ∂5) , where

δ̂i = ∂̂i + wî∂4 + nî∂5. (2.129)
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• If the conditions of the 4D variant of the Theorem 2.4.4 are satisfied, we have

the same equations (2.76) –(2.79) were we substitute h4 = h4

(
xk̂, v

)
and h5 =

h5

(
xk̂, v

)
. As a consequence we have αi

(
xk, v

)
→ αî

(
xk̂, v

)
, β = β

(
xk̂, v

)
and

γ = γ
(
xk̂, v

)
resulting in wî = wî

(
xk̂, v

)
and nî = nî

(
xk̂, v

)
.

• The 4D line element with conformal factor (2.127) subjected to an anhlonomic
map with ζ5 = 0 transforms into

δs2 = ω2(xî, v)[g2(dx
2)2 + g3(dx

3)2 + h4(δ̂v)
2 + h5(δy

5)2], (2.130)

given with respect to the anholonomic co–frame
(
dxî, δ̂v, δy5

)
, where

δv = dv + (wî + ζ̂i)dx
î and δy5 = dy5 + nîdx

î (2.131)

is dual to the frame
(
δ̂̂i, ∂4, ∂̂5

)
with

δ̂̂i = ∂̂i − (wî + ζ̂i)∂4 + nî∂5, ∂̂5 = ∂5. (2.132)

• The formulas (2.71) and (2.73) from Theorem 2.4.5 must be modified into a 4D
form

δ̂̂ih4 = 0 and δ̂̂iω = 0 (2.133)

and the values ζ̃i = (ζ î, ζ5 = 0) are found as to be a unique solution of (2.71); for
instance, if

ωq1/q2 = h4 (q1 and q2 are integers),

ζ̂i satisfy the equations
∂̂iω − (wî + ζ̂i)ω

∗ = 0. (2.134)

• One holds the same formulas (2.83)-(2.88) from the Theorem 2.4.6 on the general
form of exact solutions with that difference that their 4D analogs are to be obtained
by reductions of holonomic indices, î → i, and holonomic coordinates, xi → xî, i.
e. in the 4D solutions there is not contained the variable x1.

• The formulae (2.74) for the nontrivial coefficients of the Einstein tensor in 4D
stated by the Corollary 2.4.4 are written

G2
2 = G3

3 = −S4
4 , G

4
4 = G5

5 = −R2
2. (2.135)
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• For symmetries of the Einstein tensor (2.135), we can introduce a matter field
source with a diagonal energy momentum tensor, like it is stated in the Corollary
2.4.5 by the conditions (2.75), which in 4D are transformed into

Υ2
2 = Υ3

3 = Υ2(x
2, x3, v), Υ4

4 = Υ5
5 = Υ4(x

2, x3). (2.136)

The 4D dimensional off–diagonal ansatz may model certain generalized Lagrange
configurations and Lagrange–affine solutions. They can also include certain 3D Finsler
or Lagrange metrics but with 2D frame transforms of the corresponding quadratic forms
and N–connections.

2.9 Appendix C: Generalized Lagrange–Affine Spa-

ces

We outline and give a brief characterization of five classes of generalized Finsler–
affine spaces (contained in the Table 1 from Ref. [6]; see also in that work the de-
tails on classification of such geometries). We note that the N–connection curvature
is computed following the formula Ωa

ij = δ[iN
a
j], see (2.5), for any N–connection Na

i .

A d–connection D = [Γα
βγ ] = [Li jk, L

a
bk, C

i
jc, C

a
bc] defines nontrivial d–torsions Tα

βγ =
[Li[ jk], C

i
ja,Ω

a
ij, T

a
bj, C

a
[bc]] and d–curvatures Rα

βγτ = [Ri
jkl, R

a
bkl, P

i
jka, P

c
bka, S

i
jbc, S

a
dbc]

adapted to the N–connection structure (see, respectively, the formulas (2.29) and (2.30)).
Any generic off–diagonal metric gαβ is associated to a N–connection structure and rep-
resented as a d–metric gαβ = [gij , hab] (see formula (2.11)). The components of a N–

connection and a d–metric define the canonical d–connection D = [Γ̂α
βγ ] =

[L̂i jk, L̂
a
bk, Ĉ

i
jc, Ĉ

a
bc] (see (2.27)) with the corresponding values of d–torsions T̂α

βγ and

d–curvatures R̂α
βγτ . The nonmetricity d–fields are computed by using formula

Qαβγ = −Dαgβγ = [Qijk, Qiab, Qajk, Qabc], see (2.13).
The Table 2.1 outlines five classes of geometries modelled in the framework of metric–

affine geometry as spaces with nontrivial N–connection structure (for simplicity, we omit-
ted the Berwald configurations, see Ref. [6]).

1. Metric–affine spaces (in brief, MA) are those stated as certain manifolds V n+m of
necessary smoothly class provided with arbitrary metric, gαβ, and linear connec-
tion, Γαβγ, structures. For generic off–diagonal metrics, a MA space always admits
nontrivial N–connection structures. Nevertheless, in general, only the metric field
gαβ can be transformed into a d–metric one gαβ = [gij, hab], but Γαβγ can be not
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adapted to the N–connection structure. As a consequence, the general strength
fields

(
T αβγ , R

α
βγτ , Qαβγ

)
can be also not N–adapted.

2. Distinguished metric–affine spaces (DMA) are defined as manifolds Vn+m provided
with N–connection structure Na

i , d–metric field (2.11) and arbitrary d–connection
Γα
βγ . In this case, all strengths

(
Tα

βγ ,R
α
βγτ ,Qαβγ

)
are N–adapted.

3. Generalized Lagrange–affine spaces (GLA), GLan = (V n, gij(x, y),
[a]Γα

β) , are mo-
delled as distinguished metric–affine spaces of odd–dimension, Vn+n, provided with
generic off–diagonal metrics with associated N–connection inducing a tangent bun-
dle structure. The d–metric g[a] and the d–connection [a]Γγ

αβ =
(

[a]Lijk,
[a]Ci

jc

)

are similar to those for the usual Lagrange spaces but with distorsions [a] Zα
β

inducing general nontrivial nonmetricity d–fields [a]Qαβγ .

4. Lagrange–affine spaces (LA), Lan = (V n, g
[L]
ij (x, y), [b]Γα

β), are provided with a

Lagrange quadratic form g
[L]
ij (x, y) = 1

2
∂2L2

∂yi∂yj inducing the canonical N–connection

structure [cL]N = { [cL]N i
j} for a Lagrange space Ln = (V n, gij(x, y)) but with a

d–connection structure [b]Γγ
α = [b]Γγ

αβϑ
β distorted by arbitrary torsion, Tβ, and

nonmetricity d–fields, Qβγα, when [b]Γα
β = [L]Γ̂α

β + [b] Zα
β. This is a particular

case of GLA spaces with prescribed types of N–connection [cL]N i
j and d–metric to

be like in Lagrange geometry.

5. Finsler–affine spaces (FA), Fan =
(
V n, F (x, y) , [f ]Γα

β

)
, in their turn are intro-

duced by further restrictions of Lan to a quadratic form g
[F ]
ij = 1

2
∂2F 2

∂yi∂yj constructed

from a Finsler metric F (xi, yj) . It is induced the canonical N–connection struc-
ture [F ]N = { [F ]N i

j} as in the Finsler space Fn = (V n, F (x, y)) but with a

d–connection structure [f ]Γγ
αβ distorted by arbitrary torsion, Tα

βγ, and nonmetric-

ity, Qβγτ , d–fields, [f ]Γα
β = [F ]Γ̂α

β + [f ] Zα
β,where [F ]Γ̂α

βγ is the canonical
Finsler d–connection.
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Space

N–connection/
N–curvature
metric/
d–metric

(d–)connection/
(d-)torsion

(d-)curvature/
(d–)nonmetricity

1. MA
Na
i ,Ω

a
ij

off.d.m. gαβ,
gαβ = [gij , hab]

Γαβγ
T αβγ

Rα
βγτ

Qαβγ

2. DMA
Na
i ,Ω

a
ij

gαβ = [gij, hab]
Γα
βγ

Tα
βγ

Rα
βγτ

Qαβγ

3. GLA

dim i = dim a
Na
i ,Ω

a
ij

off.d.m. gαβ,
g[a] = [gij, hkl]

[a]Γγ
αβ

[a]Tα
βγ

[a]Rα
βγτ

[a]Qαβγ

4. LA

dim i = dim a
[cL]N i

j ,
[cL]Ωa

ij

d–metr.g
[L]
αβ

[b]Γγ
αβ

[b]Tα
βγ

[b]Rα
βγτ

[b]Qαβγ = − [b]Dαg
[L]
βγ

5. FA

dim i = dim a
[F ]N i

j ;
[F ]Ωk

ij

d–metr.g
[F ]
αβ

[f ]Γγ
αβ

[f ]Tα
βγ

[f ]Rα
βγτ

[f ]Qαβγ = − [f ]Dαg
[F ]
βγ

Table 2.1: Generalized Finsler/Lagrange–affine spaces
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Chapter 3

Noncommutative Symmetries and
Stability of Black Ellipsoids in
Metric–Affine and String Gravity

Abstract 1

We construct new classes of exact solutions in metric–affine gravity (MAG) with
string corrections by the antisymmetric H–field. The solutions are parametrized by
generic off–diagonal metrics possessing noncommutative symmetry associated to an-
holonomy frame relations and related nonlinear connection (N–connection) structure.
We analyze the horizon and geodesic properties of a class of off–diagonal metrics with
deformed spherical symmetries. The maximal analytic extension of ellipsoid type met-
rics are constructed and the Penrose diagrams are analyzed with respect to adapted
frames. We prove that for small deformations (small eccentricities) there are such met-
rics that the geodesic behaviour is similar to the Schwarzcshild one. We conclude that
some static and stationary ellipsoid configurations may describe black ellipsoid objects.
The new class of spacetimes do not possess Killing symmetries even in the limits to the
general relativity and, in consequence, they are not prohibited by black hole uniqueness
theorems. Such static ellipsoid (rotoid) configurations are compatible with the cosmic
cenzorship criteria. We study the perturbations of two classes of static black ellipsoid
solutions of four dimensional gravitational field equations. The analysis is performed
in the approximation of small eccentricity deformations of the Schwarzschild solution.
We conclude that such anisotropic black hole objects may be stable with respect to

1 c© S. Vacaru and E. Gaburov, Noncommutative Symmetries and Stability of Black Ellipsoids in
Metric–Affine and String Gravity, hep-th/0310134
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the perturbations parametrized by the Schrodinger equations in the framework of the
one–dimensional inverse scattering theory. We emphasize that the anholonomic frame
method of generating exact solutions is a general one for off–diagonal metrics (and lin-
ear and nonlinear connections) depending on 2-3 variables, in various types of gravity
theories.

3.1 Introduction

In the past much effort has been made to construct and investigate exact solutions
of gravitational field equations with spherical/cylindrical symmetries and/or with time
dependence, paramertrized by metrics diagonalizable by certain coordinate transforms.
Recently, the off–diagonal metrics were considered in a new manner by diagonalizing
them with respect to anholonomic frames with associated nonlinear connection struc-
ture [1, 2, 3, 4]. There were constructed new classes of exact solutions of Einstein’s
equations in three (3D), four (4D) and five (5D) dimensions. Such solutions posses a
generic geometric local anisotropy (e.g. static black hole and/or cosmological solutions
with ellipsoidal or toroidal symmetry, various soliton–dilaton 2D and 3D configurations
in 4D gravity, and wormholes and flux tubes with anisotropic polarizations and/or run-
ning constants with different extensions to backgrounds of rotation ellipsoids, elliptic
cylinders, bipolar and toroidal symmetry and anisotropy).

A number of ansatz with off–diagonal metrics were investigated in higher dimensional
gravity (see, for instance, the Salam, Strathee, Percacci and Randjbar–Daemi works [5])
which showed that off–diagonal components in higher dimensional metrics are equivalent
to including U(1), SU(2) and SU(3) gauge fields. There are various generalizations of
the Kaluza–Klein gravity when the compactifications of off–diagonal metrics are con-
sidered with the aim to reduce the vacuum 5D gravity to effective Einstein gravity and
Abelian or non–Abelian gauge theories. There were also constructed 4D exact solutions
of Einstein equations with matter fields and cosmological constants like black torus and
black strings induced from some 3D black hole configurations by considering 4D off–
diagonal metrics whose curvature scalar splits equivalently into a curvature term for a
diagonal metric together with a cosmological constant term and/or a Lagrangian for
gauge (electromagnetic) field [6].

We can model certain effective (diagonal metric) gravitational and matter fields inter-
actions for some particular off–diagonal metric ansatz and redefinitions of Lagrangians.
However, in general, the vacuum gravitational dynamics can not be associated to any
matter field contributions. This holds true even if we consider non–Riemanian generaliza-
tions from string and/or metric–affine gravity (MAG) [7]. In this work (being the third



3.1. INTRODUCTION 165

partner of the papers [8, 9]), we prove that such solutions are not with usual Killing
symmetries but admit certain anholonomic noncommutative symmetries and preserve
such properties if the constructions are extended to MAG and string gravity (see also
[10] for extensions to complex and/or noncommutative gravity).

There are constructed the maximal analytic extension of a class of static metrics
with deformed spherical symmetry (containing as particular cases ellipsoid configura-
tions). We analyze the Penrose diagrams and compare the results with those for the
Reissner–Nordstrom solution. Then we state the conditions when the geodesic congru-
ence with ’ellipsoid’ type symmetry can be reduced to the Schwarzschild configuration.
We argue that in this case we may generate some static black ellipsoid solutions which,
for corresponding parametrizations of off–diagonal metric coefficients, far away from the
horizon, satisfy the asymptotic conditions of the Minkowski spacetime.

For the new classes of ”off–diagonal” spacetimes possessing noncommutative symme-
tries, we extend the methods elaborated to investigate the perturbations and stability
of black hole metrics. The theory of perturbations of the Schwarzschild spacetime black
holes was initiated in Ref. [11], developed in a series of works, e. g. Refs [12, 13], and
related [14] to the theory of inverse scattering and its ramifications (see, for instance,
Refs. [15]). The results on the theory of perturbations and stability of the Schwarzschild,
Reissner–Nordstrom and Kerr solutions are summarized in a monograph [16]. As alter-
native treatments of the stability of black holes we cite Ref. [17].

Our first aim is to investigate such off–diagonal gravitational configurations in MAG
and string gravity (defined by anholonomic frames with associated nonlinear connection
structure) which describe black hole solutions with deformed horizons, for instance, with
a static ellipsoid hypersurface. The second aim is to study perturbations of black ellip-
soids and to prove that there are such static ellipsoid like configurations which are stable
with respect to perturbations of a fixed type of anisotropy (i. e. for certain imposed
anholonomic constraints). The main idea of a such proof is to consider small (ellipsoidal,
or another type) deformations of the Schwarzschild metric and than to apply the already
developed methods of the theory of perturbations of classical black hole solutions, with
a re–definition of the formalism for adapted anholonomic frames.

We note that the solutions defining black ellipsoids are very different from those defin-
ing ellipsoidal shapes in general relativity (see Refs. [18]) associated to some perfect–fluid
bodies, rotating configurations or to some families of confocal ellipsoids in Reimannian
spaces. Our black ellipsoid metrics are parametrized by generic off–diagonal ansatz with
anholonomically deformed Killing symmetry and not subjected to uniqueness theorems.
Such ansatz are more general than the class of vacuum solutions which can not be written
in diagonal form [19] (see details in Refs. [20, 10]).

The paper is organized as follows: In Sec. 2 we outline the necessary results on off–
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diagonal metrics and anhlonomic frames with associated nonlinear connection structure.
We write the system of Einstein–Proca equations from MAG with string corrections
of the antisymmetric H–tensor from bosonic string theory. We introduce a general
off–diagonal metric ansatz and derive the corresponding system of Einstein equations
with anholonomic variables. In Sec. 3 we argue that noncommutative anholonomic
geometries can be associated to real off–diagonal metrics and show two simple realizations
within the algebra for complex matrices. Section 4 is devoted to the geometry and
physics of four dimensional static black ellipsoids. We illustrate how such solutions can
be constructed by using anholonomic deformations of the Schwarzshild metric, define
analytic extensions of black ellipsoid metrics and analyze the geodesic behaviour of the
static ellipsoid backgrounds. We conclude that black ellipsoid metrics posses specific
noncommutative symmetries. We outline a perturbation theory of anisotropic black
holes and prove the stability of black ellipsoid objects in Sec. 5. Then, in Sec. 6 we
discuss how the method of anholonomic frame transforms can be related solutions for
ellipsoidal shapes and generic off–diagonal solutions constructed by F. Canfora and H.
-J. Schmidt. We outline the work and present conclusions in Sec. 7.

There are used the basic notations and conventions stated in Refs. [8, 9].

3.2 Anholonomic Frames and Off–Diagonal Metrics

We consider a 4D manifold V 3+1 (for MAG and string gravity with possible torsion
and nonmetricity structures [7, 8, 9]) enabled with local coordinates uα = (xi, ya) where
the indices of type i, j, k, ... run values 1 and 2 and the indices a, b, c, ... take values 3 and
4; y3 = v = ϕ and y4 = t are considered respectively as the ”anisotropic” and time like
coordinates (subjected to some constraints). It is supposed that such spacetimes can
also admit nontrivial torsion structures induced by certain frame transforms.

The quadratic line element

ds2 = gαβ
(
xi, v

)
duαduβ, (3.1)

is parametrized by a metric ansatz

gαβ =




g1 + w 2
1 h3 + n 2

1 h4 w1w2h3 + n1n2h4 w1h3 n1h4

w1w2h3 + n1n2h4 g2 + w 2
2 h3 + n 2

2 h4 w2h3 n2h4

w1h3 w2h3 h3 0
n1h4 n2h4 0 h4


 , (3.2)

with gi = gi (x
i) , ha = hai

(
xk, v

)
and ni = ni

(
xk, v

)
being some functions of necessary

smoothly class or even singular in some points and finite regions. The coefficients gi
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depend only on ”holonomic” variables xi but the rest of coefficients may also depend
on one ”anisotropic” (anholonomic) variable y3 = v; the ansatz does not depend on the
time variable y4 = t; we shall search for static solutions.

The spacetime may be provided with a general anholonomic frame structure of
tetrads, or vierbiends,

eα = Aβα (uγ) ∂/∂uβ , (3.3)

satisfying some anholonomy relations

eαeβ − eβeα = wγαβ (uε) eγ , (3.4)

where wγαβ (uε) are called the coefficients of anholonomy. A ’holonomic’ frame, for in-
stance, a coordinate frame, eα = ∂α = ∂/∂uα, is defined as a set of tetrads satisfying the
holonomy conditions

∂α∂β − ∂β∂α = 0.

We can ’effectively’ diagonalize the line element (3.1),

δs2 = g1(dx
1)2 + g2(dx

2)2 + h3(δv)
2 + h4(δy

4)2, (3.5)

with respect to the anholonomic co–frame

δα = (di = dxi, δa = dya +Na
i dx

i) =
(
di, δv = dv + widx

i, δy4 = dy4 + nidx
i
)

(3.6)

which is dual to the anholonomic frame

δα = (δi = ∂i −Na
i ∂a, ∂b) = (δi = ∂i − wi∂3 − ni∂4, ∂3, ∂4) , (3.7)

where ∂i = ∂/∂xi and ∂b = ∂/∂yb are usual partial derivatives. The tetrads δα and δα

are anholonomic because, in general, they satisfy the anholonomy relations (3.4) with
some non–trivial coefficients,

waij = δiN
a
j − δjNa

i , w
b
ia = − wbai = ∂aN

b
i . (3.8)

The anholonomy is induced by the coefficients N3
i = wi and N4

i = ni which ”elongate”
partial derivatives and differentials if we are working with respect to anholonomic frames.
This results in a more sophisticate differential and integral calculus (as in the tetradic
and/or spinor gravity), but simplifies substantially the tensor computations, because
we are dealing with diagonalized metrics. In order to construct exact ’off–diagonal’
solutions with 4D metrics depending on 3 variables

(
xk, v

)
it is more convenient to work

with respect to anholonomic frames (3.7) and (3.6) for diagonalized metrics (3.5) than
to consider directly the ansatz (3.1) [1, 2, 3, 4].
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There is a ’preferred’ linear connection constructed only from the components(
gi, ha, N

b
k

)
, called the canonical distinguished linear connection, which is similar to the

metric connection introduced by the Christoffel symbols in the case of holonomic bases,
i. e. being constructed only from the metric components and satisfying the metricity
conditions. It is parametrized by the coefficients, Γαβγ =

(
Li jk, L

a
bk, C

i
jc, C

a
bc

)
stated

with respect to the anholonomic frames (3.7) and (3.6) as

Li jk =
1

2
gin (δkgnj + δjgnk − δngjk) , (3.9)

Labk = ∂bN
a
k +

1

2
hac
(
δkhbc − hdc∂bNd

k − hdb∂cNd
k

)
,

Ci
jc =

1

2
gik∂cgjk, C

a
bc =

1

2
had (∂chdb + ∂bhdc − ∂dhbc) ,

computed for the ansatz (3.2). This induces a linear covariant derivative locally adapted
to the nonlinear connection structure (N–connection, see details, for instance, in Refs.
[21, 1, 20]). By straightforward calculations, we can verify that for Dα defined by Γαβγ
with the components (3.9) the condition Dαgβγ = 0 is satisfied.

We note that on (pseudo) Riemannian spaces the N–connection is an object com-
pletely defined by anholonomic frames, when the coefficients of tetradic transform (3.3),
Aβα (uγ) , are parametrized explicitly via certain values

(
Na
i , δ

j
i , δ

a
b

)
, where δji and δab

are the Kronecker symbols. By straightforward calculations we can compute (see, for
instance Ref. [22]) that the coefficients of the Levi–Civita metric connection

Γ▽
αβγ = g (δα,▽γδβ) = gατΓ

▽τ
βγ ,

associated to a covariant derivative operator ▽, satisfying the metricity condition
▽γgαβ = 0 for gαβ = (gij , hab) ,

Γ▽
αβγ =

1

2

[
δβgαγ + δγgβα − δαgγβ + gατw

τ
γβ + gβτw

τ
αγ − gγτwτβα

]
, (3.10)

are given with respect to the anholonomic basis (3.6) by the coefficients

Γ▽τ
βγ =

(
Li jk, L

a
bk −

∂Na
k

∂yb
, Ci

jc +
1

2
gikΩa

jkhca, C
a
bc

)
, (3.11)

where Ωa
jk = δkN

a
j − δjNa

k . The anholonomic frame structure may induce on (pseudo)
Riemannian spacetimes nontrivial torsion structures. For instance, the canonical con-
nection (3.9), in general, has nonvanishing torsion components

T ija = −T iaj = Ci
ja, T

a
jk = −T akj = Ωa

kj, T
a
bk = −T akb = ∂bN

a
k − Labk. (3.12)
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This is a ”pure” anholonomic frame effect. We can conclude that the Einstein theory
transforms into an effective Einstein–Cartan theory with anholonomically induced tor-
sion if the general relativity is formulated with respect to general anholonomic frame
bases. In this paper we shall also consider distorsions of the Levi–Civita connection
induced by nonmetricity.

A very specific property of off–diagonal metrics is that they can define different
classes of linear connections which satisfy the metricity conditions for a given metric,
or inversely, there is a certain class of metrics which satisfy the metricity conditions for
a given linear connection. This result was originally obtained by A. Kawaguchi [23]
(Details can be found in Ref. [21], see Theorems 5.4 and 5.5 in Chapter III, formulated
for vector bundles; here we note that similar proofs hold also on manifolds enabled with
anholonomic frames associated to a N–connection structure.)

The Levi–Civita connection does not play an exclusive role on non–Riemannian
spaces. For instance, the torsion on spaces provided with N–connection is induced by
anholonomy relation and both linear connections (3.9) and (3.11) are compatible with
the same metric and transform into the usual Levi–Civita coefficients for vanishing N–
connection and ”pure” holonomic coordinates (see related details in Refs. [8, 9]). This
means that to an off–diagonal metric we can associated different covariant differential
calculi, all being compatible with the same metric structure (like in noncommutative
geometry, which is not a surprising fact because the anolonomic frames satisfy by defi-
nition some noncommutative relations (3.4)). In such cases we have to select a particular
type of connection following some physical or geometrical arguments, or to impose some
conditions when there is a single compatible linear connection constructed only from the
metric and N–coefficients.

The dynamics of generalized Finsler–affine string gravity is defined by the system of
field equations (see Proposition 3.1 in Ref. [9])

R̂αβ −
1

2
gαβ
←−̂
R = κ̃

(
Σ

[φ]
αβ + Σ

[m]
αβ + Σ

[T]
αβ

)
, (3.13)

D̂νH
νµ = µ2φµ,

D̂νHνλρ = 0

for

Hνλρ = Ẑ νλρ + Ĥνλρ

being the antisymmetric torsion field

Hνλρ = δνBλρ + δρBνλ + δλBνρ
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of the antisymmetric Bλρ in bosonic string theory (for simplicity, we restrict our con-
siderations to the sigma model with H–field corrections and zero dilatonic field). The

covariant derivative D̂ν is defined by the coefficients (3.9) (we use in our references the
”boldfaced” indices when it is necessary to emphasize that the spacetime is provided
with N–connection structure. The distorsion Ẑ νλρ of the Levi–Civita connection, when

Γτβγ = Γτ▽βγ + Ẑτ
βγ ,

from (3.13) is defined by the torsion T̂ with the components computed for D̂ by applying
the formulas (3.12),

Ẑαβ = δβ⌋T̂α − δα⌋T̂β +
1

2

(
δα⌋δβ⌋T̂γ

)
δγ,

see Refs. [8, 9] on definition of the interior product ”⌋” and differential forms like T̂β on

spaces provided with N–connection structure. The tensor Hνµ + D̂νφµ− D̂µφν +wγµνφγ
is the field strengths of the Abelian–Proca field φα, with µ, κ̃ = const,

Σ
[φ]
αβ = H µ

α Hβµ −
1

4
gαβHµνH

µν + µ2φαφβ −
µ2

2
gαβφµφ

µ,

where the source

Σ
[T]
αβ = Σ

[T]
αβ

(
T̂,Hνλρ

)

contains contributions of the torsion fields T̂ and Hνλρ. The field φα is defined by certain
irreducible components of torsion and nonmetricity in MAG, see [7] and Theorem 3.2 in
[9].

Our aim is to elaborate a method of constructing exact solutions of equations (3.13)

for vanishing matter fields, Σ
[m]
αβ = 0. The ansatz for the field φµ is taken in the form

φµ =
[
φi
(
xk
)
, φa = 0

]

for i, j, k... = 1, 2 and a, b, ... = 3, 4. The Proca equations D̂νH
νµ = µ2φµ for µ→ 0 (for

simplicity) transform into

∂1

[
(g1)

−1 ∂1φk
]
+ ∂2

[
(g2)

−1 ∂2φk
]

= Ljki∂
iφj − Liij∂jφk. (3.14)

Two examples of solutions of this equation are considered in Ref. [9]. In this paper,
we do not state any particular configurations and consider that it is possible always to
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define certain φi
(
xk
)

satisfying the wave equation (3.14). The energy–momentum tensor

Σ
[φ]
αβ is computed for one nontrivial value

H12 = ∂1φ2 − ∂2φ1.

In result, we can represent the source of the fields φk as

Σ
[φ]
αβ =

[
Ψ2

(
H12, x

k
)
,Ψ2

(
H12, x

k
)
, 0, 0

]
.

The ansatz for the H–field is taken in the form

Hνλρ = Ẑ νλρ + Ĥνλρ = λ[H]

√
|gαβ|ενλρ (3.15)

where ενλρ is completely antisymmetric and λ[H] = const. This ansatz satisfies the field

equations D̂νHνλρ = 0 because the metric gαβ is compatible with D̂. The values Ĥνλρ

have to be defined in a form to satisfy the condition (3.15) for any Ẑ νλρ derived from
gαβ and, as a consequence, from (3.9) and (3.12), for instance, to compute them as

Ĥνλρ = λ[H]

√
|gαβ|ενλρ − Ẑ νλρ

for defined values of Ẑ νλρ, λ[H] and gαβ . In result, we obtain the effective energy–
momentum tensor in the form

Σ[φ]β
α + Σ[H]β

α =

[
Υ2

(
xk
)

+
λ2

[H]

4
,Υ2

(
xk
)

+
λ2

[H]

4
,
λ2

[H]

4
,
λ2

[H]

4

]
. (3.16)

For the source (3.16), the system of field equations (3.13) defined for the metric (3.5)
and connection (3.9), with respect to anholonomic frames (3.6) and (3.7), transform into
a system of partial differential equations with anholonomic variables [1, 2, 20], see also
details in the section 5.3 in Ref. [9],

R1
1 = R2

2 = − 1

2g1g2
[g••2 −

g•1g
•
2

2g1
− (g•2)

2

2g2
+ g

′′

1 −
g

′

1g
′

2

2g2
− (g

′

1)
2

2g1
] = −

λ2
[H]

4
, (3.17)

R3
3 = R4

4 = − β

2h3h4
= − 1

2h3h4

[
h∗∗4 − h∗4

(
ln
√
|h3h4|

)∗]
= −

λ2
[H]

4
−Υ2

(
xk
)
,(3.18)

R3i = −wi
β

2h4
− αi

2h4
= 0, (3.19)

R4i = − h4

2h3
[n∗∗
i + γn∗

i ] = 0, (3.20)
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where
αi = ∂ih

∗
4 − h∗4∂i ln

√
|h3h4|, γ = 3h∗4/2h4 − h∗3/h3, (3.21)

and the partial derivatives are denoted g•1 = ∂g1/∂x
1, g

′

1 = ∂g1/∂x
2 and h∗3 = ∂h3/∂v.

We can additionally impose the condition δiN
a
j = δjN

a
i in order to have Ωa

jk = 0 which
may be satisfied, for instance, if

w1 = w1

(
x1, v

)
, n1 = n1

(
x1, v

)
, w2 = n2 = 0,

or, inversely, if
w1 = n1 = 0, w2 = w2

(
x2, v

)
, n2 = n2

(
x2, v

)
.

In this paper we shall select a class of static solutions parametrized by the conditions

w1 = w2 = n2 = 0. (3.22)

The system of equations (3.17)–(3.20) can be integrated in general form [9, 20].
Physical solutions are selected following some additional boundary conditions, imposed
types of symmetries, nonlinearities and singular behavior and compatibility in the locally
anisotropic limits with some well known exact solutions.

Finally, we note that there is a difference between our approach and the so–called
”tetradic” gravity (see basic details and references in [22]) when the metric coefficients
gαβ (uγ) are substituted by tetradic fields eαα (uγ) , mutually related by formula gαβ =

eααe
β

βηαβ with ηαβ chosen, for instance, to be the Minkowski metric. In our case we
partially preserve some metric dynamics given by diagonal effective metric coefficients
(gi, ha) but also adapt the calculus to tetrads respectively defied by

(
Na
i , δ

j
i , δ

a
b

)
, see (3.6)

and (3.7). This substantially simplifies the method of constructing exact solutions and
also reflects new type symmetries of such classes of metrics.

3.3 Anholonomic Noncommutative Symmetries

The nontrivial anholonomy coefficients, see (3.4) and (3.8) induced by off–diagonal
metric (3.1) (and associated N–connection) coefficients emphasize a kind of Lie algebra
noncommutativity relation. In this section, we analyze a simple realizations of noncom-
mutative geometry of anholonomic frames within the algebra of complex k× k matrices,
Mk(IC, u

α) depending on coordinates uα on spacetime V n+m connected to complex Lie
algebras SL (k, IC) (see Ref. [10] for similar constructions with the group SUk).

We consider matrix valued functions of necessary smoothly class derived from the
anholonomic frame relations (3.4) (being similar to the Lie algebra relations) with the
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coefficients (3.8) induced by off–diagonal metric terms in (3.2) and by N–connection
coefficients Na

i . We use algebras of complex matrices in order to have the possibility
for some extensions to complex solutions and to relate the constructions to noncommu-
tative/complex gravity). For commutative gravity models, the anholonomy coefficients
wγαβ are real functions but there are considered also complex metrics and tetrads related
to noncommutative gravity [24].

Let us consider the basic relations for the simplest model of noncommutative geome-
try realized with the algebra of complex (k × k) noncommutative matrices [25], Mk(IC).
Any element M ∈Mk(IC) can be represented as a linear combination of the unit (k × k)
matrix I and (k2 − 1) hermitian traceless matrices qα with the underlined index α run-
ning values 1, 2, ..., k2 − 1, i. e.

M = α I +
∑

βαqα

for some constants α and βα. It is possible to chose the basis matrices qα satisfying the
relations

qαqβ =
1

k
ραβI +Q

γ

αβqγ −
i

2
f
γ

αβqγ , (3.23)

where i2 = −1 and the real coefficients satisfy the properties

Q
γ

αβ = Q
γ

βα, Q
γ

γβ = 0, f
γ

αβ = −fγβα, f
γ
γα = 0

with f
γ

αβ being the structure constants of the Lie group SL (k, IC) and the Killing–Cartan

metric tensor ραβ = f ταγf
γ

τβ. This algebra admits a formalism of interior derivatives ∂̂γ
defied by relations

∂̂γqβ = ad
(
iqγ

)
qβ = i[qγ , qβ] = f

α
γβqα (3.24)

and
∂̂α∂̂β − ∂̂β ∂̂α = f

γ

αβ∂̂γ (3.25)

(the last relation follows the Jacoby identity and is quite similar to (3.4) but with constant
values f

γ

αβ).

Our idea is to associate a noncommutative geometry starting from the anholonomy
relations of frames (3.4) by adding to the structure constants f

γ

αβ the anholonomy coef-

ficients w
[N ]τ
αγ (3.8) (we shall put the label [N] if would be necessary to emphasize that the

anholonomic coefficients are induced by a nonlinear connection. Such deformed structure
constants consist from N–connection coefficients Na

i and their first partial derivatives, i.
e. they are induced by some off–diagonal terms in the metric (3.2) being a solution of
the gravitational field equations.
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We emphasize that there is a rough analogy between formulas (3.25) and (3.4) because

the anholonomy coefficients do not satisfy, in general, the condition w
[N ]τ
τα = 0. There is

also another substantial difference because the anholonomy relations are defined for a
manifold of dimension n+m, with Greek indices α, β, ... running values from 1 to n+m
but the matrix noncommutativity relations are stated for traceless matrices labelled by
underlined indices α, β, running values from 1 to k2 − 1. It is not possible to satisfy the
condition k2− 1 = n+m by using integer numbers for arbitrary n+m. We may extend
the dimension of spacetime from n +m to any n′ ≥ n and m′ ≥ m when the condition
k2 − 1 = n′ +m′ can be satisfied by a trivial embedding of the metric (3.2) into higher
dimension, for instance, by adding the necessary number of unities on the diagonal and
writing

ĝαβ =




1 ... 0 0 0
... ... ... ... ...
0 ... 1 0 0
0 ... 0 gij +Na

i N
b
jhab N e

j hae
0 ... 0 N e

i hbe hab




and e
[N ]
α = δα =

(
1, 1, ..., e

[N ]
α

)
. For simplicity, we preserve the same type of underlined

Greek indices, α, β... = 1, 2, ..., k2 − 1 = n′ +m′.

The anholonomy coefficients w
[N ]γ
αβ can be extended with some trivial zero components

and for consistency we rewrite them without labelled indices, w
[N ]γ
αβ → W

γ

αβ. The set of

anholonomy coefficients w
[N ]γ
αβ (3.4) may result in degenerated matrices, for instance for

certain classes of exact solutions of the Einstein equations. So, it would not be a well
defined construction if we shall substitute the structure Lie algebra constants directly by
w

[N ]γ
αβ . We can consider a simple extension w

[N ]γ
αβ →W

γ

αβ when the coefficients w
γ

αβ(u
τ )

for any fixed value uτ = u
τ
[0] would be some deformations of the structure constants of

the Lie algebra SL (k, IC) , like

W
γ

αβ = f
γ

αβ + w
γ

αβ, (3.26)

being nondegenerate.

Instead of the matrix algebra Mk(IC), constructed from constant complex elements,
we have also to introduce dependencies on coordinates uα = (0, ..., uα) , for instance, like a
trivial matrix bundle on V n′+m′

, and denote this space Mk(IC, u
α). Any element B (uα) ∈

Mk(IC, u
α) with a noncommutative structure induced by W

γ

αβ is represented as a linear

combination of the unit (n′ +m′)× (n′ +m′) matrix I and the [(n′ +m′)2− 1] hermitian
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traceless matrices qα (uτ ) with the underlined index α running values 1, 2, ..., (n′+m′)2−1,

B (uτ ) = α (uτ ) I +
∑

βα (uτ ) qα (uτ )

under condition that the following relation holds:

qα (uτ ) qβ (uγ) =
1

n′ +m′ραβ (uν) +Q
γ

αβqγ (uµ)− i

2
W

γ

αβqγ (uµ)

with the same values of Q
γ

αβ from the Lie algebra for SL (k, IC) but with the Killing–

Cartan like metric tensor defined by anholonomy coefficients, i. e. ραβ (uν) = W τ
αγ (uα)

W
γ

τβ (uα) . For complex spacetimes, we shall consider that the coefficients Na
i and W

γ

αβ

may be some complex valued functions of necessary smooth (in general, with complex
variables) class. In result, the Killing–Cartan like metric tensor ραβ can be also complex.

We rewrite (3.4) as
eαeβ − eβeα = W

γ

αβeγ (3.27)

being equivalent to (3.25) and defining a noncommutative anholonomic structure (for
simplicity, we use the same symbols eα as for some ’N–elongated’ partial derivatives, but
with underlined indices). The analogs of derivation operators (3.24) are stated by using
W

γ

αβ,

eαqβ (uγ) = ad [iqα (uγ)] qβ (uγ) = i
[
qα (uγ) qβ (uγ)

]
= W

γ

αβqγ (3.28)

The operators (3.28) define a linear space of anholonomic derivations satisfying
the conditions (3.27), denoted AderMk(IC, u

α), elongated by N–connection and distin-
guished into irreducible h– and v–components, respectively, into ei and eb, like eα =(
ei = ∂i −Na

i ea, eb = ∂b
)
. The space AderMk(IC, u

α) is not a left module over the alge-
bra Mk(IC, u

α) which means that there is a a substantial difference with respect to the
usual commutative differential geometry where a vector field multiplied on the left by a
function produces a new vector field.

The duals to operators (3.28), eµ, found from eµ (eα) = δµ
α
I, define a canonical basis

of 1–forms eµ connected to the N–connection structure. By using these forms, we can

span a left module over Mk(IC, u
α) following qαe

µ
(
eβ

)
= qαδ

µ
β I = qαδ

µ
β . For an arbitrary

vector field
Y = Y αeα → Y αeα = Y iei + Y aea,

it is possible to define an exterior differential (in our case being N–elongated), starting
with the action on a function ϕ (equivalent, a 0–form),

δ ϕ (Y ) = Y ϕ = Y iδiϕ+ Y a∂aϕ
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when
(δ I) (eα) = eαI = ad (ieα) I = i [eα, I] = 0, i. e. δI = 0,

and
δqµ(eα) = eα(eµ) = i[eµ, eα] = W

γ
αµeγ . (3.29)

Considering the nondegenerated case, we can invert (3.29) as to obtain a similar expres-
sion with respect to eµ,

δ(eα) = W
γ
αµeγe

µ, (3.30)

from which a very important property follows by using the Jacobi identity, δ2 = 0,
resulting in a possibility to define a usual Grassman algebra of p–forms with the wedge
product ∧ stated as

eµ ∧ eν =
1

2
(eµ ⊗ eν − eν ⊗ eµ) .

We can write (3.30) as

δ(eα) = −1

2
W α

βµe
βeµ

and introduce the canonical 1–form e = qαe
α being coordinate–independent and adapted

to the N–connection structure and satisfying the condition δe+ e ∧ e = 0.
In a standard manner, we can introduce the volume element induced by the canonical

Cartan–Killing metric and the corresponding star operator ⋆ (Hodge duality). We define
the volume element σ by using the complete antisymmetric tensor ǫα1α2...αk2−1

as

σ =
1

[(n′ +m′)2 − 1]!
ǫα1α2...αn′+m′

eα1 ∧ eα2 ∧ ... ∧ eαn′+m′

to which any (k2 − 1)–form is proportional (k2 − 1 = n′ +m′) . The integral of such a
form is defined as the trace of the matrix coefficient in the from σ and the scalar product
introduced for any couple of p–forms ̟ and ψ

(̟,ψ) =

∫
(̟ ∧ ⋆ψ) .

Let us analyze how a noncommutative differential form calculus (induced by an an-
holonomic structure) can be developed and related to the Hamiltonian classical and
quantum mechanics and Poisson bracket formalism:

For a p–form ̟[p], the anti–derivation iY with respect to a vector field
Y ∈ AderMk(IC, u

α) can be defined as in the usual formalism,

iY̟
[p] (X1, X2, ..., Xp−1) = ̟[p] (Y,X1, X2, ..., Xp−1)
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where X1, X2, ..., Xp−1 ∈ AderMk(IC, u
α). By a straightforward calculus we can check

that for a 2–form Ξ = δ e one holds

δΞ = δ2e = 0 and LY Ξ = 0

where the Lie derivative of forms is defined as LY̟
[p] = (iY δ + δ iY )̟[p].

The Hamiltonian vector field H[ϕ] of an element of algebra ϕ ∈ Mk(IC, u
α) is intro-

duced following the equality Ξ
(
H[ϕ], Y

)
= Y ϕ which holds for any vector field. Then,

we can define the Poisson bracket of two functions (in a quantum variant, observables)
ϕ and χ, {ϕ, χ} = Ξ

(
H[ϕ], H[χ]

)
when

{eα, eβ} = Ξ
(
eα, eβ

)
= i[eα, eβ].

This way, a simple version of noncommutative classical and quantum mechanics (up to
a factor like the Plank constant, ~) is proposed, being derived by anholonomic relations
for a certain class of exact ’off–diagonal’ solutions in commutative gravity.

In order to define the algebra of forms Ω∗ [Mk(IC, u
α)] over Mk(IC, u

α) we put Ω0 =
Mk and write

δϕ (eα) = eα(ϕ)

for every matrix function ϕ ∈Mk(IC, u
α). As a particular case, we have

δqα
(
eβ

)
= −W α

βγq
γ

where indices are raised and lowered with the anholonomically deformed metric ραβ(u
λ).

This way, we can define the set of 1–forms Ω1 [Mk(IC, u
α)] to be the set of all elements

of the form ϕδβ with ϕ and β belonging to Mk(IC, u
α). The set of all differential forms

define a differential algebra Ω∗ [Mk(IC, u
α)] with the couple (Ω∗ [Mk(IC, u

α)] , δ) said to be
a differential calculus in Mk(IC, u

α) induced by the anholonomy of certain exact solutions
(with off–diagonal metrics and associated N–connections) in a gravity theory.

We can also find a set of generators eα of Ω1 [Mk(IC, u
α)] , as a left/ right –module

completely characterized by the duality equations eµ (eα) = δµ
α
I and related to δqα,

δqα = W α
βγq

βqγ and eµ = qγq
µδqγ.

Similarly to the formalism presented in details in Ref. [27], we can elaborate a differential
calculus with derivations by introducing a linear torsionless connection

Deµ = −ωµγ ⊗ eγ
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with the coefficients ω
µ
γ = −1

2
W

µ

γβe
γ, resulting in the curvature 2–form

Rµ
γ =

1

8
W

µ

γβW
β
ατe

αeτ .

This is a surprising fact that ’commutative’ curved spacetimes provided with off–diagonal
metrics and associated anhlonomic frames and N–connections may be characterized by
a noncommutative ’shadow’ space with a Lie algebra like structure induced by the frame
anholonomy. We argue that such metrics possess anholonomic noncommutative sym-
metries and conclude that for the ’holonomic’ solutions of the Einstein equations, with
vanishing w

γ

αβ, any associated noncommutative geometry or SL (k, IC) decouples from

the off–diagonal (anholonomic) gravitational background and transforms into a trivial
one defined by the corresponding structure constants of the chosen Lie algebra. The
anholonomic noncommutativity and the related differential geometry are induced by
the anholonomy coefficients. All such structures reflect a specific type of symmetries of
generic off–diagonal metrics and associated frame/ N–connection structures.

Considering exact solutions of the gravitational field equations, we can assert that
we constructed a class of vacuum or nonvacuum metrics possessing a specific noncom-
mutative symmetry instead, for instance, of any usual Killing symmetry. In general, we
can introduce a new classification of spacetimes following anholonomic noncommutative
algebraic properties of metrics and vielbein structures (see Ref. [28, 10]). In this paper,
we analyze the simplest examples of such spacetimes.
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3.4 4D Static Black Ellipsoids in MAG and String

Gravity

We outline the black ellipsoid solutions [29, 30] and discuss their associated anholo-
nomic noncommutative symmetries [10]. We note that such solutions can be extended for
the (anti) de Sitter spaces, in gauge gravity and string gravity with effective cosmological
constant [31]. In this paper, the solutions are considered for ’real’ metric–affine spaces
and extended to nontrivial cosmological constant. We emphasize the possibility to con-
struct solutions with locally ”anisotropic” cosmological constants (such configurations
may be also induced, for instance, from string/ brane gravity).

3.4.1 Anholonomic deformations of the Schwarzschild metric

We consider a particular case of effectively diagonalized (3.5) (and corresponding
off–diagonal metric ansatz (3.1)) when

δs2 = [−
(

1− 2m

r
+

ε

r2

)−1

dr2 − r2q(r)dθ2 (3.31)

−η3 (r, ϕ) r2 sin2 θdϕ2 + η4 (r, ϕ)

(
1− 2m

r
+

ε

r2

)
δt2]

where the ”polarization” functions η3,4 are decomposed on a small parameter ε, 0 < ε≪
1,

η3 (r, ϕ) = η3[0] (r, ϕ) + ελ3 (r, ϕ) + ε2γ3 (r, ϕ) + ..., (3.32)

η4 (r, ϕ) = 1 + ελ4 (r, ϕ) + ε2γ4 (r, ϕ) + ...,

and

δt = dt+ n1 (r, ϕ) dr

for n1 ∼ ε... + ε2 terms. The functions q(r), η3,4 (r, ϕ) and n1 (r, ϕ) will be found as
the metric will define a solution of the gravitational field equations generated by small
deformations of the spherical static symmetry on a small positive parameter ε (in the
limits ε→ 0 and q, η3,4 → 1 we have just the Schwarzschild solution for a point particle
of mass m). The metric (3.31) is a particular case of a class of exact solutions constructed
in [1, 2, 20]. Its complexification by complex valued N–coefficients is investigated in Ref.
[10].
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We can state a particular symmetry of the metric (3.31) by imposing a corresponding
condition of vanishing of the metric coefficient before the term δt2. For instance, the
constraints that

η4 (r, ϕ)

(
1− 2m

r
+

ε

r2

)
= 1− 2m

r
+ ε

Φ4

r2
+ ε2Θ4 = 0, (3.33)

Φ4 = λ4

(
r2 − 2mr

)
+ 1

Θ4 = γ4

(
1− 2m

r

)
+ λ4,

define a rotation ellipsoid configuration if

λ4 =

(
1− 2m

r

)−1

(cosϕ− 1

r2
)

and

γ4 = −λ4

(
1− 2m

r

)−1

.

In the first order on ε one obtains a zero value for the coefficient before δt2 if

r+ =
2m

1 + ε cosϕ
= 2m[1− ε cosϕ], (3.34)

which is the equation for a 3D ellipsoid like hypersurface with a small eccentricity ε.
In general, we can consider arbitrary pairs of functions λ4(r, θ, ϕ) and γ4(r, θ, ϕ) (for
ϕ–anisotropies, λ4(r, ϕ) and γ4(r, ϕ)) which may be singular for some values of r, or on
some hypersurvaces r = r (θ, ϕ) (r = r(ϕ)).

The simplest way to define the condition of vanishing of the metric coefficient before
the value δt2 is to choose γ4 and λ4 as to have Θ = 0. In this case we find from (3.33)

r± = m±m
√

1− ε Φ

m2
= m

[
1±

(
1− ε Φ4

2m2

)]
(3.35)

where Φ4 (r, ϕ) is taken for r = 2m.
For a new radial coordinate

ξ =

∫
dr

√
|1− 2m

r
+

ε

r2
| (3.36)

and

h3 = −η3(ξ, ϕ)r2(ξ) sin2 θ, h4 = 1− 2m

r
+ ε

Φ4

r2
, (3.37)
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when r = r (ξ) is inverse function after integration in (3.36), we write the metric (3.31)
as

ds2 = −dξ2 − r2 (ξ) q (ξ) dθ2 + h3 (ξ, θ, ϕ) δϕ2 + h4 (ξ, θ, ϕ) δt2, (3.38)

δt = dt+ n1 (ξ, ϕ)dξ,

where the coefficient n1 is taken to solve the equation (3.20) and to satisfy the (3.22). The
next step is to state the conditions when the coefficients of metric (3.31) define solutions
of the Einstein equations. We put g1 = −1, g2 = −r2 (ξ) q (ξ) and arbitrary h3(ξ, θ, ϕ)
and h4 (ξ, θ) in order to find solutions the equations (3.17)–(3.19). If h4 depends on
anisotropic variable ϕ, the equation (3.18) may be solved if

√
|η3| = η0

(√
|η4|
)∗

(3.39)

for η0 = const. Considering decompositions of type (3.32) we put η0 = η/ε where the
constant η is taken as to have

√
|η3| = 1 in the limits

(√
|η4|
)∗
→ 0

ε→ 0
→ 1

η
= const. (3.40)

These conditions are satisfied if the functions η3[0], λ3,4 and γ3,4 are related via relations

√
|η3[0]| =

η

2
λ∗4, λ3 = η

√
|η3[0]|γ∗4

for arbitrary γ3 (r, ϕ) . In this paper we select only such solutions which satisfy the
conditions (3.39) and (3.40).

For linear infinitesimal extensions on ε of the Schwarzschild metric, we write the
solution of (3.20) as

n1 = εn̂1 (ξ, ϕ)

where

n̂1 (ξ, ϕ) = n1[1] (ξ) + n1[2] (ξ)

∫
dϕ η3 (ξ, ϕ) /

(√
|η4 (ξ, ϕ) |

)3

, η∗4 6= 0; (3.41)

= n1[1] (ξ) + n1[2] (ξ)

∫
dϕ η3 (ξ, ϕ) , η∗4 = 0;

= n1[1] (ξ) + n1[2] (ξ)

∫
dϕ/

(√
|η4 (ξ, ϕ) |

)3

, η∗3 = 0;
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with the functions nk[1,2] (ξ) to be stated by boundary conditions.

The data

g1 = −1, g2 = −r2(ξ)q(ξ), (3.42)

h3 = −η3(ξ, ϕ)r2(ξ) sin2 θ, h4 = 1− 2m

r
+ ε

Φ4

r2
,

w1,2 = 0, n1 = εn̂1 (ξ, ϕ) , n2 = 0,

for the metric (3.31) define a class of solutions of the Einstein equations for the canonical
distinguished connection (3.9), with non–trivial polarization function η3 and extended
on parameter ε up to the second order (the polarization functions being taken as to make
zero the second order coefficients). Such solutions are generated by small deformations
(in particular cases of rotation ellipsoid symmetry) of the Schwarschild metric.

We can relate our solutions with some small deformations of the Schwarzschild met-
ric, as well we can satisfy the asymptotically flat condition, if we chose such functions
nk[1,2] (x

i) as nk → 0 for ε → 0 and η3 → 1. These functions have to be selected as to
vanish far away from the horizon, for instance, like ∼ 1/r1+τ , τ > 0, for long distances
r →∞.

3.4.2 Black ellipsoids and anistropic cosmological constants

We can generalize the gravitational field equations to the gravity with variable cos-
mological constants λ[h] (u

α) and λ[v] (u
α) which can be induced, for instance, from extra

dimensions in string/brane gravity, when the non-trivial components of the Einstein
equations are

Rij = λ[h]

(
x1
)
gij and Rab = λ[v](x

k, v)gab (3.43)

where Ricci tensor Rµν with anholonomic variables has two nontrivial components Rij

and Rab, and the indices take values i, k = 1, 2 and a, b = 3, 4 for xi = ξ and y3 = v = ϕ
(see notations from the previous subsection). The equations (3.43) contain the equations

(3.17) and (3.18) as particular cases when λ[h] (x
1) =

λ2
[H]

4
and λ[v](x

k, v) =
λ2
[H]

4
+Υ2

(
xk
)
.

For an ansatz of type (3.5)

δs2 = g1(dx
1)2 + g2(dx

2)2 + h3

(
xi, y3

)
(δy3)2 + h4

(
xi, y3

)
(δy4)2, (3.44)

δy3 = dy3 + wi
(
xk, y3

)
dxi

′

, δy4 = dy4 + ni
(
xk, y3

)
dxi,
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the Einstein equations (3.43) are written (see [20] for details on computation)

R1
1 = R2

2 = − 1

2g1g2

[g••2 −
g•1g

•
2

2g1

− (g•2)
2

2g2

+ g
′′

1 −
g

′

1g
′

2

2g2

− (g
′

1)
2

2g1

] = λ[h]

(
xk
)
, (3.45)

R3
3 = R4

4 = − β

2h3h4
= λ[v](x

k, v), (3.46)

R3i = −wi
β

2h4
− αi

2h4
= 0, (3.47)

R4i = − h4

2h3
[n∗∗
i + γn∗

i ] = 0. (3.48)

The coefficients of equations (3.45) - (3.48) are given by

αi = ∂ih
∗
4 − h∗4∂i ln

√
|h3h4|, β = h∗∗4 − h∗4[ln

√
|h3h4|]∗, γ =

3h∗4
2h4
− h∗3
h3
. (3.49)

The various partial derivatives are denoted as a• = ∂a/∂x1, a
′

= ∂a/∂x2, a∗ = ∂a/∂y3.
This system of equations can be solved by choosing one of the ansatz functions (e.g.
g1 (xi) or g2 (xi)) and one of the ansatz functions (e.g. h3 (xi, y3) or h4 (xi, y3)) to take
some arbitrary, but physically interesting form. Then, the other ansatz functions can
be analytically determined up to an integration in terms of this choice. In this way we
can generate a lot of different solutions, but we impose the condition that the initial,
arbitrary choice of the ansatz functions is “physically interesting” which means that
one wants to make this original choice so that the generated final solution yield a well
behaved metric.

In this subsection, we show that the data (3.42) can be extended as to generate exact
black ellipsoid solutions with nontrivial polarized cosmological constant which can be
imbedded in string theory. A complex generalization of the solution (3.42) is analyzed
in Ref. [10] and the case locally isotropic cosmological constant was considered in Ref.
[31].

At the first step, we find a class of solutions with g1 = −1 and g2 = g2 (ξ) solving
the equation (3.45), which under such parametrizations transforms to

g••2 −
(g•2)

2

2g2

= 2g2λ[h] (ξ) . (3.50)

With respect to the variable Z = (g2)
2 this equation is written as

Z•• + 2λ[h] (ξ)Z = 0
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which can be integrated in explicit form if λ[h] (ξ) = λ[h]0 = const,

Z = Z[0] sin
(√

2λ[h]0ξ + ξ[0]

)
,

for some constants Z[0] and ξ[0] which means that

g2 = −Z2
[0] sin

2
(√

2λ[h]0ξ + ξ[0]

)
(3.51)

parametrize in ’real’ string gravity a class of solution of (3.45) for the signature
(−,−,−,+) . For λ[h] → 0 we can approximate g2 = r2 (ξ) q (ξ) = −ξ2 and Z2

[0] = 1 which

has compatibility with the data (3.42). The solution (3.51) with cosmological constant
(of string or non–string origin) induces oscillations in the ”horozontal” part of the metric
written with respect to N–adapted frames. If we put λ[h] (ξ) in (3.50), we can search the
solution as g2 = u2 where u (ξ) solves the linear equation

u•• +
λ[h] (ξ)

4
u = 0.

The method of integration of such equations is given in Ref. [32]. The explicit forms of
solutions depends on function λ[h] (ξ) . In this case we have to write

g2 = r2 (ξ) q[u] (ξ) = u2 (ξ) . (3.52)

For a suitable smooth behavior of λ[h] (ξ) , we can generate such u (ξ) and r (ξ) when the
r = r (ξ) is the inverse function after integration in (3.36).

The next step is to solve the equation (3.46),

h∗∗4 − h∗4[ln
√
|h3h4|]∗ = −2λ[v](x

k, v)h3h4.

For λ = 0 a class of solution is given by any ĥ3 and ĥ4 related as

ĥ3 = η0

[(√
|ĥ4|
)∗]2

for a constant η0 chosen to be negative in order to generate the signature (−,−,−,+) .
For non–trivial λ, we may search the solution as

h3 = ĥ3 (ξ, ϕ) f3 (ξ, ϕ) and h4 = ĥ4 (ξ, ϕ) , (3.53)
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which solves (3.46) if f3 = 1 for λ[v] = 0 and

f3 =
1

4

[∫
λ[v]ĥ3ĥ4

ĥ∗4
dϕ

]−1

for λ[v] 6= 0.

Now it is easy to write down the solutions of equations (3.47) (being a linear equation
for wi) and (3.48) (after two integrations of ni on ϕ),

wi = εŵi = −αi/β, (3.54)

were αi and β are computed by putting (3.53) into corresponding values from (3.49)
(we chose the initial conditions as wi → 0 for ε→ 0) and

n1 = εn̂1 (ξ, ϕ)

where the coefficients

n̂1 (ξ, ϕ) = n1[1] (ξ) + n1[2] (ξ)

∫
dϕ f3 (ξ, ϕ) η3 (ξ, ϕ) /

(√
|η4 (ξ, ϕ) |

)3

, η∗4 6= 0;(3.55)

= n1[1] (ξ) + n1[2] (ξ)

∫
dϕ f3 (ξ, ϕ) η3 (ξ, ϕ) , η∗4 = 0;

= n1[1] (ξ) + n1[2] (ξ)

∫
dϕ/

(√
|η4 (ξ, ϕ) |

)3

, η∗3 = 0;

with the functions nk[1,2] (ξ) to be stated by boundary conditions.
We conclude that the set of data g1 = −1, with non–trivial g2 (ξ) , h3, h4, wi′ and n1

stated respectively by (3.51), (3.53), (3.54), (3.55) we can define a black ellipsoid solution
with explicit dependence on polarized cosmological ”constants” λ[h] (x

1) and λ[v](x
k, v),

i. e. a metric (3.44).
Finally, we analyze the structure of noncommutative symmetries associated to the

(anti) de Sitter black ellipsoid solutions. The metric (3.44) with real and/or complex
coefficients defining the corresponding solutions and its analytic extensions also do not
posses Killing symmetries being deformed by anholonomic transforms. For this solution,
we can associate certain noncommutative symmetries following the same procedure as
for the Einstein real/ complex gravity but with additional nontrivial coefficients of an-
holonomy and even with nonvanishing coefficients of the nonlinear connection curvature,
Ω3

12 = δ1N
3
2 − δ2N3

1 . Taking the data (3.54) and (3.55) and formulas (3.4), we compute
the corresponding nontrivial anholonomy coefficients

w
[N ]4
31 = −w[N ]4

13 = ∂n1 (ξ, ϕ) /∂ϕ = n∗
1 (ξ, ϕ) , (3.56)

w
[N ]4
12 = −w[N ]4

21 = δ1(α2/β)− δ2(α1/β)
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for δ1 = ∂/∂ξ − w1∂/∂ϕ and δ2 = ∂/∂θ − w2∂/∂ϕ, with n1 defined by (3.55) and α1,2

and β computed by using the formula (3.49) for the solutions (3.53). We have a 4D
exact solution with nontrivial cosmological constant. So, for n + m = 4, the condition
k2 − 1 = n + m can not satisfied by any integer numbers. We may trivially extend
the dimensions like n′ = 6 and m′ = m = 2 and for k = 3 to consider the Lie group
SL (3, IC) noncommutativity with corresponding values of Q

γ

αβ and structure constants

f
γ

αβ, see (3.23). An extension w
[N ]γ
αβ → W

γ

αβ may be performed by stating the N–

deformed ”structure” constants (3.26), W
γ

αβ = f
γ

αβ + w
[N ]γ

αβ , with nontrivial values of

w
[N ]γ

αβ given by (3.56). We note that the solutions with nontrivial cosmological constants

are with induced torsion with the coefficients computed by using formulas (3.12) and the
data (3.52), (3.53), (3.54) and (3.55).

3.4.3 Analytic extensions of black ellipsoid metrics

For the vacuum black ellipsoid metrics the method of analytic extension was con-
sidered in Ref. [29, 30]. The coefficients of the metric (3.31) (equivalently (3.38)) writ-
ten with respect to the anholonomic frame (3.6) has a number of similarities with the
Schwrzschild and Reissner–Nördstrom solutions. The cosmological ”polarized” constants
induce some additional factors like q[u] (ξ) and f3 (ξ, ϕ) (see, respectively, formulas (3.52)
and (3.53)) and modify the N–connection coefficients as in (3.54) and (3.55). For a
corresponding class of smooth polarizations, the functions q[u] and f3 do not change
the singularity structure of the metric coefficients. If we identify ε with e2, we get a
static metric with effective ”electric” charge induced by a small, quadratic on ε, off–
diagonal metric extension. The coefficients of this metric are similar to those from the
Reissner–Nördstrom solution but additionally to the mentioned frame anholonomy there
are additional polarizations by the functions q[u], h3[0], f3, η3,4, wi and n1. Another very
important property is that the deformed metric was stated to define a vacuum, or with
polarized cosmological constant, solution of the Einstein equations which differs substan-
tially from the usual Reissner–Nördstrom metric being an exact static solution of the
Einstein–Maxwell equations. For the limits ε → 0 and q, f3, h3[0] → 1 the metric (3.31)
transforms into the usual Schwarzschild metric. A solution with ellipsoid symmetry can
be selected by a corresponding condition of vanishing of the coefficient before the term
δt which defines an ellipsoidal hypersurface like for the Kerr metric, but in our case
the metric is non–rotating. In general, the space may be with frame induced torsion if
we do not impose constraints on wi and n1 as to obtain vanishing nonlinear connection
curvature and torsions.
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The analytic extension of black ellipsoid solutions with cosmological constant can
be performed similarly both for anholonomic frames with induced or trivial torsions.
We note that the solutions in string theory may contain a frame induced torsion with
the components (1.43) (in general, we can consider complex coefficients, see Ref. [10])
computed for nontrivial N3

i′ = −αi′/β (see (3.54)) and N4
1 = εn̂1 (ξ, ϕ) (see (3.55)). This

is an explicit example illustrating that the anholonomic frame method can be applied
also for generating exact solutions in models of gravity with nontrivial torsion. For such
solutions, we can perform corresponding analytic extensions and define Penrose diagram
formalisms if the constructions are considered with respect to N–elongated vierbeins.

The metric (3.44) has a singular behavior for r = r±, see (3.35). The aim of this
subsection is to prove that this way we have constructed a solution of the Einstein
equations with polarized cosmological constant. This solution possess an ”anisotropic”
horizon being a small deformation on parameter ε of the Schwarzschild’s solution horizon.
We may analyze the anisotropic horizon’s properties for some fixed ”direction” given in
a smooth vicinity of any values ϕ = ϕ0 and r+ = r+ (ϕ0) . The final conclusions will
be some general ones for arbitrary ϕ when the explicit values of coefficients will have a
parametric dependence on angular coordinate ϕ. The metrics (3.31), or (3.38), and (3.44)
are regular in the regions I (∞ > r > rΦ

+), II (rΦ
+ > r > rΦ

−) and III (rΦ
− > r > 0). As in

the Schwarzschild, Reissner–Nördstrom and Kerr cases these singularities can be removed
by introducing suitable coordinates and extending the manifold to obtain a maximal
analytic extension [33, 34]. We have similar regions as in the Reissner–Nördstrom space–
time, but with just only one possibility ε < 1 instead of three relations for static electro–
vacuum cases (e2 < m2, e2 = m2, e2 > m2; where e andm are correspondingly the electric
charge and mass of the point particle in the Reissner–Nördstrom metric). So, we may
consider the usual Penrose’s diagrams as for a particular case of the Reissner–Nördstrom
space–time but keeping in mind that such diagrams and horizons have an additional
polarizations and parametrization on an angular coordinate.

We can proceed in steps analogous to those in the Schwarzschild case (see details,
for instance, in Ref. [37])) in order to construct the maximally extended manifold. The
first step is to introduce a new coordinate

r‖ =

∫
dr

(
1− 2m

r
+

ε

r2

)−1

for r > r1
+ and find explicitly the coordinate

r‖ = r +
(r1

+)2

r1
+ − r1

−
ln(r − r1

+)− (r1
−)2

r1
+ − r1

−
ln(r − r1

−), (3.57)
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where r1
± = rΦ

± with Φ = 1. If r is expressed as a function on ξ, than r‖ can be also
expressed as a function on ξ depending additionally on some parameters.

Defining the advanced and retarded coordinates, v = t + r‖ and w = t − r‖, with
corresponding elongated differentials

δv = δt+ dr‖ and δw = δt− dr‖

the metric (3.38) takes the form

δs2 = −r2(ξ)q[u](ξ)dθ2 − η3(ξ, ϕ0)f3(ξ, ϕ0)r
2(ξ) sin2 θδϕ2 + (1− 2m

r(ξ)
+ ε

Φ4(r, ϕ0)

r2(ξ)
)δvδw,

(3.58)
where (in general, in non–explicit form) r(ξ) is a function of type r(ξ) = r

(
r‖
)

= r (v, w) .
Introducing new coordinates (v′′, w′′) by

v′′ = arctan

[
exp

(
r1
+ − r1

−
4(r1

+)2
v

)]
, w′′ = arctan

[
− exp

(−r1
+ + r1

−
4(r1

+)2
w

)]

Defining r by

tan v′′ tanw′′ = − exp

[
r1
+ − r1

−
2(r1

+)2
r

]√
r − r1

+

(r − r1
−)χ

, χ =

(
r1
+

r1
−

)2

and multiplying (3.58) on the conformal factor we obtain

δs2 = −r2q[u](r)dθ2 − η3(r, ϕ0)f3(r, ϕ0)r
2 sin2 θδϕ2 (3.59)

+64
(r1

+)4

(r1
+ − r1

−)2
(1− 2m

r(ξ)
+ ε

Φ4(r, ϕ0)

r2(ξ)
)δv′′δw′′,

As particular cases, we may chose η3 (r, ϕ) as the condition of vanishing of the metric
coefficient before δv′′δw′′ will describe a horizon parametrized by a resolution ellipsoid
hypersurface. We emphasize that quadratic elements (3.58) and (3.59) have respective
coefficients as the metrics investigated in Refs. [29, 30] but the polarized cosmological
constants introduce not only additional polarizing factors q[u](r) and f3(r, ϕ0) but also
elongate the anholonomic frames in a different manner.

The maximal extension of the Schwarzschild metric deformed by a small parameter ε
(for ellipsoid configurations treated as the eccentricity), i. e. the extension of the metric
(3.44), is defined by taking (3.59) as the metric on the maximal manifold on which this
metric is of smoothly class C2. The Penrose diagram of this static but locally anisotropic
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space–time, for any fixed angular value ϕ0 is similar to the Reissner–Nordstrom solution,
for the case e2 → ε and e2 < m2(see, for instance, Ref. [37])). There are an infinite
number of asymptotically flat regions of type I, connected by intermediate regions II
and III, where there is still an irremovable singularity at r = 0 for every region III. We
may travel from a region I to another ones by passing through the ’wormholes’ made by
anisotropic deformations (ellipsoid off–diagonality of metrics, or anholonomy) like in the
Reissner–Nordstrom universe because

√
ε may model an effective electric charge. One

can not turn back in a such travel. Of course, this interpretation holds true only for a
corresponding smoothly class of polarization functions. For instance, if the cosmological
constant is periodically polarized from a string model, see the formula (3.50), one could
be additional resonances, aperiodicity and singularities.

It should be noted that the metric (3.59) can be analytic every were except at r = r1
−.

We may eliminate this coordinate degeneration by introducing another new coordinates

v′′′ = arctan

[
exp

(
r1
+ − r1

−
2n0(r

1
+)2

v

)]
, w′′′ = arctan

[
− exp

(−r1
+ + r1

−
2n0(r

1
+)2

w

)]
,

where the integer n0 ≥ (r1
+)2/(r1

−)2. In these coordinates, the metric is analytic every
were except at r = r1

+ where it is degenerate. This way the space–time manifold can
be covered by an analytic atlas by using coordinate carts defined by (v′′, w′′, θ, ϕ) and
(v′′′, w′′′, θ, ϕ). Finally, we note that the analytic extensions of the deformed metrics were
performed with respect to anholonomc frames which distinguish such constructions from
those dealing only with holonomic coordinates, like for the usual Reissner–Nördstrom
and Kerr metrics. We stated the conditions when on ’radial’ like coordinates we preserve
the main properties of the well know black hole solutions but in our case the metrics are
generic off–diagonal and with vacuum gravitational polarizations.

3.4.4 Geodesics on static polarized ellipsoid backgrounds

We analyze the geodesic congruence of the metric (3.44) with the data (3.42) modified
by polarized cosmological constant, for simplicity, being linear on ε,by introducing the
effective Lagrangian (for instance, like in Ref. [16])

2L = gαβ
δuα

ds

δuβ

ds
= −

(
1− 2m

r
+

ε

r2

)−1(
dr

ds

)2

− r2q[u](r)

(
dθ

ds

)2

(3.60)

−η3(r, ϕ)f3(r, ϕ)r2 sin2 θ

(
dϕ

ds

)2

+

(
1− 2m

r
+
εΦ4

r2

)(
dt

ds
+ εn̂1

dr

ds

)2

,

for r = r(ξ).



190 CHAPTER 3. NONCOMMUTATIVE BLACK ELLIPSOID SOLUTIONS

The corresponding Euler–Lagrange equations,

d

ds

∂L

∂ δu
α

ds

− ∂L

∂uα
= 0

are

d

ds

[
−r2q[u](r)

dθ

ds

]
= −η3f3r

2 sin θ cos θ

(
dϕ

ds

)2

, (3.61)

d

ds

[
−η3f3r

2dϕ

ds

]
= −(η3f3)

∗ r
2

2
sin2 θ

(
dϕ

ds

)2

+
ε

2

(
1− 2m

r

)[
Φ∗

4

r2

(
dt

ds

)2

+ n̂∗
1

dt

ds

dξ

ds

]

and
d

ds

[
(1− 2m

r
+
εΦ4

r2
)

(
dt

ds
+ εn̂1

dξ

ds

)]
= 0, (3.62)

where, for instance, Φ∗
4 = ∂ Φ4/∂ϕ we have omitted the variations for dξ/dswhich may be

found from (3.60). The system of equations (3.60)–(3.62) transform into the usual system
of geodesic equations for the Schwarzschild space–time if ε→ 0 and q[u], η3, f3 → 1 which
can be solved exactly [16]. For nontrivial values of the parameter ε and polarizations
η3, f3 even to obtain some decompositions of solutions on ε for arbitrary η3 and n1[1,2],
see (3.41), is a cumbersome task. In spite of the fact that with respect to anholonomic
frames the metrics (3.38) and/or (3.44) has their coefficients being very similar to
the Reissner–Nordstom solution. The geodesic behavior, in our anisotropic cases, is
more sophisticate because of anholonomy, polarization of constants and coefficients and
”elongation” of partial derivatives. For instance, the equations (3.61) state that there is
not any angular on ϕ, conservation law if (η3f3)

∗ 6= 0, even for ε→ 0 (which holds both
for the Schwarzschild and Reissner–Nordstom metrics). One follows from the equation
(3.62) the existence of an energy like integral of motion, E = E0+ εE1, with

E0 =

(
1− 2m

r

)
dt

ds

E1 =
Φ4

r2

dt

ds
+

(
1− 2m

r

)
n̂1
dξ

ds
.

The introduced anisotropic deformations of congruences of Schwarzschild’s space–
time geodesics maintain the known behavior in the vicinity of the horizon hypersurface
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defined by the condition of vanishing of the coefficient (1− 2m/r + εΦ4/r
2) in (3.59).

The simplest way to prove this is to consider radial null geodesics in the ”equatorial
plane”, which satisfy the condition (3.60) with θ = π/2, dθ/ds = 0, d2θ/ds2 = 0 and
dϕ/ds = 0, from which follows that

dr

dt
= ±

(
1− 2m

r
+
ε0

r2

)
[1 + εn̂1dϕ] .

The integral of this equation, for every fixed value ϕ = ϕ0 is

t = ±r‖ + ε

∫ [
Φ4(r, ϕ0)− 1

2 (r2 − 2mr)2 − n̂1(r, ϕ0)

]
dr

where the coordinate r‖ is defined in equation (3.57). In this formula the term propor-
tional to ε can have non–singular behavior for a corresponding class of polarizations λ4,
see the formulas (3.33). Even the explicit form of the integral depends on the type of po-
larizations η3(r, ϕ0), f3(r, ϕ0) and values n1[1,2](r), which results in some small deviations
of the null–geodesics, we may conclude that for an in–going null–ray the coordinate time
t increases from −∞ to +∞ as r decreases from +∞ to r1

+, decreases from +∞ to −∞
as r further decreases from r1

+ to r1
−, and increases again from −∞ to a finite limit as r

decreases from r1
− to zero. We have a similar behavior as for the Reissner–Nordstrom so-

lution but with some additional anisotropic contributions being proportional to ε. Here
we also note that as dt/ds tends to +∞ for r → r1

+ + 0 and to −∞ as r− + 0, any
radiation received from infinity appear to be infinitely red–shifted at the crossing of the
event horizon and infinitely blue–shifted at the crossing of the Cauchy horizon.

The mentioned properties of null–geodesics allow us to conclude that the metric
(3.31) (equivalently, (3.38)) with the data (3.42) and their maximal analytic extension
(3.59) really define a black hole static solution which is obtained by anisotropic small
deformations on ε and renormalization by η3f3 of the Schwarzchild solution (for a cor-
responding type of deformations the horizon of such black holes is defined by ellipsoid
hypersurfaces). We call such objects as black ellipsoids, or black rotoids. They exists
in the framework of general relativity as certain solutions of the Einstein equations de-
fined by static generic off–diagonal metrics and associated anholonomic frames or can
be induced by polarized cosmological constants. This property disinguishes them from
similar configurations of Reissner–Norstrom type (which are static electrovacuum solu-
tions of the Einstein–Maxwell equations) and of Kerr type rotating configurations, with
ellipsoid horizon, also defined by off–diagonal vacuum metrics (here we emphasized that
the spherical coordinate system is associated to a holonomic frame which is a trivial case
of anholonomic bases). By introducing the polarized cosmological constants, the anholo-
nomic character of N–adapted frames allow to construct solutions being very different
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from the black hole solutions in (anti) de Sitter spacetimes. We selected here a class of
solutions where cosmological factors correspond to some additional polarizations but do
not change the singularity structure of black ellipsoid solutions.

The metric (3.31) and its analytic extensions do not posses Killing symmetries being
deformed by anholonomic transforms. Nevertheless, we can associate to such solutions
certain noncommutative symmetries [10]. Taking the data (3.42) and formulas (3.8), we
compute the corresponding nontrivial anholonomy coefficients

w
[N ]5
42 = −w[N ]5

24 = ∂n2 (ξ, ϕ) /∂ϕ = n∗
2 (ξ, ϕ) (3.63)

with n2 defined by (3.42). Our solutions are for 4D configuration. So for n + m = 4,
the condition k2 − 1 = n + m can not satisfied in integer numbers. We may trivially
extend the dimensions like n′ = 6 and m′ = m = 2 and for k = 3 to consider the
Lie group SL (3, IC) noncommutativity with corresponding values of Q

γ

αβ and structure

constants f
γ

αβ , see (3.23). An extension w
[N ]γ
αβ →W

γ

αβ may be performed by stating the

N–deformed ”structure” constants (3.26), W
γ

αβ = f
γ

αβ +w
[N ]γ

αβ , with only two nontrivial

values of w
[N ]γ

αβ given by (3.63). In a similar manner we can compute the anholonomy

coefficients for the black ellipsoid metric with cosmological constant contributions (3.44).

3.5 Perturbations of Anisotropic Black Holes

The stability of black ellipsoids was proven in Ref. [36]. A similar proof may hold
true for a class of metrics with anholonomic noncommutative symmetry and possible
complexification of some off–diagonal metric and tetradics coefficients [10]. In this section
we reconsider the perturbation formalism and stability proofs for rotoid metrics defined
by polarized cosmological constants.

3.5.1 Metrics describing anisotropic perturbations

We consider a four dimensional pseudo–Riemannian quadratic linear element

ds2 = Ω(r, ϕ)

[
−
(

1− 2m

r
+

ε

r2

)−1

dr2 − r2q[v](r)dθ2 − η[v]
3 (r, θ, ϕ)r2 sin2 θδϕ2

]

+

[
1− 2m

r
+

ε

r2
η(r, ϕ)

]
δt2, (3.64)

η
[v]
3 (r, θ, ϕ) = η3(r, θ, ϕ)f3(r, θ, ϕ)
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with
δϕ = dϕ+ εw1(r, ϕ)dr, and δt = dt+ εn1(r, ϕ)dr,

where the local coordinates are denoted u = {uα = (r, θ, ϕ, t)} (the Greek indices α, β, ...
will run the values 1,2,3,4), ε is a small parameter satisfying the conditions 0 ≤ ε ≪ 1
(for instance, an eccentricity for some ellipsoid deformations of the spherical symmetry)
and the functions Ω(r, ϕ), q(r), η3(r, θ, ϕ) and η(θ, ϕ) are of necessary smooth class. The
metric (3.64) is static, off–diagonal and transforms into the usual Schwarzschild solution

if ε → 0 and Ω, q[v], η
[v]
3 → 1. For vanishing cosmological constants, it describes at least

two classes of static black hole solutions generated as small anhlonomic deformations
of the Schwarzschild solution [1, 2, 29, 30, 31, 36] but models also nontrivial vacuum
polarized cosmological constants.

We can apply the perturbation theory for the metric (3.64) (not paying a special
attention to some particular parametrization of coefficients for one or another class of
anisotropic black hole solutions) and analyze its stability by using the results of Ref. [16]
for a fixed anisotropic direction, i. e. by imposing certain anholonomic frame constraints
for an angle ϕ = ϕ0 but considering possible perturbations depending on three variables
(u1 = x1 = r, u2 = x2 = θ, u4 = t). We suppose that if we prove that there is a
stability on perturbations for a value ϕ0, we can analyze in a similar manner another
values of ϕ. A more general perturbative theory with variable anisotropy on coordinate
ϕ, i. e. with dynamical anholonomic constraints, connects the approach with a two
dimensional inverse problem which makes the analysis more sophisticate. There have
been not elaborated such analytic methods in the theory of black holes.

It should be noted that in a study of perturbations of any spherically symmetric
system and, for instance, of small ellipsoid deformations, without any loss of general-
ity, we can restrict our considerations to axisymmetric modes of perturbations. Non–
axisymmetric modes of perturbations with an einϕ dependence on the azimutal angle ϕ
(n being an integer number) can be deduced from modes of axisymmetric perturbations
with n = 0 by suitable rotations since there are not preferred axes in a spherically sym-
metric background. The ellipsoid like deformations may be included into the formalism
as some low frequency and constrained perturbations.

We develop the black hole perturbation and stability theory as to include into con-
sideration off–diagonal metrics with the coefficients polarized by cosmological constants.
This is the main difference comparing to the paper [36]. For simplicity, in this section,
we restrict our study only to fixed values of the coordinate ϕ assuming that anholonomic
deformations are proportional to a small parameter ε; we shall investigate the stability
of solutions only by applying the one dimensional inverse methods.
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We state a quadratic metric element

ds2 = −e2µ1(du1)2 − e2µ2(du2)2 − e2µ3(δu3)2 + e2µ4(δu4)2,

δu3 = dϕ− q1dx1 − q2dx2 − ωdt, (3.65)

δu4 = dt+ n1dr

where

µα(x
k, t) = µ(ε)

α (xk, ϕ0) + δµ(ς)
α (xk, t), (3.66)

qi(x
k, t) = q

(ε)
i (r, ϕ0) + δq

(ς)
i (xk, t), ω(xk, t) = 0 + δω(ς)(xk, t)

with

e2µ
(ε)
1 = Ω(r, ϕ0)(1−

2m

r
+

ε

r2
)−1, e2µ

(ε)
2 = Ω(r, ϕ0)q

[v](r)r2, (3.67)

e2µ
(ε)
3 = Ω(r, ϕ0)r

2 sin2 θη
[v]
3 (r, ϕ0), e

2µ
(ε)
4 = 1− 2m

r
+

ε

r2
η(r, ϕ0),

and some non–trivial values for q
(ε)
i and εni,

q
(ε)
i = εwi(r, ϕ0),

n1 = ε

(
n1[1](r) + n1[2](r)

∫ ϕ0

0

η3(r, ϕ)dϕ

)
.

We have to distinguish two types of small deformations from the spherical symmetry.
The first type of deformations, labelled with the index (ε) are generated by some ε–terms
which define a fixed ellipsoid like configuration and the second type ones, labelled with
the index (ς), are some small linear fluctuations of the metric coefficients

The general formulas for the Ricci and Einstein tensors for metric elements of class
(3.65) with wi, n1 = 0 are given in [16]. We compute similar values with respect to
anholnomic frames, when, for a conventional splitting uα = (xi, ya), the coordinates xi

and ya are treated respectively as holonomic and anholonomic ones. In this case the
partial derivatives ∂/∂xi must be changed into certain ’elongated’ ones

∂

∂x1
→ δ

∂x1
=

∂

∂x1
− w1

∂

∂ϕ
− n1

∂

∂t
,

∂

∂x2
→ δ

∂x2
=

∂

∂x2
− w2

∂

∂ϕ
,

see details in Refs [20, 3, 29, 30]. In the ansatz (3.65), the anholonomic contributions of
wi are included in the coefficients qi(x

k, t). For convenience, we give present bellow the
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necessary formulas for Rαβ (the Ricci tensor) and Gαβ (the Einstein tensor) computed
for the ansatz (3.65) with three holonomic coordinates (r, θ, ϕ) and on anholonomic
coordinate t (in our case, being time like), with the partial derivative operators

∂1 → δ1 =
∂

∂r
w1

∂

∂ϕ
− n1

∂

∂t
, δ2 =

∂

∂θ
− w2

∂

∂ϕ
, ∂3 =

∂

∂ϕ
,

and for a fixed value ϕ0.
A general perturbation of an anisotropic black–hole described by a quadratic line

element (3.65) results in some small quantities of the first order ω and qi, inducing
a dragging of frames and imparting rotations, and in some functions µα with small
increments δµα, which do not impart rotations. Some coefficients contained in such
values are proportional to ε, another ones are considered only as small quantities. The
perturbations of metric are of two generic types: axial and polar one. We shall investigate
them separately in the next two subsection after we shall have computed the coefficients
of the Ricci tensor.

We compute the coefficients of the the Ricci tensor as

Rα
βγα = Rβγ

and of the Einstein tensor as

Gβγ = Rβγ −
1

2
gβγR

for R = gβγRβγ . Straightforward computations for the quadratic line element (3.65) give

R11 = −e−2µ1 [δ2
11(µ3 + µ4 + µ2) + δ1µ3δ1(µ3 − µ1) + δ1µ2δ1(µ2 − µ1) + (3.68)

δ1µ4δ1(µ4 − µ1)]− e−2µ2 [δ2
22µ1 + δ2µ1δ2(µ3 + µ4 + µ1 − µ2)] +

e−2µ4 [∂2
44µ1 + ∂4µ1∂4(µ3 − µ4 + µ1 + µ2)]−

1

2
e2(µ3−µ1)[e−2µ2Q2

12 + e−2µ4Q2
14],

R12 = −e−µ1−µ2 [δ2δ1(µ3 + µ2)− δ2µ1δ1(µ3 + µ1)− δ1µ2∂4(µ3 + µ1)

+δ1µ3δ2µ3 + δ1µ4δ2µ4] +
1

2
e2µ3−2µ4−µ1−µ2Q14Q24,

R31 = −1

2
e2µ3−µ4−µ2 [δ2(e

3µ3+µ4−µ1−µ2Q21) + ∂4(e
3µ3−µ4+µ2−µ1Q41)],

R33 = −e−2µ1 [δ2
11µ3 + δ1µ3δ1(µ3 + µ4 + µ2 − µ1)]−

e−2µ2 [δ2
22µ3 + ∂2µ3∂2(µ3 + µ4 − µ2 + µ1)] +

1

2
e2(µ3−µ1−µ2)Q2

12 +

e−2µ4 [∂2
44µ3 + ∂4µ3∂4(µ3 − µ4 + µ2 + µ1)]−

1

2
e2(µ3−µ4)[e−2µ2Q2

24 + e−2µ1Q2
14],
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R41 = −e−µ1−µ4 [∂4δ1(µ3 + µ2) + δ1µ3∂4(µ3 − µ1) + δ1µ2∂4(µ2 − µ1)

−δ1µ4∂4(µ3 + µ2)] +
1

2
e2µ3−µ4−µ1−2µ2Q12Q34,

R43 = −1

2
e2µ3−µ1−µ2 [δ1(e

3µ3−µ4−µ1+µ2Q14) + δ2(e
3µ3−µ4+µ1−µ2Q24)],

R44 = −e−2µ4 [∂2
44(µ1 + µ2 + µ3) + ∂4µ3∂4(µ3 − µ4) + ∂4µ1∂4(µ1 − µ4) +

∂4µ2∂4(µ2 − µ4)] + e−2µ1 [δ2
11µ4 + δ1µ4δ1(µ3 + µ4 − µ1 + µ2)] +

e−2µ2 [δ2
22µ4 + δ2µ4δ2(µ3 + µ4 − µ1 + µ2)]−

1

2
e2(µ3−µ4)[e−2µ1Q2

14 + e−2µ2Q2
24],

where the rest of coefficients are defined by similar formulas with a corresponding chang-
ing of indices and partial derivative operators, R22, R42 and R32 is like R11, R41 and R31

with with changing the index 1→ 2. The values Qij and Qi4 are defined respectively

Qij = δjqi − δiqj and Qi4 = ∂4qi − δiω.
The nontrivial coefficients of the Einstein tensor are

G11 = e−2µ2 [δ2
22(µ3 + µ4) + δ2(µ3 + µ4)δ2(µ4 − µ2) + δ2µ3δ2µ3]−

e−2µ4 [∂2
44(µ3 + µ2) + ∂4(µ3 + µ2)∂4(µ2 − µ4) + ∂4µ3∂4µ3] +

e−2µ1 [δ1µ4 + δ1(µ3 + µ2) + δ1µ3δ1µ2]− (3.69)
1

4
e2µ3 [e−2(µ1+µ2)Q2

12 − e−2(µ1+µ4)Q2
14 + e−2(µ2+µ3)Q2

24],

G33 = e−2µ1 [δ2
11(µ4 + µ2) + δ1µ4δ1(µ4 − µ1 + µ2) + δ1µ2δ1(µ2 − µ1)] +

e−2µ2 [δ2
22(µ4 + µ1) + δ2(µ4 − µ2 + µ1) + δ2µ1∂2(µ1 − µ2)]−

e−2µ4 [∂2
44(µ1 + µ2) + ∂4µ1∂4(µ1 − µ4) + ∂4µ2∂4(µ2 − µ4) + ∂4µ1∂4µ2] +

3

4
e2µ3 [e−2(µ1+µ2)Q2

12 − e−2(µ1+µ4)Q2
14 − e−2(µ2+µ3)Q2

24],

G44 = e−2µ1 [δ2
11(µ3 + µ2) + δ1µ3δ1(µ3 − µ1 + µ2) + δ1µ2δ1(µ2 − µ1)]−

e−2µ2 [δ2
22(µ3 + µ1) + δ2(µ3 − µ2 + µ1) + δ2µ1∂2(µ1 − µ2)]−

1

4
e2(µ3−µ1−µ2)Q2

12

+e−2µ4 [∂4µ3∂4(µ1 + µ2) + ∂4µ1∂4µ2]−
1

4
e2(µ3−µ4)[e−2µ1Q2

14 − e−2µ2Q2
24].

The component G22 is to be found from G11 by changing the index 1→ 2. We note that
the formulas (3.69) transform into similar ones from Ref. [36] if δ2 → ∂2.



3.5. PERTURBATIONS OF ANISOTROPIC BLACK HOLES 197

3.5.2 Axial metric perturbations

Axial perturbations are characterized by non–vanishing ω and qi which satisfy the
equations

R3i = 0,

see the explicit formulas for such coefficients of the Ricci tensor in (3.68). The resulting
equations governing axial perturbations, δR31 = 0, δR32 = 0, are respectively

δ2

(
e3µ

(ε)
3 +µ

(ε)
4 −µ(ε)

1 −µ(ε)
2 Q12

)
= −e3µ(ε)

3 −µ(ε)
4 −µ(ε)

1 +µ
(ε)
2 ∂4Q14, (3.70)

δ1

(
e3µ

(ε)
3 +µ

(ε)
4 −µ(ε)

1 −µ(ε)
2 Q12

)
= e3µ

(ε)
3 −µ(ε)

4 +µ
(ε)
1 −µ(ε)

2 ∂4Q24,

where

Qij = δiqj − δjqi, Qi4 = ∂4qi − δiω (3.71)

and for µi there are considered unperturbed values µ
(ε)
i . Introducing the values of coef-

ficients (3.66) and (3.67) and assuming that the perturbations have a time dependence
of type exp(iσt) for a real constant σ, we rewrite the equations (3.70)

1 + ε (∆−1 + 3r2φ/2)

r4 sin3 θ(η
[v]
3 )3/2

δ2Q
(η) = −iσδrω − σ2q1, (3.72)

∆

r4 sin3 θ(η
[v]
3 )3/2

δ1

{
Q(η)

[
1 +

ε

2

(
η − 1

∆
− r2φ

)]}
= iσ∂θω + σ2q2 (3.73)

for

Q(η)(r, θ, ϕ0, t) = ∆Q12 sin3 θ = ∆ sin3 θ(∂2q1 − δ1q2),∆ = r2 − 2mr,

where φ = 0 for solutions with Ω = 1 and φ(r, ϕ) = η
[v]
3 (r, θ, ϕ) sin2 θ, i. e. η3 (r, θ, ϕ) ∼

sin−2 θ for solutions with Ω = 1 + ε....
We can exclude the function ω and define an equation for Q(η) if we take the sum

of the (3.72) subjected by the action of operator ∂2 and of the (3.73) subjected by the
action of operator δ1. Using the relations (3.71), we write

r4δ1

{
∆

r4(η
[v]
3 )3/2

[
δ1

[
Q(η) +

ε

2

(
η − 1

∆
− r2

)
φ

]]}
+

sin3 θ∂2

[
1 + ε(∆−1 + 3r2φ/2)

sin3 θ(η
[v]
3 )3/2

δ2Q
(η)

]
+

σ2r4

∆η
3/2
3

Q(η) = 0.
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The solution of this equation is searched in the form Q(η) = Q+ εQ(1) which results in

r4∂1

(
∆

r4(η
[v]
3 )3/2

∂1Q

)
+ sin3 θ∂2

(
1

sin3 θ(η
[v]
3 )3/2

∂2Q

)
+

σ2r4

∆(η
[v]
3 )3/2

Q = εA (r, θ, ϕ0) ,

(3.74)
where

A (r, θ, ϕ0) = r4∂1

(
∆

r4(η
[v]
3 )3/2

n1

)
∂Q

∂t
− r4∂1

(
∆

r4(η
[v]
3 )3/2

∂1Q
(1)

)

− sin3 θδ2

[
1 + ε(∆−1 + 3r2φ/2)

sin3 θ(η
[v]
3 )3/2

δ2Q
(1) − σ2r4

∆(η
[v]
3 )3/2

Q(1)

]
,

with a time dependence like exp[iσt]
It is possible to construct different classes of solutions of the equation (3.74). At the

first step we find the solution for Q when ε = 0. Then, for a known value of Q (r, θ, ϕ0)
from

Q(η) = Q+ εQ(1),

we can define Q(1) from the equations (3.72) and (3.73) by considering the values pro-
portional to ε which can be written

∂1Q
(1) = B1 (r, θ, ϕ0) , (3.75)

∂2Q
(1) = B2 (r, θ, ϕ0) .

The integrability condition of the system (3.75), ∂1B2 = ∂2B1 imposes a relation between
the polarization functions η3, η, w1and n1 (for a corresponding class of solutions). In
order to prove that there are stable anisotropic configurations of anisotropic black hole
solutions, we may consider a set of polarization functions when A (r, θ, ϕ0) = 0 and the
solution with Q(1) = 0 is admitted. This holds, for example, if

∆n1 = n0r
4(η

[v]
3 )3/2, n0 = const.

In this case the axial perturbations are described by the equation

(η
[v]
3 )3/2r4∂1

(
∆

r4(η
[v]
3 )3/2

∂1Q

)
+ sin3 θδ2

(
1

sin3 θ
δ2Q

)
+
σ2r4

∆
Q = 0 (3.76)

which is obtained from (3.74) for η
[v]
3 = η

[v]
3 (r, ϕ0) , or for φ(r, ϕ0) = η

[v]
3 (r, θ, ϕ0) sin2 θ.
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In the limit η
[v]
3 → 1 the solution of equation (3.76) is investigated in details in

Ref. [16]. Here, we prove that in a similar manner we can define exact solutions for

non–trivial values of η
[v]
3 . The variables r and θ can be separated if we substitute

Q(r, θ, ϕ0) = Q0(r, ϕ0)C
−3/2
l+2 (θ),

where Cν
n are the Gegenbauer functions generated by the equation

[
d

dθ
sin2ν θ

d

dθ
+ n (n+ 2ν) sin2ν θ

]
Cν
n(θ) = 0.

The function C
−3/2
l+2 (θ) is related to the second derivative of the Legendre function Pl(θ)

by formulas

C
−3/2
l+2 (θ) = sin3 θ

d

dθ

[
1

sin θ

dPl(θ)

dθ

]
.

The separated part of (3.76) depending on radial variable with a fixed value ϕ0 transforms
into the equation

(η
[v]
3 )3/2∆

d

dr

(
∆

r4(η
[v]
3 )3/2

dQ0

dr

)
+

(
σ2 − µ2∆

r4

)
Q0 = 0, (3.77)

where µ2 = (l − 1)(l + 2) for l = 2, 3, ... A further simplification is possible for η
[v]
3 =

η
[v]
3 (r, ϕ0) if we introduce in the equation (3.77) a new radial coordinate

r# =

∫
(η

[v]
3 )3/2(r, ϕ0)r

2dr

and a new unknown function Z(η) = r−1Q0(r). The equation for Z(η) is an Schrodinger
like one–dimensional wave equation

(
d2

dr2
#

+
σ2

(η
[v]
3 )3/2

)
Z(η) = V (η)Z(η) (3.78)

with the potential

V (η) =
∆

r5(η
[v]
3 )3/2

[
µ2 − r4 d

dr

(
∆

r4(η
[v]
3 )3/2

)]
(3.79)
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and polarized parameter

σ̃2 = σ2/(η
[v]
3 )3/2.

This equation transforms into the so–called Regge–Wheeler equation if η
[v]
3 = 1. For

instance, for the Schwarzschild black hole such solutions are investigated and tabulated
for different values of l = 2, 3 and 4 in Ref. [16].

We note that for static anisotropic black holes with nontrivial anisotropic conformal
factor, Ω = 1 + ε..., even η3 may depend on angular variable θ because of condition
that φ(r, ϕ0) = η

[v]
3 (r, θ, ϕ0) sin2 θ the equation (3.76) transforms directly in (3.78) with

µ = 0 without any separation of variables r and θ. It is not necessary in this case to
consider the Gegenbauer functions because Q0 does not depend on θ which corresponds
to a solution with l = 1.

We may transform (3.78) into the usual form,

(
d2

dr2
⋆

+ σ2

)
Z(η) = Ṽ (η)Z(η)

if we introduce the variable

r⋆ =

∫
dr#(η

[v]
3 )−3/2 (r#, ϕ0)

for Ṽ (η) = (η
[v]
3 )3/2V (η). So, the polarization function η

[v]
3 , describing static anholonomic

deformations of the Schwarzshild black hole, ”renormalizes” the potential in the one–
dimensional Schrodinger wave–equation governing axial perturbations of such objects.

We conclude that small static ”ellipsoid” like deformations and polarizations of con-
stants of spherical black holes (the anisotropic configurations being described by generic
off–diagonal metric ansatz) do not change the type of equations for axial petrubations:
one modifies the potential barrier,

V (−) =
∆

r5

[(
µ2 + 2

)
r − 6m

]
−→ Ṽ (η)

and re–defines the radial variables

r∗ = r + 2m ln (r/2m− 1) −→ r⋆(ϕ0)

with a parametric dependence on anisotropic angular coordinate which is caused by the
existence of a deformed static horizon.
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3.5.3 Polar metric perturbations

The polar perturbations are described by non–trivial increments of the diagonal met-
ric coefficients, δµα = δµ

(ε)
α + δµ

(ς)
α , for

µ(ε)
α = να + δµ(ε)

α

where δµ
(ς)
α (xk, t) parametrize time depending fluctuations which are stated to be the

same both for spherical and/or spheroid configurations and δµ
(ε)
α is a static deformation

from the spherical symmetry. Following notations (3.66) and (3.67) we write

ev1 = r/
√
|∆|, ev2 = r

√
|q[v](r)|, ev3 = rh3 sin θ, ev4 = ∆/r2

and
δµ

(ε)
1 = −ε

2

(
∆−1 + r2φ

)
, δµ

(ε)
2 = δµ

(ε)
3 = −ε

2
r2φ, δµ

(ε)
4 =

εη

2∆

where φ = 0 for the solutions with Ω = 1.
Examining the expressions for R4i, R12,R33 and G11 (see respectively (3.68) and (3.69)

) we conclude that the values Qij appear quadratically which can be ignored in a linear
perturbation theory. Thus the equations for the axial and the polar perturbations de-
couple. Considering only linearized expressions, both for static ε–terms and fluctuations
depending on time about the Schwarzschild values we obtain the equations

δ1 (δµ2 + δµ3) +
(
r−1 − δ1µ4

)
(δµ2 + δµ3)− 2r−1δµ1 = 0 (δR41 = 0) ,

δ2 (δµ1 + δµ3) + (δµ2 − δµ3) cot θ = 0 (δR42 = 0) ,

δ2δ1 (δµ3 + δµ4)− δ1 (δµ2 − δµ3) cot θ−(
r−1 − δ1µ4

)
δ2(δµ4)−

(
r−1 + δ1µ4

)
δ2(δµ1) = 0 (δR42 = 0) ,

e2µ4{2
(
r−1 + δ1µ4

)
δ1(δµ3) + r−1δ1 (δµ3 + δµ4 − δµ1 + δµ2) + (3.80)

δ1 [δ1(δµ3)]− 2r−1δµ1

(
r−1 + 2δ1µ4

)
} − 2e−2µ4∂4[∂4(δµ3)]+

r−2{δ2[δ2(δµ3)] + δ2 (2δµ3 + δµ4 + δµ1 − δµ2) cot θ + 2δµ2} = 0 (δR33 = 0) ,

e−2µ1 [r−1δ1(δµ4) +
(
r−1 + δ1µ4

)
δ1 (δµ2 + δµ3)−

2r−1δµ1

(
r−1 + 2δ1µ4

)
]− e−2µ4∂4[∂4(δµ3 + δµ2)]

+r−2{δ2[δ2(δµ3)] + δ2 (2δµ3 + δµ4 − δµ2) cot θ + 2δµ2} = 0 (δG11 = 0) .

The values of type δµα = δµ
(ε)
α + δµ

(ς)
α from (3.80) contain two components: the first

ones are static, proportional to ε, and the second ones may depend on time coordinate
t. We shall assume that the perturbations δµ

(ς)
α have a time–dependence exp[σt] so that
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the partial time derivative ”∂4” is replaced by the factor iσ. In order to treat both type
of increments in a similar fashion we may consider that the values labelled with (ε) also
oscillate in time like exp[σ(ε)t] but with a very small (almost zero) frequency σ(ε) → 0.
There are also actions of ”elongated” partial derivative operators like

δ1 (δµα) = ∂1 (δµα)− εn1∂4 (δµα) .

To avoid a calculus with complex values we associate the terms proportional εn1∂4 to
amplitudes of type εin1∂4 and write this operator as

δ1 (δµα) = ∂1 (δµα) + εn1σ (δµα) .

For the ”non-perturbed” Schwarzschild values, which are static, the operator δ1 reduces
to ∂1, i.e. δ1vα = ∂1vα. Hereafter we shall consider that the solution of the system (3.80)

consists from a superposition of two linear solutions, δµα = δµ
(ε)
α +δµ

(ς)
α ; the first class of

solutions for increments will be provided with index (ε), corresponding to the frequency
σ(ε) and the second class will be for the increments with index (ς) and correspond to the

frequency σ(ς). We shall write this as δµ
(A)
α and σ(A) for the labels A = ε or ς and suppress

the factors exp[σ(A)t] in our subsequent considerations. The system of equations (3.80)
will be considered for both type of increments.

We can separate the variables by substitutions (see the method in Refs. [13, 16])

δµ
(A)
1 = L(A)(r)Pl(cos θ), δµ

(A)
2 =

[
T (A)(r)Pl(cos θ) + V (A)(r)∂2Pl/∂θ

2
]
, (3.81)

δµ
(A)
3 =

[
T (A)(r)Pl(cos θ) + V (A)(r) cot θ∂Pl/∂θ

]
, δµ

(A)
4 = N (A)(r)Pl(cos θ)

and reduce the system of equations (3.80) to

δ1
(
N (A) − L(A)

)
=

(
r−1 − ∂1ν4

)
N (A) +

(
r−1 + ∂1ν4

)
L(A),

δ1L
(A) +

(
2r−1 − ∂1ν4

)
N (A) = −

[
δ1X

(A) +
(
r−1 − ∂1ν4

)
X(A)

]
, (3.82)

and

2r−1δ1
(
N (A)

)
− l(l + 1)r−2e−2v4N (A) − 2r−1(r−1 + 2∂1ν4)L

(A) − 2(r−1+ (3.83)

∂1ν4)δ1
[
N (A) + (l − 1)(l + 2)V (A)/2

]
− (l − 1)(l + 2)r−2e−2v4

(
V (A) − L(A)

)
−

2σ2
(A)e

−4v4
[
L(A) + (l − 1)(l + 2)V (A)/2

]
= 0,

where we have introduced new functions

X(A) =
1

2
(l − 1)(l + 2)V (A)
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and considered the relation

T (A) − V (A) + L(A) = 0 (δR42 = 0).

We can introduce the functions

L̃(A) = L(A) + εσ(A)

∫
n1L

(A)dr, Ñ (A) = N (A) + εσ(A)

∫
n1N

(A)dr, (3.84)

T̃ (A) = N (A) + εσ(A)

∫
n1N

(A)dr, Ṽ (A) = V (A) + εσ(A)

∫
n1V

(A)dr,

for which

∂1L̃
(A) = δ1

(
L(A)

)
, ∂1Ñ

(A) = δ1
(
N (A)

)
, ∂1T̃

(A) = δ1
(
T (A)

)
, ∂1Ṽ

(A) = δ1
(
V (A)

)
,

and, this way it is possible to substitute in (3.82) and (3.83) the elongated partial deriva-
tive δ1 by the usual one acting on ”tilded” radial increments.

By straightforward calculations (see details in Ref. [16]) one can check that the
functions

Z
(+)
(A) = r26mX(A)/r(l− 1)(l + 2)− L(A)

r(l − 1)(l + 2)/2 + 3m

satisfy one–dimensional wave equations similar to (3.78) for Z(η) with η3 = 1, when
r⋆ = r∗,

(
d2

dr2
∗

+ σ2
(A)

)
Z̃

(+)
(A) = V (+)Z

(+)
(A) , (3.85)

Z̃
(+)
(A) = Z

(+)
(A) + εσ(A)

∫
n1Z

(+)
(A)dr,

where

V (+) =
2∆

r5[r(l − 1)(l + 2)/2 + 3m]2
× {9m2

[r
2
(l − 1)(l + 2) +m

]
(3.86)

+
1

4
(l − 1)2(l + 2)2r3

[
1 +

1

2
(l − 1)(l + 2) +

3m

r

]
}.

For ε→ 0, the equation (3.85) transforms in the usual Zerilli equation [40, 16].
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To complete the solution we give the formulas for the ”tilded” L–, X– and N–factors,

L̃(A) =
3m

r2
Φ̃(A) − (l − 1)(l + 2)

2r
Z̃

(+)
(A) , (3.87)

X̃(A) =
(l − 1)(l + 2)

2r
(Φ̃(A) + Z̃

(+)
(A) ),

Ñ (A) =

(
m−

m2 + r4σ2
(A)

r − 2m

)
Φ̃(A)

r2
− (l − 1)(l + 2)r

2(l − 1)(l + 2) + 12m

∂Z̃
(+)
(A)

∂r#

− (l − 1)(l + 2)

[r(l − 1)(l + 2) + 6m]2
×

{
12m2

r
+ 3m(l − 1)(l + 2) +

r

2
(l − 1)(l + 2) [(l − 1)(l + 2) + 2]

}
,

where

Φ̃(A) = (l − 1)(l + 2)eν4
∫ e−ν4Z̃

(+)
(A)

(l − 1)(l + 2)r + 6m
dr.

Following the relations (3.84) we can compute the corresponding ”untilded” values an
put them in (3.81) in order to find the increments of fluctuations driven by the system
of equations (3.80). For simplicity, we omit the rather cumbersome final expressions.

The formulas (3.87) together with a solution of the wave equation (3.85) complete the
procedure of definition of formal solutions for polar perturbations. In Ref. [16] there are
tabulated the data for the potential (3.86) for different values of l and (l − 1) (l+2)/2. In
the anisotropic case the explicit form of solutions is deformed by terms proportional to
εn1σ. The static ellipsoidal like deformations can be modelled by the formulas obtained
in the limit σ(ε) → 0.

3.5.4 The stability of polarized black ellipsoids

The problem of stability of anholonomically deformed Schwarzschild metrics to ex-
ternal perturbation is very important to be solved in order to understand if such static
black ellipsoid like objects may exist in general relativity and its cosmological constant
generalizations. We address the question: Let be given any initial values for a static lo-
cally anisotropic configuration confined to a finite interval of r⋆, for axial perturbations,
and r∗, for polar perturbations, will one remain bounded such perturbations at all times
of evolution? The answer to this question is to obtained similarly to Refs. [16] and [36]

with different type of definitions of functions g Z(η) and Z
(+)
(A) for different type of black

holes.
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We have proved that even for anisotropic configurations every type of perturbations
are governed by one dimensional wave equations of the form

d2Z

dρ
+ σ2Z = V Z (3.88)

where ρ is a radial type coordinate, Z is a corresponding Z(η) or Z
(+)
(A) with respec-

tive smooth real, independent of σ > 0 potentials Ṽ (η) or V (−) with bounded inte-
grals. For such equations a solution Z(ρ, σ, ϕ0) satisfying the boundary conditions
Z → eiσρ + R(σ)e−iσρ (ρ → +∞) and Z → T (σ)eiσρ (ρ → −∞) (the first ex-
pression corresponds to an incident wave of unit amplitude from +∞ giving rise to a
reflected wave of amplitude R(σ) at +∞ and the second expression is for a transmitted
wave of amplitude T (σ) at −∞), provides a basic complete set of wave functions which
allows to obtain a stable evolution. For any initial perturbation that is smooth and
confined to finite interval of ρ, we can write the integral

ψ(ρ, 0) = (2π)−1/2

∫ +∞

−∞
ψ̂(σ, 0)Z(ρ, σ)dσ

and define the evolution of perturbations,

ψ(ρ, t) = (2π)−1/2

∫ +∞

−∞
ψ̂(σ, 0)eiσtZ(ρ, σ)dσ.

The Schrodinger theory states the conditions
∫ +∞

−∞
|ψ(ρ, 0)|2dρ =

∫ +∞

−∞
|ψ̂(σ, 0)|2dσ =

∫ +∞

−∞
|ψ(ρ, 0)|2dρ,

from which the boundedness of ψ(ρ, t) follows for all t > 0.
In our consideration we have replaced the time partial derivative ∂/∂t by iσ, which

was represented by the approximation of perturbations to be periodic like eiσt. This is
connected with a time–depending variant of (3.88), like

∂2Z

∂t2
=
∂2Z

∂ρ2
− V Z.

Multiplying this equation on ∂Z/∂t, where Z denotes the complex conjugation, and
integrating on parts, we obtain

∫ +∞

−∞

(
∂Z

∂t

∂2Z

∂t2
+
∂Z

∂ρ

∂2Z

∂t∂ρ
+ V Z

∂Z

∂t

)
dρ = 0
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providing the conditions of convergence of necessary integrals. This equation added to
its complex conjugate results in a constant energy integral,

∫ +∞

−∞

(∣∣∣∣
∂Z

∂t

∣∣∣∣
2

+

∣∣∣∣
∂Z

∂ρ

∣∣∣∣
2

+ V |Z|2
)
dρ = const,

which bounds the expression |∂Z/∂t|2 and excludes an exponential growth of any bound-
ed solution of the equation (3.88). We note that this property holds for every type of
”ellipsoidal” like deformation of the potential, V → V +εV (1), with possible dependencies
on polarization functions as we considered in (3.79) and/or (3.86).

The general properties of the one–dimensional Schrodinger equations related to per-
turbations of holonomic and anholonomic solutions of the Einstein equations allow us to
conclude that there are locally anisotropic static configurations which are stable under
linear deformations.

In a similar manner we may analyze perturbations (axial or polar) governed by a
two–dimensional Schrodinger waive equation like

∂2Z

∂t2
=
∂2Z

∂ρ2
+ A(ρ, ϕ, t)

∂2Z

∂ϕ2
− V (ρ, ϕ, t)Z

for some functions of necessary smooth class. The stability in this case is proven if exists
an (energy) integral

∫ π

0

∫ +∞

−∞

(∣∣∣∣
∂Z

∂t

∣∣∣∣
2

+

∣∣∣∣
∂Z

∂ρ

∣∣∣∣
2

+

∣∣∣∣A
∂Z

∂ρ

∣∣∣∣
2

+ V |Z|2
)
dρdϕ = const

which bounds |∂Z/∂t|2 for two–dimensional perturbations. For simplicity, we omitted
such calculus in this work.

We emphasize that this way we can also prove the stability of perturbations along
”anisotropic” directions of arbitrary anholonomic deformations of the Schwarzschild so-
lution which have non–spherical horizons and can be covered by a set of finite regions
approximated as small, ellipsoid like, deformations of some spherical hypersurfaces. We
may analyze the geodesic congruence on every deformed sub-region of necessary smoothly
class and proof the stability as we have done for the resolution ellipsoid horizons. In
general, we may consider horizons of with non–trivial topology, like vacuum black tori,
or higher genus anisotropic configurations. This is not prohibited by the principles of
topological censorship [41] if we are dealing with off–diagonal metrics and associated
anholonomic frames [1]. The vacuum anholonomy in such cases may be treated as an
effective matter which change the conditions of topological theorems.
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3.6 Two Additional Examples of Off–Diagonal Exact

Solutions

There are some classes of exact solutions which can be modelled by anholonomic
frame transforms and generic off–diagonal metric ansatz and related to configurations
constructed by using another methods [18, 19]. We analyze in this section two classes of
such 4D spacetimes.

3.6.1 Anholonomic ellipsoidal shapes

The present status of ellipsoidal shapes in general relativity associated to some
perfect–fluid bodies, rotating configurations or to some families of confocal ellipsoids
in Riemannian spaces is examined in details in Ref. [18]. We shall illustrate in this sub-
section how such configurations may be modelled by generic off–diagonal metrics and/or
as spacetimes with anisotropic cosmological constant. The off–diagonal coefficients will
be subjected to certain anholonomy conditions resulting (roughly speaking) in effects
similar to those of perfect–fluid bodies.

We consider a metric ansatz with conformal factor like in (3.64)

δs2 = Ω(θ, ν)
[
g1dθ

2 + g2(θ)dϕ
2 + h3(θ, ν)δν

2 + h4(θ, ν)δt
2
]
,

δν = dν + w1(θ, ν)dθ + w2(θ, ν)dϕ, (3.89)

δt = dt+ n1(θ, ν)dθ + n2(θ, ν)dϕ,

where the coordinated (x1 = θ, x2 = ϕ) are holonomic and the coordinate y3 = ν and
the timelike coordinate y4 = t are ’anisotropic’ ones. For a particular parametrization
when

Ω = Ω[0](ν) = v (ρ) ρ2, g1 = 1, (3.90)

g2 = g2[0] = sin2 θ, h3 = h3[0] = 1, h4 = h4[0] = −1,

w1 = 0, w2 = w2[0](θ) = sin2 θ, n1 = 0, n2 = n2[0](θ) = 2R0 cos θ

and the coordinate ν is defined related to ρ as

dν =

∫ ∣∣∣∣
f (ρ)

v (ρ)

∣∣∣∣
1/2

dρ

ρ
,

we obtain the metric element for a special case spacetimes with co–moving ellipsoidal
symmetry defined by an axially symmetric, rigidly rotating perfect–fluid configuration
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with confocal inside ellipsoidal symmetry (see formula (4.21) and related discussion in
Ref. [18], where the status of constant R0 and functions v (ρ) and f (ρ) are explicitly
defined).

By introducing nontrivial ”polarization” functions q[v] (θ) and η3,4(θ, ν) for which

g2 = g2[0]q
[v] (θ) , h3,4 = η3,4(θ, ν)h3,4[0]

we can state the conditions when the ansatz (3.89) defines a) an off–diagonal ellipsoidal
shape or b) an ellipsoidal configuration induced by anisotropically polarized cosmological
constant.

Let us consider the case a). The Theorem 2 from Ref. [20] and the formula (72) in
Ref. [9] (see also the Appendix in [10]) states that any metric of type (3.89) is vacuum
if Ωp1/p2 = h3 for some integers p1 and p2, the factor Ω = Ω[1](θ, ν)Ω[0](ν) satisfies the
condition

∂iΩ− (wi + ζi) ∂νΩ = 0

for any additional deformation functions ζi(θ, ν) and the coefficients

g1 = 1, g2 = g2[0]q
[v] (θ) , h3,4 = η3,4(θ, ν)h3,4[0], wi(θ, ν), ni(θ, ν) (3.91)

satisfy the equations (3.17)–(3.20). The procedure of constructing such exact solutions
is very similar to the considered in subsection 4.1 for black ellipsoids. For anholonomic
ellipsoidal shapes (they are characterized by nontrivial anholonomy coefficients (3.8)
and respectively induced noncommutative symmetries) we have to put as ”boundary”
condition in integrals of type (3.41) just to have n1 = 0, n2 = n2[0](θ) = 2R0 cos θ from
data (3.90) in the limit when dependence on ”anisotropic” variable ν vanishes. The
functions wi(θ, ν) and ni(θ, ν) must be subjected to additional constraints if we wont
to construct ellipsoidal shape configurations with zero anholonomically induced torsion
(1.43) and N–connection curvature, Ωa

jk = δkN
a
j − δjNa

k = 0.
b) The simplest way to construct an ellipsoidal shape configuration induced by

anisotropic cosmological constant is to find data (3.91) solving the equations (3.43) fol-
lowing the procedure defined in subsection 4.2. We note that we can solve the equation
(3.50) for g2 = g2 (θ) = sin2 θ with q[v] (θ) = 1 if λ[h]0 = 1/2, see solution (3.51) with
ξ → θ. For simplicity, we can consider that λ[v] = 0. Such type configurations contain,
in general, anholonomically induced torsion.

We conclude, that by using the anholonomic frame method we can generate ellip-
soidal shapes (in general, with nontrivial polarized cosmological constants and induced
torsions). Such solutions are similar to corresponding rotation configurations in gen-
eral relativity with rigidly rotating perfect-fluid sources. The rough analogy consists in
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the fact that by certain frame constraints induced by off–diagonal metric terms we can
model gravitational–matter like metrics. In previous section we proved the stability of
black ellipsoids for small excentricities. Similar investigations for ellipsoidal shapes is a
task for future (because the shapes could be with arbitrary excentricity). In Ref. [18],
there were discussed points of matchings of locally rotationally symmetric spacetimes to
Taub–NUT metrics. We emphasize that this topic was also specifically elaborated by
using anholonomic frame transforms in Refs. [4].

3.6.2 Generalization of Canfora–Schmidt solutions

In general, the solutions generated by anholonomic transforms cannot be reduced to
a diagonal transform only by coordinate transforms (this is stated in our previous works
[1, 2, 3, 4, 10, 20, 29, 30, 31, 36, 10], see also Refs. [48] for modelling Finsler like geome-
tries in (pseudo) Riemannian spacetimes). We discus here how 4D off–diagonal ansatz
(3.2) generalize the solutions obtained in Ref. [19] by a corresponding parametrization
of coordinates as x1 = x, x2 = t, y3 = ν = y and y4 = p. If we consider for (3.2)
(equivalently, for (3.5) ) the non-trivial data

g1 = g1[0] = 1, g2 = g2[0](x
1) = −B (x)P (x)2 − C(x),

h3 = h3[0](x
1) = A (x) > 0, h4 = h4[0](x

1) = B (x) ,

wi = 0, n1 = 0, n2 = n2[0](x
1) = P (x)/B (x) (3.92)

we obtain just the ansatz (12) from Ref. [19] (in this subsection we use a different label
for coordinates) which, for instance, for B+C = 2, B−C = ln |x|, P = −1/(B−C) with
e−1 <

√
|x| < e for a constant e, defines an exact 4D solution of the Einstein equation

(see metric (27) from [19]). By introducing ’polarization’ functions ηk = ηk(x
i) [when

i, k, ... = 1, 2] and ηa = ηa(x
i, ν) [when a, b, ... = 3, 4] we can generalize the data (3.92)

as to have
gk(x

i) = ηk(x
i)gk[0], ha(x

i, ν) = ηa(x
i, ν)ha[0]

and certain nontrivial values wi = wi(x
i, ν) and ni = ni(x

i, ν) solving the Einstein
equations with anholonomic variables (3.17)–(3.20). We can easy find new classes of
exact solutions, for instance, for η1 = 1 and η2 = η2(x

1). In this case g1 = 1 and the
function g2(x

1) is any solution of the equation

g••2 −
(g•2)

2

2g2

= 0 (3.93)

(see equation (3.50) for λ[v] = 0), g•2 = ∂g2/∂x
1 which is solved as a particular case if

g2 = (x1)2. This impose certain conditions on η2(x
1) if we wont to take g2[0](x

1) just as
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in (3.92). For more general solutions with arbitrary ηk(x
i), we have to take solutions of

equation (3.17) and not of a particular case like (3.93).
We can generate solutions of (3.18) for any ηa(x

i, ν) satisfying the condition (3.39),√
|η3| = η0

(√
|η4|
)∗
, η0 = const. For instance, we can take arbitrary η4 and using

elementary derivations with η∗4 = ∂η4/∂ν and a nonzero constant η0, to define
√
|η3|.

For the vacuum solutions, we can put wi = 0 because β = αi = 0 (see formulas (3.18)
and (3.21)). In this case the solutions of (3.19) are trivial. Having defined ηa(x

i, ν) we
can integrate directly the equation (3.20) and find ni(x

i, ν) like in formula (3.41) with
fixed value ε = 1 and considering dependence on all holonomic variables,

ni
(
xk, ν

)
= ni[1]

(
xk
)

+ ni[2]
(
xk
) ∫

dν η3

(
xk, ν

)
/
(√
|η4 (xk, ν) |

)3

, η∗4 6= 0;

= ni[1]
(
xk
)

+ ni[2]
(
xk
) ∫

dν η3

(
xk, ν

)
, η∗4 = 0; (3.94)

= ni[1]
(
xk
)

+ ni[2]
(
xk
) ∫

dν/
(√
|η4 (xk, ν) |

)3

, η∗3 = 0.

These values will generalize the data (3.92) if we identify n1[1]

(
xk
)

= 0 and n1[1]

(
xk
)

=
n2[0](x

1) = P (x)/B (x) . The solutions with vanishing induced torsions and zero non-
linear connection curvatures are to be selected by choosing ni

(
xk, ν

)
and η3

(
xk, ν

)
(or

η4

(
xk, ν

)
) as to reduce the canonical connection (3.9) to the Levi–Civita connection (as

we discussed in the end of Section 2).
The solution defined by the data (3.92) is compared in Ref. [19] with the Kasner di-

agonal solution which define the simplest models of anisotropic cosmology. The metrics
obtained by F. Canfora and H.-J. Schmidt (CS) is generic off–diagonal and can not writ-
ten in diagonal form by coordinate transforms. We illustrated that the CS metrics can be
effectively diagonalized with respect to N–adapted anholonomic frames (like a more gen-
eral ansatz (3.2) can be reduced to (3.5)) and that by anholonomic frame transforms of
the CS metric we can generate new classes of generic off–diagonal solutions. Such space-
times may describe certain models of anisotropic and/or inhomogeneous cosmologies
(see, for instance, Refs. [48] were we considered a model of Friedman–Robertson–Walker
metric with ellipsoidal symmetry). The anholonomic generalizations of CS metrics are
with nontrivial noncommutative symmetry because the anholonomy coefficients (3.8)
(see also (3.26)) are not zero being defined by nontrivial values (3.94).



3.7. OUTLOOK AND CONCLUSIONS 211

3.7 Outlook and Conclusions

The work is devoted to investigation of a new class of exact solutions in metric–affine
and string gravity describing static back rotoid (ellipsoid) and shape configurations
possessing hidden noncommutative symmetries. There are generated also certain generic
off–diagonal cosmological metrics.

We consider small, with nonlinear gravitational polarization, static deformations of
the Schwarschild black hole solution (in particular cases, to some resolution ellipsoid like
configurations) preserving the horizon and geodesic behavior but slightly deforming the
spherical constructions. It was proved that there are such parameters of the exact solu-
tions of the Einstein equations defined by off–diagonal metrics with ellipsoid symmetry
constructed in Refs. [1, 2, 20, 29, 30, 36] as the vacuum solutions positively define static
ellipsoid black hole configurations.

We illustrate that the new class of static ellipsoidal black hole solutions posses some
similarities with the Reissner–Nordstrom metric if the metric’s coefficients are defined
with respect to correspondingly adapted anholonomic frames. The parameter of ellip-
soidal deformation results in an effective electromagnetic charge induced by off–diagonal
vacuum gravitational interactions. We note that effective electromagnetic charges and
Reissner–Nordstrom metrics induced by interactions in the bulk of extra dimension grav-
ity were considered in brane gravity [42]. In our works we proved that such Reissner–
Nordstrom like ellipsoid black hole configurations may be constructed even in the frame-
work of vacuum Einstein gravity. It should be emphasized that the static ellipsoid black
holes posses spherical topology and satisfy the principle of topological censorship [39].
Such solutions are also compatible with the black hole uniqueness theorems [43]. In
the asymptotical limits at least for a very small eccentricity such black ellipsoid met-
rics transform into the usual Schwarzschild one. We have proved that the stability of
static ellipsoid black holes can be proved similarly by considering small perturbations
of the spherical black holes [29, 30] even the solutions are extended to certain classes of
spacetimes with anisotropically polarized cosmological constants. (On the stability of
the Schwarzschild solution see details in Ref. [16].)

The off–diagonal metric coefficients induce a specific spacetime distorsion comparing
to the solutions with metrics diagonalizable by coordinate transforms. So, it is necessary
to compare the off–diagonal ellipsoidal metrics with those describing the distorted diag-
onal black hole solutions (see the vacuum case in Refs. [44] and an extension to the case
of non–vanishing electric fields [45]). For the ellipsoidal cases, the distorsion of spacetime
can be of vacuum origin caused by some anisotropies (anholonomic constraints) related
to off–diagonal terms. In the case of ”pure diagonal” distorsions such effects follow from
the fact that the vacuum Einstein equations are not satisfied in some regions because of
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presence of matter.
The off–diagonal gravity may model some gravity–matter like interactions like in

Kaluza–Klein theory (for some particular configurations and topological compactifica-
tions) but, in general, the off–diagonal vacuum gravitational dynamics can not be as-
sociated to any effective matter dynamics. So, we may consider that the anholonomic
ellipsoidal deformations of the Schwarzschild metric are some kind of anisotropic off–
diagonal distorsions modelled by certain vacuum gravitational fields with the distorsion
parameteres (equivalently, vacuum gravitational polarizations) depending both on radial
and angular coordinates.

There is a common property that, in general, both classes of off–diagonal anisotropic
and ”pure” diagonal distorsions (like in Refs. [44]) result in solutions which are not
asymptotically flat. However, it is possible to find asymptotically flat extensions even
for ellipsoidal configurations by introducing the corresponding off–diagonal terms (the
asymptotic conditions for the diagonal distorsions are discussed in Ref. [45]; to satisfy
such conditions one has to include some additional matter fields in the exterior portion
of spacetime).

We analyzed the conditions when the anholonomic frame method can model ellip-
soid shape configurations. It was demonstrated that the off–diagonal metric terms and
respectively associated nonlinear connection coefficients may model ellipsoidal shapes
being similar to those derived from solutions with rotating perfect fluids (roughly speak-
ing, a corresponding frame anholnomy/ anisotropy may result in modelling of specific
matter interactions but with polarizations of constants, metric coefficients and related
frames).

In order to point to some possible observable effects, we note that for the ellip-
soidal metrics with the Schwarzschild asymptotic, the ellipsoidal character could result
in some observational effects in the vicinity of the horizon (for instance, scattering of
particles on a static ellipsoid; we can compute anisotropic matter accretion effects on an
ellipsoidal black hole put in the center of a galactic being of ellipsoidal or another con-
figuration). A point of further investigations could be the anisotropic ellipsoidal collapse
when both the matter and spacetime are of ellipsoidal generic off–diagonal symmetry
and/or shape configurations (former theoretical and computational investigations were
performed only for rotoids with anisotropic matter and particular classes of perturbations
of the Schwarzshild solutions [46]). For very small eccentricities, we may not have any
observable effects like perihelion shift or light bending if we restrict our investigations
only to the Schwarzshild–Newton asymptotic.

We present some discussion on mechanics and thermodynamics of ellipsoidal black
holes. For the static black ellipsoids with flat asymptotic, we can compute the area of
the ellipsoidal horizon, associate an entropy and develop a corresponding black ellipsoid
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thermodynamics. This can be done even for stable black torus configurations. But
this is a very rough approximation because, in general, we are dealing with off–diagonal
metrics depending anisotropically on two/three coordinates. Such solutions are with
anholonomically deformed Killing horizons and should be described by a thermodynamics
(in general, both non-equilibrium and irreversible) of black ellipsoids self–consistently
embedded into an off–diagonal anisotropic gravitational vacuum. This is a ground for
numerous new conceptual issues to be developed and related to anisotropic black holes
and the anisotropic kinetics and thermodynamics [2] as well to a framework of isolated
anisotropic horizons [47] which is a matter of our further investigations. As an example
of a such new concept, we point to a noncommutative dynamics which can be associated
to black ellipsoids.

We emphasize that it is a remarkable fact that, in spite of appearance complexity,
the perturbations of static off–diagonal vacuum gravitational configurations are gov-
erned by similar types of equations as for diagonal holonomic solutions. Perhaps in a
similar manner (as a future development of this work) by using locally adapted ”N–
elongated” partial derivatives we can prove stability of very different classes of exact
solutions with ellipsoid, toroidal, dilaton and spinor–soliton symmetries constructed in
Refs. [1, 2, 20, 29, 30, 36]. The origin of this mystery is located in the fact that by an-
holnomic transforms we effectively diagonalized the off–diagonal metrics by ”elongating”
some partial derivatives. This way the type of equations governing the perturbations is
preserved but, for small deformations, the systems of linear equations for fluctuations be-
came ”slightly” nondiagonal and with certain tetradic modifications of partial derivatives
and differentials.

It is known that in details the question of relating the particular integrals of such
systems associated to systems of linear differential equations is investigated in Ref. [16].
For anholonomic configurations, one holds the same relations between the potentials
Ṽ (η) and V (−) and wave functions Z(η) and Z

(+)
(A) with that difference that the physical

values and formulas where polarized by some anisotropy functions η3(r, θ, ϕ),Ω(r, ϕ),
q(r), η(r, ϕ), w1(r, ϕ) and n1(r, ϕ) and deformed on a small parameter ε. It is not clear
that a similar procedure could be applied in general for proofs of stability of ellipsoidal
shapes but it would be true for small deformations from a supposed to be stable primor-
dial configuration.
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We conclude that there are static black ellipsoid vacuum configurations as well in-
duced by nontrivially polarized cosmological constants which are stable with respect to
one dimensional perturbations, axial and/or polar ones, governed by solutions of the
corresponding one–dimensional Schrodinger equations. The problem of stability of such
objects with respect to two, or three, dimensional perturbations, and the possibility of
modelling such perturbations in the framework of a two–, or three–, dimensional inverse
scattering problem is a topic of our further investigations. The most important problem
to be solved is to find a geometrical interpretation for the anholonomic Schrodinger me-
chanics of stability to the anholonomic frame method and to see if we can extend the
approach at least to the two dimensional scattering equations.
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Chapter 4

Locally Anisotropic Black Holes in
Einstein Gravity

Abstract 1

By applying the method of moving frames modelling one and two dimensional local
anisotropies we construct new solutions of Einstein equations on pseudo–Riemannian
spacetimes. The first class of solutions describes non–trivial deformations of static spher-
ically symmetric black holes to locally anisotropic ones which have elliptic (in three di-
mensions) and ellipsoidal, toroidal and elliptic and another forms of cylinder symmetries
(in four dimensions). The second class consists from black holes with oscillating elliptic
horizons.

4.1 Introduction

In recent years, there has been great interest in investigation of gravitational models
with anisotropies and applications in modern cosmology and astrophysics. There are
possible locally anisotropic inflational and black hole like solutions of Einstein equations
in the framework of so–called generalized Finsler–Kaluza–Klein models [9] and in low–
energy locally anisotropic limits of (super) string theories [10].

In this paper we shall restrict ourselves to a more limited problem of definition of
black hole solutions with local anisotropy in the framework of the Einstein theory (in
three and four dimensions). Our purpose is to construct solutions of gravitational field
equations by imposing symmetries differing in appearance from the static spherical one

1 c© S. Vacaru, Locally Anisotropic Black Holes in Einstein Gravity, gr–qc/ 0001020
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(which uniquely results in the Schwarzschild solution) and search for solutions with con-
figurations of event horizons like rotation ellipsoids, torus and ellipsoidal and cylinders.
We shall proof that there are possible elliptic oscillations in time of horizons.

In order to simplify the procedure of solution and investigate more deeply the phys-
ical implications of general relativistic models with local anisotropy we shall transfer
our analysis with respect to anholonomic frames which are equivalently characterized by
nonlinear connection (N–connection) structures [2, 3, 8, 9, 10]. This geometric approach
is very useful for construction of metrics with prescribed symmetries of horizons and def-
inition of conditions when such type black hole like solutions could be selected from an
integral variety of the Einstein field equations with a corresponding energy–momentum
tensor. We argue that, in general, the symmetries of solutions are not completely de-
termined by the field equations and coordinate conditions but there are also required
some physical motivations for choosing of corresponding classes of systems of reference
(prescribed type of local anisotropy and symmetries of horizons) with respect to which
the ’picture’ of interactions, symmetries and conservation laws is drawn in the simplest
form.

The paper is organized as follows: In section 2 we introduce metrics and anholonomic
frames with local anisotropies admitting equivalent N–connection structures. We write
down the Einstein equations with respect to such locally anisotropic frames. In section
3 we analyze the general properties of the system of gravitational field equations for an
ansatz for metrics with local anisotropy. In section 4 we generalize the three dimensional
static black hole solution to the case with elliptic horizon and proof that there are possible
elliptic oscillations in time of locally anisotropic black holes. The section 5 is devoted
to four dimensional locally anisotropic static solutions with rotation ellipsoidal, toroidal
and cylindrical like horizons and consider elliptic oscillations in time. In the last section
we make some final remarks.

4.2 Anholonomic frames and N–connections

In this section we outline the necessary results on spacetime differential geometry [4]
and anholonomic frames induced by N–connection structures [8, 9, 10]. We examine an
ansatz for locally anisotropic (pseudo) Riemannian metrics with respect to coordinate
bases and illustrate a substantial geometric simplification and reduction of the number
of coefficients of geometric objects and field equations after linear transforms to an-
holonomic bases defined by coefficients of a corresponding N–connection. The Einstein
equations are rewritten in an invariant form with respect to such locally anisotropic
bases.
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Consider a class of pseudo–Riemannian metrics

g = gαβ (uε) duα ⊗ duβ

in a n +m dimensional spacetime V (n+m), (n = 2 and m = 1, 2), with components

gαβ =

[
gij +Na

i N
b
jhab N e

j hae
N e
i hbe hab

]
, (4.1)

where gij = gij (uα) and hab = hab (u
α) are respectively some symmetric n×n and m×m

dimensional matrices, N e
j = N e

j

(
uβ
)

is a n×m matrix, and the n+m dimensional local
coordinates are provide with general Greek indices and denoted uβ = (xi, ya). The Latin
indices i, j, k, ... in (4.1) run values 1, 2 and a, b, c, .. run values 3, 4 and we note that
both type of isotropic, xi, and the so–called anisotropic, ya, coordinates could be space
or time like ones. We underline indices in order to emphasize that components are given
with respect to a coordinate (holonomic) basis

eα = ∂α = ∂/∂uα (4.2)

and/or its dual
eα = duα. (4.3)

The class of metrics (4.1) transform into a (n× n)⊕ (m×m) block form

g = gij (uε) dxi ⊗ dxj + hab (u
ε) (δya)2 ⊗ (δya)2 (4.4)

if one chooses a frame of basis vectors

δα = δ/∂uα =
(
δ/∂xi = ∂i −Na

i (uε) ∂a, ∂b
)
, (4.5)

where ∂i = ∂/xi and ∂a = ∂/∂ya, with the dual basis being

δα = δuα =
(
dxi, δya = dya +Na

i (uε) dxi
)
. (4.6)

The set of coefficients N = {Na
i (uε)} from (4.5) and (4.6) could be associated to

components of a nonlinear connection (in brief, N–connection) structure defining a local
decomposition of spacetime into n isotropic directions xi and one or two anisotropic
directions ya. The global definition of N–connection is due to W. Barthel [2] (the rigorous
mathematical definition of N–connection is possible on the language of exact sequences
of vector, or tangent, subbundles) and this concept is largely applied in Finsler geometry
and its generalizations [3, 8]. It was concluded [9, 10] that N–connection structures are
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induced under non–trivial dynamical compactifications of higher dimensions in (super)
string and (super) gravity theories and even in general relativity if we are dealing with
anholonomic frames.

A N–connection is characterized by its curvature, N–curvature,

Ωa
ij = ∂iN

a
j − ∂jNa

i +N b
i ∂bN

a
j −N b

j ∂bN
a
i . (4.7)

As a particular case we obtain a linear connection field Γaib (x
i) if Na

i (xi, ya) = Γaib (x
i, ya)

[8, 9].
For nonvanishing values of Ωa

ij the basis (4.5) is anholonomic and satisfies the condi-
tions

δαδβ − δβδα = wγαβδγ ,

where the anholonomy coefficients wγαβ are defined by the components of N–connection,

wkij = 0, wkaj = 0, wkia = 0, wkab = 0, wcab = 0,

waij = −Ωa
ij , w

b
aj = −∂aN b

i , w
b
ia = ∂aN

b
i .

We emphasize that the elongated by N–connection operators (4.5) and (4.6) must be
used, respectively, instead of local operators of partial derivation (4.2) and differentials
(4.3) if some differential calculations are performed with respect to any anholonomic
bases locally adapted to a fixed N–connection structure (in brief, we shall call such local
frames as la–bases or la–frames, where, in brief, la– is from locally anisotropic).

The torsion, T (δγ , δβ) = T αβγδα, and curvature, R (δτ , δγ) δβ = R α
β γτδα, tensors of

a linear connection Γαβγ are introduced in a usual manner and, respectively, have the
components

T αβγ = Γαβγ − Γαγβ + wαβγ (4.8)

and

R α
β γτ = δτΓ

α
βγ − δγΓαβδ + ΓϕβγΓ

α
ϕτ − ΓϕβτΓ

α
ϕγ + Γαβϕw

ϕ
γτ . (4.9)

The Ricci tensor is defined

Rβγ = R α
β γα (4.10)

and the scalar curvature is

R = gβγRβγ . (4.11)

The Einstein equations with respect to a la–basis (4.6) are written

Rβγ −
R

2
gβγ = kΥβγ , (4.12)
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where the energy–momentum d–tensor Υβγ includes the cosmological constant terms
and possible contributions of torsion (4.8) and matter and k is the coupling constant.
For a symmetric linear connection the torsion field can be considered as induced by
the anholonomy coefficients. For dynamical torsions there are necessary additional field
equations, see, for instance, the case of locally anisotropic gauge like theories [11].

The geometrical objects with respect to a la–bases are distinguished by the corre-
sponding N–connection structure and called (in brief) d–tensors, d–metrics (4.4), linear
d–connections and so on [8, 9, 10].

A linear d–connection D on a spacetime V,

Dδγδβ = Γαβγ
(
xk, ya

)
δα,

is parametrized by non–trivial horizontal (isotropic) – vertical (anisotropic), in brief,
h–v–components,

Γαβγ =
(
Li jk, L

a
bk, C

i
jc, C

a
bc

)
. (4.13)

Some d–connection and d–metric structures are compatible if there are satisfied the
conditions

Dαgβγ = 0.

For instance, the canonical compatible d–connection
cΓαβγ =

(
cLi jk,

c Labk,
c Ci

jc,
c Ca

bc

)

is defined by the coefficients of d–metric (4.4), gij (xi, ya) and hab (x
i, ya) , and of N–

connection, Na
i = Na

i

(
xi, yb

)
,

cLi jk =
1

2
gin (δkgnj + δjgnk − δngjk) , (4.14)

cLabk = ∂bN
a
k +

1

2
hac
(
δkhbc − hdc∂bNd

i − hdb∂cNd
i

)
,

cCi
jc =

1

2
gik∂cgjk,

cCa
bc =

1

2
had (∂chdb + ∂bhdc − ∂dhbc) .

The coefficients of the canonical d–connection generalize with respect to la–bases the
well known Christoffel symbols.

For a d–connection (4.13) we can compute the non–trivial components of d–torsion
(4.8)

T i.jk = T ijk = Lijk − Likj, T ija = Ci
.ja, T

i
aj = −Ci

ja,

T i.ja = 0, T a.bc = Sa.bc = Ca
bc − Ca

cb, (4.15)

T a.ij = −Ωa
ij , T a.bi = ∂bN

a
i − La.bj , T a.ib = −T a.bi.
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In a similar manner, putting non–vanishing coefficients (4.13) into the formula for
curvature (4.9), we can compute the coefficients of d–curvature

R (δτ , δγ) δβ = R α
β γτδα,

split into h–, v–invariant components,

R.i
h.jk = δkL

i
.hj − δjLi.hk + Lm.hjL

i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk,

R.a
b.jk = δkL

a
.bj − δjLa.bk + Lc.bjL

a
.ck − Lc.bkLa.cj − Ca

.bcΩ
c
.jk,

P .i
j.ka = ∂kL

i
.jk + Ci

.jbT
b
.ka − (∂kC

i
.ja + Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc),

P .c
b.ka = ∂aL

c
.bk + Cc

.bdT
d
.ka − (∂kC

c
.ba + Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd)

S .ij.bc = ∂cC
i
.jb − ∂bCi

.jc + Ch
.jbC

i
.hc − Ch

.jcC
i
hb,

S .ab.cd = ∂dC
a
.bc − ∂cCa

.bd + Ce
.bcC

a
.ed − Ce

.bdC
a
.ec.

The components of the Ricci tensor (4.10) with respect to locally adapted frames
(4.5) and (4.6) (in this case, d–tensor) are as follows:

Rij = R.k
i.jk, Ria = −2Pia = −P .k

i.ka, (4.16)

Rai = 1Pai = P .b
a.ib, Rab = S .ca.bc.

We point out that because, in general, 1Pai 6= 2Pia the Ricci d–tensor is non sym-
metric. This is a consequence of anholonomy of la–bases.

Having defined a d-metric of type (4.4) on spacetime V we can compute the scalar
curvature (4.11) of a d-connection D,

←−
R = GαβRαβ = R̂ + S, (4.17)

where R̂ = gijRij and S = habSab.
Now, by introducing the values of (4.16) and (4.17) into equations (4.12), the Einstein

equations with respect to a la–basis seen to be

Rij −
1

2

(
R̂ + S

)
gij = kΥij , (4.18)

Sab −
1

2

(
R̂ + S

)
hab = kΥab,

1Pai = kΥai,
2Pia = −kΥia,
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where Υij,Υab,Υai and Υia are the components of the energy–momentum d–tensor field
Υβγ (which includes possible cosmological constants, contributions of anholonomy d–
torsions (4.15) and matter) and k is the coupling constant. For simplicity, we omitted the
upper left index c pointing that for the Einstein theory the Ricci d–tensor and curvature
scalar should be computed by applying the coefficients of canonical d–connection (4.14).

4.3 An ansatz for la–metrics

Let us consider a four dimensional (in brief, 4D) spacetime V (2+2) (with two isotropic
plus two anisotropic local coordinates) provided with a metric (4.1) (of signature
(-,+,+,+), or (+,+,+,-), (+,+,-,+)) parametrized by a symmetric matrix of type




g1 + q1
2h3 + n1

2h4 0 q1h3 n1h4

0 g2 + q2
2h3 + n2

2h4 q2h3 n2h4

q1h3 q2h3 h3 0
n1h4 n2h4 0 h4


 (4.1)

with components being some functions

gi = gi(x
j), qi = qi(x

j, z), ni = ni(x
j, z), ha = ha(x

j , z)

of necessary smoothly class. With respect to a la–basis (4.6) this ansatz results in
diagonal 2 × 2 h– and v–metrics for a d–metric (4.4) (for simplicity, we shall consider
only diagonal 2D nondegenerated metrics because for such dimensions every symmetric
matrix can be diagonalized).

An equivalent diagonal d–metric (4.4) is obtained for the associated N–connection
with coefficients being functions on three coordinates (xi, z),

N3
1 = q1(x

i, z), N3
2 = q2(x

i, z), (4.2)

N4
1 = n1(x

i, z), N4
2 = n2(x

i, z).

For simplicity, we shall use brief denotations of partial derivatives, like ȧ= ∂a/∂x1, a′ =
∂a/∂x2, a∗ = ∂a/∂z ȧ′= ∂2a/∂x1∂x2, a∗∗ = ∂2a/∂z∂z.



228 CHAPTER 4. LOCALLY ANISOTROPIC BLACK HOLES

The non–trivial components of the Ricci d–tensor (4.16) ( for the ansatz (4.1)) when
R1

1 = R2
2 and S3

3 = S4
4 , are computed

R1
1 =

1

2g1g2
[−(g

′′

1 + g̈2) +
1

2g2

(
ġ2
2 + g′1g

′
2

)
+

1

2g1

(
g′ 2
1 + ġ1ġ2

)
], (4.3)

S3
3 =

1

h3h4
[−h∗∗4 +

1

2h4
(h∗4)

2 +
1

2h3
h∗3h

∗
4], (4.4)

P3i =
qi
2

[

(
h∗3
h3

)2

− h∗∗3
h3

+
h∗4

2h 2
4

− h∗3h
∗
4

2h3h4
] (4.5)

+
1

2h4

[
ḣ4

2h4

h∗4 − ḣ∗4 +
ḣ3

2h3

h∗4],

P4i = − h4

2h3

n∗∗
i . (4.6)

The curvature scalar
←−
R (4.17) is defined by two non-trivial components R̂ = 2R1

1

and S = 2S3
3 .

The system of Einstein equations (4.18) transforms into

R1
1 = −κΥ3

3 = −κΥ4
4, (4.7)

S3
3 = −κΥ1

1 = −κΥ2
2, (4.8)

P3i = κΥ3i, (4.9)

P4i = κΥ4i, (4.10)

where the values of R1
1, S

3
3 , Pai, are taken respectively from (4.3), (4.4), (4.5), (4.6).

We note that we can define the N–coefficients (4.2), qi(x
k, z) and ni(x

k, z), by solving
the equations (4.9) and (4.10) if the functions hi(x

k, z) are known as solutions of the
equations (4.8).

Let us analyze the basic properties of equations (4.8)–(4.10) (the h–equations will
be considered for 3D and 4D in the next sections). The v–component of the Einstein
equations (4.7)

∂2h4

∂z2
− 1

2h4

(
∂h4

∂z

)2

− 1

2h3

(
∂h3

∂z

)(
∂h4

∂z

)
− κ

2
Υ1h3h4 = 0

(here we write down the partial derivatives on z in explicit form) follows from (4.4)
and (4.8) and relates some first and second order partial on z derivatives of diagonal
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components ha(x
i, z) of a v–metric with a source κΥ1(x

i, z) = κΥ1
1 = κΥ2

2 in the h–
subspace. We can consider as unknown the function h3(x

i, z) (or, inversely, h4(x
i, z)) for

some compatible values of h4(x
i, z) (or h3(x

i, z)) and source Υ1(x
i, z).

By introducing a new variable β = h∗4/h4 the equation (4.11) transforms into

β∗ +
1

2
β2 − βh∗3

2h3
− 2κΥ1h3 = 0 (4.11)

which relates two functions β (xi, z) and h3 (xi, z) . There are two possibilities: 1) to
define β (i. e. h4) when κΥ1 and h3 are prescribed and, inversely 2) to find h3 for given
κΥ1 and h4 (i. e. β); in both cases one considers only ”*” derivatives on z–variable
(coordinates xi are treated as parameters).

1. In the first case the explicit solutions of (4.11) have to be constructed by using
the integral varieties of the general Riccati equation [6] which by a corresponding
redefinition of variables, z → z (ς) and β (z) → η (ς) (for simplicity, we omit here
the dependencies on xi) could be written in the canonical form

∂η

∂ς
+ η2 + Ψ (ς) = 0

where Ψ vanishes for vacuum gravitational fields. In vacuum cases the Riccati
equation reduces to a Bernoulli equation which (we can use the former variables)
for s(z) = β−1 transforms into a linear differential (on z) equation,

s∗ +
h∗3
2h3

s− 1

2
= 0. (4.12)

2. In the second (inverse) case when h3 is to be found for some prescribed κΥ1 and
β the equation (4.11) is to be treated as a Bernoulli type equation,

h∗3 = −4κΥ1

β
(h3)

2 +

(
2β∗

β
+ β

)
h3 (4.13)

which can be solved by standard methods. In the vacuum case the squared on h3

term vanishes and we obtain a linear differential (on z) equation.

A particular interest presents those solutions of the equation (4.11) which via 2D
conformal transforms with a factor ω = ω(xi, z) are equivalent to a diagonal h–metric
on x–variables, i.e. one holds the parametrization

h3 = ω(xi, z) a3

(
xi
)

and h4 = ω(xi, z) a4

(
xi
)
, (4.14)
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where a3 (xi) and a4 (xi) are some arbitrary functions (for instance, we can impose the
condition that they describe some 2D soliton like or black hole solutions). In this case
β = ω∗/ω and for γ = ω−1 the equation (4.11) transforms into

γ γ∗∗ = −2κΥ1a3

(
xi
)

(4.15)

with the integral variety determined by

z =

∫
dγ√

|−4kΥ1a3(xi) ln |γ|+ C1(xi)|
+ C2(x

i), (4.16)

where it is considered that the source Υ1 does not depend on z.
Finally, we conclude that the v–metrics are defined by the integral varieties of cor-

responding Riccati and/or Bernoulli equations with respect to z–variables with the h–
coordinates xi treated as parameters.

4.4 3D black la–holes

Let us analyze some basic properties of 3D spacetimes V (2+1) (we emphasize that in
approach (2 + 1) points to a splitting into two isotropic and one anisotropic directions
and not to usual 2D space plus one time like coordinates; in general anisotropies could
be associate to both space and/or time like coordinates) provided with d–metrics of type

δs2 = g1

(
xk
) (
dx1
)2

+ g2

(
xk
) (
dx2
)2

+ h3(x
i, z) (δz)2 , (4.1)

where xk are 2D coordinates, y3 = z is the anisotropic coordinate and

δz = dz +N3
i (x

k, z)dxi.

The N–connection coefficients are

N3
1 = q1(x

i, z), N3
2 = q2(x

i, z). (4.2)

The non–trivial components of the Ricci d–tensor (4.16), for the ansatz (4.1) with
h4 = 1 and ni = 0, R1

1 = R2
2 and P3i, are

R1
1 =

1

2g1g2
[−(g

′′

1 + g̈2) +
1

2g2

(
ġ2
2 + g′1g

′
2

)
+

1

2g1

(
g′ 2
1 + ġ1ġ2

)
], (4.3)

P3i =
qi
2

[

(
h∗3
h3

)2

− h∗∗3
h3

] (4.4)
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(for 3D the component S3
3 ≡ 0, see (4.4)).

The curvature scalar
←−
R (4.17) is

←−
R = R̂ = 2R1

1.
The system of Einstein equations (4.18) transforms into

R1
1 = −κΥ3

3, (4.5)

P3i = κΥ3i, (4.6)

which is compatible for energy–momentum d–tensors with Υ1
1 = Υ2

2 = 0; the values of
R1

1 and P3i are taken respectively from (4.3) and (4.4).
By using the equation (4.6) we can define the N–coefficients (4.2), qi(x

k, z), if the
function h3(x

k, z) and the components Υ3i of the energy–momentum d–tensor are given.
We note that the equations (4.4) are solved for arbitrary functions h3 = h3(x

k) and
qi = qi(x

k, z) if Υ3i = 0 and in this case the component of d–metric h3(x
k) is not

contained in the system of 3D field equations.

4.4.1 Static elliptic horizons

Let us consider a class of 3D d-metrics which local anisotropy which are similar to
Banados–Teitelboim–Zanelli (BTZ) black holes [1].

The d–metric is parametrized

δs2 = g1

(
χ1, χ2

)
(dχ1)2 +

(
dχ2
)2 − h3

(
χ1, χ2, t

)
(δt)2 , (4.7)

where χ1 = r/rh for rh = const, χ2 = θ/ra if ra =
√
|κΥ3

3| 6= 0 and χ2 = θ if Υ3
3 = 0,

y3 = z = t, where t is the time like coordinate. The Einstein equations (4.5) and (4.6)
transforms respectively into

∂2g1

∂(χ2)2
− 1

2g1

(
∂g1

∂χ2

)2

− 2κΥ3
3g1 = 0 (4.8)

and [
1

h3

∂2h3

∂z2
−
(

1

h3

∂h3

∂z

)2
]
qi = −κΥ3i. (4.9)

By introducing new variables

p = g′1/g1 and s = h∗3/h3 (4.10)

where the ’prime’ in this subsection denotes the partial derivative ∂/χ2, the equations
(4.8) and (4.9) transform into

p′ +
p2

2
+ 2ǫ = 0 (4.11)
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and
s∗qi = κΥ3i, (4.12)

where the vacuum case should be parametrized for ǫ = 0 with χi = xi and ǫ = 1(−1) for
the signature 1(−1) of the anisotropic coordinate.

A class of solutions of 3D Einstein equations for arbitrary qi = qi(χ
k, t) and Υ3i = 0

is obtained if s = s(χi). After integration of the second equation from (4.10), we find

h3(χ
k, t) = h3(0)(χ

k) exp
[
s(0)

(
χk
)
t
]

(4.13)

as a general solution of the system (4.12) with vanishing right part. Static solutions are
stipulated by qi = qi(χ

k) and s(0)(χ
k) = 0.

The integral curve of (4.11), intersecting a point
(
χ2

(0), p(0)

)
, considered as a differ-

ential equation on χ2 is defined by the functions [6]

p =
p(0)

1 +
p(0)
2

(
χ2 − χ2

(0)

) , ǫ = 0; (4.14)

p =
p(0) − 2 tanh

(
χ2 − χ2

(0)

)

1 +
p(0)
2

tanh
(
χ2 − χ2

(0)

) , ǫ > 0; (4.15)

p =
p(0) − 2 tan

(
χ2 − χ2

(0)

)

1 +
p(0)
2

tan
(
χ2 − χ2

(0)

) , ǫ < 0. (4.16)

Because the function p depends also parametrically on variable χ1 we must consider
functions χ2

(0) = χ2
(0) (χ1) and p(0) = p(0) (χ1) .

For simplicity, here we elucidate the case ǫ < 0. The general formula for the nontrivial
component of h–metric is to be obtained after integration on χ1 of (4.16) (see formula
(4.10))

g1

(
χ1, χ2

)
= g1(0)

(
χ1
){

sin[χ2 − χ2
(0)

(
χ1
)
] + arctan

2

p(0) (χ1)

}2

,

for p(0) (χ1) 6= 0, and

g1

(
χ1, χ2

)
= g1(0)

(
χ1
)

cos2[χ2 − χ2
(0)

(
χ1
)
] (4.17)

for p(0) (χ1) = 0, where g1(0) (χ1) , χ2
(0) (χ1) and p(0) (χ1) are some functions of necessary

smoothness class on variable χ1 = x1/
√
κε, when ε is the energy density. If we consider
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Υ3i = 0 and a nontrivial diagonal components of energy–momentum d–tensor, Υα
β =

diag[0, 0,−ε], the N–connection coefficients qi(χ
i, t) could be arbitrary functions.

For simplicity, in our further considerations we shall apply the solution (4.17).
The d–metric (4.7) with the coefficients (4.17) and (4.13) gives a general description

of a class of solutions with generic local anisotropy of the Einstein equations (4.18).
Let us construct static black la–hole solutions for s(0)

(
χk
)

= 0 in (4.13).
In order to construct an explicit la–solution we have to chose some coefficients

h3(0)(χ
k), g1(0) (χ1) and χ0 (χ1) from some physical considerations. For instance, the

Schwarzschild solution is selected from a general 4D metric with some general coeffi-
cients of static, spherical symmetry by relating the radial component of metric with the
Newton gravitational potential. In this section, we construct a locally anisotropic BTZ
like solution by supposing that it is conformally equivalent to the BTZ solution if one
neglects anisotropies on angle θ),

g1(0)

(
χ1
)

=

[
r

(
−M0 +

r2

l2

)]−2

,

whereM0 = const > 0 and−1/l2 is a constant (which is to be considered the cosmological
from the locally isotropic limit. The time–time coefficient of d–metric is chosen

h3

(
χ1, χ2

)
= r−2λ3

(
χ1, χ2

)
cos2[χ2 − χ2

(0)

(
χ1
)
]. (4.18)

If we chose in (4.18)

λ3 = (−M0 +
r2

l2
)
2

,

when the constant
rh =

√
M0l

defines the radius of a circular horizon, the la–solution is conformally equivalent, with the
factor r−2 cos2[χ2 − χ2

(0) (χ1)], to the BTZ solution embedded into a anholonomic back-

ground given by arbitrary functions qi(χ
i, t) which are defined by some initial conditions

of gravitational la–background polarization.
A more general class of la–solutions could be generated if we put, for instance,

λ3

(
χ1, χ2

)
= (−M (θ) +

r2

l2
)
2

,

with

M (θ) =
M0

(1 + e cos θ)2
,
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where e < 1. This solution has a horizon, λ3 = 0, parametrized by an ellipse

r =
rh

1 + e cos θ

with parameter rh and eccentricity e.
We note that our solution with elliptic horizon was constructed for a diagonal energy–

momentum d-tensor with nontrivial energy density but without cosmological constant.
On the other hand the BTZ solution was constructed for a generic 3D cosmological
constant. There is not a contradiction here because the la–solutions can be considered
for a d–tensor Υα

β = diag[p1 − 1/l2, p2 − 1/l2,−ε − 1/l2] with p1,2 = 1/l2 and ε(eff) =
ε+ 1/l2 (for ε = const the last expression defines the effective constant ra). The locally
isotropic limit to the BTZ black hole could be realized after multiplication on r2 and by
approximations e ≃ 0, cos[θ − θ0 (χ1)] ≃ 1 and qi(x

k, t) ≃ 0.

4.4.2 Oscillating elliptic horizons

The simplest way to construct 3D solutions of the Einstein equations with oscillating
in time horizon is to consider matter states with constant nonvanishing values of Υ31 =
const. In this case the coefficient h3 could depend on t–variable. For instance, we can
chose such initial values when

h3(χ
1, θ, t) = r−2

(
−M (t) +

r2

l2

)
cos2[θ − θ0

(
χ1
)
] (4.19)

with
M = M0 exp (−p̃t) sin ω̃t,

or, for an another type of anisotropy,

h3(χ
1, θ, t) = r−2

(
−M0 +

r2

l2

)
cos2 θ sin2[θ − θ0

(
χ1, t

)
] (4.20)

with
cos θ0

(
χ1, t

)
= e−1

(ra
r

cosω1t− 1
)
,

when the horizon is given parametrically,

r =
ra

1 + e cos θ
cosω1t,

where the new constants (comparing with those from the previous subsection) are fixed
by some initial and boundary conditions as to be p̃ > 0, and ω̃ and ω1 are treated as
some real numbers.
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For a prescribed value of h3(χ
1, θ, t) with non–zero source Υ31, in the equation (4.6),

we obtain

q1(χ
1, θ, t) = κΥ31

(
∂2

∂t2
ln |h3(χ

1, θ, t)|
)−1

. (4.21)

A solution (4.1) of the Einstein equations (4.5) and (4.6) with g2(χ
i) = 1 and g1(χ

1, θ)
and h3(χ

1, θ, t) given respectively by formulas (4.17) and (4.19) describe a 3D evaporating
black la–hole solution with circular oscillating in time horizon. An another type of
solution, with elliptic oscillating in time horizon, could be obtained if we choose (4.20).
The non–trivial coefficient of the N–connection must be computed following the formula
(4.21).

4.5 4D la–solutions

4.5.1 Basic properties

The purpose of this section is the construction of d–metrics which are conformally
equivalent to some la–deformations of black hole, torus and cylinder like solutions in
general relativity. We shall analyze 4D d-metrics of type

δs2 = g1

(
xk
) (
dx1
)2

+
(
dx2
)2

+ h3(x
i, z) (δz)2 + h4(x

i, z)
(
δy4
)2
. (4.1)

The Einstein equations (4.7) with the Ricci h–tensor (4.3) and diagonal energy mo-
mentum d–tensor transforms into

∂2g1

∂(x2)2
− 1

2g1

(
∂g1

∂x2

)2

− 2κΥ3
3g1 = 0. (4.2)

By introducing a dimensionless coordinate, χ2 = x2/
√
|κΥ3

3|, and the variable p = g′1/g1,
where by ’prime’ in this section is considered the partial derivative ∂/χ2, the equation
(4.2) transforms into

p′ +
p2

2
+ 2ǫ = 0, (4.3)

where the vacuum case should be parametrized for ǫ = 0 with χi = xi and ǫ = 1(−1).
The equations (4.2) and (4.3) are, correspondingly, equivalent to the equations (4.8) and
(4.11) with that difference that in this section we are dealing with 4D coefficients and
values. The solutions for the h–metric are parametrized like (4.14), (4.15), and (4.16)
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and the coefficient g1(χ
i) is given by a similar to (4.17) formula (for simplicity, here we

elucidate the case ǫ < 0) which for p(0) (χ1) = 0 transforms into

g1

(
χ1, χ2

)
= g1(0)

(
χ1
)

cos2[χ2 − χ2
(0)

(
χ1
)
], (4.4)

where g1 (χ1) , χ2
(0) (χ1) and p(0) (χ1) are some functions of necessary smoothness class

on variable χ1 = x1/
√
κε, ε is the energy density. The coefficients g1 (χ1, χ2) (4.4) and

g2 (χ1, χ2) = 1 define a h–metric. The next step is the construction of h–components of
d–metrics, ha = ha(χ

i, z), for different classes of symmetries of anisotropies.
The system of equations (4.8) with the vertical Ricci d–tensor component (4.4) is

satisfied by arbitrary functions

h3 = a3(χ
i) and h4 = a4(χ

i). (4.5)

For v–metrics depending on three coordinates (χi, z) the v–components of the Einstein
equations transform into (4.11) which reduces to (4.11) for prescribed values of h3(χ

i, z),
and, inversely, to (4.13) if h4(χ

i, z) is prescribed. For h–metrics being conformally equiv-
alent to (4.5) (see transforms (4.14)) we are dealing to equations of type (4.15) with
integral varieties (4.16).

4.5.2 Rotation Hypersurfaces Horizons

We proof that there are static black hole and cylindrical like solutions of the Einstein
equations with horizons being some 3D rotation hypersurfaces. The space components of
corresponding d–metrics are conformally equivalent to some locally anisotropic deforma-
tions of the spherical symmetric Schwarzschild and cylindrical Weyl solutions. We note
that for some classes of solutions the local anisotropy is contained in non–perturbative
anholonomic structures.

Rotation ellipsoid configuration

There two types of rotation ellipsoids, elongated and flattened ones. We examine
both cases of such horizon configurations.

Elongated rotation ellipsoid coordinates:
An elongated rotation ellipsoid hypersurface is given by the formula [7]

x̃2 + ỹ2

σ2 − 1
+
z̃2

σ2
= ρ̃2, (4.6)
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where σ ≥ 1 and ρ̃ is similar to the radial coordinate in the spherical symmetric case.
The space 3D coordinate system is defined

x̃ = ρ̃ sinh u sin v cosϕ, ỹ = ρ̃ sinh u sin v sinϕ, z̃ = ρ̃ cosh u cos v,

where σ = cosh u, (0 ≤ u <∞, 0 ≤ v ≤ π, 0 ≤ ϕ < 2π). The hypersurface metric is

guu = gvv = ρ̃2
(
sinh2 u+ sin2 v

)
, (4.7)

gϕϕ = ρ̃2 sinh2 u sin2 v.

Let us introduce a d–metric

δs2 = g1(u, v)du
2 + dv2 + h3 (u, v, ϕ) (δt)2 + h4 (u, v, ϕ) (δϕ)2 , (4.8)

where δt and δϕ are N–elongated differentials.
As a particular solution (4.4) for the h–metric we choose the coefficient

g1(u, v) = cos2 v. (4.9)

The h3(u, v, ϕ) = h3(u, v, ρ̃ (u, v, ϕ)) is considered as

h3(u, v, ρ̃) =
1

sinh2 u+ sin2 v

[
1− rg

4ρ̃

]2

[
1 + rg

4ρ̃

]6 . (4.10)

In order to define the h4 coefficient solving the Einstein equations, for simplicity with a
diagonal energy–momentum d–tensor for vanishing pressure we must solve the equation
(4.11) which transforms into a linear equation (4.12) if Υ1 = 0. In our case s (u, v, ϕ) =
β−1 (u, v, ϕ) , where β = (∂h4/∂ϕ) /h4, must be a solution of

∂s

∂ϕ
+
∂ ln

√
|h3|

∂ϕ
s =

1

2
.

After two integrations (see [6]) the general solution for h4(u, v, ϕ), is

h4(u, v, ϕ) = a4 (u, v) exp


−

ϕ∫

0

F (u, v, z) dz


 , (4.11)

where

F (u, v, z) = 1/{
√
|h3(u, v, z)|[s1(0) (u, v) +

1

2

z∫

z0(u,v)

√
|h3(u, v, z)|dz]},
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s1(0) (u, v) and z0 (u, v) are some functions of necessary smooth class. We note that if we
put h4 = a4(u, v) the equations (4.8) are satisfied for every h3 = h3(u, v, ϕ).

Every d–metric (4.8) with coefficients of type (4.9), (4.10) and (4.11) solves the
Einstein equations (4.7)–(4.10) with the diagonal momentum d–tensor

Υα
β = diag [0, 0,−ε = −m0, 0] ,

when rg = 2κm0; we set the light constant c = 1. If we choose

a4 (u, v) =
sinh2 u sin2 v

sinh2 u+ sin2 v

our solution is conformally equivalent (if not considering the time–time component)
to the hypersurface metric (4.7). The condition of vanishing of the coefficient (4.10)
parametrizes the rotation ellipsoid for the horizon

x̃2 + ỹ2

σ2 − 1
+
z̃2

σ2
=
(rg

4

)2

,

where the radial coordinate is redefined via relation r̃ = ρ̃
(
1 + rg

4ρ̃

)2

. After multiplication

on the conformal factor
(
sinh2 u+ sin2 v

) [
1 +

rg
4ρ̃

]4

,

approximating g1(u, v) = cos2 v ≈ 1, in the limit of locally isotropic spherical symmetry,

x̃2 + ỹ2 + z̃2 = r2
g ,

the d–metric (4.8) reduces to

ds2 =

[
1 +

rg
4ρ̃

]4 (
dx̃2 + dỹ2 + dz̃2

)
−

[
1− rg

4ρ̃

]2

[
1 + rg

4ρ̃

]2dt2

which is just the Schwarzschild solution with the redefined radial coordinate when the
space component becomes conformally Euclidean.

So, the d–metric (4.8), the coefficients of N–connection being solutions of (4.9) and
(4.10), describe a static 4D solution of the Einstein equations when instead of a spherical
symmetric horizon one considers a locally anisotropic deformation to the hypersurface
of rotation elongated ellipsoid.
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Flattened rotation ellipsoid coordinates
In a similar fashion we can construct a static 4D black hole solution with the horizon

parametrized by a flattened rotation ellipsoid [7],

x̃2 + ỹ2

1 + σ2
+
z̃2

σ2
= ρ̃2,

where σ ≥ 0 and σ = sinh u.
The space 3D special coordinate system is defined

x̃ = ρ̃ cosh u sin v cosϕ, ỹ = ρ̃ cosh u sin v sinϕ, z̃ = ρ̃ sinh u cos v,

where 0 ≤ u <∞, 0 ≤ v ≤ π, 0 ≤ ϕ < 2π.
The hypersurface metric is

guu = gvv = ρ̃2
(
sinh2 u+ cos2 v

)
,

gϕϕ = ρ̃2 sinh2 u cos2 v.

In the rest the black hole solution is described by the same formulas as in the previous
subsection but with respect to new canonical coordinates for flattened rotation ellipsoid.

Cylindrical, Bipolar and Toroidal Configurations

We consider a d–metric of type (4.1). As a coefficient for h–metric we choose
g1(χ

1, χ2) = (cosχ2)
2

which solves the Einstein equations (4.7). The energy momen-
tum d–tensor is chosen to be diagonal, Υα

β = diag[0, 0,−ε, 0] with ε ≃ m0 =
∫
m(lin)dl,

where ε(lin) is the linear ’mass’ density. The coefficient h3 (χi, z) will be chosen in a form
similar to (4.10),

h3 ≃
[
1− rg

4ρ̃

]2

/

[
1 +

rg
4ρ̃

]6

for a cylindrical elliptic horizon. We parametrize the second v–component as h4 =
a4(χ

1, χ2) when the equations (4.8) are satisfied for every h3 = h3(χ
1, χ2, z).

Cylindrical coordinates:
Let us construct a solution of the Einstein equation with the horizon having the symmetry
of ellipsoidal cylinder given by hypersurface formula [7]

x̃2

σ2
+

ỹ2

σ2 − 1
= ρ2

∗, z̃ = z̃,
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where σ ≥ 1. The 3D radial coordinate r̃ is to be computed from ρ̃2 = ρ2
∗ + z̃2.

The 3D space coordinate system is defined

x̃ = ρ∗ cosh u cos v, ỹ = ρ∗ sinh u sin v sin, z̃ = z̃,

where σ = cosh u, (0 ≤ u <∞, 0 ≤ v ≤ π).
The hypersurface metric is

guu = gvv = ρ2
∗
(
sinh2 u+ sin2 v

)
, gzz = 1. (4.12)

A solution of the Einstein equations with singularity on an ellipse is given by

h3 =
1

ρ2
∗
(
sinh2 u+ sin2 v

) ×

[
1− rg

4ρ̃

]2

[
1 + rg

4ρ̃

]6 ,

h4 = a4 =
1

ρ2
∗
(
sinh2 u+ sin2 v

) ,

where r̃ = ρ̃
(
1 + rg

4ρ̃

)2

. The condition of vanishing of the time–time coefficient h3

parametrizes the hypersurface equation of the horizon

x̃2

σ2
+

ỹ2

σ2 − 1
=
(ρ∗(g)

4

)2

, z̃ = z̃,

where ρ∗(g) = 2κm(lin).
By multiplying the d–metric on the conformal factor

ρ2
∗
(
sinh2 u+ sin2 v

) [
1 +

rg
4ρ̃

]4

,

where rg =
∫
ρ∗(g)dl (the integration is taken along the ellipse), for ρ∗ → 1, in the local

isotropic limit, sin v ≈ 0, the space component transforms into (4.12).

Bipolar coordinates:
Let us construct 4D solutions of the Einstein equation with the horizon having the

symmetry of the bipolar hypersurface given by the formula [7]

(√
x̃2 + ỹ2 − ρ̃

tanσ

)2

+ z̃2 =
ρ̃2

sin2 σ
,
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which describes a hypersurface obtained under the rotation of the circles

(
ỹ − ρ̃

tan σ

)2

+ z̃2 =
ρ̃2

sin2 σ

around the axes Oz; because |c tanσ| < | sin σ|−1, the circles intersect the axes Oz. The
3D space coordinate system is defined

x̃ =
ρ̃ sin σ cosϕ

cosh τ − cosσ
, ỹ =

ρ̃ sin σ sinϕ

cosh τ − cosσ
,

z̃ =
r̃ sinh τ

cosh τ − cosσ
(−∞ < τ <∞, 0 ≤ σ < π, 0 ≤ ϕ < 2π) .

The hypersurface metric is

gττ = gσσ =
ρ̃2

(cosh τ − cosσ)2 , gϕϕ =
ρ̃2 sin2 σ

(cosh τ − cosσ)2 . (4.13)

A solution of the Einstein equations with singularity on a circle is given by

h3 =

[
1− rg

4ρ̃

]2

/

[
1 +

rg
4ρ̃

]6

and h4 = a4 = sin2 σ,

where r̃ = ρ̃
(
1 + rg

4ρ̃

)2

. The condition of vanishing of the time–time coefficient h3

parametrizes the hypersurface equation of the horizon

(√
x̃2 + ỹ2 − rg

2
c tanσ

)2

+ z̃2 =
r2
g

4 sin2 σ
,

where rg =
∫
ρ∗(g)dl (the integration is taken along the circle), ρ∗(g) = 2κm(lin).

By multiplying the d–metric on the conformal factor

1

(cosh τ − cos σ)2

[
1 +

rg
4ρ̃

]4

, (4.14)

for ρ∗ → 1, in the local isotropic limit, sin v ≈ 0, the space component transforms into
(4.13).
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Toroidal coordinates:
Let us consider solutions of the Einstein equations with toroidal symmetry of hori-

zons. The hypersurface formula of a torus is [7]

(√
x̃2 + ỹ2 − ρ̃ c tanhσ

)2

+ z̃2 =
ρ̃2

sinh2 σ
.

The 3D space coordinate system is defined

x̃ =
ρ̃ sinh τ cosϕ

cosh τ − cosσ
, ỹ =

ρ̃ sin σ sinϕ

cosh τ − cosσ
,

z̃ =
ρ̃ sinh σ

cosh τ − cosσ
(−π < σ < π, 0 ≤ τ <∞, 0 ≤ ϕ < 2π) .

The hypersurface metric is

gσσ = gττ =
ρ̃2

(cosh τ − cosσ)2 , gϕϕ =
ρ̃2 sin2 σ

(cosh τ − cosσ)2 . (4.15)

This, another type of solution of the Einstein equations with singularity on a circle,
is given by

h3 =

[
1− rg

4ρ̃

]2

/

[
1 +

rg
4ρ̃

]6

and h4 = a4 = sinh2 σ,

where r̃ = ρ̃
(
1 + rg

4ρ̃

)2

. The condition of vanishing of the time–time coefficient h3

parametrizes the hypersurface equation of the horizon

(√
x̃2 + ỹ2 − rg

2 tanhσ
c
)2

+ z̃2 =
r2
g

4 sinh2 σ
,

where rg =
∫
ρ∗(g)dl (the integration is taken along the circle), ρ∗(g) = 2κm(lin).

By multiplying the d–metric on the conformal factor (4.14), for ρ∗ → 1, in the local
isotropic limit, sin v ≈ 0, the space component transforms into (4.15).

4.5.3 A Schwarzschild like la–solution

The d–metric of type (4.8) is taken

δs2 = g1(χ
1, θ)d(χ1)2 + dθ2 + h3

(
χ1, θ, ϕ

)
(δt)2 + h4

(
χ1, θ, ϕ

)
(δϕ)2 , (4.16)

where on the horizontal subspace χ1 = ρ/ra is the dimensionless radial coordinate (the
constant ra will be defined below), χ2 = θ and in the vertical subspace y3 = z = t and
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y4 = ϕ. The energy–momentum d–tensor is taken to be diagonal Υα
β = diag[0, 0,−ε, 0].

The coefficient g1 is chosen to be a solution of type (4.4)

g1

(
χ1, θ

)
= cos2 θ.

For

h4 = sin2 θ and h3 (ρ) = − [1− ra/4ρ]2

[1 + ra/4ρ]
6 ,

where r = ρ
(
1 + rg

4ρ

)2

, r2 = x2 + y2 + z2, ra=̇rg is the Schwarzschild gravitational

radius, the d–metric (4.16) describes a la–solution of the Einstein equations which is
conformally equivalent, with the factor ρ2 (1 + rg/4ρ)

2 , to the Schwarzschild solution
(written in coordinates (ρ, θ, ϕ, t)), embedded into a la–background given by non–trivial
values of qi(ρ, θ, t) and ni(ρ, θ, t). In the anisotropic case we can extend the solution for
anisotropic (on angle θ) gravitational polarizations of point particles masses, m = m (θ) ,
for instance in elliptic form, when

ra (θ) =
rg

(1 + e cos θ)

induces an ellipsoidal dependence on θ of the radial coordinate,

ρ =
rg

4 (1 + e cos θ)
.

We can also consider arbitrary solutions with ra = ra (θ, t) of oscillation type, ra ≃
sin (ω1t) , or modelling the mass evaporation, ra ≃ exp[−st], s = const > 0.

So, fixing a physical solution for h3(ρ, θ, t), for instance,

h3(ρ, θ, t) = − [1− ra exp[−st]/4ρ (1 + e cos θ)]2

[1 + ra exp[−st]/4ρ (1 + e cos θ)]6
,

where e = const < 1, and computing the values of qi(ρ, θ, t) and ni(ρ, θ, t) from (4.9)
and (4.10), corresponding to given h3 and h4, we obtain a la–generalization of the
Schwarzschild metric.

We note that fixing this type of anisotropy, in the locally isotropic limit we obtain
not just the Schwarzschild metric but a conformally transformed one, multiplied on the
factor 1/ρ2 (1 + rg/4ρ)

4 .
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4.6 Final remarks

We have presented new classes of three and four dimensional black hole solutions
with local anisotropy which are given both with respect to a coordinate basis or to an
anholonomic frame defined by a N–connection structure. We proved that for a corre-
sponding ansatz such type of solutions can be imbedded into the usual (three or four
dimensional) Einstein gravity. It was demonstrated that in general relativity there are
admitted static, but anisotropic (with nonspheric symmetry), and elliptic oscillating in
time black hole like configurations with horizons of events being elliptic (in three di-
mensions) and rotation ellipsoidal, elliptic cylinder, toroidal and another type of closed
hypersurfaces or cylinders.

From the results obtained, it appears that the components of metrics with generic
local anisotropy are somehow undetermined from field equations if the type of symmetry
and a correspondence with locally isotropic limits are not imposed. This is the conse-
quence of the fact that in general relativity only a part of components of the metric field
(six from ten in four dimensions and three from six in three dimensions) can be treated
as dynamical variables. This is caused by the Bianchi identities which hold on (pseudo)
Riemannian spaces. The rest of components of metric should be defined from some
symmetry prescriptions on the type of locally anisotropic solutions and corresponding
anholonomic frames and, if existing, compatibility with the locally isotropic limits when
some physically motivated coordinate and/or boundary conditions are enough to state
and solve the Cauchy problem.

Some of the problems discussed so far might be solved by considering theories con-
taining non–trivial torsion fields like metric–affine and gauge gravity and for so–called
generalized Finsler–Kaluza–Klein models. More general solutions connected with locally
anisotropic low energy limits in string/M–theory and supergravity could be also gener-
ated by applying the method of computation with respect to anholonomic (super) frames
adapted to a N–connection structure. This topic is currently under study.
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[1] Bañados M, Teitelboim C and Zanelli J 1992 Phys. Rev. Lett. 69 1849
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Chapter 5

Anholonomic Triads and New
Classes of (2+1)-Dimensional Black
Hole Solutions

Abstract 1

We apply the method of moving anholonomic frames in order to construct new classes
of solutions of the Einstein equations on (2+1)–dimensional pseudo–Riemannian spaces.
The anholonomy associated to a class of off–diagonal metrics results in alternative classes
of black hole solutions which are constructed following distinguished (by nonlinear con-
nection structure) linear connections and metrics. There are investigated black holes
with deformed horizons and renormalized locally anisotropic constants. We speculate on
properties of such anisotropic black holes with characteristics defined by anholonomic
frames and anisotropic interactions of matter and gravity. The thermodynamics of locally
anisotropic black holes is discussed in connection with a possible statistical mechanics
background based on locally anisotropic variants of Chern–Simons theories.

5.1 Introduction

In recent years there has occurred a substantial interest to the (2+1)–dimensional
gravity and black holes and possible connections of such objects with string/M–theory.
Since the first works of Deser, Jackiv and ’t Hooft [10] and Witten [29] on three dimen-
sional gravity and the seminal solution for (2+1)–black holes constructed by Bañados,

1 c© S. Vacaru, P. Stavrinos and E. Gaburov, Anholonomic Triads and New Classes of (2+1)-
Dimensional Black Hole Solutions, gr–qc/0106068
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Teitelboim, and Zanelli (BTZ) [3] the gravitational models in three dimensions have
become a very powerful tool for exploring the foundations of classical and quantum
gravity, black hole physics, as well the geometrical properties of the spaces on which the
low–dimensional physics takes place [5].

On the other hand, the low–dimensional geometries could be considered as an arena
for elaboration of new methods of solution of gravitational field equations. One of pecu-
liar features of general relativity in 2+1 dimensions is that the bulk of physical solutions
of Einstein equations are constructed for a negative cosmological constant and on a space
of constant curvature. There are not such limitations if anholonomic frames modelling
locally anisotropic (la) interactions of gravity and matter are considered.

In our recent works [25] we emphasized the importance of definition of frames of
reference in general relativity in connection with new methods of construction of solu-
tions of the Einstein equations. The former priority given to holonomic frames holds
good for the ’simplest’ spherical symmetries and is less suitable for construction of so-
lutions with ’deformed’ symmetries, for instance, of static black holes with elliptic (or
ellipsoidal and/or torus) configurations of horizons. Such type of ’deformed’, locally
anisotropc, solutions of the Einstein equations are easily to be derived from the ansatz
of metrics diagonalized with respect to some classes of anholonomic frames induced by
locally anisotropic ’elongations’ of partial derivatives. After the task has been solved in
anholonomic variables it can be removed with respect to usual coordinate bases when
the metric becomes off–diagonal and the (for instance, elliptic) symmetry is hidden in
some nonlinear dependencies of the metric components.

The specific goal of the present work is to formulate the (2+1)–dimensional grav-
ity theory with respect to anholonomic frames with associated nonlinear connection
(N–connection) structure and to construct and investigate some new classes of solu-
tions of Einstein equations on locally anisotropic spacetimes (modelled as usual pseudo–
Riemannian spaces provided with an anholonomic frame structure). A material of inter-
est are the properties of the locally anisotropic elastic media and rotating null fluid and
anisotropic collapse described by gravitational field equations with locally anisotropic
matter. We investigate black hole solutions that arise from coupling in a self–consistent
manner the three dimensional (3D) pseudo–Riemannian geometry and its anholonomic
deformations to the physics of locally anisotropic fluids formulated with respect to an-
holonomic frames of reference. For certain special cases the locally anisotropic matter
gives the BTZ black holes with/or not rotation and electrical charge and variants of
their anisotropic generalizations. For other cases, the resulting solutions are generic
black holes with ”locally anisotropic hair”.

It should be emphasized, that general anholonomic frame transforms with associated
N–connection structure result in deformation of both metric and linear connection struc-
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tures. One can be generated spaces with nontrivial nonmetricity and torsion fields. There
are subclasses of deformations when the condition of metric and connection compatibil-
ity is preserved and the torsion fields are effectively induced by the anholonomic frame
structure. On such spaces we can work with the torsionless Levi–Civita connection or
(equivalently, but in a more general geometric form) with certain linear connections with
effective torsion. With respect to anholonomic frames (this can be naturally adapted
to the nonlinear connection structure), the Ricci tensor can be nonsymmetric and the
conservation lows are to be formulated in more sophisticate form. This is similar to
the nonholonomic mechanics with various types of constraints on dynamics (in modern
literature, one uses two equivalent terms, nonholonomic and/or anholonomic). Such
geometric constructions are largely used in generalized Lagrange–Hamilton and Finsler–
Cartan geometry [19], but for nonholonomic manifolds (i.e. manifolds provided with
nonintegrable distributions, in the simplest case defining a nonlinear connection) such
generalized geometries can be modelled by nonholnomic frames and their deformations
on (pseudo) Riemannian spaces, see details in Refs. [27]. This work is devoted to a study
of such 3D nonholonomic frame deformations and their possible physical implications in
lower–dimensional gravity.

We note that the anisotropic gravitational field has very unusual properties. For
instance, the vacuum solutions of Einstein anisotropic gravitational field equations could
describe anisotropic black holes with elliptic symmetry. Some subclasses of such locally
anisotropic spaces are teleparallel (with non–zero induced torsion but with vanishing
curvature tensor) another are characterized by nontrivial, induced from general relativity
on anholonomic frame bundle, N–connection and Riemannian curvature and anholonomy
induced torsion. In a more general approach the N–connection and torsion are induced
also from the condition that the metric and nonlinear connection must solve the Einstein
equations.

The paper is organized as follows: In the next section we briefly review the locally
anisotropic gravity in (2+1)–dimensions. Conformal transforms with anisotropic factors
and corresponding classes of solutions of Einstein equations with dynamical equations
for N–connection coefficients are examined in Sec. 3. In Sec. 4 we derive the energy–
momentum tensors for locally anisotropic elastic media and rotating null fluids. Sec. 5
is devoted to the local anisotropy of (2+1)–dimensional solutions of Einstein equations
with anisotropic matter. The nonlinear self–polarization of anisotropic vacuum gravita-
tional fields and matter induced polarizations and related topics on anisotropic black hole
solutions are considered in Sec. 6. We derive some basic formulas for thermodynamics
of anisotropic black holes in Sec. 7. The next Sec. 8 provides a statistical mechanics
background for locally anisotropic thermodynamics starting from the locally anisotropic
variants of Chern–Simons and Wess–Zumino–Witten models of locally anisotropic grav-
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ity. Finally, in Sec. 9 we conclude and discuss the obtained results.

5.2 Anholonomic Frames and 3D Gravity

In this Section we wish to briefly review and reformulate the Cartan’s method of mov-
ing frames [8] for investigation of gravitational and matter field interactions with mixed
subsets of holonomic (unconstrained) and anholonomic (constrained, equivalently, locally
anisotropic, in brief, la) variables [25]. Usual tetradic (frame, or vielbein) approaches
to general relativity, see, for instance, [20, 12], consider ’non–mixed’ cases when all ba-
sic vectors are anholonomic or transformed into coordinate (holonomic) ones. We note
that a more general geometric background for locally anisotropic interactions and locally
anisotropic spacetimes, with applications in physics, was elaborated by Miron and Anas-
tasiei [19] in their generalized Finsler and Lagrange geometry; further developments for
locally anisotropic spinor bundles and locally anisotropic superspaces are contained in
Refs [23, 24]. Here we restrict our constructions only to three dimensional (3D) pseudo–
Riemannian spacetimes provided with a global splitting characterized by two holonomic
and one anholonomic coordinates.

5.2.1 Anholonomic frames and nonlinear connections

We model the low dimensional spacetimes as a smooth (i. e. class C∞) 3D (pseudo)
Riemannian manifolds V (3) being Hausdorff, paracompact and connected and enabled
with the fundamental structures of symmetric metric gαβ, with signature (−,+,+) and of
linear, in general nonsymmetric (if we consider anholonomic frames), metric connection
Γαβγ defining the covariant derivation Dα. The indices of geometrical objects on V (3)

are stated with respect to a frame vector field (triad, or dreibien) eα and its dual eα. A
holonomic frame structure on 3D spacetime could be given by a local coordinate base

∂α = ∂/∂uα, (5.1)

consisting from usual partial derivatives on local coordinates u = {uα} and the dual
basis

dα = duα, (5.2)

consisting from usual coordinate differentials duα.
An arbitrary holonomic frame eα could be related to a coordinate one by a local

linear transform eα = A β
α (u)∂β, for which the matrix A β

α is nondegenerate and there
are satisfied the holonomy conditions

eαeβ − eβeα = 0.
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Let us consider a 3D metric parametrized into (2 + 1) components

gαβ =

[
gij +N•

i N
•
j h•• N•

j h••
N•
i h•• h••

]
(5.3)

given with respect to a local coordinate basis (5.2), duα = (dxi, dy) , where the Greek
indices run values 1, 2, 3, the Latin indices i, j, k, ... from the middle of the alphabet run
values for n = 1, 2, ... and the Latin indices from the beginning of the alphabet, a, b, c, ...,
run values for m = 3, 4, .... if we wont to consider imbedding of 3D spaces into higher
dimension ones. The coordinates xi are treated as isotropic ones and the coordinate
y• = y is considered anholonomic (anisotropic). For 3D we denote that a, b, c, ... = •,
y• → y, hab → h•• = h and Na

i → N•
i = wi. The coefficients gij = gij (u) , h•• = h (u)

and N•
i = Ni(u) are supposed to solve the 3D Einstein gravitational field equations. The

metric (5.3) can be rewritten in a block (2× 2)⊕ 1 form

gαβ =

(
gij(u) 0

0 h(u)

)
(5.4)

with respect to the anholonomic basis (frame, anisotropic basis)

δα = (δi, ∂•) =
δ

∂uα
=

(
δi =

δ

∂xi
=

∂

∂xi
−N•

i (u)
∂

∂y
, ∂• =

∂

∂y

)
(5.5)

and its dual anholonomic frame

δβ =
(
di, δ•

)
= δuβ =

(
di = dxi, δ• = δy = dy +N•

k (u) dxk
)
.

where the coefficients N•
j (u) from (5.5) and (5.6) could be treated as the components

of an associated nonlinear connection (N–connection) structure [2, 19, 23, 24] which was
considered in Finsler and generalized Lagrange geometries and applied in general rela-
tivity and Kaluza–Klein gravity for construction of new classes of solutions of Einstein
equations by using the method of moving anholonomic frames [25]. On 3D (pseudo)–
Riemannian spaces the coefficients N•

j define a triad of basis vectors (dreibein) with
respect to which the geometrical objects (tensors, connections and spinors) are decom-
posed into holonomic (with indices i, j, ...) and anholonomic (provided with •–index)
components.

A local frame (local basis) structure δα on V (3) → V (2+1) (by (2 + 1) we denote the
N–connection splitting into 2 holonomic and 1 anholonomic variables in explicit form;
this decomposition differs from the usual two space and one time–like parametrizations)
is characterized by its anholonomy coefficients wαβγ defined from relations

δαδβ − δβδα = wγαβδγ. (5.6)
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The rigorous mathematical definition of N–connection is based on the formalism of hor-
izontal and vertical subbundles and on exact sequences in vector bundles [2, 19]. In this
work we introduce a N–connection as a distribution which for every point u = (x, y) ∈
V (2+1) defines a local decomposition of the tangent space

TuV
(2+1) = HuV

(2) ⊕ VuV (1).

into horizontal subspace, HuV
(2), and vertical (anisotropy) subspace, VuV

(1), which is
given by a set of coefficients N•

j (uα) . A N–connection is characterized by its curvature

Ω•
ij =

∂N•
i

∂xj
− ∂N•

j

∂xi
+N•

i

∂N•
j

∂y
−N•

j

∂N•
i

∂y
. (5.7)

The class of usual linear connections can be considered as a particular case of N–connecti-
ons when

N•
j (x, y) = Γ•

•j(x)y
•.

The elongation (by N–connection) of partial derivatives and differentials in the adapted
to the N–connection operators (5.5) and (5.6) reflects the fact that on the (pseudo)
Riemannian spacetime V (2+1) it is modelled a generic local anisotropy characterized by
anholonomy relations (5.6) when the anholonomy coefficients are computed as follows

wkij = 0, wk•j = 0, wki• = 0, wk•• = 0, w•
•• = 0, (5.8)

w•
ij = −Ω•

ij , w
•
•j = −∂•N•

i , w
•
i• = ∂•N

•
i .

The frames (5.5) and (5.6) are locally adapted to the N–connection structure, define a
local anisotropy and, in brief, are called anholonomic bases. A N–connection structure
distinguishes (d) the geometrical objects into horizontal and vertical components, i.
e. transform them into d–objects which are briefly called d–tensors, d–metrics and d–
connections. Their components are defined with respect to an anholonomic basis of type
(5.5), its dual (5.6), or their tensor products (d–linear or d–affine transforms of such
frames could also be considered). For instance, a covariant and contravariant d–tensor
Q, is expressed

Q = Qα
βδα ⊗ δβ = Qi

jδi ⊗ dj +Qi
•δi ⊗ δ• +Q•

j∂• ⊗ dj +Q•
•∂• ⊗ δ•.

Similar decompositions on holonomic–anholonomic, conventionally on horizontal (h) and
vertical (v) components, hold for connection, torsion and curvature components adapted
to the N–connection structure.
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5.2.2 Compatible N- and d–connections and metrics

A linear d–connection D on a locally anisotropic spacetime V (2+1),
Dδγδβ = Γαβγ (x, y) δα, is given by its h–v–components,

Γαβγ =
(
Li jk, L

•
•k, C

i
j•, C

•
••
)

where
Dδkδj = Li jkδi, Dδk∂• = L•

•k∂•, D∂•δj = Ci
j•δi, Dδ•∂• = C•

••∂•. (5.9)

A metric on V (2+1) with its coefficients parametrized as (5.3) can be written in dis-
tinguished form (5.4), as a metric d–tensor (in brief, d–metric), with respect to an
anholonomic base (5.6), i. e.

δs2 = gαβ (u) δα ⊗ δβ = gij(x, y)dx
idxj + h(x, y)(δy)2. (5.10)

Some N–connection, d–connection and d–metric structures are compatible if there are
satisfied the conditions

Dαgβγ = 0.

For instance, a canonical compatible d–connection

cΓαβγ =
(
cLi jk,

c L•
•k,

cCi
j•,

c C•
••
)

is defined by the coefficients of d–metric (5.10), gij (x, y) and h (x, y) , and by the coeffi-
cients of N–connection,

cLi jk =
1

2
gin (δkgnj + δjgnk − δngjk) ,

cL•
•k = ∂•N

•
k +

1

2
h−1 (δkh− 2h∂•N

•
i ) ,

cCi
j• =

1

2
gik∂•gjk,

cC•
•• =

1

2
h−1 (∂•h) . (5.11)

The coefficients of the canonical d–connection generalize for locally anisotropic space-
times the well known Christoffel symbols. By a local linear non–degenerate transform to
a coordinate frame we obtain the coefficients of the usual (pseudo) Riemannian metric
connection. For a canonical d–connection (5.11), hereafter we shall omit the left–up
index ”c”, the components of canonical torsion,

T (δγ, δβ) = T αβγδα,

T αβγ = Γαβγ − Γαγβ + wαβγ
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are expressed via d–torsions

T i.jk = T ijk = Lijk − Likj , T ij• = Ci
.j•, T

i
•j = −Ci

j•,

T a.bc = Sa.bc = Ca
bc − Ca

cb → S•
.•• ≡ 0, (5.12)

T •
.ij = −Ω•

ij , T •
.•i = ∂•N

•
i − L•

.•i, T •
.i• = −T •

.•i

which reflects the anholonomy of the corresponding locally anisotropic frame of reference
on V (2+1); they are induced effectively. With respect to holonomic frames the d–torsions
vanishes. Putting the non–vanishing coefficients (5.11) into the formula for curvature

R (δτ , δγ) δβ = R α
β γτδα,

R α
β γτ = δτΓ

α
βγ − δγΓαβδ + ΓϕβγΓ

α
ϕτ − ΓϕβτΓ

α
ϕγ + Γαβϕw

ϕ
γτ

we compute the components of canonical d–curvatures

R.i
h.jk = δkL

i
.hj − δjLi.hk + Lm.hjL

i
mk − Lm.hkLimj − Ci

.h•Ω
•
.jk,

R.•
•.jk = δkL

•
.•j − δjL•

.•k − C•
.••Ω

•
.jk, (5.13)

P .i
j.k• = δkL

i
.jk + Ci

.j•T
•
.k• − (δkC

i
.j• + Li.lkC

l
.j• − Ll.jkCi

.l• − L•
.•kC

i
.j•),

P .•
•.k• = ∂•L

•
.•k + C•

.••T
•
.k• − (δkC

•
.•• − L•

.•kC
•
.••),

S .ij.bc = ∂cC
i
.jb − ∂bCi

.jc + Ch
.jbC

i
.hc − Ch

.jcC
i
hb → S .ij.•• ≡ 0,

S .ab.cd = ∂dC
a
.bc − ∂cCa

.bd + Ce
.bcC

a
.ed − Ce

.bdC
a
.ec → S .••.•• ≡ 0.

The h–v–decompositions for the torsion, (5.12), and curvature, (5.13), are invariant
under local coordinate transforms adapted to a prescribed N–connection structure.

5.2.3 Anholonomic constraints and Einstein equations

The Ricci d–tensor Rβγ = R α
β γα has the components

Rij = R.k
i.jk, Ri• = −2Pia = −P .k

i.k•, (5.14)

R•i = 1P•i = P .•
•.i•, Rab = S .ca.bc → S•• ≡ 0

and, in general, this d–tensor is non symmetric. We can compute the scalar curvature←−
R = gβγRβγ of a d-connection D,

←−
R = R̂ + S, (5.15)
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where R̂ = gijRij and S = habSab ≡ 0 for one dimensional anisotropies. By introducing
the values (5.14) and (5.15) into the usual Einstein equations

Gαβ + Λgαβ = kΥβγ, (5.16)

where

Gαβ = Rβγ −
1

2
gβγR (5.17)

is the Einstein tensor, written with respect to an anholonomic frame of reference, we
obtain the system of field equations for locally anisotropic gravity with N–connection
structure [19]:

Rij −
1

2

(
R̂− 2Λ

)
gij = kΥij , (5.18)

−1

2

(
R̂− 2Λ

)
h•• = kΥ••, (5.19)

1P•i = kΥ•i, (5.20)
2Pi• = −kΥi•, (5.21)

where Υij ,Υ••,Υ•i and Υi• are the components of the energy–momentum d–tensor field
Υβγ which includes the cosmological constant terms and possible contributions of d–
torsions and matter, and k is the coupling constant.

The bulk of nontrivial locally isotropic solutions in 3D gravity were constructed by
considering a cosmological constant Λ = −1/l2, with and equivalent vacuum energy–

momentum Υ
(Λ)
βγ = −Λgβγ .

5.2.4 Some ansatz for d–metrics

Diagonal d-metrics

Let us introduce on 3D locally anisotropic spacetime V (2+1) the local coordinates
(x1, x2, y), where y is considered as the anisotropy coordinate, and parametrize the d–
metric (5.10) in the form

δs2 = a
(
xi
) (
dx1
)2

+ b
(
xi
)
(dx2)2 + h

(
xi, y

)
(δy)2, (5.22)

where
δy = dy + w1(x

i, y)dx1 + w2(x
i, y)dx2,

i. e. N•
i = wi(x

i, y).
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With respect to the coordinate base (5.1) the d–metric (5.10) transforms into the
ansatz

gαβ =



a+ w 2

1 h w1w2h w1h
w1w2h b+ w 2

2 h w2h
w1h w2h h


 . (5.23)

The nontrivial components of the Ricci d–tensor (5.14) are computed

2abR1
1 = 2abR2

2 − b̈+
1

2b
ḃ2 +

1

2a
ȧḃ+

1

2b
a′b′ − a′′ + 1

2a
(a′)2

where the partial derivatives are denoted, for instance, ḣ = ∂h/∂x1, h′ = ∂h/∂x2 and
h∗ = ∂h/∂y. The scalar curvature is R = 2R1

1.
The Einstein d–tensor has a nontrivial component

G3
3 = −hR1

1.

In the vacuum case with Λ = 0, the Einstein equations (5.18)–(5.21) are satisfied by
arbitrary functions a (xi) , b (xi) solving the equation

−b̈+
1

2b
ḃ2 +

1

2a
ȧḃ+

1

2b
a′b′ − a′′ + 1

2a
(a′)2 = 0 (5.24)

and arbitrary function h (xi, y) . Such functions should be defined following some bound-
ary conditions in a manner as to have compatibility with the locally isotropic limit.

Off–diagonal d–metrics

For our further investigations it is convenient to consider d–metrics of type

δs2 = g
(
xi
) (
dx1
)2

+ 2dx1dx2 + h
(
xi, y

)
(δy)2. (5.25)

The nontrivial components of the Ricci d–tensor are

R11 =
1

2
g
∂2g

∂(x2)2
, R12 = R21 =

1

2

∂2g

∂(x2)2
, (5.26)

when the scalar curvature is R = 2R12 and the nontrivial component of the Einstein
d–tensor is

G33 = −h
2

∂2g

∂(x2)2
.
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We note that for the both d–metric ansatz (5.22) and (5.25) and corresponding
coefficients of Ricci d–tensor, (5.24) and (5.26), the h–components of the Einstein d–
tensor vanishes for arbitrary values of metric coefficients, i. e. Gij = 0. In absence
of matter such ansatz admit arbitrary nontrivial anholonomy (N–connection and N–
curvature) coefficients (5.8) because the values wi are not contained in the 3D vacuum
Einstein equations. The h–component of the d–metric, h(xk, y), and the coefficients of
d–connection, wi(x

k, y), are to be defined by some boundary conditions (for instance,
by a compatibility with the locally isotropic limit) and compatibility conditions between
nontrivial values of the cosmological constant and energy–momentum d–tensor.

5.3 Conformal Transforms with Anisotropic Factors

One of pecular proprieties of the d–metric ansatz (5.22) and (5.25) is that there is only
one non–trivial component of the Einstein d–tensor, G33. Because the values P3i and Pi3
for the equations (5.19) and (5.20) vanish identically the coefficients of N–connection,
wi, are not contained in the Einstein equations and could take arbitrary values. For
static anisotropic configurations the solutions constructed in Sections IV and V can be
considered as 3D black hole like objects embedded in a locally anisotropic background
with prescribed anholonomic frame (N–connection) structure.

In this Section we shall proof that there are d–metrics for which the Einstein equations
reduce to some dynamical equations for the N–connection coefficients.

5.3.1 Conformal transforms of d–metrics

A conformal transform of a d–metric

(gij, hab) −→
(
g̃ij = Ω2

(
xi, y

)
gij, h̃ab = Ω2

(
xi, y

)
hab

)
(5.27)

with fixed N–connection structure, Ña
i = Na

i , deforms the coefficients of canonical d–
connection,

Γ̃αβγ = Γαβγ + Γ̂αβγ ,

where the coefficients of deformation d–tensor Γ̂αβγ = {L̂ijk, L̂abk, Ĉi
jc, Ĉ

a
bc} are computed

by introducing the values (5.27) into (5.11),

L̂ijk = δijψk + δikψj − gjkginψn, L̂abk = δabψk, (5.28)

Ĉi
jc = δijψc, Ĉ

a
bc = δabψc + δacψb − hbchaeψe
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with δij and δab being corresponding Kronecker symbols in h– and v–subspaces and

ψi = δi ln Ω and ψa = ∂a ln Ω.

In this subsection we present the general formulas for a n–dimensional h–subspace,
with indices i, j, k... = 1, 2, ...n, and m–dimensional v–subspace, with indices a, b, c, ... =
1, 2, ...m.

The d–connection deformations (5.28) induce conformal deformations of the Ricci
d–tensor (5.14),

R̃hj = Rhj + R̂[1]hj + R̂[2]hj, R̃ja = Rja + R̂ja,

R̃bk = Rbk + R̂bk, S̃bc = Sbc + Ŝbc,

where the deformation Ricci d–tensors are

R̂[1]hj = ∂iL̂
i
hj − ∂jL̂h + L̂mhjLm + LmhjL̂m + L̂mhjL̂m − L̂mhiLimj − LmhiL̂imj − L̂mhiL̂imj ,

R̂[2]hj = Na
i ∂aL̂

i
hj −Na

j ∂aL̂h + Ĉi
haR

a
ji; (5.29)

R̂ja = −∂aL̂j + δiĈ
i
ja + LikiĈ

k
ja − LkjiĈi

ka − LbaiĈi
jb − Ĉi

jbP
b
ia − Ci

jbP̂
b
ia − Ĉi

jbP̂
b
ia,

R̂bk = ∂aL̂
a
bk − δkĈb + LabkĈa + Ĉa

bdP
d
ka + Ca

bdP̂
d
ka + Ĉa

bdP̂
d
ka,

Ŝbc = ∂aĈ
a
bc − ∂cĈb + Ĉe

bcCe + Ce
bcĈe + Ĉe

bcĈe − Ĉe
baC

a
ec − Ce

baĈ
a
ec − Ĉe

baĈ
a
ec,

when L̂h = L̂ihi and Ĉb = Ĉe
be.

5.3.2 An ansatz with adapted conformal factor and N–connec-
tion

We consider a 3D metric

gαβ =




Ω2(a− w 2
1 h) −w1w2hΩ

2 −w1hΩ
2

−w1w2hΩ
2 Ω2(b− w 2

2 h) −w2hΩ
2

−w1hΩ
2 −w2hΩ

2 −hΩ2


 (5.30)

where a = a(xi), b = b (xi) , wi = wi(x
k, y),Ω = Ω

(
xk, y

)
≥ 0 and h = h

(
xk, y

)
when the

conditions

ψi = δi ln Ω =
∂

∂xi
ln Ω− wi ln Ω = 0

are satisfied. With respect to anholonomic bases (5.6) the (5.30) transforms into the
d–metric

δs2 = Ω2(xk, y)[a(xk)(dx1)2 + b(xk)(dx1)2 + h
(
xk, y

)
(δy)2]. (5.31)
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By straightforward calculus, by applying consequently the formulas (5.13)–(5.21) we
find that there is a non–trivial coefficient of the Ricci d–tensor (5.14), of the deformation
d–tensor (5.29),

R̂j3 = ψ3 · δj ln
√
|h|,

which results in non–trivial components of the Einstein d-tensor (5.17),

G3
3 = −hR1

1 and P•i = −ψ3 · δj ln
√
|h|,

where R1
1 is given by the formula (5.24).

We can select a class of solutions of 3D Einstein equations with P•j = 0 but with the
horizontal components of metric depending on anisotropic coordinate y, via conformal
factor Ω(xk, y), and dynamical components of the N–connection, wi, if we choose

h(xk, y) = ±Ω2(xk, y)

and state
wi(x

k, y) = ∂i ln | lnΩ|. (5.32)

Finally, we not that for the ansatz (5.30) (equivalently (5.31)) the coefficients of N–
connection have to be found as dynamical values by solving the Einstein equations.

5.4 Matter Energy Momentum D–Tensors

5.4.1 Variational definition of energy-momentum d–tensors

For locally isotropic spacetimes the symmetric energy momentum tensor is to be
computed by varying on the metric (see, for instance, Refs. [12, 20]) the matter action

S =
1

c

∫
L
√
|g|dV,

where L is the Lagrangian of matter fields, c is the light velocity and dV is the infinites-
imal volume, with respect to the inverse metric gαβ. By definition one states that the
value

1

2

√
|g|Tαβ =

∂(
√
|g|L)

∂gαβ
− ∂

∂uτ
∂(
√
|g|L)

∂gαβ/∂uτ
(5.33)

is the symmetric energy–momentum tensor of matter fields. With respect to anholonomic
frames (5.5) and (5.6) there are imposed constraints of type

gib −N•
i h = 0
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in order to obtain the block representation for d–metric (5.4). Such constraints, as well
the substitution of partial derivatives into N–elongated, could result in nonsymmetric
energy–momentum d–tensors Υαβ which is compatible with the fact that on a locally
anisotropic spacetime the Ricci d–tensor could be nonsymmetric.

The gravitational–matter field interactions on locally anisotropic spacetimes are de-
scribed by dynamical models with imposed constraints (a generalization of anholonomic
analytic mechanics for gravitational field theory). The physics of systems with mixed
holonomic and anholonomic variables states additional tasks connected with the defini-
tion of conservation laws, interpretation of non–symmetric energy–momentum tensors
Υαβ on locally anisotropic spacetimes and relation of such values with, for instance, the
non–symmetric Ricci d–tensor. In this work we adopt the convention that for locally
anisotropic gravitational matter field interactions the non–symmetric Ricci d–tensor in-
duces a non–symmetric Einstein d–tensor which has as a source a corresponding non–
symmetric matter energy–momentum tensor. The values Υαβ should be computed by a
variational calculus on locally anisotropic spacetime as well by imposing some constraints
following the symmetry of anisotropic interactions and boundary conditions.

In the next subsection we shall investigate in explicit form some cases of definition of
energy momentum tensor for locally anisotropic matter on locally anisotropic spacetime.

5.4.2 Energy–Momentum D–Tensors for Anisotropic Media

Following DeWitt approach [28] and recent results on dynamical collapse and hair
of black holes of Husain and Brown [13], we set up a formalism for deriving energy–
momentum d–tensors for locally anisotropic matter.

Our basic idea for introducing a local anisotropy of matter is to rewrite the energy–
momentum tensors with respect to locally adapted frames and to change the usual partial
derivations and differentials into corresponding operators (5.5) and (5.6), ”elongated” by
N–connection. The energy conditions (weak, dominant, or strong) in a locally anisotropic
background have to be analyzed with respect to a locally anisotropic basis.

We start with DeWitt’s action written in locally anisotropic spacetime,

S
[
gαβ , z

i
]

= −
∫

V

δ3u
√−gρ

(
zi, qjk

)
,

as a functional on region V, of the locally anisotropic metric gαβ and the Lagrangian co-
ordinates zi = zi (uα) (we use underlined indices i, j, ... = 1, 2 in order to point out that
the 2–dimensional matter space could be different from the locally anisotropic space-
time). The functions zi = zi (uα) are two scalar locally anisotropic fields whose locally
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anisotropic gradients (with partial derivations substituted by operators (5.1)) are orthog-
onal to the matter world lines and label which particle passes through the point uα. The
action S [gαβ, z

i] is the proper volume integral of the proper energy density ρ in the rest

anholonomic frame of matter. The locally anisotropic density ρ
(
zi, qjk

)
depends explic-

itly on zi and on matter space d–metric qij = (δαz
i) gαβ

(
δβz

j
)
, which is interpreted as

the inverse d–metric in the rest anholonomic frame of the matter.
Using the d–metric qij and locally anisotropic fluid velocity V α, defined as the future

pointing unit d–vector orthogonal to d–gradients δαz
i, the locally anisotropic spacetime

d–metric (5.10) of signature (–,+,+) may be written in the form

gαβ = −VαVβ + qjkδαz
jδβz

k

which allow us to define the energy–momentum d–tensor for elastic locally anisotropic
medium as

Υβγ ≡ −
2√−g

δS

δgβγ
ρVβVγ + tjkδβz

jδγz
k,

where the locally anisotropic matter stress d–tensor tjk is expressed as

tjk = 2
δρ

∂qjk
− ρqjk =

2√
q

δ
(√

qρ
)

∂qjk
. (5.34)

Here one should be noted that on locally anisotropic spaces

DαΥ
αβ = Dα

(
Rαβ − 1

2
gαβR

)
= Jβ 6= 0

and this expression must be treated as a generalized type of conservation law with a
geometric source Jβ for the divergence of locally anisotropic matter d–tensor [19].

The stress–energy–momentum d–tensor for locally anisotropic elastic medium is de-
fined by applying N–elongated operators δα of partial derivatives (5.1),

Tαβ = − 2√−g
δS

δgαβ
= −ρgαβ + 2

∂ρ

∂qij
δαz

jδβz
k = −VαVβ + τijδαz

iδβz
j ,

where we introduce the matter stress d–tensor

τij = 2
∂ρ

∂qij
− ρqij =

2√
q

∂
(√

qρ
)

∂qij
.

The obtained formulas generalize for spaces with nontrivial N–connection structures the
results on isotropic and anisotropic media on locally isotropic spacetimes.



262 CHAPTER 5. ANHOLONOMIC TRIADS AND BLACK HOLE SOLUTIONS

5.4.3 Isotropic and anisotropic media

The isotropic elastic, but in general locally anisotropic medium is introduced as one
having equal all principal pressures with stress d–tensor being for a perfect fluid and the
density ρ = ρ (n) , where the proper density (the number of particles per unit proper
volume in the material rest anholonomic frame) is n = n (zi) /

√
q; the value n (zi) is the

number of particles per unit coordinate cell δ3z. With respect to a locally anisotropic
frame, using the identity

∂ρ (n)

∂qjk
=
n

2

∂ρ

∂n
qjk

in (5.34), the energy–momentum d–tensor (5.34) for a isotropic elastic locally anisotropic
medium becomes

Υβγ = ρVβVγ +

(
n
∂ρ

∂n
− ρ
)

(gβγ + VβVγ) .

This medium looks like isotropic with respect to anholonomic frames but, in general, it
is locally anisotropic.

The anisotropic elastic and locally anisotropic medium has not equal principal pres-
sures. In this case we have to introduce (1+1) decompositions of locally anisotropic
matter d–tensor qjk

qjk =

(
α2 + β2 β

β σ

)
,

and consider densities ρ (n1, n2) , where n1 and n2 are respectively the particle numbers

per unit length in the directions given by bi–vectors v1
j and v2

j . Substituting

∂ρ (n1, n2)

∂hjk
=
n1

2

∂ρ

∂n1
v1
j v

1
k +

n2

2

∂ρ

∂n2
v2
j v

2
k

into (5.34), which gives

tjk =

(
n1

∂ρ

∂n1

− ρ
)
v1
j v

1
k +

(
n2

∂ρ

∂n2

− ρ
)
v2
j v

2
k,

we obtain from (5.34) the energy–momentum d–tensor for the anisotropic locally aniso-
tropic matter

Υβγ = ρVβVγ +

(
n1

∂ρ

∂n1
− ρ
)
v1
j v

1
k +

(
n2

∂ρ

∂n2
− ρ
)
v2
j v

2
k.
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So, the pressure P1 =
(
n1

∂ρ
∂n1
− ρ
)

in the direction v1
j differs from the pressure

P2 =
(
n2

∂ρ
∂n2
− ρ
)

in the direction v2
j . For instance, if for the (2+1)–dimensional locally

anisotropic spacetime we impose the conditions Υ1
1 = Υ2

2 6= Υ3
3, when

ρ = ρ (n1) , z
1 (uα) = r, z2 (uα) = θ,

r and θ are correspondingly radial and angle coordinates on locally anisotropic spacetime,
we have

Υ1
1 = Υ2

2 = ρ,Υ3
3 =

(
n1

∂ρ

∂n1
− ρ
)
. (5.35)

We shall also consider the variant when the coordinated θ is anisotropic (t and r
being isotropic). In this case we shall impose the conditions Υ1

1 6= Υ2
2 = Υ3

3 for

ρ = ρ (n1) , z
1 (uα) = t, z2 (uα) = r

and

Υ1
1 =

(
n1

∂ρ

∂n1
− ρ
)
,Υ2

2 = Υ3
3 = ρ, . (5.36)

The anisotropic elastic locally anisotropic medium described here satisfies respectively
weak, dominant, or strong energy conditions only if the corresponding restrictions are
placed on the equation of state considered with respect to an anholonomic frame (see
Ref. [13] for similar details in locally isotropic cases). For example, the weak energy
condition is characterized by the inequalities ρ ≥ 0 and ∂ρ/∂n1 ≥ 0.

5.4.4 Spherical symmetry with respect to holonomic and an-
holonomic frames

In radial coordinates (t, r, θ) (with −∞ ≤ t < ∞, 0 ≤ r < ∞, 0 ≤ θ ≤ 2π) for a
spherically symmetric 3D metric (5.23)

ds2 = −f (r) dt2 +
1

f (r)
dr2 + r2dθ2, (5.37)

with the energy–momentum tensor (5.33) written

Tαβ = ρ (r) (vαwβ + vβwα) + P (r) (gαβ + vαwβ + vβwα) ,
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where the null d–vectors vα and wβ are defined by

Vα =

(√
f,− 1√

f
, 0

)
=

1√
2

(vα + wα) ,

qα =

(
0,

1√
f
, 0

)
=

1√
2

(vα − wα) .

In order to investigate the dynamical spherically symmetric [5] collapse solutions it
is more convenient to use the coordinates (v, r, θ) , where the advanced time coordinate
v is defined by dv = dt+ (1/f) dr. The metric (5.37) may be written

ds2 = −e2ψ(v,r)F (v, r)dv2 + 2eψ(v,r)dvdr + r2θ2, (5.38)

where the mass function m (v, r) is defined by F (v, r) = 1 − 2m (v, r) /r. Usually, one
considers the case ψ (v, r) = 0 for the type II [12] energy–momentum d–tensor

Tαβ =
1

2πr2

δm

∂v
vαvβ + ρ (v, r) (vαwβ + vβwα) + P (v, r) (gαβ + vαwβ + vβwα)

with the eigen d–vectors vα = (1, 0, 0) and wα = (F/2,−1, 0) and the non–vanishing
components

Tvv = ρ (v, r)

(
1− 2m (v, r)

r

)
+

1

2πr2

δm (v, r)

∂v
, (5.39)

Tvr = −ρ (v, r) , Tθθ = P (v, r) gθθ.

To describe a locally isotropic collapsing pulse of radiation one may use the metric

ds2 =
[
Λr2 +m (v)

]
dv2 + 2dvdr − j (v) dvdθ + r2dθ2, (5.40)

with the Einstein field equations (5.16) reduced to

∂m (v)

dv
= 2πρ (v) ,

∂j (v)

dv
= 2πω (v)

having non–vanishing components of the energy–momentum d–tensor (for a rotating null
locally anisotropic fluid),

Tvv =
ρ (v)

r
+
j (v)ω (v)

2r3
, Tvθ = −ω (v)

r
, (5.41)

where ρ (v) and ω (v) are arbitrary functions.
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In a similar manner we can define energy–momentum d–tensors for various systems of
locally anisotropic distributed matter fields; all values have to be re–defined with respect
to anholonomic bases of type (5.5) and (5.6). For instance, let us consider the angle θ
as the anisotropic variable. In this case we have to ’elongate’ the differentials,

dθ→ δθ = dθ + wi (v, r, θ) dx
i,

for the metric (5.38) (or (5.40)), by transforming it into a d–metric, substitute all partial
derivatives into N–elongated ones,

∂i → δi = ∂i − wi (v, r, θ)
∂

∂θ
,

and ’N–extend’ the operators defining the Riemannian, Ricci, Einstein and energy–mo-
mentum tensors Tαβ , transforming them into respective d–tensors. We compute the
components of the energy–momentum d–tensor for elastic media as the coefficients of
usual energy–momentum tensor redefined with respect to locally anisotropic frames,

Υ11 = T11 + (w1)
2 T33,Υ33 = T33 (5.42)

Υ22 = T22 + (w2)
2 T33,Υ12 = Υ21 = T21 + w2w1T33,

Υi3 = Ti3 + wiT33,Υ3i = T3i + wiT33,

where the Tαβ are given by the coefficients (5.39) (or (5.41)). If the isotropic energy–
momentum tensor does not contain partial derivatives, the corresponding d–tensor is also
symmetric which is less correlated with the possible antisymmetry of the Ricci tensor (for
such configurations we shall search solutions with vanishing antisymmetric components).

5.5 3D Solutions Induced by Anisotropic Matter

We investigate a new class of solutions of (2+1)–dimensional Einstein equations cou-
pled with anisotropic matter [5, 13, 3, 9, 22] which describe locally anisotropic collapsing
configurations.

Let us consider the locally isotropic metric

ĝαβ =



g (v, r) 1/2 0

1/2 0 0
0 0 r2


 (5.43)

which solves the locally isotopic variant of Einstein equations (5.16) if

g (v, r) = −[1− 2g(v)− 2h(v)r1−k − Λr2], (5.44)
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where the functions g(v) and h(v) define the mass function

m(r, v) = g(v)r + h(v)r2−k +
Λ

2
r2

satisfying the dominant energy conditions

P ≥ 0, ρ ≥ P, Tabw
awb > 0

if
dm

dv
=
dg

dv
r +

dh

dv
r2−k > 0.

Such solutions of the Vaidya type with locally isotropic null fluids have been considered
in Ref. [13].

5.5.1 Solutions with generic local anisotropy in spherical coor-
dinates

By introducing a new time–like variable

t = v +

∫
dr

g (v, r)

the metric(5.43) can be transformed in diagonal form

ds2 = −g (t, r) dt2 +
1

g (t, r)
dr2 + r2dθ2 (5.45)

which describe the locally isotropic collapse of null fluid matter.
A variant of locally anisotropic inhomogeneous collapse could be modelled, for in-

stance, by the N–elongation of the variable θ in (5.45) and considering solutions of
vacuum Einstein equations for the d–metric (a particular case of (5.46))

ds2 = −g (t, r) dt2 +
1

g (t, r)
dr2 + r2δθ2, (5.46)

where
δθ = dθ + w1 (t, r, θ) dt+ w2 (t, r, θ) dr.

The coefficients g (t, r) , 1/g (t, r) and r2 of the d–metric were chosen with the aim that
in the locally isotropic limit, when wi → 0, we shall obtain the 3D metric (5.45). We
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note that the gravitational degrees of freedom are contained in nonvanishing values of
the Ricci d–tensor (5.14),

R1
1 = R2

2 =
1

2g3
[(
∂g

∂r
)2 − g3∂

2g

∂t2
− g∂

2g

∂r2
], (5.47)

of the N–curvature (5.7),

Ω3
12 = −Ω3

21 =
∂w1

∂r
− ∂w2

∂t
− w2

∂w1

∂θ
+ w1

∂w2

∂θ
,

and d–torsion (5.12)

P 3
13 =

1

2

(
1 + r4

) ∂w1

∂θ
, P 3

23 =
1

2

(
1 + r4

) ∂w2

∂θ
− r3.

We can construct a solution of 3D Einstein equations with cosmological constant Λ
(5.16) and energy momentum d–tensor Υαβ, when Υij = Tij+wiwjT33,Υ3j = T3j+wjT33

and Υ33 = T33 when Tαβ is given by a d–tensor of type (5.36), Tαβ = {n1
∂ρ
∂n1

, P, 0} with

anisotropic matter pressure P. A self–consistent solution is given by

Λ = κn1
∂ρ

∂n1

= κP, and h =
κρ

R1
1 + Λ

(5.48)

where R1
1 is computed by the formula (5.47) for arbitrary values g (t, r) . For instance,

we can take the g(ν, r) from (5.44) with ν → t = ν +
∫
g−1(ν, r)dr.

For h = r2, the relation (5.48) results in an equation for g(t, r),

(
∂g

∂r
)2 − g3∂

2g

∂t2
− g∂

2g

∂r2
= 2g3

(κρ
r2
− Λ

)
.

The static configurations are described by the equation

gg′′ − (g′)2 +̟(r)g3 = 0, (5.49)

where

̟(r) = 2

(
κρ (r)

r2
− Λ

)

and the prime denote the partial derivative ∂/∂r. There are four classes (see ([17])) of
solutions of the equation (5.49), which depends on constants of the relation

(ln |g|)′ = ±
√

2|̟(r)|(C1 ∓ g),
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where the minus (plus) sign under square root is taken for ̟(r) > 0 (̟(r) < 0) and
the constant C1 can be negative, C1 = −c2, or positive, C1 = c2. In explicit form the
solutions are

g(r) =





c−2 cosh−2
[
c
2

√
2|̟(r)| (r − C2)

]
,

for ̟(r) > 0, C1 = c2 ;

c−2 sinh−2
[
c
2

√
2|̟(r)| (r − C2)

]
,

for ̟(r) < 0, C1 = c2 ;

c−2 sin−2
[
c
2

√
2|̟(r)| (r − C2)

]
6= 0 ,

for ̟(r) < 0, C1 = −c2 ;

−2̟(r)−1(r − C2)
−2 ,

for ̟(r) < 0, C1 = 0,

(5.50)

where C2 = const. The values of constants are to be found from boundary conditions. In
dependence of prescribed type of matter density distribution and of values of cosmological
constant one could fix one of the four classes of obtained solutions with generic local
anisotropy of 3D Einstein equations.

The constructed in this section static solutions of 3D Einstein equations are locally
anisotropic alternatives (with proper phases of anisotropic polarizations of gravitational
field) to the well know BTZ solution. Such configurations are possible if anholonomic
frames with associated N–connection structures are introduced into consideration.

5.5.2 An anisotropic solution in (ν, r, θ)–coordinates

For modelling a spherical collapse with generic local anisotropy we use the d–metric
(5.25) by stating the coordinates x1 = v, x2 = r and y = θ. The equations (5.16) are
solved if

κρ(v, r) = Λ and κP (v, r) = −Λ− 1

2

∂2g

∂r2

for

g =
κ

Λ

[
ρ(v, r)

(
1− 2m(v, r)

r

)
+

1

2πr2

δm(v, r)

δv

]
.

Such metrics depend on classes of functions. They can be extended ellipsoidal configu-
rations and additional polarizations.

5.5.3 A solution for rotating two locally anisotropic fluids

The anisotropic configuration from the previous subsection admits a generalization to
a two fluid elastic media, one of the fluids being of locally anisotropic rotating configura-
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tion. For this model we consider an anisotropic extension of the metric (5.40) and of the
sum of energy–momentum tensors (5.39) and (5.41). The coordinates are parametrized
x1 = v, x2 = r, y = θ and the d–metric is given by the ansatz

gij =

(
g(v, r) 1

1 0

)
and h = h(v, r, θ).

The nontrivial components of the Einstein d–tensor is

G33 = −1

2
h
∂2g

∂r2
.

We consider a non–rotating fluid component with nontrivial energy–momentum compo-
nents

(1)Tvv = (1)ρ (v, r)

(
1− 2(1)m (v, r)

r

)
+

1

2πr2

δ(1)m (v, r)

∂v
, (1)Tvr = −(1)ρ (v, r) .

and a rotating null locally anisotropic fluid with energy–momentum components

(2)Tvv =
(2)ρ (v)

r
+

(2)j (v) (2)ω (v)

2r3
, (2)Tvθ = −

(2)ω (v)

r
.

The nontrivial components of energy momentum d–tensor Υαβ = (1)Υαβ + (2)Υαβ (asso-
ciated in the locally anisotropic limit to (5.41) and/or (5.39)) are computed by using the
formulas (5.51), (5.51) and (5.42).

The Einstein equations are solved by the set of functions

g(v, r), (1)ρ (v, r) , (1)m (v, r) , (2)ρ (v) , (2)j (v) , (2)ω (v)

satisfying the conditions

g(v, r) =
κ

Λ

[
(1)Tvv + (2)Tvv

]
, and Λ =

1

2

∂2g

∂r2
= κ (1)Tvr,

where h (v, r, θ) is an arbitrary function which results in nontrivial solutions for the N–
connection coefficients wi (v, r, θ) if Λ 6= 0. In the locally isotropic limit, for (1)ρ,(1)m = 0,
we could take g(v, r) = g1(v) + Λr2, w1 = −j(v)/(2r2) and w2 = 0 which results in a
solution of the Vaidya type with locally isotropic null fluids [9].

The main conclusion of this subsection is that we can model the 3D collapse of
inhomogeneous null fluid by using vacuum locally anisotropic configurations polarized
by an anholonomic frame in a manner as to reproduce in the locally isotropic limit the
usual BTZ geometry.

We end this section with the remark that the locally isotropic collapse of dust without
pressure was analyzed in details in Ref. [22].
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5.6 Gravitational Anisotropic Polarizations

and Black Holes

If we introduce in consideration anholonomic frames, locally anisotropic black hole
configurations are possible even for vacuum locally anisotropic spacetimes without mat-
ter. Such solutions could have horizons with deformed circular symmetries (for instance,
elliptic one) and a number of unusual properties comparing with locally isotropic black
hole solutions. In this Section we shall analyze two classes of such solutions. Then we
shall consider the possibility to introduces matter sources and analyze such configura-
tions of matter energy density distribution when the gravitational locally anisotropic
polarization results into constant renormalization of constants of BTZ solution.

5.6.1 Non–rotating black holes with ellipsoidal horizon

We consider a metric (5.30) for local coordinates (x1 = r, x2 = θ, y = t), where t is
the time–like coordinate and the coefficients are parametrized

a(xi) = a (r) , b(xi) = b(r, θ) (5.51)

and

h(xi, y) = h (r, θ) . (5.52)

The functions a(r) and b (r, θ) and the coefficients of nonlinear connection wi(r, θ, t)
will be found as to satisfy the vacuum Einstein equations (5.24) with arbitrary function
h(xi, y) (5.52) stated in the form in order to have compatibility with the BTZ solution
in the locally isotropic limit.

We consider a particular case of d-metrics (5.31) with coefficients like (5.51) and
(5.52) when

h(r, θ) = 4Λ3(θ)

(
1− r2

+(θ)

r2

)3

(5.53)

where, for instance,

r2
+(θ) =

p2

[1 + ε cos θ]2
(5.54)

is taken as to construct a 3D solution of vacuum Einstein equations with generic local
anisotropy having the horizon given by the parametric equation

r2 = r2
+(θ)
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describing a ellipse with parameter p and eccentricity ε. We have to identify

p2 = r2
+[0] = −M0/Λ0,

where r+[0],M0 and Λ0 are respectively the horizon radius, mass parameter and cosmo-
logical constant of the non–rotating BTZ solution [3] if we wont to have a connection
with locally isotropic limit with ε → 0. We can consider that the elliptic horizon (5.54)
is modelled by the anisotropic mass

M (θ) = M0/ [1 + ε cos θ]2 .

For the coefficients (5.51) the equations (5.24) simplifies into

−b̈+
1

2b
ḃ2 +

1

2a
ȧḃ = 0, (5.55)

where (in this subsection) ḃ = ∂b/∂r. The general solution of (5.55), for a given function
a(r) is defined by two arbitrary functions b[0](θ) and b[1](θ) (see [17]),

b(r, θ) =

[
b[0](θ) + b[1](θ)

∫ √
|a(r)|dr

]2

.

If we identify

b[0](θ) = 2
Λ(θ)√
|Λ0|

r2
+(θ) and b[1](θ) = −2

Λ(θ)

Λ0
,

we construct a d–metric locally anisotropic solution of vacuum Einstein equations

δs2 = Ω2 (r, θ) (5.56)[
4r2|Λ0|dr2 +

4

|Λ0|
Λ2(θ)

[
r2
+(θ)− r2

]2
dθ2 − 4

|Λ0|r2
Λ3(θ)

[
r2
+(θ)− r2

]3
δt2
]
,

where
δt = dt+ w1(r, θ)dr + w2(r, θ)dθ

is to be associated to a N–connection structure

wr = ∂r ln | lnΩ| and wθ = ∂θ ln | lnΩ|

with Ω2 = ±h(r, θ), where h(r, θ) is taken from (5.53). In the simplest case we can
consider a constant effective cosmological constant Λ(θ) ≃ Λ0.
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The matrix

gαβ = Ω2



a− w 2

1 h −w1w2h −w1h
−w1w2h b− w 2

2 h −w2h
−w1h −w2h −h


 .

parametrizes a class of solutions of 3D vacuum Einstein equations with generic local
anisotropy and nontrivial N–connection curvature (5.7), which describes black holes with
variable mass parameter M (θ) and elliptic horizon. As a matter of principle, by fixing
necessary functions b[0](θ) and b[1](θ) we can construct solutions with effective (polar-
ized by the vacuum anisotropic gravitational field) variable cosmological constant Λ(θ).
We emphasize that this type of anisotropic black hole solutions have been constructed
by solving the vacuum Einstein equations without cosmological constant. Such type
of constants or varying on θ parameters were introduced as some values characterizing
anisotropic polarizations of vacuum gravitational field and this approach can be devel-
oped if we are considering anholonomic frames on (pseudo) Riemannian spaces. For the
examined anisotropic model the cosmological constant is induced effectively in locally
isotropic limit via specific gravitational field vacuum polarizations.

5.6.2 Rotating black holes with running in time constants

A new class of solutions of vacuum Einstein equations is generated by a d–metric
(5.22) written for local coordinates (x1 = r, x2 = t, y = θ), where as the anisotropic
coordinate is considered the angle variable θ and the coefficients are parametrized

a(xi) = a (r) , b(xi) = b(r, t) (5.57)

and
h(xi, y) = h (r, t) . (5.58)

Let us consider a 3D metric

ds2 = 4
ψ2

r2
dr2 −

N4
[s]ψ

4

r4
dt2 +

N2
(s)ψ

6

r4

[
dθ +N[θ]dt

]2

which is conformally equivalent (if multiplied to the conformal factor 4N2
(s)ψ

4/r4) to the
rotating BTZ solution with
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N2
[s](r) = −Λ0

r2

ψ2

(
r2 − r2

+[0]

)
, N[θ](r) = − J0

2ψ
,

ψ2(r) = r2 − 1

2

(
M0

Λ0
+ r2

+[0]

)
,

r2
+[0] = −M0

Λ0

√

1 + Λ0

(
J0

M0

)2

,

where J0 is the rotation moment and Λ0 and M0 are respectively the cosmological and
mass BTZ constants.

A d–metric (5.22) defines a locally anisotropic extension of (5.59) if the solution of
(5.55), in variables (x1 = r, x2 = t), with coefficients (5.57) and (5.58), is written

b(r, t) = −
[
b[0](t) + b[1](t)

∫ √
|a(r)|dr

]2

= −Λ2(t)
[
r2
+(t)− r2

]2
,

for
a(r) = 4Λ0r

2, b[0](t) = Λ(t)r2
+(t), b[1](t) = 2Λ(t)/

√
|Λ0|

with Λ(t) ∼ Λ0 and r+(t) ∼ r+[0] being some running in time values.
The functions a(r) and b (r, t) and the coefficients of nonlinear connection wi(r, t, θ)

must solve the vacuum Einstein equations (5.24) with arbitrary function h(xi, y) (5.52)
stated in the form in order to have a relation with the BTZ solution for rotating black
holes in the locally isotropic limit. This is possible if we choose

w1(r, t) = − J (t)

2ψ(r, t)
, h(r, t) =

4N2
[s](r, t)ψ

6(r, t)

r4
,

for an arbitrary function w2(r, t, θ) with N[s](r, t) and ψ(r, t) computed by the same
formulas (5.59) with the constant substituted into running values,

Λ0 → Λ(t),M0 → M (t) , J0 → J(t).

We can model a dissipation of 3D black holes, by anisotropic gravitational vacuum
polarizations if for instance,

r2
+(t) ≃ r2

+[0] exp[−λt]
for M(t) = M0 exp[−λt] with M0 and λ being some constants defined from some ”ex-
perimental” data or a quantum model for 3D gravity. The gravitational vacuum admits
also polarizations with exponential and/or oscillations in time for Λ(t) and/or of M(t).
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5.6.3 Anisotropic Renormalization of Constants

The BTZ black hole [3] in “Schwarzschild” coordinates is described by the metric

ds2 = −(N⊥)2dt2 + f−2dr2 + r2
(
dφ+Nφdt

)2
(5.59)

with lapse and shift functions and radial metric

N⊥ = f =

(
−M +

r2

ℓ2
+
J2

4r2

)1/2

, (5.60)

Nφ = − J

2r2
(|J | ≤Mℓ).

which satisfies the ordinary vacuum field equations of (2+1)-dimensional general rela-
tivity (5.16) with a cosmological constant Λ = −1/ℓ2.

If we are considering anholonomic frames, the matter fields ”deform” such solutions
not only by presence of a energy–momentum tensor in the right part of the Einstein
equations but also via anisotropic polarizations of the frame fields. In this Section we
shall construct a subclass of d–metrics (5.46) selecting by some particular distributions
of matter energy density ρ(r) and pressure P (r) solutions of type (5.59) but with renor-
malized constants in (5.60),

M →M = α(M)M,J → J = α(J)J,Λ→ Λ = α(Λ)Λ, (5.61)

where the receptivities α(M), α(J) and α(Λ) are considered, for simplicity, to be constant
(and defined ”experimentally” or computed from a more general model of quantum 3D
gravity) and tending to a trivial unity value in the locally isotropic limit. The d–metric
generalizing (5.59) is stated in the from

δs2 = −F (r)−1 dt2 + F (r) dr2 + r2δθ2 (5.62)

where

F (r) =

(
−M − Λr2 +

J2

4r2

)
, δθ = dθ + w1dt and w1 = − J

2r2
.

The d–metric (5.62) is a static variant of d–metric (5.46) when the solution (5.50) is
constructed for a particular function

̟(r) = 2

(
κρ (r)

r2
− Λ

)
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is defined by corresponding matter distribution ρ (r) when the function F (r) is the
solution of equations (5.49) with coefficient ̟(r) before F 3, i. e.

FF ′′ − (F ′)2 +̟(r)F 3 = 0.

The d–metric (5.62) is singular when r=r±, where

r2
± = −M

2Λ



1±

[
1 + Λ

(
J

M

)2
]1/2



 , (5.63)

i.e.,

M = −Λ(r2
+ + r2

−), J =
2r+r−

ℓ
,Λ = −1/ℓ

2
.

In locally isotropic gravity the surface gravity was computed [16]

σ2 = −1

2
DαχβDαχβ =

r2
+ − r2

−
ℓ2r+

,

where the vector χ = ∂v −N θ(r+)∂θ is orthogonal to the Killing horizon defined by the
surface equation r=r+. For locally anisotropic renormalized (overlined) values we have

χ = δν = ∂ν − w1(r+)∂θ

and

σ2 = −1

2
DαχβDαχβ = Λ

r2
− − r2

+

r+

.

The renormalized values allow us to define a corresponding thermodynamics of locally
anisotropic black holes.

5.6.4 Ellipsoidal black holes with running in time constants

The anisotropic black hole solution of 3D vacuum Einstein equations (5.56) with
elliptic horizon can be generalized for a case with varying in time cosmological constant
Λ0(t). For this class of solutions we choose the local coordinates (x1 = r, x2 = θ, y = t)
and a d–metric of type (5.31),

δs2 = Ω2
(el)(r, θ, t)[a(r)(dr)

2 + b(r, θ)(dθ)2 + h(r, θ, t)(δt)2], (5.64)

where

h(r, θ, t) = −Ω2
(el)(r, θ, t) = − 4Λ3 (θ)

|Λ0(t)|r2

[
r2
+(θ, t)− r2

]3
,
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for

r2
+(θ, t) =

p(t)

(1 + ε cos θ)2
, and p(t) = r2

+(0)(θ, t) = −M0/Λ0(t)

and it is considered that Λ0(t) ≃ Λ0 for static configurations.
The d–metric (5.64) is a solution of 3D vacuum Einstein equations if the ’elongated’

differential
δt = dt+ wr(r, θ, t)dr + wθ(r, θ, t)dθ

has the N–connection coefficients are computed following the condition (5.32),

wr = ∂r ln | lnΩ(el)| and wθ = ∂θ ln | lnΩ(el)|.

The functions a(r) and b(r, θ) from (5.64) are arbitrary ones of type (5.51) satisfying
the equations (5.55) which in the static limit could be fixed to transform into static locally
anisotropic elliptic configurations. The time dependence of Λ0(t) has to be computed,
for instance, from a higher dimension theory or from experimental data.

5.7 On the Thermodynamics of Anisotropic Black

Holes

A general approach to the anisotropic black holes should be based on a kind of
nonequilibrium thermodynamics of such objects imbedded into locally anisotropic gravi-
tational (locally anisotropic ether) continuous, which is a matter of further investigations
(see the first works on the theory of locally anisotropic kinetic processes and thermody-
namics in curved spaces [26]).

In this Section, we explore the simplest type of locally anisotropic black holes with
anisotropically renormalized constants being in thermodynamic equilibrium with the
locally anisotropic spacetime ”bath” for suitable choices of N–connection coefficients.
We do not yet understand the detailed thermodynamic behavior of locally anisotropic
black holes but believe one could define their thermodynamics in the neighborhoods
of some equilibrium states when the horizons are locally anisotropically deformed and
constant with respect to an anholonomic frame.

In particular, for a class of BTZ like locally anisotropic spacetimes with horizons
radii (5.63) we can still use the first law of thermodynamics to determine an entropy
with respect to some fixed anholonomic bases (5.6) and (5.5) (here we note that there
are developed some approaches even to the thermodynamics of usual BTZ black holes and
that uncertainty is to be transferred in our considerations, see discussions and references
in [5]).
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In the approximation that the locally anisotropic spacetime receptivities α(m), α(J)

and α(Λ) do not depend on coordinates we have similar formulas as in locally isotropic
gravity for the locally anisotropic black hole temperature at the boundary of a cavity of
radius rH ,

T = − σ

2π
(
M + Λr2

H

)1/2 , (5.65)

and entropy

S = 4πr+ (5.66)

in Plank units.
For a elliptically deformed locally anisotropic black hole with the outer horizon r+ (θ)

given by the formula (5.54) the Bekenstein–Hawking entropy,

S(a) =
L+

4G
(a)
(gr)

,

were

L+ = 4

π/2∫

0

r+ (θ) dθ

is the length of ellipse’s perimeter and G
(a)
(gr) is the three dimensional gravitational cou-

pling constant in locally anisotropic media, has the value

S(a) =
2p

G
(a)
(gr)

√
1− ε2

arctg

√
1− ε
1 + ε

.

If the eccentricity vanishes, ε = 0, we obtain the locally isotropic formula with p be-
ing the radius of the horizon circumference, but the constant G

(a)
(gr) could be locally

anisotropically renormalized.
In dependence of dispersive or amplification character of locally anisotropic ether

with α(m), α(J) and α(Λ) being less or greater than unity we can obtain temperatures of
locally anisotropic black holes less or greater than that for the locally isotropic limit.
For example, we get anisotropic temperatures T (a)(θ) if locally anisotropic black holes
with horizons of type (5.54) are considered.

If we adapt the Euclidean path integral formalism of Gibbons and Hawking [14] to
locally anisotropic spacetimes, by performing calculations with respect to an anholonomic
frame, we develop a general approach to the locally anisotropic black hole irreversible
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thermodynamics. For locally anisotropic backgrounds with constant receptivities we
obtain similar to [4, 7, 5] but anisotropically renormalized formulas.

Let us consider the Euclidean variant of the d–metric (5.62)

δs2
E = (FE) dτ 2 + (FE)−1 dr2 + r2δθ2 (5.67)

where t = iτ and the Euclidean lapse function is taken with locally anisotropically renor-
malized constants, as in (5.61) (for simplicity, there is analyzed a non–rotating locally

anisotropic black hole), F =
(
−M − Λr2

)
, which leads to the root r+ =

[
−M/Λ

]1/2
.

By applying the coordinate transforms

x =

(
1−

(
r+

r

)2
)1/2

cos
(
−Λr+τ

)
exp

(√
|Λ|r+θ

)
,

y =

(
1−

(
r+

r

)2
)1/2

sin
(
−Λr+τ

)
exp

(√
|Λ|r+θ

)
,

z =

((
r+

r

)2

− 1

)1/2

exp

(√
|Λ|r+θ

)
,

the d–metric (5.67) is rewritten in a standard upper half–space (z > 0) representation
of locally anisotropic hyperbolic 3–space,

δs2
E = − 1

Λ
(z2dz2 + dy2 + δz2).

The coordinate transform (5.68) is non–singular at the z–axis r = r+ if we require
the periodicity

(θ, τ) ∼
(
θ, τ + β0

)

where

β0 =
1

T 0

= − 2π

Λ r+

(5.68)

is the inverse locally anisotropically renormalized temperature, see (5.65).
To get the locally anisotropically renormalized entropy from the Euclidean locally

anisotropic path integral we must define a locally anisotropic extension of the grand
canonical partition function

Z =

∫
[dg] eIE [g], (5.69)
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where IE is the Euclidean locally anisotropic action. We consider as for usual locally
isotropic spaces the classical approximation Z ∼ exp{IE[g]}, where as the extremal d–
metric g is taken (5.67). In (5.69) there are included boundary terms at r+ and ∞ (see
the basic conclusions and detailed discussions for the locally isotropic case [4, 7, 5] which
are also true with respect to anholonomic bases).

For an inverse locally anisotropic temperature β0 the action from (5.69) is

IE [g] = 4πr+ − β0M

which corresponds to the locally anisotropic entropy (5.66) being a locally anisotropic
renormalization of the standard Bekenstein entropy.

5.8 Chern–Simons Theories and Locally Anisotropic

Gravity

In order to compute the first quantum corrections to the locally anisotropic path
integral (5.69), inverse locally anisotropic temperature (5.68) and locally anisotropic
entropy (5.66) we take the advantage of the Chern–Simons formalism generalized for
(2+1)–dimensional locally anisotropic spacetimes.

By using the locally anisotropically renormalized cosmological constant Λ and adapt-
ing the Achucarro and Townsend [1] construction to anholonomic frames we can define
two SO(2,1) gauge locally anisotropic fields

Aa = ωa +
1√∣∣Λ
∣∣
ea and Ãa = ωa − 1√∣∣Λ

∣∣
ea

where the index a enumerates an anholonomic triad ea = eaµδx
µ and ωa = 1

2
ǫabcωµbcδx

µ

is a spin d–connection (d–spinor calculus is developed in [23]). The first–order action for
locally anisotropic gravity is written

Igrav = ICS [A]− ICS[Ã] (5.70)

with the Chern–Simons action for a (2+1)–dimensional vector bundle Ẽ provided with
N–connection structure,

ICS[A] =
k

4π

∫

Ẽ

Tr

(
A ∧ δA+

2

3
A ∧ A ∧A

)
(5.71)
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where the coupling constant k =
√∣∣Λ

∣∣/(4
√

2G(gr)) and G(gr) is the gravitational con-

stant. The one d–form from (5.71) A = AaµTaδx
µ is a gauge d–field for a Lie algebra

with generators {Ta} . Following [6] we choose

(Ta)
c

b
= −ǫabdηdc, ηab = diag (−1, 1, 1) , ǫ012 = 1

and considering Tr as the ordinary matrix trace we write

[Ta, Tb] = f c
ab Tc = ǫabdη

dcTc, T rTaTb = 2ηab,

gµν = 2ηabe
a
µe
b
ν , η

adηbef c
ab f s

de = −2ηcs.

If the manifold Ẽ is closed the action (5.70) is invariant under locally anisotropic
gauge transforms

Ã→ A = q−1Ãq + q−1δq.

This invariance is broken if Ẽ has a boundary ∂Ẽ. In this case we must add to (5.71) a
boundary term, written in (v, θ)–coordinates as

I
′
CS = − k

4π

∫

∂Ẽ

TrAθAv, (5.72)

which results in a term proportional to the standard chiral Wess–Zumino–Witten (WZW)
action [21, 11]:

(
ICS + I

′
CS

)
[A] =

(
ICS + I

′
CS

)
[A]− k I+

WZW [q, A]

where

I
+

WZW [q, A] =
1

4π

∫

∂Ẽ

Tr
(
q−1δθq

) (
q−1δvq

)
(5.73)

+
1

2π

∫

∂Ẽ

Tr
(
q−1δvq

) (
q−1Aθq

)
+

1

12π

∫

Ẽ

Tr
(
q−1δq

)3
.

With respect to a locally anisotropic base the gauge locally anisotropic field satisfies
standard boundary conditions

A+
θ = A+

v = Ã+
θ = Ã+

v = 0.

By applying the action (5.70) with boundary terms (5.72) and (5.73) we can formu-
late a statistical mechanics approach to the (2+1)–dimensional locally anisotropic black
holes with locally anisotropically renormalized constants when the locally anisotropic
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entropy of the black hole can be computed as the logarithm of microscopic states at
the anisotropically deformed horizon. In this case the Carlip’s results [6, 15] could be
generalized for locally anisotropic black holes. We present here the formulas for one–loop
corrected locally anisotropic temperature (5.65) and locally anisotropic entropy (5.66)

β0 = − π

4Λ~G(gr) r+


1 +

8~G(gr)√
|Λ|


 and S

(a)
=

πr+

2~G(gr)


1 +

8~G(gr)√
|Λ|


 .

We do not yet have a general accepted approach even to the thermodynamics and its
statistical mechanics foundation of locally isotropic black holes and this problem is not
solved for locally anisotropic black holes for which one should be associated a model of
nonequilibrium thermodynamics. Nevertheless, the formulas presented in this section al-
lows us a calculation of basic locally anisotropic thermodynamical values for equilibrium
locally anisotropic configurations by using locally anisotropically renormalized constants.

5.9 Conclusions and Discussion

In this paper we have aimed to justify the use of moving frame method in construction
of metrics with generic local anisotropy, in general relativity and its modifications for
higher and lower dimension models [25, 26].

We argued that the 3D gravity reformulated with respect to anholonomic frames
(with two holonomic and one anholonomic coordinates) admits new classes of solutions
of Einstein equations, in general, with nonvanishing cosmological constants. Such black
hole like and another type ones, with deformed horizons, variation of constants and lo-
cally anisotropic gravitational polarizations in the vacuum case induced by anholonomic
moving triads with associated nonlinear connection structure, or (in the presence of
3D matter) by self–consistent distributions of matter energy density and pressure and
dreibein (3D moving frame) fields.

The solutions considered in the present paper have the following properties: 1) they
are exact solutions of 3D Einstein equations; 2) the integration constants are to be found
from boundary conditions and compatibility with locally isotropic limits; 3) having been
rewritten in ’pure’ holonomic variables the 3D metrics are off–diagonal; 4) it is induced
a nontrivial torsion structure which vanishes in holonomic coordinates; for vacuum so-
lutions the 3D gravity is transformed into a teleparallel theory; 5) such solutions are
characterized by nontrivial nonlinear connection curvature.

The arguments in this paper extend the results in the literature on the black hole
thermodynamics by elucidating the fundamental questions of formulation of this theory
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for anholonomic gravitational systems with local frame anisotropy. We computed the
entropy and temperature of black holes with elliptic horizons and/or with anisotropic
variation and renormalizations of constants.

We also showed that how the 3D gravity models with anholonomic constraints can be
transformed into effective Chern–Simons theories and following this priority we computed
the locally anisotropic quantum corrections for the entropy and temperature of black
holes.

Our results indicate that there exists a kind of universality of inducing locally anisot-
ropic interactions in physical theories formulated in mixed holonomic–anholonomic vari-
ables: the spacetime geometry and gravitational field are effectively polarized by imposed
constraints which could result in effective renormalization and running of interaction con-
stants.

Finally, we conclude that problem of definition of adequate systems of reference for
a prescribed type of symmetries of interactions could be of nondynamical nature if we
fix at the very beginning the class of admissible frames and symmetries of solutions,
but could be transformed into a dynamical task if we deform symmetries (for instance,
a circular horizon into a elliptic one) and try to find self–consistently a corresponding
anholomic frame for which the metric is diagonal but with generic anisotropic structure).
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Chapter 6

Anholonomic Frames and
Thermodynamic Geometry of 3D
Black Holes

Abstract 1

We study new classes three dimensional black hole solutions of Einstein equations
written in two holonomic and one anholonomic variables with respect to anholonomic
frames. Thermodynamic properties of such (2 + 1)–black holes with generic local aniso-
tropy (for instance, with elliptic horizons) are studied by applying geometric methods.
The corresponding thermodynamic systems are three dimensional with entropy S being
a hypersurface function on mass M, anisotropy angle θ and eccentricity of elliptic de-
formations ε. Two–dimensional curved thermodynamic geometries for locally anistropic
deformed black holes are constructed after integration on anisotropic parameter θ. Two
approaches, the first one based on two–dimensional hypersurface parametric geometry
and the second one developed in a Ruppeiner–Mrugala–Janyszek fashion, are analyzed.
The thermodynamic curvatures are computed and the critical points of curvature van-
ishing are defined.

6.1 Introduction

This is the second paper in a series in which we examine black holes for spacetimes
with generic local anisotropy. Such spacetimes are usual pseudo–Riemannian spaces

1 c© S. Vacaru, P. Stavrinos and D. Gonţa, Anholonomic Frames and Thermodynamic Geometry of
3D Black Holes, gr-qc/0106069
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for which an anholonomic frame structure By using moving anholonomic frames one
can construct solutions of Einstein equations with deformed spherical symmetries (for
instance, black holes with elliptic horizons (in three dimensions, 3D), black tori and
another type configurations) which are locally anisotropic [25, 27].

In the first paper [26] (hereafter referred to as Paper I) we analyzed the low–dimensi-
onal locally anisotropic gravity (we shall use terms like locally anisotropic gravity, locally
anisotropic spacetime, locally anisotropic geometry, locally anisotropic black holes and
so on) and constructed new classes of locally anisotropic (2 + 1)–dimensional black hole
solutions. We emphasize that in this work the splitting (2 + 1) points not to a space–
time decomposition, but to a spacetime distribution in two isotropic and one anisotropic
coordinate.

In particular, it was shown following [24] how black holes can recast in a new fash-
ion in generalized Kaluza–Klein spaces and emphasized that such type solutions can
be considered in the framework of usual Einstein gravity on anholonomic manifolds.
We discussed the physical properties of (2 + 1)–dimensional black holes with locally
anisotropic matter, induced by a rotating null fluid and by an inhomogeneous and non–
static collapsing null fluid, and examined the vacuum polarization of locally anisotropic
spacetime by non–rotating black holes with ellipsoidal horizon and by rotating locally
anisotropic black holes with time oscillating and ellipsoidal horizons. It was concluded
that a general approach to the locally anisotropic black holes should be based on a kind
of nonequilibrium thermodynamics of such objects imbedded into locally anisotropic
spacetime background. Nevertheless, we proved that for the simplest type of locally
anisotropic black holes theirs thermodynamics could be defined in the neighborhoods of
some equilibrium states when the horizons are deformed but constant with respect to
a frame base locally adapted to a nonlinear connection structure which model a locally
anisotropic configuration.

In this paper we will specialize to the geometric thermodynamics of, for simplicity
non–rotating, locally anisotropic black holes with elliptical horizons. We follow the
notations and results from the Paper I which are reestablished in a manner compatible
in the locally isotropic thermodynamic [7] and spacetime [1] limits with the Banados–
Teitelboim–Zanelli (BTZ) black hole. This new approach (to black hole physics) is
possible for locally anisotropic spacetimes and is based on classical results [10, 15, 16, 22].

Since the seminal works of Bekenstein [4], Bardeen, Carter and Hawking [2] and
Hawking [12], black holes were shown to have properties very similar to those of or-
dinary thermodynamics. One was treated the surface gravity on the event horizon as
the temperature of the black hole and proved that a quarter of the event horizon area
corresponds to the entropy of black holes. At present time it is widely believed that a
black hole is a thermodynamic system (in spite of the fact that one have been developed
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a number of realizations of thermodynamics involving radiation) and the problem of
statistical interpretation of the black hole entropy is one of the most fascinating subjects
of modern investigations in gravitational and string theories.

In parallel to the ’thermodynamilazation’ of black hole physics one have developed
a new approach to the classical thermodynamics based of Riemannian geometry and its
generalizations (a review on this subject is contained in Ref. [20]). Here is to be empha-
sized that geometrical methods have always played an important role in thermodynamics
(see, for instance, a work by Blaschke [5] from 1923). Buchdahl used in 1966 a Euclidean
metric in thermodynamics [6] and then Weinhold considered a sort of Riemannian met-
ric [28]. It is considered that the Weinhold’s metric has not physical interpretation in
the context of purely equilibrium thermodynamics [19, 20] and Ruppeiner introduced a
new metric (related via the temperature T as the conformal factor with the Weinhold’s
metric).

The thermodynamical geometry was generalized in various directions, for instance, by
Janyszek and Mrugala [13, 14, 18] even to discussions of applications of Finsler geometry
in thermodynamic fluctuation theory and for nonequilibrium thermodynamics [22].

Our goal will be to provide a characterization of thermodynamics of (2 + 1)–dimen-
sional locally anisotropic black holes with elliptical (constant in time) horizon obtained
in [25, 26]. From one point of view we shall consider the thermodynamic space of
such objects (locally anisotropic black holes in local equilibrium with locally anisotropic
spacetime ether) to depend on parameter of anisotropy, the angle θ, and on deformation
parameter, the eccentricity ε. From another point, after we shall integrate the formu-
las on θ, the thermodynamic geometry will be considered in a usual two–dimensional
Ruppeiner–Mrugala–Janyszek fashion. The main result of this work are the computa-
tion of thermodynamic curvatures and the proof that constant in time elliptic locally
anisotropic black holes have critical points of vanishing of curvatures (under both ap-
proaches to two–dimensional thermodynamic geometry) for some values of eccentricity,
i. e. for under corresponding deformations of locally anisotropic spacetimes.

The paper is organized as follows. In Sec. 2, we briefly review the geometry pseudo–
Riemannian spaces provided with anholonimic frame and associated nonlinear connection
structure and present the (2 + 1)–dimensional constant in time elliptic black hole solu-
tion. In Sec. 3, we state the thermodynamics of nearly equilibrium stationary locally
anisotropic black holes and establish the basic thermodynamic law and relations. In
Sec. 4 we develop two approaches to the thermodynamic geometry of locally anisotropic
black holes, compute thermodynamic curvatures and the equations for critical points of
vanishing of curvatures for some values of eccentricity. In Sec. 5, we draw a discussion
and conclusions.
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6.2 Locally Anisotropic Spacetimes and Black Holes

In this section we outline for further applications the basic results on (2 + 1)–
dimensional locally anisotropic spacetimes and locally anisotropic black hole solutions
[25, 26].

6.2.1 Anholonomic frames and nonlinear connections in (2+1)–
dimensional spacetimes

A (2+1)–dimensional locally anisotropic spacetime is defined as a 3D pseudo–Rie-
mannian space provided with a structure of anholonomic frame with two holonomic
coordinates xi, i = 1, 2 and one anholonomic coordinate y, for which u = (x, y) =
{uα = (xi, y)}, the Greek indices run values α = 1, 2, 3, when u3 = y. We shall use also
underlined indices, for instance α, i, in order to emphasize that some tensors are given
with respect to a local coordinate base ∂α = ∂/∂uα.

An anholonomic frame structure of triads (dreibein) is given by a set of three inde-
pendent basis fields

eα(u) = eαα(u)∂α

which satisfy the relations
eαeβ − eβeα = wγαβeγ ,

where wγαβ = wγαβ(u) are called anholonomy coefficients.
We investigate anholonomic structures with mixed holonomic and anholonomic triads

when
eαα(u) = {eij = δij , e

3
j = N3

j (u) = wi(u), e
3
3 = 1}.

In this case we have to apply ’elongated’ by N–coefficients operators instead of usual
local coordinate basis ∂α = ∂/∂uα and dα = duα, (for simplicity we shall omit underling
of indices if this does not result in ambiguities):

δα = (δi, ∂(y)) =
δ

∂uα
(6.1)

=

(
δ

∂xi
=

∂

∂xi
− wi

(
xj , y

) ∂
∂y
, ∂(y) =

∂

∂y

)

and their duals

δβ =
(
di, δ(y)

)
= δuβ (6.2)

=
(
di = dxi, δ(y) = δy = dy + wk

(
xj , y

)
dxk
)
.
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The coefficients N = {N3
i (x, y) = wi (x

j , y)}, are associated to a nonlinear connec-
tion (in brief, N–connection, see [3]) structure which on pseudo-Riemannian spaces de-
fines a locally anisotropic, or equivalently, mixed holonomic–anholonomic structure. The
geometry of N–connection was investigated for vector bundles and generalized Finsler
geometry [17] and for superspaces and locally anisotropic (super)gravity and string the-
ory [24] with applications in general relativity, extra dimension gravity and formulation
of locally anisotropic kinetics and thermodynamics on curved spacetimes [25, 26, 27].
In this paper (following the Paper I) we restrict our considerations to the simplest case
with one anholonomic (anisotropic) coordinate when the N–connection is associated to
a subclass of anholonomic triads (6.1), and/or (6.2), defining some locally anisotropic
frames (in brief, anholonomic basis, anholonomic frames).

With respect to a fixed structure of locally anisotropic bases and their tensor products
we can construct distinguished, by N–connection, tensor algebras and various geometric
objects (in brief, one writes d–tensors, d–metrics, d–connections and so on).

A symmetrical locally anisotropic metric, or d–metric, could be written with respect
to an anhlonomic basis (6.2) as

δs2 = gαβ (uτ ) δuαδuβ (6.3)

= gij
(
xk, y

)
dxidxj + h

(
xk, y

)
(δy)2 .

We note that the anisotropic coordinate y could be both type time–like (y = t, or space–
like coordinate, for instance, y = r, radial coordinate, or y = θ, angular coordinate).

6.2.2 Non–rotating black holes with ellipsoidal horizon

Let us consider a 3D locally anisotropic spacetime provided with local space coordi-
nates x1 = r, x2 = θ when as the anisotropic direction is chosen the time like coordinate,
y = t. We proved (see the Paper I) that a d–metric of type (6.3),

δs2 = Ω2 (r, θ)
[
a(r)dr2 + b (r, θ) dθ2 + h(r, θ)δt2

]
, (6.4)

where

δt = dt+ w1 (r, θ) dr + w2(r, θ)dθ,

w1 = ∂r ln |lnΩ| , w2 = ∂θ ln |ln Ω| ,
for Ω2 = ±h(r, θ), satisfies the system of vacuum locally anisotropic gravitational equa-
tions with cosmological constant Λ[0],

Rαβ −
1

2
gαβR− Λ[0]gαβ = 0
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if

a (r) = 4r2|Λ0|, b(r, θ) =
4

|Λ0|
Λ2(θ)

[
r2
+(θ)− r2

]2

and

h (r, θ) = − 4

|Λ0|r2
Λ3(θ)

[
r2
+(θ)− r2

]3
. (6.5)

The functions a(r), b (r, θ) and h(xi, y) and the coefficients of nonlinear connection
wi(r, θ, t) (for this class of solutions being arbitrary prescribed functions) were defined
as to have compatibility with the locally isotropic limit.

We construct a black hole like solution with elliptical horizon r2 = r2
+(θ), on which

the function (6.5) vanishes if we chose

r2
+(θ) =

p2

[1 + ε cos θ]2
. (6.6)

where p is the ellipse parameter and ε̇ is the eccentricity. We have to identify

p2 = r2
+[0] = −M0/Λ0,

where r+[0],M0 and Λ0 are respectively the horizon radius, mass parameter and the cos-
mological constant of the non–rotating BTZ solution [1] if we wont to have a connection
with locally isotropic limit with ε → 0. In the simplest case we can consider that the
elliptic horizon (6.6) is modelled by an anisotropic mass

M (θ, ε) =
M0

2π (1 + ε cos (θ − θ0))2 =
r2
+

2π
(6.7)

and constant effective cosmological constant, Λ(θ) ≃ Λ0. The coefficient 2π was intro-
duced in order to have the limit

lim
ε→0

2

π∫

0

M (θ, ε) dθ = M0. (6.8)

Throughout this paper, the units c = ~ = kB = 1 will be used, but we shall consider that
for an locally anisotropically renormalized gravitational constant 8G

(a)
(gr) 6= 1, see [26].
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6.3 On the Thermodynamics of Elliptical Black Ho-

les

In this paper we will be interested in thermodynamics of locally anisotropic black
holes defined by a d–metric (6.4).

The Hawking temperature T (θ, ε) of a locally anisotropic black hole is anisotropic
and is computed by using the anisotropic mass (6.7):

T (θ, ε) =
M (θ, ε)

2πr+ (θ, ε)
=
r+ (θ, ε)

4π2
> 0. (6.9)

The two parametric analog of the Bekenstein–Hawking entropy is to be defined as

S (θ, ε) = 4πr+ =
√

32π3
√
M (θ, ε) (6.10)

The introduced thermodynamic quantities obey the first law of thermodynamics (un-
der the supposition that the system is in local equilibrium under the variation of param-
eters (θ, ε))

∆M (θ, ε) = T (θ, ε)∆S, (6.11)

where the variation of entropy is

∆S = 4π∆r+ = 4π
1√

M (θ, ε)

(
∂M

∂θ
∆θ +

∂M

∂ε
∆ε

)
.

According to the formula C = (∂m/∂T ) we can compute the heat capacity

C = 2πr+ (θ, ε) = 2π
√
M (θ, ε).

Because of C > 0 always holds the temperature is increasing with the mass.
The formulas (6.7)–(6.11) can be integrated on angular variable θ in order to obtain

some thermodynamic relations for black holes with elliptic horizon depending only on
deformation parameter, the eccentricity ε.

For a elliptically deformed black hole with the outer horizon r+ given by formula
(6.10) the depending on eccentricity[26] Bekenstein–Hawking entropy is computed as

S(a) (ε) =
L+

4G
(a)
(gr)

,

were

L+ (ε) = 4

π/2∫

0

r+ (θ, ε) dθ
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is the length of ellipse’s perimeter and G
(a)
(gr) is the three dimensional gravitational cou-

pling constant in locally anisotropic media (the index (a) points to locally anisotropic
renormalizations), and has the value

S(a) (ε) =
2p

G
(a)
(gr)

√
1− ε2

arctg

√
1− ε
1 + ε

. (6.12)

If the eccentricity vanishes, ε = 0, we obtain the locally isotropic formula with p being the
radius of the horizon circumference, but the constant G

(a)
(gr) could be locally anisotropic

renormalized.
The total mass of a locally anisotropic black hole of eccentricity ε is found by inte-

grating (6.7) on angle θ :

M (ε) =
M0

(1− ε2)3/2
(6.13)

which satisfies the condition (6.8).
The integrated on angular variable θ temperature T (ε) is to by defined by using

T (θ, ε) from (6.9),

T (ε) = 4

π/2∫

0

T (θ, ε) dθ =
2
√
M0

π2
√

1− ε2
arctg

√
1− ε
1 + ε

. (6.14)

Formulas (6.12)–(6.14) describes the thermodynamics of ε–deformed black holes.
Finally, in this section, we note that a black hole with elliptic horizon is to be consid-

ered as a thermodynamic subsystem placed into the anisotropic ether bath of spacetime.
To the locally anisotropic ether one associates a continuous locally anisotropic medium
assumed to be in local equilibrium. The locally anisotropic black hole subsystem is con-
sidered as a subsystem described by thermodynamic variables which are continuous field
on variables (θ, ε) , or in the simplest case when one have integrated on θ, on ε. It will be
our first task to establish some parametric thermodynamic relations between the mass
m (θ, ε) (equivalently, the internal locally anisotropic black hole energy), temperature
T (θ, ε) and entropy S (θ, ε) .

6.4 Thermodynamic Metrics and Curvatures of An-

isotropic Black Holes

We emphasize in this paper two approaches to the thermodynamic geometry of nearly
equilibrium locally anisotropic black holes based on their thermodynamics. The first one
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is to consider the thermodynamic space as depending locally on two parameters θ and ε
and to compute the corresponding metric and curvature following standard formulas from
curved bi–dimensional hypersurface Riemannian geometry. The second possibility is to
take as basic the Ruppeiner metric in the thermodynamic space with coordinates (M, ε),
in a manner proposed in Ref. [7] with that difference that as the extensive coordinate is
taken the black hole eccentricity ε (instead of the usual angular momentum J for isotropic
(2 + 1)–black holes). Of course, in this case we shall background our thermodynamic
geometric constructions starting from the relations (6.12)–(6.14).

6.4.1 The thermodynamic parametric geometry

Let us consider the thermodynamic parametric geometry of the elliptic (2+1)–dimen-
sional black hole based on its thermodynamics given by formulas (6.7)–(6.11).

Rewriting equations (6.11, we have

∆S = β (θ, ε)∆M (θ, ε) ,

where β (θ, ε) = 1/T (θ, ε) is the inverse to temperature (6.9). This case is quite different
from that from [7, 9] where there are considered, respectively, BTZ and dilaton black
holes (by introducing Ruppeiner and Weinhold thermodynamic metrics). Our thermo-
dynamic space is defined by a hypersurface given by parametric dependencies of mass
and entropy. Having chosen as basic the relative entropy function,

ς =
S (θ, ε)

4π
√
M0

=
1

1 + ε cos θ
,

in the vicinity of a point P = (0, 0), when, for simplicity, θ0 = 0, our hypersurface is
given locally by conditions

ς = ς (θ, ε) and grad|P ς = 0.

For the components of bi–dimensional metric on the hypersurface we have

g11 = 1 +

(
∂ς

∂θ

)2

, g12 =

(
∂ς

∂θ

)(
∂ς

∂ε

)
,

g22 = 1 +

(
∂ς

∂ς

)2

,

The nonvanishing component of curvature tensor in the vicinity of the point P = (0, 0)
is

R1212 =
∂2ς

∂θ2

∂2ζ

∂ε2
−
(
∂2ς

∂ε∂θ

)2
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and the curvature scalar is
R = 2R1212. (6.15)

By straightforward calculations we can find the condition of vanishing of the curvature
(6.15) when

ε± =
−1± (2− cos2 θ)

cos θ (3− cos2 θ)
. (6.16)

So, the parametric space is separated in subregions with elliptic eccentricities 0 < ε± < 0
and θ satisfying conditions (6.16).

Ruppeiner suggested that the curvature of thermodynamic space is a measure of
the smallest volume where classical thermodynamic theory based on the assumption
of a uniform environment could conceivably work and that near the critical point it is
expected this volume to be proportional to the scalar curvature [20]. There were also
proposed geometric equations relating the thermodynamic curvature via inverse relations
to free energy. Our definition of thermodynamic metric and curvature in parametric
spaces differs from that of Ruppeiner or Weinhold and it is obvious that relations of
type (6.16) (stating the conditions of vanishing of curvature) could be related with some
conditions for stability of thermodynamic space under variations of eccentricity ε and
anisotropy angle θ. This interpretation is very similar to that proposed by Janyszek and
Mrugala [13] and supports the viewpoint that the first law of thermodynamics makes
a statement about the first derivatives of the entropy, the second law is for the second
derivatives and the curvature is a statement about the third derivatives. This treatment
holds good also for the parametric thermodynamic spaces for locally anisotropic black
holes.

6.4.2 Thermodynamic Metrics and Eccentricity of Black Hole

A variant of thermodynamic geometry of locally anisotropic black holes could be
grounded on integrated on anisotropy angle θ formulas (6.12)–(6.14). The Ruppeiner
metric of elliptic black holes in coordinates (M, ε) is

ds2
R = −

(
∂2S

∂M2

)

ε

dM2 −
(
∂2S

∂ε2

)

M

dε2. (6.17)

For our further analysis we shall use dimensionless values µ = M (ε) /M0 and ζ =

S(a)G
(a)
gr /2p and consider instead of (6.17) the thermodynamic diagonal metrics gij (a1, a2)

= gij(µ, ε) with components

g11 = −∂
2ζ

∂µ2
= −ζ,11 and g22 = −∂

2ζ

∂ε2
= −ζ,22, (6.18)
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where by comas we have denoted partial derivatives.
The expressions (6.12) and (6.12) are correspondingly rewritten as

ζ =
1√

1− ε2
arctg

√
1− ε
1 + ε

and
µ =

(
1− ε2

)−3/2
.

By straightforward calculations we obtain

ζ,11 = −1

9

(
1− ε2

)5/2
arctg

√
1− ε
1 + ε

+
1

9ε

(
1− ε2

)3
+

1

18ε4

(
1− ε2

)4

and

ζ,22 =
1 + 2ε2

(1− ε2)5/2
arctg

√
1− ε
1 + ε

− 3ε

(1− ε2)2 .

The thermodynamic curvature of metrics of type (6.18) can be written in terms of
second and third derivatives [13] by using third and second order determinants:

R =
1

2

∣∣∣∣∣∣

−ζ,11 0 −ζ,22
−ζ,111 −ζ,112 0
−ζ,112 0 −ζ,222

∣∣∣∣∣∣
×
∣∣∣∣
−ζ,11 0

0 −ζ,22

∣∣∣∣
−2

= −1

2

(
1

ζ,11

)

,2

×
(
ζ,11
ζ,22

)

,2

. (6.19)

The conditions of vanishing of thermodynamic curvature (6.19) are as follows

ζ,112 (ε1) = 0 or

(
ζ,11
ζ,22

)

,2

(ε2) = 0 (6.20)

for some values of eccentricity, ε = ε1 or ε = ε2, satisfying conditions 0 < ε1 < 1 and
0 < ε2 < 1. For small deformations of black holes, i.e. for small values of eccentricity,
we can approximate ε1 ≈ 1/

√
5.5 and ε2 ≈ 1/(18λ), where λ is a constant for which

ζ,11 = λζ,22 and the condition 0 < ε2 < 1 is satisfied. We omit general formulas for
curvature (6.19) and conditions (6.20), when the critical points ε1 and/or ε2 must be

defined from nonlinear equations containing arctg
√

1−ε
1+ε

and powers of (1− ε2) and ε.
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6.5 Discussion and Conclusions

In closing, we would like to discuss the meaning of geometric thermodynamics fol-
lowing from locally anisotropic black holes.

(1) Nonequilibrium thermodynamics of locally
anisotropic black holes in locally anisotropic spacetimes. In this paper and in the Paper
I [26] we concluded that the thermodynamics in locally anisotropic spacetimes has a
generic nonequilibrium character and could be developed in a geometric fashion following
the approach proposed by S. Sieniutycz, P. Salamon and R. S. Berry [22, 21]. This is a
new branch of black hole thermodynamics which should be based on locally anisotropic
nonequilibrium thermodynamics and kinetics [27].

(2) Locally Anisotropic Black holes thermodynamics in vicinity of equilibrium points.
The usual thermodynamical approach in the Bekenstein–Hawking manner is valid for
anisotropic black holes for a subclass of such physical systems when the hypothesis of
local equilibrium is physically motivated and corresponding renormalizations, by locally
anisotropic spacetime parameters, of thermodynamical values are defined.

(3) The geometric thermodynamics of locally anisotropic black holes with constant in
time elliptic horizon was formulated following two approaches: for a parametric ther-
modynamic space depending on anisotropy angle θ and eccentricity ε and in a standard
Ruppeiner–Mrugala–Janyszek fashion, after integration on anisotropy θ but maintaining
locally anisotropic spacetime deformations on ε.

(4) The thermodynamic curvatures of locally
anisotropic black holes were shown to have critical values of eccentricity when the scalar
curvature vanishes. Such type of thermodynamical systems are rather unusual and a
corresponding statistical model is not that for ordinary systems composed by classical
or quantum like gases.

(5) Thermodynamic systems with constraints require a new geometric structure in
addition to the thermodynamical metrics which is that of nonlinear connection. We
note this object must be introduced both in spacetime geometry and in thermodynamic
geometry if generic anisotropies and constrained field and/or thermodynamic behavior
are analyzed.
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Chapter 7

Off–Diagonal 5D Metrics and Mass
Hierarchies with Anisotropies and
Running Constants

Abstract 1

The gravitational equations of the three dimensional (3D) brane world are investi-
gated for both off–diagonal and warped 5D metrics which can be diagonalized with re-
spect to some anholonomic frames when the gravitational and matter fields dynamics are
described by mixed sets of holonomic and anholonomic variables. We construct two new
classes of exact solutions of Kaluza–Klein gravity which generalize the Randall–Sundrum
metrics to configurations with running on the 5th coordinate gravitational constant and
anisotropic dependencies of effective 4D constants on time and/or space variables. We
conclude that by introducing gauge fields as off–diagonal components of 5D metrics,
or by considering anholonomic frames modelling some anisotropies in extra dimension
spacetime, we induce anisotropic tensions (gravitational polarizations) and running of
constants on the branes. This way we can generate the TeV scale as a hierarchically
suppressed anisotropic mass scale and the Newtonian and general relativistic gravity are
reproduced with adequate precisions but with corrections which depend anisotropically
on some coordinates.

Recent approaches to String/M–theory and particle physics are based on the idea

1 c© S. Vacaru, Off–Diagonal 5D Metrics and Mass Hierarchies with Anisotropies and Running Con-
stants, hep-ph/0106268

299



300 CHAPTER 7. ANISOTROPIC AND RUNNING HIERARCHIES

that our universe is realized as a three brane, modelling a four dimensional, 4D, pseudo–
Riemannian spacetime, embedded in the 5D anti–de Sitter (AdS5) bulk spacetime. In
such models the extra dimension need not be small (they could be even infinite) if a
nontrivial warped geometric configuration, being essential for solving the mass hierarchy
problem and localization of gravity, can ”bound” the matter fields on a 3D subspace on
which we live at low energies, the gravity propagating, in general, in a higher dimension
spacetime (see Refs.: [1] for string gravity papers; [2] for extra dimension particle fields
and gravity phenomenology with effective Plank scale; [3] for the simplest and compre-
hensive models proposed by Randall and Sundrum; here we also point the early works
[4] in this line and cite [5] as some further developments with supresymmetry, black hole
solutions and cosmological scenarios).

In higher dimensional gravity much attention has been paid to off–diagonal metrics
beginning the Salam, Strathee and Perracci work [6] which showed that including off–
diagonal components in higher dimensional metrics is equivalent to including U(1), SU(2)
and SU(3) gauge fields. Recently, the off–diagonal metrics were considered in a new fash-
ion by applying the method of anholonomic frames with associated nonlinear connections
[7] which allowed us to construct new classes of solutions of Einstein’s equations in three
(3D), four (4D) and five (5D) dimensions, with generic local anisotropy (e.g. static black
hole and cosmological solutions with ellipsoidal or torus symmetry, soliton–dilaton 2D
and 3D configurations in 4D gravity, and wormhole and flux tubes with anisotropic po-
larizations and/or running on the 5th coordinate constants with different extensions to
backgrounds of rotation ellipsoids, elliptic cylinders, bipolar and torus symmetry and
anisotropy.

The point of this paper is to argue that if the 5D gravitational interactions are
parametrized by off–diagonal metrics with a warped factor, which could be related with
an anholonomic higher dimensional gravitational dynamics and/or with the fact that
the gauge fields are included into a Salam–Strathee–Peracci manner, the fundamental
Plank scale M4+d in 4 + d dimensions can be not only considerably smaller than the the
effective Plank scale, as in the usual locally isotropic Randall–Sundrum (in brief, RS)
scenarios, but the effective Plank constant is also anisotropically polarized which could
have profound consequences for elaboration of gravitational experiments and for models
of the very early universes.

We will give two examples with one additional dimension (d = 1) when an extra
dimension gravitational anisotropic polarization on a space coordinate is emphasized
or, in the second case, a running of constants in time is modelled. We will show that
effective gravitational Plank scale is determined by the higher-dimensional curvature
and anholonomy of pentad (funfbein, of frame basis) fields rather than the size of the
extra dimension. Such curvatures and anholonomies are not in conflict with the local
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four-dimensional Poincare invariance.
We will present a higher dimensional scenario which provides a new RS like ap-

proach generating anisotropic mass hierarchies. We consider that the 5D metric is both
not factorizable and off–diagonal when the four-dimensional metric is multiplied by a
“warp” factor which is a rapidly changing function of an additional dimension and de-
pend anisotropically on a space direction and runs in the 5-th coordinate.

Let us consider a 5D pseudo–Riemannian spacetime provided with local coordinates
uα = (xi, ya) = (x1 = x, x2 = f, x3 = y, y4 = s, y5 = p), where (s, p) = (z, t) (Case
I) or, inversely, (s, p) = (t, z) (Case II) – or more compactly u = (x, y) – where the
Greek indices are conventionally split into two subsets xi and ya labelled respectively
by Latin indices of type i, j, k, ... = 1, 2, 3 and a, b, ... = 4, 5. The local coordinate bases,
∂α = (∂i, ∂a), and their duals, dα = (di, da) , are defined respectively as
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∂α ≡
∂

duα
= (∂i =

∂

dxi
, ∂a =

∂

dya
) and dα ≡ duα = (di = dxi, da = dya). (7.1)

For the 5D (pseudo) Riemannian interval dl2 = Gαβdu
αduβ we choose the metric

coefficients Gαβ (with respect to the coordinate frame (7.1)) to be parametrized by a
off–diagonal matrix (ansatz)




g + w 2
1 h4 + n 2

1 h5 w1w2h4 + n1n2h5 w1w3h4 + n1n3h5 w1h4 n1h5

w1w2h4 + n1n2h5 1 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w1w3h4 + n1n3h5 w3w2h4 + n2n3h5 g + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0
n1h5 n2h5 n3h5 0 h5




(7.2)

where the coefficients are some necessary smoothly class functions of type:

g = g(f, y) = a(f) b(y), h4 = h4(f, y, s) = η4(f, y)g(f, y)q4(s),

h5 = h5(f, y, s) = g(f, y)q5(s), wi = wi(f, y, s), ni = ni(f, y, s).

The metric (7.2) can be equivalently rewritten in the form

δl2 = gij (f, y) dxidxi + hab (f, y, s) δy
aδyb, (7.3)

with diagonal coefficients

gij =



g 0 0
0 1 0
0 0 g


 and hab =

[
h4 0
0 h5

]
(7.4)

if instead the coordinate bases (7.1) one introduce the anholonomic frames (anisotropic
bases)

δα ≡
δ

duα
= (δi = ∂i−N b

i (u) ∂b, ∂a =
∂

dya
), δα ≡ δuα = (δi = dxi, δa = dya+Na

k (u) dxk)

(7.5)
where the N–coefficients are parametrized N4

i = wi and N5
i = ni.

In this paper we consider a slice of AdS5 provided with an anholnomic frame structure
(7.5) satisfying the relations δαδβ−δβδα = W γ

αβδγ, with nontrivial anholonomy coefficients

W k
ij = 0,W k

aj = 0,W k
ia = 0,W k

ab = 0,W c
ab = 0,

W a
ij = δiN

a
j − δjNa

i ,W
a
bj = −∂bNa

j ,W
b
ia = ∂aN

b
j .
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We assume there exists a solution of 5D Einstein equations with 3D brane configu-
ration that effectively respects the local 4D Poincare invariance with respect to anholo-
nomic frames (7.5) and that the metric ansatz (7.2) (equivalently, (7.4)) transforms into
the usual RS solutions

ds2 = e−2k|f |ηµνdx
µdxν + df 2 (7.6)

for the data: a(f) = e−2k|f |, k = const, b(y) = 1, η4(f, y) = 1, q4(s) = q5(s) = 1, wi =
0, ni = 0, where ηµν and xµ are correspondingly the diagonal metric and Cartezian
coordinates in 4D Minkowski spacetime and the extra-dimensional coordinate f is to be
identified f = rcφ, (rc = const is the compactification radius, 0 ≤ f ≤ πrc) like in the
first work [3] (or ’f” is just the coordinate ’y’ in the second work [3]).

The set-up for our model is a single 3D brane with positive tension, subjected to some
anholonomic constraints, embedded in a 5D bulk spacetime provided with a off–diagonal
metric (7.2). In order to carefully quantize the system, and treat the non–normalizable
modes which will appear in the Kaluza-Klein reduction, it is useful to work with respect
to anholonomic frames were the metric is diagonalized by corresponding anholonomic
transforms and is necessary to work in a finite volume by introducing another brane at
a distance πrc from the brane of interest, and taking the branes to be the boundaries
of a finite 5th dimension. We can remove the second brane from the physical set-up by
taking the second brane to infinity.

The action for our anholonomic funfbein (pentadic) system is

S = Sgravity + Sbrane + Sbrane′ (7.7)

Sgravity =

∫
δ4x

∫
δf
√
−G{−Λ(f) + 2M3R},

Sbrane =

∫
δ4x
√−gbrane{Vbrane + Lbrane},

where R is the 5D Ricci scalar made out of the 5D metric, Gαβ , and Λ and Vbrane are
cosmological terms in the bulk and boundary respectively. We write down δ4x and
δf, instead of usual differentials d4x and df, in order to emphasize that the variational
calculus should be performed by using N–elongated partial derivatives and differentials
(7.5). The coupling to the branes and their fields and the related orbifold boundary
conditions for vanishing N–coefficients are described in Refs. [3] and [8].

The Einstein equations,

Rα
β −

1

2
δαβR = Υα

β ,

for a diagonal energy–momentum tensor Υβ
α = [Υ1,Υ2,Υ3,Υ4,Υ5] and following from

the action (7.7) and for the ansatz (7.2) (equivalently, (7.4)) with g = a(f)b(y) transform
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into

1

a

[
a′′1 −

(a′)2

2a

]
+

β

h4h5
= 2Υ1,

(a′)2

2a
+
P (y)

a
+

β

h4h5
= 2Υ2(f), (7.8)

1

a

[
a′′ − (a′)2

2a

]
+
P (y)

a
= 2Υ4, wiβ + αi = 0, n∗∗

i + γn∗
i = 0,

where

α1 = h∗5
• − h∗5

2

(
h•4
h4

+
h•5
h5

)
, α2 = h∗5

′ − h∗5
2

(
h

′

4

h4

+
h

′

5

h5

)
,

α3 = h∗5
# − h∗5

2

(
h#

4

h4

+
h#

5

h5

)
,

β = h∗∗5 −
(h∗5)

2

2h5
− h∗5h

∗
4

2h4
, P =

1

b2

[
b## − (b#)2

b

]
, γ =

3

2

h5

h5

∗
− h4

h4

∗
, (7.9)

the partial derivatives are denoted: h• = ∂h/∂x1, h′ = ∂h/∂x2, h# = ∂h/∂x3, h∗ =
∂h/∂s.

Our aim is to construct a metric

δs2 = g (f, y) [dx2 + dy2 + η4 (f, y) δs2 + q5(s)δp
2] + df 2, (7.10)

with the anholonomic frame components defined by ’elongation’ of differentials, δs =
ds + w2df + w3dy, δp = dp + n1dx+ n2df + n3dy, and the ”warp” factor being written
in a form similar to the RS solution

g (f, y) = a(f)b(y) = exp[−2kf |f | − 2ky|y|], (7.11)

which defines anisotropic RS like solutions of 5D Einstein equations with variation on
the 5th coordinate cosmological constant in the bulk and possible variations of induced
on the brane cosmological constants.

By straightforward calculations we can verify that a class of exact solutions of the
system of equations (7.8) for P (y) = 0 (see (7.9)) :

h4 = g(f, y), h5 = g(f, y)ρ2(f, y, s),

were

ρ(f, y, s) = | cos τ+ (f, y) |, τ+ =
√

(Υ4 −Υ2) g(f, y),Υ4 > Υ2;

= exp[−τ− (f, y) s], τ− =
√

(Υ2 −Υ4) g(f, y),Υ4 < Υ2;

= |c1(f, y) + sc2(f, y)|2,Υ4 = Υ2,
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and

wi = −∂i(ln |ρ∗|)/(ln |ρ∗|)∗,

ni = ni[0](f, y) + ni[1](f, y)

∫
exp[−3ρ]ds,

with functions c1,2(f, y) and ni[0,1](f, y) to be stated by some boundary conditions. We
emphasize that the constants kf and ky have to be defined from some experimental data.

The solution (7.10) transforms into the usual RS solution (7.6) if ky = 0, ni[0,1](f, y) =
0,Λ = Λ0 = const and Υ2 → Υ2[0] = − Λ0

4M3 ; Υ1,Υ3,Υ4,Υ5 → Υ[0] = Vbrane

4M3 δ(f) +
Vbrane′

4M3 δ(f − πrc), which holds only when the boundary and bulk cosmological terms are
related by formulas Vbrane = −Vbrane′ = 24M3kf , Λ0 = −24M3k2

f ; we use values
with the index [0] in order to emphasize that they belong to the usual (holonomic) RS
solutions. In the anholonomic case with ”variation of constants” we shall not impose
such relations.

We note that using the metric (7.10) with anisotropic warp factor (7.11) it is easy
to identify the massless gravitational fluctuations about our classical solutions like in
the usual RS cases but performing (in this work) all computations with respect to an-
holonomic frames. All off–diagonal fluctuations of the anholonomic diagonal metric are
massive and excluded from the low-energy effective theory.

We see that the physical mass scales are set by an anisotropic symmetry–breaking
scale, v(y) ≡ e−ky|y|e−kf rcπv0. This result the conclusion: any mass parameter m0 on
the visible 3-brane in the fundamental higher-dimensional theory with Salam–Strathee
–Peracci gauge interactions and/or effective anholonomic frames will correspond to an
anisotropic dependence on coordinate y of the physical mass m(y) ≡ e−ky|y|e−krcπm0

when measured with the metric gµν that appears in the effective Einstein action, since
all operators get re-scaled according to their four-dimensional conformal weight. If ekrcπ

is of order 1015, this mechanism can produces TeV physical mass scales from fundamental
mass parameters not far from the Planck scale, 1019 GeV. Because this geometric factor
is an exponential, we clearly do not require very large hierarchies among the fundamental
parameters, v0, k,M, and µc ≡ 1/rc; in fact, we only require krc ≈ 50. These conclusions
were made in Refs. [3] with respect to diagonal (isotropic) metrics. But the physical con-
sequences could radically change if the off–diagonal metrics with effective anholonomic
frames and gauge fields are considered. In this case we have additional dependencies on
variable y which make the fundamental spacetime geometry to be locally anisotropic,
polarized via dependencies both on coordinate y receptivity ky. We emphasize that our
y coordinate is not that from [3].

The phenomenological implications of these anisotropic scenarios for future collider
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searches could be very distinctive: the geometry of experiments will play a very im-
portant role. In such anisotropic models we also have a roughly weak scale splitting
with a relatively small number of excitations which can be kinematically accessible at
accelerators.

We also reconsider in an anisotropic fashion the derivation of the 4D effective Planck
scale MP l given in Ref. [3]. The 4D graviton zero mode follows from the solution,
Eq. (7.10), by replacing the Minkowski metric by a effective 4D metric gµν which it is
described by an effective action following from substitution into Eq. (7.7),

Seff ⊃
∫
δ4x

∫ πrc

0

df 2M3rce
−2kf |f |e−2ky |y|

√
g R, (7.12)

where R denotes the four-dimensional Ricci scalar made out of gµν(x), in contrast to
the five-dimensional Ricci scalar, R, made out of GMN(x, f). We use the symbol δ4x in
(7.7) in order to emphasize that our integration is adapted to the anholonomic structu5e
stated by the differentials (7.5). We also can explicitly perform the f integral in (7.12)
to obtain a purely 4D action and to derive

M2
P l = 2M3

∫ πrc

0

dfe−2kf |f | =
M3

k
e−2ky |y|[1− e−2kf rcπ]. (7.13)

We see that there is a well-defined value forMP l, even in the rc →∞ limit, but which may
have an anisotropic dependence on one of the 4D coordinates, in the stated parametriza-
tions denoted by y. Nevertheless, we can get a sensible effective anisotropic 4D theory,
with the usual Newtonian force law, even in the infinite radius limit, in contrast to the
product–space expectation that M2

P l = M3rcπ.
In consequence of (7.13), the gravitational potential behaves anisotropically as

V (r) = GN
m1m2

r

(
1 +

e−2ky |y|

r2k2
f

)

i.e. our models produce effective 4D theories of gravity with local anisotropy. The
leading term due to the bound state mode is the usual Newtonian potential; the Kaluza
Klein anholonomic modes generate an extremely anisotropically suppressed correction
term, for kf taking the expected value of order the fundamental Planck scale and r of
the size tested with gravity.

Let us conclude the paper: It is known that we can consistently exist with an infinite
5th dimension, without violating known tests of gravity [3]. The scenarios consist of two
or a single 3–brane, (a piece of) AdS5 in the bulk, and an appropriately tuned tension
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on the brane. But if we consider off–diagonal 5D metrics like in Ref. [6], which was
used for including of U(1), SU(2) and SU(3) gauge fields, or, in a different but similar
fashion, for construction of generic anisotropic, partially anholonomic, solutions (like
static black holes with ellipsoidal horizons, static black tori and anisotropic wormholes)
in Einstein and extra dimension gravity, [7] the RS theories become substantially locally
anisotropic. One obtains variations of constants on the 5th coordinate and possible
anisotropic oscillations in time (in the first our model), or on space coordinate (in the
second our model). Here it should be emphasized that the anisotropic oscillations (in
time or in a space coordinate) are defined by the constant component of the cosmological
constant (which in our model can generally run on the 5th coordinate). This sure is
related to the the cosmological constant problem which in this work is taken as a given
one, with an approximation of linear dependence on the 5th coordinate, and not solved.
In the other hand a new, anisotropic, solution to the hierarchy problem is supposed to
be subjected to experimental verification.

Finally, we note that many interesting questions remain to be investigated. Having
constructed another, anisotropic, valid alternative to conventional 4D gravity, it is im-
portant to analyze the astrophysical and cosmological implications. These anisotropic
scenarios might even provide a new perspective for solving unsolved issues in string/M-
theory, quantum gravity and cosmology.

The author thanks D. Singleton, E. Gaburov and D. Gonţa for collaboration and dis-
cussing of results. The author is grateful to P. Stavrinos for hospitality and support. The
work is partially supported by ”The 2000–2001 California State University Legislative
Award”.
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Chapter 8

Anisotropic Black Holes in Einstein
and Brane Gravity

Abstract 1

We consider exact solutions of Einstein equations defining static black holes paramet-
rized by off–diagonal metrics which by anholonomic mappings can be equivalently trans-
formed into some diagonal metrics with coefficients being very similar to those from the
Schwarzschild and/or Reissner-Nördstrom solutions with anisotropic renormalizations
of constants. We emphasize that such classes of solutions, for instance, with ellipsoidal
symmetry of horizons, can be constructed even in general relativity theory if off–diagonal
metrics and anholonomic frames are introduced into considerations. Such solutions do
not violate the Israel’s uniqueness theorems on static black hole configurations [1] be-
cause at long radial distances one holds the usual Schwarzschild limit. We show that
anisotropic deformations of the Reissner-Nördstrom metric can be an exact solution on
the brane, re-interpreted as a black hole with an effective electromagnetic like charge
anisotropically induced and polarized by higher dimension gravitational interactions.

The idea of extra–dimension is gone through a renewal in connection to string/M–
theory [2] which in low energy limits results in models of brane gravity and/or high
energy physics. It was proven that the matter fields could be localized on a 3–brane in
1 + 3 + n dimensions, while gravity can propagate in the n extra dimensions which can
be large (see, e. g., [3]) and even not compact, as in the 5-dimensional (in brief, 5D)
warped space models of Randall and Sundrum [4] (in brief RS, see also early versions

1 c© S. Vacaru and E. Gaburov, Anisotropic Black Holes in Einstein and Brane Gravity, hep-
th/0108065
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[5]).
The bulk of solutions of 5D Einstein equations and their reductions to 4D were con-

structed by using static diagonal metrics and extensions to solutions with rotations given
with respect to holonomic coordinate frames of references. On the other hand much at-
tention has been paid to off–diagonal metrics in higher dimensional gravity beginning the
Salam, Strathee and Petracci work [6] which proved that including off–diagonal compo-
nents in higher dimensional metrics is equivalent to including of U(1), SU(2) and SU(3)
gauge fields. Recently, it was shown in Ref. [7] that if we consider off–diagonal metrics
which can be equivalently diagonalized to some corresponding anholonomic frames, the
RS theories become substantially locally anisotropic with variations of constants on extra
dimension coordinate or with anisotropic angular polarizations of effective 4D constants,
induced by higher dimension gravitational interactions.

If matter on a such anisotropic 3D branes collapses under gravity without rotating to
form a black hole, then the metric on the brane-world should be close to some anisotropic
deformations of the Schwarzschild metric at astrophysical scales in order to preserve the
observationally tested predictions of general relativity. We emphasize that it is possible
to construct anisotropic deformations of spherical symmetric black hole solutions to some
static configurations with ellipsoidal or toroidal horizons even in the framework of 4D
and in 5D Einstein theory if off–diagonal metrics and associated anholonomic frames
and nonlinear connections are introduced into consideration [8].

Collapse to locally isotropic black holes in the Randall-Sundrum brane-world scenario
was studied by Chamblin et al. [11] (see also [12, 14] and a review on the subject [13]).
The item of definition of black hole solutions have to be reconsidered if we are dealing with
off–diagonal metrics, anholonomic frames both in general relativity and on anisotropic
branes.

In this Letter, we give four classes of exact black hole solutions which describes
ellipsoidal static deformations with anisotropic polarizations and running of constants of
the Schwarzschild and Reissner-Nördstrom solutions. We analyze the conditions when
such type anisotropic solutions defined on 3D branes have their analogous in general
relativity.

The 5D pseudo–Riemannian spacetime is provided with local coordinates uα =
(xi, ya) = (x1 = f, x2, x3, y4 = s, y5 = p), where f is the extra dimension coordinate,
(x2, x3) are some space coordinates and (s = ϕ, p = t) (or inversely, (s = t, p = ϕ))
are correspondingly some angular and time like coordinates (or inversely). We suppose
that indices run corresponding values: i, j, k, ... = 1, 2, 3 and a, b, c, ... = 4, 5. The local
coordinate bases ∂α = (∂i, ∂a), and their duals, dα = (di, da) , are defined respectively as
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∂α ≡
∂

duα
= (∂i =

∂

dxi
, ∂a =

∂

dya
) and dα ≡ duα = (di = dxi, da = dya). (8.1)

For the 5D line element dl2 = Gαβdu
αduβ we choose the metric coefficients Gαβ

(with respect to the coordinate frame (8.1)) to be parametrized by a off–diagonal matrix
(ansatz)




1 + w 2
1 h4 + n 2

1 h5 w1w2h4 + n1n2h5 w1w3h4 + n1n3h5 w1h4 n1h5

w1w2h4 + n1n2h5 g2 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w1w3h4 + n1n3h5 w3w2h4 + n2n3h5 g3 + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0
n1h5 n2h5 n3h5 0 h5




(8.2)

where the coefficients are some necessary smoothly class functions of type:

g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

1, x2, x3, s), wi = wi(x
1, x2, x3, s), ni = ni(x

1, x2, x3, s).

The line element (8.2) can be equivalently rewritten in the form

δl2 = gij
(
x2, x3

)
dxidxi + hab

(
x1, x2, x3, s

)
δyaδyb, (8.3)

with diagonal coefficients gij = diag[1, g2, g3] and hab = diag[h4, h5] if instead the coor-
dinate bases (8.1) one introduce the anholonomic frames (anisotropic bases)

δα ≡
δ

duα
= (δi = ∂i−N b

i (u) ∂b, ∂a =
∂

dya
), δα ≡ δuα = (δi = dxi, δa = dya+Na

k (u) dx
k)

(8.4)
where the N–coefficients are parametrized N4

i = wi and N5
i = ni (on anholonomic frame

method see details in [7]).
The nontrivial components of the 5D vacuum Einstein equations, Rβ

α = 0, for the
ansatz (8.3) given with respect to anholonomic frames (8.4) are

R2
2 = R3

3 = − 1

2g2g3

[g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

] = 0, (8.5)

R4
4 = R5

5 = − β

2h4h5
= 0, (8.6)

R4i = −wi
β

2h5
− αi

2h5
= 0, (8.7)

R5i = − h5

2h4
[n∗∗
i + γn∗

i ] = 0, (8.8)
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where

αi = ∂ih
∗
5 − h∗5∂i ln

√
|h4h5|, β = h∗∗5 − h∗5[ln

√
|h4h5|]∗, γ = (3h5/2h4)− h∗4/h4,

the partial derivatives are denoted like aˆ = ∂a/∂x1, h• = ∂h/∂x2, f ′ = ∂f/∂x2 and
f ∗ = ∂f/∂s.

The system of second order nonlinear partial equations (8.5)–(8.8) can be solved in
general form:

The equation (8.5) relates two functions g2(x
2, x3) and g3(x

2, x3). It is solved, for
instance, by arbitrary two functions g2(x

2) and g3(x
3), or by g2 = g3 = g[0] exp[a2x

2 +
a3x

3], were g[0], a2 and a3 are some constants. For a given parametrization of g2 =
b2(x

2)c2(x
3) we can find a decomposition in series for g3 = b3(x

2)c3(x
3) (in the inverse

case a multiple parametrization is given for g3 and we try to find g2); for simplicity we
omit such cumbersome formulas. We emphasize that we can always redefine the variables
(x2, x3) , or (equivalently) we can perform a 2D conformal transform to the flat 2D line
element

g2(x
2, x3)(dx2)2 + g3(x

2, x3)(dx3)2 → (dx2)2 + (dx3)2,

for which the solution of (8.5) becomes trivial.
The next step is to find solutions of the equation (8.6) which relates two func-

tions h4 (xi, s) and h5 (xi, s). This equation is satisfied by arbitrary pairs of coefficients
h4 (xi, s) and h5[0] (x

i) . If dependencies of h5 on anisotropic variable s are considered,
there are two possibilities:

a) to compute

√
|h5| = h5[1]

(
xi
)

+ h5[2]

(
xi
) ∫ √

|h4 (xi, s) |ds, h∗4
(
xi, s

)
6= 0;

= h5[1]

(
xi
)

+ h5[2]

(
xi
)
s, h∗4

(
xi, s

)
= 0,

for some functions h5[1,2] (x
i) stated by boundary conditions;

b) or, inversely, to compute h4 for a given h5 (xi, s) , h∗5 6= 0,

√
|h4| = h[0]

(
xi
)
(
√
|h5 (xi, s) |)∗, (8.9)

with h[0] (x
i) given by boundary conditions.

Having the values of functions h4 and h5, we can define the coefficients wi (x
i, s) and

ni (x
i, s) :

The exact solutions of (8.7) is found by solving linear algebraic equation on wk,

wk = ∂k ln[
√
|h4h5|/|h∗5|]/∂s ln[

√
|h4h5|/|h∗5|], (8.10)
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for ∂s = ∂/∂s and h∗5 6= 0. If h∗5 = 0 the coefficients wk could be arbitrary functions on
(xi, s) .

Integrating two times on variable s we find the exact solution of (8.8),

nk = nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[h4/(
√
|h5|)3]ds, h∗5 6= 0;

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

h4ds, h
∗
5 = 0; (8.11)

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[1/(
√
|h5|)3]ds, h∗4 6= 0,

for some functions nk[1,2] (x
i) stated by boundary conditions.

We shall construct some classes of exact solutions of 5D and 4D vacuum Einstein
equations describing anholonomic deformations of black hole solutions of the Reissner-
Nördstrom and Schwarzschild metrics. We consider two systems of 3D space coordinates:

a) The isotropic spherical coordinates (ρ, θ, ϕ), where the isotropic radial coordinate
ρ is related with the usual radial coordinate r via relation r = ρ (1 + rg/4ρ)

2 for rg =
2G[4]m0/c

2 being the 4D gravitational radius of point particle of mass m0, G[4] = 1/M2
P [4]

is the 4D Newton constant expressed via Plank mass MP [4] which following modern
string/brane theories can considered as a value induced from extra dimensions, we shall
put the light speed constant c = 1 (this system of coordinates is considered, for instance,
for the so–called isotropic representation of the Schwarzschild solution [9]).

b) The rotation ellipsoid coordinates (in our case isotropic, in brief re–coordinates)
[10] (u, v, ϕ) with 0 ≤ u < ∞, 0 ≤ v ≤ π, 0 ≤ ϕ ≤ 2π, where σ = cosh u = 4ρ/rg ≥
1 are related with the isotropic 3D Cartezian coordinates (x̃ = sinh u sin v cosϕ, ỹ =
sinh u sin v sinϕ, z̃ = cosh u cos v) and define an elongated rotation ellipsoid hypersurface
(x̃2 + ỹ2) /(σ2 − 1) + z̃2/σ2 = 1.

By straightforward calculations we can verify that we can generate from the ansatz
(8.2) four classes of exact solutions of the system (8.5)–(8.8):

1. The anisotropic Reissner-Nördstrom black hole solutions with polarizations on ex-
tra dimension and 3D space coordinates are parametrized by the data

g2 =

(
1− rg

4ρ

1 + rg
4ρ

)
1[

ρ2 + aρ/(1 + rg
4ρ

)2 + b/(1 + rg
4ρ

)4
] , g3 = 1; (8.12)

h5 = − 1

ρ2
(
1 + rg

4ρ

)4 [1 +
aσm (f, ρ, θ, ϕ)

ρ
(
1 + rg

4ρ

)2 +
bσq (f, ρ, θ, ϕ)

ρ2
(
1 + rg

4ρ

)4 ],
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h4 = sin2 θ
[(√

|h5(f, ρ, θ, ϕ)|
)]2

(see (8.9));

where a, b are constants and σm (f, ρ, θ, ϕ) and σq (f, ρ, θ, ϕ) are called respectively
mass and charge polarizations and the coordinates are (xi, ya) = (f, ρ, θ, t, ϕ) .

2. The anisotropic Reissner-Nördstrom black hole solutions with extra dimension and
time running of constants are parametrized by the data

g2 =

(
1− rg

4ρ

1 + rg
4ρ

)
1[

ρ2 + aρ/(1 + rg
4ρ

)2 + b/(1 + rg
4ρ

)4
] , g3 = 1; (8.13)

h4 = − 1

ρ2
(
1 + rg

4ρ

)4 [1 +
aσm (f, ρ, θ, t)

ρ
(
1 + rg

4ρ

)2 +
bσq (f, ρ, θ, t)

ρ2
(
1 + rg

4ρ

)4 ], h5 = sin2 θ,

where a, b are constants and σm (f, ρ, θ, ϕ) and σq (f, ρ, θ, ϕ) are called respectively
mass and charge polarizations and the coordinates are (xi, ya) = (f, ρ, θ, ϕ, t) .

3. The ellipsoidal Schwarzschild like black hole solutions with polarizations on extra
dimension and 3D space coordinates are parametrized by the data g2 = g3 = 1 and

h5 = − r
2
g

16

cosh2 u

(1 + coshu)4

(
cosh um(f, u, v, ϕ)− cosh u

cosh um(f, u, v, ϕ) + cosh u

)2

,

h4 =
sinh2 u sin2 v

sinh2 u+ sin2 v

[(√
|h5(f, u, v, ϕ)|

)]2
, (8.14)

where σm = cosh um and the coordinates are (xi, ya) = (f, u, v, ϕ, t) .

4. The ellipsoidal Schwarzschild like black hole solutions with extra dimension and
time running of constants are parametrized by the data g2 = g3 = 1 and

h4 = − r
2
g

16

cosh2 u

(1 + coshu)4

(
cosh um(f, ρ, θ, t)− cosh u

cosh um(f, ρ, θ, t) + cosh u

)2

, h5 =
sinh2 u sin2 v

sinh2 u+ sin2 v
,

(8.15)
where σm = cosh um and the coordinates are (xi, ya) = (f, u, v, t, ϕ) .

The N–coefficients wi and ni for the solutions (8.12)–(8.15) are computed respectively
following formulas (8.10) and (2.88) (we omit the final expressions in this paper).

The mathematical form of the solutions (8.12) and (8.13), with constants
a = −2m/M2

p and b = Q, is very similar to that of the Reissner-Nördstrom solution
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from RS gravity [13], but multiplied on a conformal factor
(
1 + rg

4ρ

)−4

ρ−2, with renor-

malized factors σm and σq and without electric charge being present. The induced 4D
gravitational ”receptivities” σm and σq in (8.12) emphasize dependencies on coordinates
(f, ρ, θ, ϕ) , where s = ϕ is the anisotropic coordinate. In a similar fashion one induces
running on time and the 5th coordinate, and anisotropic polarizations on ρ and θ, of
constants for the solution (8.13).

Instead the Reissner-Nördstrom-type correction to the Schwarzschild potential the
mentioned polarizations can be thought as defined by some nonlinear higher dimension
gravitational interactions and anholonomic frame constraints for anisotropic Reissner-
Nördstrom black hole configurations with a ‘tidal charge’ Q arising from the projection
onto the brane of free gravitational field effects in the bulk. These effects are transmitted
via the bulk Weyl tensor, off–diagonal components of the metric and by anholonomic
frames. The Schwarzschild potential Φ = −M/(M2

pr), where Mp is the effective Planck
mass on the brane, is modified to

Φ = −Mσm
M2

pr
+
Qσq
2r2

, (8.16)

where the ‘tidal charge’ parameter Q may be positive or negative. The possibility to
modify anisotropically the Newton law via effective anisotropic masses Mσm, or by
anisotropic effective 4D Plank constants, renormalized like σm/M

2
p , was recently em-

phasized in Ref. [7]. In this paper we state that there are possible additional renormal-
izations of the ”effective” electric charge, Qσq. For diagonal metrics we put σm = σq = 1
and by multiplication on corresponding conformal factors and with respect to holonomic
frames we recover the locally isotropic results from Refs. [13]. We must also impose the
condition that the 5D spacetime is modelled as a AdS5 slice provided with an anholo-
nomic frame structure.

The renormalized tidal charge Qσq affects the geodesics and the gravitational poten-
tial, so that indirect limits may be placed on it by observations. Nevertheless, current
observational limits on |Qσq| are rather weak, since the correction term in Eq. (8.16)
decreases off rapidly with increasing r, and astrophysical measurements (lensing and
perihelion precession) probe mostly (weak-field) solar scales.

Now we analyze the properties of solutions (8.14) and (8.15). They describe Schwarz-
schild like solutions with the horizon forming a rotation ellipsoid horizon. For the general
relativity such solutions were constructed in Refs. [8]. Here, it should be emphasized
that static anisotropic deformations of the Schwarzschild metric are described by off–
diagonal metrics and corresponding conformal transforms. At large radial distances from
the horizon the anisotropic configurations transform into the usual one with spherical
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symmetry. That why the solutions with anisotropic rotation ellipsoidal horizons do
not contradict the well known Israel and Carter theorems [1] which were proved in the
assumption of spherical symmetry at asymptotic. Anisotropic 4D black hole solutions
follow from the data (8.14) and (8.15) if you state some polarizations depending only
on 3D space coordinates (u, v, ϕ), or on some of them. In this paper we show that in
5D there are warped to 4D static ellipsoidal like solutions with constants renormalized
anisotropically on some 3D space coordinates and on extra dimension coordinate (in
the class of solutions (8.14)) and running of constants on time and the 5th coordinate,
with possible additional polarizations on some 3D coordinates (in the class of solutions
(8.15)).

A geometric approach to the Randall-Sundrum scenario has been developed by Shi-
romizu et al. [15] (see also [16]), and proves to be a useful starting point for formulating
the problem and seeing clear lines of approach. In this work we considered a variant of
anholonomic RS geometry. The vacuum solutions (8.12)–(8.15) localized on the brane
must satisfy the 5D equation in the Shiromizu et al. representation if in 4D some sources
are considered as to be induced from extra dimension gravity.

The method of anholonomic frames covers the results on linear extensionss of the
Schwarzschild horizon into the bulk [17]. The solutions presented in this paper are
nonlinearly induced, are based on very general method of construction exact solutions
in extra dimension gravity and generalize also the Reissner-Nördstrom solution from
RS gravity. The obtained solutions are locally anisotopic but, nevertheless, they posses
local 4D Lorentz symmetry, which is explicitly emphasized with respect to anholonomic
frames. There are possible constructions with broken Lorentz symmetry as in [18] (if we
impose not a locally isotropic limit of our solutions, but an anisotropic static one). We
omit such considerations here.

In conclusion we formulate a prescription for mapping 4D general relativity solu-
tions with diagonal metrics to 4D and 5D solutions of brane world: a general relativity
vacuum solution gives rise to a vacuum brane–world solution in 5D gravity given with
similar coefficients of metrics but defined with respect to some anholonomic frames and
with anisotropic renormalization of fundamental constants; such type of solutions are
parametrized by off–diagonal metrics if of type (8.2) if they are re–defined with respect
to coordinate frames .
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Chapter 9

Off–Diagonal Metrics and
Anisotropic Brane Inflation

Abstract 1

We study anisotropic reheating (entropy production) on 3D brane from a decaying
bulk scalar field in the brane–world picture of the Universe by considering off–diagonal
metrics and anholonomic frames. We show that a significant amount of, in general,
anisotropic dark radiation is produced in this process unless only the modes which satisfy
a specific relation are excited. We conclude that subsequent entropy production within
the brane is required in general before primordial nucleosynthesis and that the presence of
off–diagonal components (like in the Salam, Strathee and Petracci works [1]) of the bulk
metric modifies the processes of entropy production which could substantially change
the brane–world picture of the Universe.

The brane world picture of the Universe [2] resulted in a number of works on brane
world cosmology [3, 4] and inflationary solutions and scenaria [5, 6, 7, 8, 9]. Such solutions
have been constructed by using diagonal cosmological metrics with respect to holonomic
coordinate frames.

In Kaluza–Klein gravity there were also used off–diagonal five dimensional (in brief,
5D) metrics beginning Salam and Strathee and Perrachi works [1] which suggested to
treat the off–diagonal components as some coefficients including U(1), SU(2) and SU(3)
gauge fields. Recently, the off–diagonal metrics were considered in a new fashion both
in Einstein and brane gravity [10, 11], by applying the method of anholonomic frames
with associated nonlinear connection, which resulted in a new method of construction

1 c© S. Vacaru and D. Gonţa, Off–Diagonal Metrics and Anisotropic Brane Inflation, hep–th/ 0109114
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of exact solutions of Einstein equations describing, for instance, static black hole and
cosmological solutions with ellipsoidal or torus symmetry, soliton–dilaton and wormhole–
flux tube configurations with anisotropic polarizations and/or running of constants.

The aim of this paper is to investigate reheating after anisotropic inflation in the
brane world with generic local anisotropy induced by off–diagonal metrics in the bulk
[11]. In this scenario, our locally anisotropic Universe is described on a 4D boundary (3D
anisotropic brane) of Z2–symmetric 5D space–time with a gravitational vacuum polar-
ization constant and its computed renormalized effective value. In the locally isotropic
limit the constant of gravitational vacuum polarization results in a negative cosmological
constant Λ5 ≡ −6k2, where k is a positive constant. Our approach is in the spirit of
Horava–Witten theory [12, 13] and recovers the Einstein gravity around the brane with
positive tension [2, 14, 15], the considerations being extended with respect to anholo-
nomic frames.

Theories of gravity and/or high energy physics must satisfy a number of cosmologi-
cal tests including cosmological inflation [16] which for brane models could directed by
anisotropic renormalizations of parameters [11]. We shall develop a model of anisotropic
inflation scenarios satisfying the next three requirements: 1) it is characterized by a suf-
ficiently long quasi–exponential expansion driven by vacuum–like energy density of the
potential energy of a scalar field; 2) the termination of accelerated anisotropic expansion
is associated with an entropy production or reheating to satisfy the conditions for the
initial state of the classical hot Big Bang cosmology, slightly anisotropically deformed,
before the primordial nucleosynthesis [17] and 3) generation of primordial fluctuations
with desired amplitude and spectrum [18].

We assume the 5D vacuum Einstein equations written with respect to anholonomic
frames which for diagonal metrics with respect to holonomic frames contains a negative
cosmological constant Λ5 and a 3D brane at the 5th coordinate w = 0 about which the
space–time is Z2 symmetric and consider a quadratic line interval

δs2 = Ω2(t, w, y)[dx2 + g2 (t, w) dt2 + g3 (t, w) dw2 + h4(t, w, y)δy
2 + h5 (t, w) dz2], (9.1)

where the ’elongated’ differential δy = dy + ζ2(t, w, y)dt + ζ3(t, w, y)dw, together with
dx, dt and dw define an anholonomic co–frame basis (dx, dt, dw, δy, δz = dz) which is
dual to the anholonomic frame basis [10, 11] (δ1 = ∂

∂x
, δ2 = ∂

∂t
−ζ2 ∂

∂y
, δ3 = ∂

∂t
−ζ3 ∂

∂y
, ∂4 =

∂
∂y
, ∂5 = ∂

∂z
); we denote the 4D space–time coordinates as (x, t, w, y, z) with t being the

time like variable. The metric ansatz for the interval (9.1) is off–diagonal with respect
to the usual coordinate basis (dx, dt, dw, dy, dz) .

As a particular case we can parametrize from (9.1) the metric near an locally isotropic
brane like a flat Robertson–Walker metric with the scale factor a(t) [9] if we state the
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values

Ω2 = (aQ)2, g2 = −(aQ)−2N2, g3 = (aQ)−2, h4 = 1, h5 = 1, ζ2,3 = 0,

for

N2(t, w) = Q−2(t, w)[cosh(2kw) +
1

2
k−2

(
H2 + Ḣ

)
(cosh(2kw)− 1)

−
1 + 1

2
k−2

(
2H2 + Ḣ

)

√
1 + k−2H2 + Ca−4

sinh(2k|w|)]

Q2(t, w) = cosh(2kw) +
1

2
k−2H2 (cosh(2kw)− 1)−

√
1 + k−2H2 + Ca−4, (9.2)

when the bulk is in a vacuum state with a negative cosmological constant Λ5, C is an
integration constant [19]. One takes N = Q = 1 on the brane w = 0. The function H (t)
and constants k and C from (9.2) are related with the evolution equation on the brane
in this case is given by

H2 =

(
ȧ

a

)2

=
κ4

5σ

18
ρtot +

Λ4

3
+
κ4

5

36
ρ2

tot −
k2C

a4
, Λ4 ≡

1

2

(
Λ5 +

κ2
5

6
σ2

)
, (9.3)

where κ2
5 is the 5D gravitational constant related with the 5D reduced Planck scale, M5,

by κ2
5 = M−3

5 ; σ is the brane tension, the total energy density on the brane is denoted by
ρtot, and the last term of (9.3) represents the dark radiation with C being an integration
constant [15, 20, 19]. We recover the standard Friedmann equation with a vanishing
cosmological constant at low energy scales if σ = 6k/κ2

5 and κ2
4 = κ4

5σ/6 = κ2
5k, where

κ2
4 is the 4D gravitational constant related with the 4D reduced Planck scale, M4, as
κ2

4 = M−2
4 . We find that M2

4 = M3
5 /k. If we take k = M4, all the fundamental scales in

the theory take the same value, i. e. k = M4 = M5. The the scale above is stated by
constant k which the nonstandard term quadratic in ρtot is effective in (9.3). One suppose
[9] that k is much larger than the scale of inflation so that such quadratic corrections
are negligible.

For simplicity, in locally isotropic cases one assumes that the bulk metric is governed
by Λ5 and neglect terms suppressed by k−1 and Ca−4 and writes

ds2
5 = −e−2k|w|dt2 + e−2k|w|a2(t)

(
dx2 + dy2 + dz2

)
+ dw2. (9.4)

The conclusion of Refs [11] is that the presence of off–diagonal components in the
bulk 5D metric results in locally anisotropic renormalizations of fundamental constants
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and modification of the Newton low on the brane. The purpose of this paper is to analyze
the basic properties of models of anisotropic inflation on 3D brane with induced from
the bulk local anisotropy of metrics of type (9.1) which define cosmological solutions
of 5D vacuum Einstein equations depending on variables (w, t, y) , being anisotropic on
coordinate y (see details on construction of various classes of solutions by applying the
method of moving anholonomic frames in Ref [10, 11]).

For simplicity, we shall develop a model of inflation on 3D brane with induced from
the bulk local anisotropy by considering the ansatz

δs2
5 = e−2(k|w|+ky|y|)a2(t)[dx2 − dt2] + e−2ky|y|dw2 + e−2(k|w|+ky|y|)a2(t)(δy2 + z2) (9.5)

which is a particular case of the metric (9.1) with Ω2(w, t, y) = e−2(k|w|+ky|y|)a2(t), g2 =
−1, g3 = e2k|w|, h4 = 1, h5 = 1 and ζ2 = k/ky, ζ3 = (da/dt)/kya taken as the ansatz (9.5)
would be an exact solution of 5D vacuum Einstein equations. The constants k and ky
have to be established experimentally. We emphasize that the metric (9.5) is induced
alternatively on the brane from the 5D anholonomic gravitational vacuum with off–
diagonal metrics. With respect to anholonomic frames it has some diagonal coefficients
being similar to those from (9.4) but these metrics are very different in nature and de-
scribes two types of branes: the first one is with generic off–diagonal metrics and induced
local anisotropy, the second one is locally isotropic defined by a brane configuration and
the bulk cosmological constant. For anisotropic models, the respective constants can be
treated as some ’receptivities’ of the bulk gravitational vacuum polarization.

The next step is to investigate a scenarios of anisotropic inflation driven by a bulk
scalar field φ with a 4D potential V [φ] [21, 22]. We shall study the evolution of φ after
anisotropic brane inflation expecting that reheating is to proceed in the same way as in
4D theory with anholonomic modification (a similar idea is proposed in Ref. [23] but for
locally isotropic branes). We suppose that the scalar field is homogenized in 3D space
as a result of inflation, it depends only on t and w and anisotropically on y and consider
a situation when φ rapidly oscillates around φ = 0 by expressing V [φ] = m2φ2/2. The
field φ(t, w, y) is non–homogeneous because of induced space–time anisotropy. Under
such assumptions he Klein–Gordon equation in the background of metric (9.5) is written

✷5φ(f, t, y)− V ′[φ(f, t, y)] =
1√
|g|

[δt

(√
|g|g22δtφ

)
+ δw

(√
|g|g33δfφ

)

+∂y

(√
|g|h44∂yφ

)
]− V ′[φ] = 0, (9.6)

where δw = ∂
∂w
− ζ2

∂
∂y
, δt = ∂

∂t
− ζ3

∂
∂y
,, ✷5 is the d’Alambert operator and |g| is the

determinant of the matrix of coefficients of metric given with respect to the anholonomic
frame (in Ref. [9] the operator ✷5 is alternatively constructed by using the metric (9.4)).
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The energy release of φ is modelled by introducing phenomenologically a dissipation
terms defined by some constants ΓwD,Γ

y
D and ΓB representing the energy release to the

brane and to the entire space,

✷5φ(w, t, y)− V ′[φ(w, t, y)] =
ΓwD
2k
δ(w)

1

N
δtφ+

ΓyD
2ky

δ(y)
1

N
δtφ+ ΓB

1

N
δtφ. (9.7)

Following (9.6) and (9.7) together with the Z2 symmetries on coordinates w and y,
we have

δwφ
+ = −δwφ− =

ΓwD
4k
δtφ(0, y, t), ∂yφ

+ = −∂yφ− =
ΓyD
4ky

δtφ(w, 0, t), (9.8)

where superscripts + and − imply values at w, y −→ +0 and −0, respectively. In this
model we have two types of warping factors, on coordinates w and y. The constant ky
characterize the gravitational anisotropic polarization in the direction y.

Comparing the formulas (9.7) and (9.8) with similar ones from Ref. [9] we conclude
the the induced from the bulk brane anisotropy could result in additional dissipation
terms like that proportional to ΓyD. This modifies the divergence of divergence T

(φ)C
A;C of

the energy–momentum tensor T
(φ)
MN of the scalar field φ: Taking

T
(φ)
MN = δMφδNφ− gMN

(
1

2
gPQδPφδQφ+ V [φ]

)
,

with five dimensional indices, M,N, ... = 1, 2, ..., 5 and anholonomic partial derivative
operators δP being dual to δP we compute

T
(φ)C
A;C = {✷5φ(w, t, y)− V ′[φ(w, t, y)]}φ,A

=

[
ΓwD
2k
δ(w)

1

N
δtφ+

ΓyD
2ky

δ(y)
1

N
δtφ+ ΓB

1

N
δtφ

]
δAφ. (9.9)

We can integrate the A = 0 component of (9.9) from w = −ǫ to w = +ǫ near the brane,
than we integrate from y = −ǫ1 to y = +ǫ1, in the zero order in ǫ and ǫ1, we find from
(9.8) that

δρφ(0, 0, t)

∂t
= −(3H + ΓB)(δtφ)2(0, 0, t)− Jφ(0, 0, t), (9.10)

with ρφ ≡ 1
2
(δtφ)2 + V [φ], Jφ ≡ − δtφ√

|g|
δf

(√
|g|δfφ

)
− δtφ√

|g|
δy

(√
|g|δyφ

)
, which states

that the energy dissipated by the ΓfD and ΓyD terms on anisotropic brane is entirely com-
pensated by the energy flows (locally isotropic and anisotropic) onto the brane. In this
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paper we shall model anisotropic inflation by considering that φ looks like homogeneous
with respect to anholonomic frames; the local anisotropy and induced non–homogeneous
effects are modelled by additional terms like ΓyD and elongated partial operators with a
further integration on variable y.

Now we analyze how both the isotropic and anisotropic energy released from φ affects
evolution of our brane Universe by analyzing gravitational field equations [15, 22] written
with respect to anholonomic frames. We consider that the total energy–momentum
tensor has a similar structure as in holonomic coordinates but with the some anholonomic
variables, including the contribution of bulk cosmological constant,

TMN = −κ−2
5 Λ5gMN + T

(φ)
MN + SMNδ(w),

where SMN is the stress tensor on the brane and the capital Latin indices M,N, ...
run values 1, 2, ...5 (we follow the denotations from [9] with that difference that the
coordinates are reordered and stated with respect to anholonomic frames). One intro-
duces a further decomposition as Sµν = −σqµν + τµν , where τµν represents the energy–
momentum tensor of the radiation fields produced by the decay of φ and it is of the
form τµν = diag(2pr,−ρr, pr, 0) with pr = ρr/3 which defines an anisotropic distribution
of matter because of anholonomy of the frame of reference.

We can remove the considerations on an anisotropic brane (hypersurface) by using a
unit vector nM = (0, 0, 1, 0, 0) normal to the brane for which the extrinsic curvature of
a w = const hypersurface is given by KMN = qPMq

Q
NnQ;P with qMN = gMN − nMnN . Ap-

plying the Codazzi equation and the 5D Einstein equations with anholonomic variables
[10, 11], we find

DνK
ν
µ −DµK = κ2

5TMNn
NqMµ = κ2

5Tµw = κ2
5(δtφ)(δwφ)δ2

µ, (9.11)

where δ1
µ is the Kronecker symbol, small Greek indices parametrize coodinates on the

brane, Dν is the 4D covariant derivative with respect to the metric qµν . The above
equation reads

DνK
ν+
0 −D0K

+ = κ2
5

[
ΓD
4k

(δtφ)2(0, t, 0) +
ΓD
4ky

(∂yφ)2(0, t, 0)

]
, (9.12)

near the brane w −→ +0 and neglecting non–homogeneous behavior, by putting y = 0.
We have

DνK
ν+
µ −DµK

+ = −κ
2
5

2
DνS

ν
µ = −κ

2
5

2
Dντ

ν
µ . (9.13)
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which follows from the junction condition and Z2–symmetry with

K+
µν = −κ2

5

2

(
Sµν − 1

3
qµνS

)
. Using (9.12) and (9.13), we get

Dντ
ν
µ = −ΓD

2k
(δtφ)2δ2

µ −
ΓyD
2ky

(∂yφ)2δ3
µ,

i. e.,

δtρr = −3H(ρr + pr) +
ΓD
2k

(δtφ)2 +
ΓyD
2ky

(∂yφ)2 = −4Hρr +
ΓD
2k

(δtφ)2 +
ΓyD
2ky

(∂yφ)2,

on the anisotropic brane. This equation describe the reheating in an anisotropic pertur-
bation theory (for inflation in 4D theory see [24]).

The 4D Einstein equations with the Einstein tensor G
(4)ν
µ were proven [22] to have

the form
G(4)ν

µ = κ2
4

(
T (s)ν
µ + τ νµ

)
+ κ4

5π
ν
µ − Eν

µ,

with T
(s)ν
µ ≡ 1

6k

[
4qνζ(δµφ)(δζφ) +

(
3
2
(δζφ)

2 − 5
2
qξζ(δξφ)(δζφ)− 3

2
m2φ2

)
qνµ

]
, where πνµ

contains terms quadratic in τβα which are higher order in ρr/(kM4)
2 and are consistently

neglected in our analysis. Eν
µ ≡ Cwν

µw is a component of the 5D Weyl tensor CMN
PQ treated

as a source of dark radiation [19].
With respect to anholonomic frames the 4D Bianchi identities are written in the usual

manner,
DνG

(4)ν
µ = κ2

4

(
DνT

(s)ν
µ +Dντ

ν
µ

)
−DνE

ν
µ = 0, (9.14)

with that difference that DνG
(4)ν
µ = 0 only for holonomic frames but in the anholonomic

cases, for general constraints one could be DνG
(4)ν
µ 6= 0 [10, 11]. In this paper we shall

consider such constraints for which the equalities (9.14) hold which yield

DνE
ν
2 = −κ

2
4

4k

δ

∂t

[
(δtφ)2 − (δwφ)2 − (∂yφ)2 +m2φ2

]

−2κ2
4H

k
(δtφ)2 − κ2

4

2k
ΓD(δtφ)2 − κ2

4

2k y
ΓyD(∂yφ)2.

Putting on the anisotropic brane (δwφ)2 =Γ2
D(δtφ)2/(16k2) and

(∂yφ)2 = (ΓyD)2(δtφ)2/(16k2
y) similarly to Ref. [9], by substituting usual partial deriva-

tives into ’elongated’ ones and introducing ϕ(t) ≡ φ(0, t.y)/
√

2k, b = a(t)e−ky |y| and
ε ≡ E2

2/κ
2
4 we prove the evolution equations in the brane universe w = 0
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H2 =

(
δtb

b

)2

=
κ2

4

3
(ρϕ + ρr + ε) , ρϕ ≡

1

2
(δtϕ)2 +

1

2
m2ϕ2 =

ρφ
2k
,

δtρϕ = −(3H + ΓB)(δtϕ)2 − Jϕ, Jϕ ≡
Jφ
2k
,

δtρr = −4Hρr + ΓD(δtϕ)2 + ΓyD(δtϕ)2,

δtε = −4Hε− (H + ΓD + ΓyD − ΓB)(δtϕ)2 + Jϕ.

We find the solution of (9.6) in the background (9.5) in the way suggested by [25, 9]
by introducing an additional factor depending on anisotropic variable y,

φ(t, w) =
∑

n+n′

cn+n′Tn+n′(t)Yn(w)Yn′(y) +H.C.

with

Tn+n′(t) ∼= a−
3
2 (t)e−i(mn+mn′ )t,

Yn(w) = e2k|w|
[
Jν

(mn

k
ek|w|

)
+ bnNν

(mn

k
ek|w|

)]
,

Yn′(y) = e2ky|y|
[
Jν

(mn′

k
eky |y|

)
+ bn′Nν

(mn

k
eky|y|

)]
,

for ν = 2
√

1 + m2

4k2
∼= 2 + m2

4k2 , and considering that the field oscillates rapidly in cosmic

expansion time scale. The values mn and mn′ are some constants which may take con-
tinuous values in the case of a single brane and bn and bn′ are some constants determined
by the boundary conditions, δwφ = 0 at w = 0 and ∂yφ = 0 at y = 0. We write

bn =
[
2Jν

(mn

k

)
+
mn

k
J ′
ν

(mn

k

)] [
2Nν

(mn

k

)
+
mn

k
N ′
ν

(mn

k

)]−1

,

bn′ =

[
2Jν

(
mn′

ky

)
+
mn′

ky
J ′
ν

(
mn′

ky

)][
2Nν

(
mn′

ky

)
+
mn′

ky
N ′
ν

(
mn′

ky

)]−1

.

The effect of dissipation on the boundary conditions is given by
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bn ∼=
[(

2 +
imnΓD

2k2

)
Jν

(mn

k

)
+
mn

k
J ′
ν

(mn

k

)]
×

[(
2 +

imnΓD
2k2

)
Nν

(mn

k

)
+
mn

k
N ′
ν

(mn

k

)]−1

,

bn′
∼=

[(
2 +

imn′ΓyD
2k2

y

)
Jν

(
mn′

ky

)
+
mn′

ky
J ′
ν

(
mn′

ky

)]
×

[(
2 +

imn′ΓyD
2k2

y

)
Nν

(
mn′

ky

)
+
mn′

ky
N ′
ν

(
mn′

ky

)]−1

,

where use has been made of ˙∂tTn+n′(t) ∼= −imn+n′Tn+n′(t).

For simplicity, let analyze the case when a single oscillation mode exists, neglect
explicit dependence of ϕ on variable y (the effect of anisotropy being modelled by terms
like mn′ , ky and ΓyDand compare our results with those for isotropic inflation [9]. In this
case we approximate δϕ ≃ ϕ̇, where dot is used for the partial derivative ∂t. We find

Jϕ = (m2
n +m2

n′ −m2)ϕϕ̇. (9.15)

The evolution of the dark radiation is approximated in the regime when ϕ(t) oscillates
rapidly, parametrized as

ϕ(t) = ϕi

(
a(t)

a(ti)

)−3/2

e−iλn+n′ (t−ti), λn+n′ ≡ mn +mn′ − i

2
ΓB,

with mn + mn′ ≫ H and ΓB being positive constants which assumes that only a single
oscillation mode exists.

Then the evolution equation of ε(t) ≡ κ−2
4 E2

2 is given by

∂ε

∂t
= −4Hε− (ΓD + ΓyD +H − ΓB)ϕ̇2 − (m2 −m2

n −m2
n′)ϕϕ̇.

The next approximation is to consider ϕ as oscillating rapidly in the expansion time scale
by averaging the right-hand-side of evolution equations over an oscillation period. Using
ϕ̇2(t) = (m2

n+m2
n′)ϕ2(t) and ϕϕ̇(t) = −(3H+ΓB)ϕ2(t)/2, we obtain the following set of

evolution equations in the anisotropic brane universe w = 0, for small non–homogeneities
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on y, where the bar denotes average over the oscillation period.

H2 =

(
ȧ

a

)2

∼= κ2
4

3
(ρϕ + ρr + ε) ,

∂ρϕ
∂t

= −1

2
(3H + ΓB)(m2 +m2

n +m2
n′)ϕ2,

∂ρr
∂t

= −4Hρr +
(
ΓDm

2
n + ΓyDm

2
n′

)
ϕ2, (9.16)

∂ε

∂t
= −4Hε− (ΓD +H − ΓB)m2

nϕ
2 − (ΓyD +H − ΓB)m2

n′ϕ2

+
1

2
(3H + ΓB)(m2 −m2

n −m2
n′)ϕ2, (9.17)

with ϕ2(t) ≡ ϕ2
i

(
a(t)
a(ti)

)−3

e−ΓB(t−ti).

The system (9.16) and (9.17) was analyzed in Ref. [9] for the case when mn′ and ΓyD
vanishes:

It was concluded that if mn ≥ m, we do not recover standard cosmology on the brane
after inflation. The same holds true in the presence of anisotropic terms.

In the locally isotropic case it was proven that if mn ≪ n the last term of (9.17) is
dominant and we find more dark radiation than ordinary radiation unless ΓB is extremely
small with ΓB/ΓD < m2

n/m
2 ≪ 1. The presence of anisotropic values mn′ and ΓyD can

violate this condition.
The cases mn, mn′ . m are the most delicate cases because the final amount of

dark radiation can be either positive or negative depending on the details of the model
parameters and the type of anisotropy. The amount of extra radiation–like matter have
to be hardly constrained [17] if we wont a successful primordial nucleosynthesis. In
order to have sufficiently small ε compared with ρr after reheating without resorting
to subsequent both isotropic and anisotropic entropy production within the brane, the
magnitude of creation terms of ε should be vanishingly small at the reheating epoch
H ≃ ΓB. This hold if only there are presented isotropic and/or anisotropic modes which
satisfies the inequality

∣∣2ΓB(m2 −m2
n −m2

n′)− ΓDm
2
n − ΓyDm

2
n′

∣∣≪ ΓDm
2
n + ΓyDm

2
n′ . (9.18)

We conclude that the relation (9.18) should be satisfied for the graceful exit of
anisotropic brane inflation driven by a bulk scalar field φ. The presence of off–diagonal
components of the metric in the bulk which induces brane anisotropies could modify the
process of nucleosynthesis.
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In summary we have analyzed a model of anisotropic inflation generated by a 5D off–
diagonal metric in the bulk. We studied entropy production on the anisotropic 3D brane
from a decaying bulk scalar field φ by considering anholonomic frames and introducing
dissipation terms to its equation of motion phenomenologically. We illustrated that the
dark radiation is significantly produced at the same time unless the inequality (9.18) is
satisfied. Comparing our results with a similar model in locally isotropic background we
found that off–diagonal metric components and anisotropy results in additional dissipa-
tion terms and coefficients which could substantially modify the scenario of inflation but
could not to fall the qualitative isotropic possibilities for well defined cases with specific
form of isotropic and anisotropic dissipation. Although we have analyzed only a case of
anisotropic metric with a specific form of the dissipation, we expect our conclusion is
generic and applicable to other forms of anisotropies and dissipation, because it is essen-
tially an outcome of the anholonomic frame method and Bianchi identities (9.14). We
therefore conclude that in the brane–world picture of the Universe it is very important
what type of metrics and frames we consider, respectively, diagonal or off–diagonal and
holonomic or anholonomic (i. e. locally isotropic or anisotropic). In all cases there are
conditions to be imposed on anisotropic parameters and polarizations when the dominant
part of the entropy we observe experimentally originates within the brane rather than
in the locally anisotropic bulk. Such extra dimensional vacuum gravitational anisotropic
polarizations of cosmological inflation parameters may be observed experimentally.

The authors are grateful to D. Singleton and E. Gaburov for useful communications.
The work of S. V. is partially supported by the ”The 2000–2001 California State Uni-
versity Legislative Award”.
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Chapter 10

A New Method of Constructing
Black Hole Solutions in Einstein and
5D Gravity

Abstract 1

It is formulated a new ’anholonomic frame’ method of constructing exact solutions
of Einstein equations with off–diagonal metrics in 4D and 5D gravity. The previous ap-
proaches and results [1, 2, 3, 4] are summarized and generalized as three theorems which
state the conditions when two types of ansatz result in integrable gravitational field equa-
tions. There are constructed and analyzed different classes of anisotropic and/or warped
vacuum 5D and 4D metrics describing ellipsoidal black holes with static anisotropic hori-
zons and possible anisotropic gravitational polarizations and/or running constants. We
conclude that warped metrics can be defined in 5D vacuum gravity without postulating
any brane configurations with specific energy momentum tensors. Finally, the 5D and
4D anisotropic Einstein spaces with cosmological constant are investigated.

10.1 Introduction

During the last three years large extra dimensions and brane worlds attract a lot of
attention as possible new paradigms for gravity, particle physics and string/M–theory.
As basic references there are considered Refs. [5], for string gravity papers, the Refs. [6],
for extra dimension particle fields, and gravity phenomenology with effective Plank scale

1 c© S. Vacaru, A New Method of Constructing Black Hole Solutions in Einstein and 5D Dimension
Gravity, hep-th/0110250
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and [7], for the simplest and comprehensive models proposed by Randall and Sundrum
(in brief, RS; one could also find in the same line some early works [8] as well to cite,
for instance, [9] for further developments with supersymmetry, black hole solutions and
cosmological scenaria).

The new ideas are based on the assumption that our Universe is realized as a three
dimensional (in brief, 3D) brane, modelling a 4D pseudo–Riemannian spacetime, em-
bedded in the 5D anti–de Sitter (AdS5) bulk spacetime. It was proved in the RS papers
[7] that in such models the extra dimensions could be not compactified (being even infi-
nite) if a nontrivial warped geometric configuration is defined. Some warped factors are
essential for solving the mass hierarchy problem and localization of gravity which at low
energies can ”bound” the matter fields on a 3D subspace. In general, the gravity may
propagate in extra dimensions.

In connection to modern string and brane gravity it is very important to develop
new methods of constructing exact solutions of gravitational field equations in the bulk
of extra dimension spacetime and to develop new applications in particle physics, as-
trophysics and cosmology. This paper is devoted to elaboration of a such method and
investigation of new classes of anisotropic black hole solutions.

In higher dimensional gravity much attention has been paid to the off–diagonal met-
rics beginning the Salam, Strathee and Peracci works [10] which showed that includ-
ing off–diagonal components in higher dimensional metrics is equivalent to including
U(1), SU(2) and SU(3) gauge fields. They considered a parametrization of metrics of
type

gαβ =

[
gij +Na

i N
b
jhab N e

j hae
N e
i hbe hab

]
(10.1)

where the Greek indices run values 1, 2, ..., n + m, the Latin indices i, j, k, ... from the
middle of the alphabet run values 1, 2, ..., n (usually, in Kaluza–Klein theories one put
n = 4) and the Latin indices from the beginning of the alphabet, a, b, c, ..., run values
n + 1, n + 2, ..., n + m taken for extra dimensions. The local coordinates on higher
dimensional spacetime are denoted uα = (xi, ya) which defines respectively the local
coordinate frame (basis), co–frame (co–basis, or dual basis)

∂α =
∂

∂uα
=

(
∂i =

∂

∂xi
, ∂a =

∂

∂ya

)
, (10.2)

dα = duα =
(
di = dxi, da = dya

)
. (10.3)

The coefficients gij = gij (uα) , hab = hab (u
α) and Na

i = Na
i (uα) should be defined by

a solution of the Einstein equations (in some models of Kaluza–Klein gravity [11] one
considers the Einstein–Yang–Mills fields) for extra dimension gravity.
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The metric (10.1) can be rewritten in a block (n× n)⊕ (m×m) form

gαβ =

(
gij 0
0 hab

)
(10.4)

with respect to some anholonomic frames (N–elongated basis), co–frame (N–elongated
co–basis),

δα =
δ

∂uα
=
(
δi = ∂i −N b

i ∂b, δa = ∂a
)
, (10.5)

δα = δuα =
(
δi = di = dxi, δa = dya +Na

i dx
i
)
, (10.6)

which satisfy the anholonomy relations

δαδβ − δβδα = wγαβδγ

with the anholonomy coefficients computed as

wkij = 0, wkaj = 0, wkab = 0, wcab = 0, waij = δiN
a
j − δjNa

i , w
b
ja = −wbaj = ∂aN

b
j . (10.7)

In Refs. [10] the coefficients Na
i (hereafter, N–coefficients) were treated as some

U(1), SU(2) or SU(3) gauge fields (depending on the extra dimension m). There are
another classes of gravity models which are constructed on vector (or tangent) bundles
generalizing the Finsler geometry [12]. In such approaches the set of functions Na

i were
stated to define a structure of nonlinear connection and the variables ya were taken to
parametrize fibers in some bundles. In the theory of locally anisotropic (super) strings
and supergravity, and gauge generalizations of the so–called Finsler–Kaluza–Klein grav-
ity the coefficients Na

i were suggested to be found from some alternative string models
in low energy limits or from gauge and spinor variants of gravitational field equations
with anholonomic frames and generic local anisotropy [3].

The Salam, Strathee and Peracci [10] idea on a gauge field like status of the coefficients
of off–diagonal metrics in extra dimension gravity was developed in a new fashion by
applying the method of anholonomic frames with associated nonlinear connections just
on the (pseudo) Riemannian spaces [1, 2]. The approach allowed to construct new classes
of solutions of Einstein’s equations in three (3D), four (4D) and five (5D) dimensions
with generic local anisotropy (e.g. static black hole and cosmological solutions with
ellipsoidal or toroidal symmetry, various soliton–dilaton 2D and 3D configurations in
4D gravity, and wormhole and flux tubes with anisotropic polarizations and/or running
on the 5th coordinate constants with different extensions to backgrounds of rotation
ellipsoids, elliptic cylinders, bipolar and toroidal symmetry and anisotropy).
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Recently, it was shown in Refs. [4] that if we consider off–diagonal metrics which can
be equivalently diagonalized with respect to corresponding anholonomic frames, the RS
theories become substantially locally anisotropic with variations of constants on extra
dimension coordinate or with anisotropic angular polarizations of effective 4D constants,
induced by higher dimension and/or anholonomic gravitational interactions.

The basic idea on the application of the anholonomic frame method for constructing
exact solutions of the Einstein equations is to define such N–coefficients when a given type
of off–diagonal metric is diagonalized with respect to some anholonomic frames (10.5)
and the Einstein equations, re–written in mixed holonomic and anholonomic variables,
transform into a system of partial differential equations with separation of variables which
admit exact solutions. This approach differs from the usual tetradic method where the
differential forms and frame bases are all ’pure’ holonomic or ’pure” anholonomic. In our
case the N–coefficients and associated N–elongated partial derivatives (10.5) are chosen
as to be some undefined values which at the final step are fixed as to separate variables
and satisfy the Einstein equations.

The first aim of this paper is to formulate three theorems (and to suggest the way
of their proof) for two off–diagonal metric ansatz which admit anholonomic transforms
resulting in a substantial simplification of the system of Einstein equations in 5D and
4D gravity. The second aim is to consider four applications of the anholonomic frame
method in order to construct new classes of exact solutions describing ellipsoidal black
holes with anisotropies and running of constants. We emphasize that is possible to define
classes of warped on the extra dimension coordinate metrics which are exact solutions
of 5D vacuum gravity. We analyze basic physical properties of such solutions. We also
investigate 5D spacetimes with anisotropy and cosmological constants.

We use the term ’locally anisotropic’ spacetime (or ’anisotropic’ spacetime) for a 5D
(4D) pseudo-Riemannian spacetime provided with an anholonomic frame structure with
mixed holonomic and anholonomic variables. The anisotropy of gravitational interactions
is modelled by off–diagonal metrics, or, equivalently, by theirs diagonalized analogs given
with respect to anholonomic frames.

The paper is organized as follow: In Sec. II we formulate three theorems for two types
of off–diagonal metric ansatz, construct the corresponding exact solutions of 5D vacuum
Einstein equations and illustrate the possibility of extension by introducing matter fields
(the necessary geometric background and some proofs are presented in the Appendix).
We also consider the conditions when the method generates 4D metrics. In Sec. III we
construct two classes of 5D anisotropic black hole solutions with rotation ellipsoid horizon
and consider subclasses and reparemetization of such solutions in order to generate new
ones. Sec. IV is devoted to 4D ellipsoidal black hole solutions. In Sec. V we extend the
method for anisotropic 5D and 4D spacetimes with cosmological constant, formulate two
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theorems on basic properties of the system of field equations and theirs solutions, and
give an example of 5D anisotropic black solution with cosmological constant. Finally, in
Sec. VI, we conclude and discuss the obtained results.

10.2 Off–Diagonal Metrics in Extra Dimension Gra-

vity

The bulk of solutions of 5D Einstein equations and their reductions to 4D (like
the Schwarzshild solution and brane generalizations [13], metrics with cylindrical and
toroidal symmetry [14], the Friedman–Robertson–Walker metric and brane generaliza-
tions [15]) were constructed by using diagonal metrics and extensions to solutions with
rotation, all given with respect to holonomic coordinate frames of references. This Sec-
tion is devoted to a geometrical and nonlinear partial derivation equations formalism
which deals with more general, generic off–diagonal metrics with respect to coordinate
frames, and anholonomic frames. It summarizes and generalizes various particular cases
and ansatz used for construction of exact solutions of the Einstein gravitational field
equations in 3D, 4D and 5D gravity [1, 2, 4].

10.2.1 The first ansatz for vacuum Einstein equations

Let us consider a 5D pseudo–Riemannian spacetime provided with local coordinates
uα = (xi, y4 = v, y5), for i = 1, 2, 3. Our aim is to prove that a metric ansatz of
type (10.1) can be diagonalized by some anholonomic transforms with the N–coefficients
N i
a = N i

a (xi, v) depending on variables (xi, v) and to define the corresponding system
of vacuum Einstein equations in the bulk. The exact solutions of the Einstein equa-
tions to be constructed will depend on the so–called holonomic variables xi and on one
anholonomic (equivalently, anisotropic) variable y4 = v. In our further considerations
every coordinate from a set uα can be stated to be time like, 3D space like or extra
dimensional.

For simplicity, the partial derivatives will be denoted like a× = ∂a/∂x1, a• = ∂a/∂x2,
a

′

= ∂a/∂x3, a∗ = ∂a/∂v.
We begin our approach by considering a 5D quadratic line element

ds2 = gαβ
(
xi, v

)
duαduβ (10.8)

with the metric coefficients gαβ parametrized (with respect to the coordinate frame
(10.3)) by an off–diagonal matrix (ansatz)
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g1 + w 2
1 h4 + n 2

1 h5 w1w2h4 + n1n2h5 w1w3h4 + n1n3h5 w1h4 n1h5

w1w2h4 + n1n2h5 g2 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w1w3h4 + n1n3h5 w2w3h4 + n2n3h5 g3 + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0
n1h5 n2h5 n3h5 0 h5



, (10.9)

where the coefficients are some necessary smoothly class functions of type:

g1 = ±1, g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

i, v),

wi = wi(x
i, v), ni = ni(x

i, v).

Lemma 10.2.1. The quadratic line element (10.8) with metric coefficients (10.9) can
be diagonalized,

δs2 = [g1(dx
1)2 + g2(dx

2)2 + g3(dx
3)2 + h4(δv)

2 + h5(δy
5)2], (10.10)

with respect to the anholonomic co–frame (dxi, δv, δy5) , where

δv = dv + widx
i and δy5 = dy5 + nidx

i (10.11)

which is dual to the frame (δi, ∂4, ∂5) , where

δi = ∂i + wi∂4 + ni∂5. (10.12)

In the Lemma 1 the N–coefficients from (10.5) and (10.6) are parametrized like
N4
i = wi and N5

i = ni.
The proof of the Lemma 1 is a trivial computation if we substitute the values of

(10.11) into the quadratic line element (10.10). Re-writing the metric coefficients with
respect to the coordinate basis (10.3) we obtain just the quadratic line element (10.8)
with the ansatz (10.9).

In the Appendix A we outline the basic formulas from the geometry of anholonomic
frames with mixed holonomic and anholonomic variables and associated nonlinear con-
nections on (pseudo) Riemannian spaces.

Now we can formulate the

Theorem 10.2.1. The nontrivial components of the 5D vacuum Einstein equations,
Rβ
α = 0, (see (10.103) in the Appendix) for the metric (10.10) given with respect to an-
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holonomic frames (10.11) and (10.12) are written in a form with separation of variables:

R2
2 = R3

3 = − 1

2g2g3
[g••3 −

g•2g
•
3

2g2
− (g•3)

2

2g3
+ g

′′

2 −
g

′

2g
′

3

2g3
− (g

′

2)
2

2g2
] = 0, (10.13)

S4
4 = S5

5 = − β

2h4h5
= 0, (10.14)

R4i = −wi
β

2h5
− αi

2h5
= 0, (10.15)

R5i = − h5

2h4
[n∗∗
i + γn∗

i ] = 0, (10.16)

where

αi = ∂ih
∗
5 − h∗5∂i ln

√
|h4h5|, β = h∗∗5 − h∗5[ln

√
|h4h5|]∗, γ = 3h∗5/2h5 − h∗4/h4. (10.17)

Here the separation of variables means: 1) we can define a function g2(x
2, x3) for a

given g3(x
2, x3), or inversely, to define a function g2(x

2, x3) for a given g3(x
2, x3), from

equation (10.13); 2) we can define a function h4(x
1, x2, x3, v) for a given h5(x

1, x2, x3, v),
or inversely, to define a function h5(x

1, x2, x3, v) for a given h4(x
1, x2, x3, v), from equation

(10.14); 3-4) having the values of h4 and h5, we can compute the coefficients (10.17)
which allow to solve the algebraic equations (10.15) and to integrate two times on v the
equations (10.16) which allow to find respectively the coefficients wi(x

k, v) and ni(x
k, v).

The proof of Theorem 1 is a straightforward tensorial and differential calculus for
the components of Ricci tensor (5.14) as it is outlined in the Appendix A. We omit such
cumbersome calculations in this paper.

10.2.2 The second ansatz for vacuum Einstein equations

We can consider a generalization of the constructions from the previous subsection
by introducing a conformal factor Ω(xi, v) and additional deformations of the metric via
coefficients ζı̂(x

i, v) (indices with ’hat’ take values like î = 1, 2, 3, 5). The new metric is
written like

ds2 = Ω2(xi, v)ĝαβ
(
xi, v

)
duαduβ, (10.18)

were the coefficients ĝαβ are parametrized by the ansatz




g1 + (w 2
1 + ζ 2

1 )h4 + n 2
1 h5 (w1w2 + ζ1ζ2)h4 + n1n2h5 (w1w3 + ζ1ζ3)h4 + n1n3h5 (w1 + ζ1)h4 n1h5

(w1w2 + ζ1ζ2)h4 + n1n2h5 g2 + (w 2
2 + ζ 2

2 )h4 + n 2
2 h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 (w2 + ζ2)h4 n2h5

(w1w3 + ζ1ζ3)h4 + n1n3h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 g3 + (w 2
3 + ζ 2

3 )h4 + n 2
3 h5 (w3 + ζ3)h4 n3h5

(w1 + ζ1)h4 (w2 + ζ2)h4 (w3 + ζ3)h4 h4 0
n1h5 n2h5 n3h5 0 h5 + ζ5h4




(10.19)
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Such 5D pseudo–Riemannian metrics are considered to have second order anisotropy
[3, 12]. For trivial values Ω = 1 and ζı̂ = 0, the squared line interval (10.18) transforms
into (10.8).

Lemma 10.2.2. The quadratic line element (10.18) with metric coefficients (10.19) can
be diagonalized,

δs2 = Ω2(xi, v)[g1(dx
1)2 + g2(dx

2)2 + g3(dx
3)2 + h4(δ̂v)

2 + h5(δy
5)2], (10.20)

with respect to the anholonomic co–frame
(
dxi, δ̂v, δy5

)
, where

δv = dv + (wi + ζi)dx
i + ζ5δy

5 and δy5 = dy5 + nidx
i (10.21)

which is dual to the frame
(
δ̂i, ∂4, ∂̂5

)
, where

δ̂i = ∂i − (wi + ζi)∂4 + ni∂5, ∂̂5 = ∂5 − ζ5∂4. (10.22)

In the Lemma 2 the N–coefficients from (10.2) and (10.5) are parametrized in the
first order anisotropy (with three anholonomic, xi, and two anholonomic, y4 and y5,
coordinates) like N4

i = wi and N5
i = ni and in the second order anisotropy (on the

second ’shell’, with four anholonomic, (xi, y5), and one anholonomic,y4, coordinates)
with N5

î
= ζî, in this work we state, for simplicity, ζî = 0.

The Theorem 1 can be extended as to include the generalization to the second ansatz:

Theorem 10.2.2. The nontrivial components of the 5D vacuum Einstein equations,
Rβ
α = 0, (see (10.103) in the Appendix) for the metric (10.20) given with respect to

anholonomic frames (10.21) and (10.22) are written in the same form as in the system
(10.13)–(10.16) with the additional conditions that

δ̂ih4 = 0 and δ̂iΩ = 0 (10.23)

and the values ζî = (ζi, ζ5 = 0) are found as to be a unique solution of (10.23); for
instance, if

Ωq1/q2 = h4 (q1 and q2 are integers), (10.24)

ζi satisfy the equations

∂iΩ− (wi + ζi)Ω
∗ = 0. (10.25)
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The proof of Theorem 2 consists from a straightforward calculation of the components
of the Ricci tensor (5.14) as it is outlined in the Appendix. The simplest way is to use the
calculus for Theorem 1 and then to compute deformations of the canonical d–connection
(5.11). Such deformations induce corresponding deformations of the Ricci tensor (5.14).
The condition that we have the same values of the Ricci tensor for the (10.9) and (10.19)
results in equations (10.23) and (10.25) which are compatible, for instance, if Ωq1/q2 = h4.
There are also another possibilities to satisfy the condition (10.23), for instance, if Ω = Ω1

Ω2, we can consider that h4 = Ω
q1/q2
1 Ω

q3/q4
2 for some integers q1, q2, q3 and q4.

10.2.3 General solutions

The surprising result is that we are able to construct exact solutions of the 5D vacuum
Einstein equations for both types of the ansatz (10.9) and (10.19):

Theorem 10.2.3. The system of second order nonlinear partial differential equations
(10.13)–(10.16) and (10.25) can be solved in general form if there are given some values
of functions g2(x

2, x3) (or g3(x
2, x3)), h4 (xi, v) (or h5 (xi, v)) and Ω (xi, v) :

• The general solution of equation (10.13) can be written in the form

̟ = g[0] exp[a2x̃
2
(
x2, x3

)
+ a3x̃

3
(
x2, x3

)
], (10.26)

were g[0], a2 and a3 are some constants and the functions x̃2,3 (x2, x3) define coor-
dinate transforms x2,3 → x̃2,3 for which the 2D line element becomes conformally
flat, i. e.

g2(x
2, x3)(dx2)2 + g3(x

2, x3)(dx3)2 → ̟
[
(dx̃2)2 + ǫ(dx̃3)2

]
. (10.27)

• The equation (10.14) relates two functions h4 (xi, v) and h5 (xi, v). There are two
possibilities:

a) to compute

√
|h5| = h5[1]

(
xi
)

+ h5[2]

(
xi
) ∫ √

|h4 (xi, v) |dv, h∗4
(
xi, v

)
6= 0;

= h5[1]

(
xi
)

+ h5[2]

(
xi
)
v, h∗4

(
xi, v

)
= 0, (10.28)

for some functions h5[1,2] (x
i) stated by boundary conditions;

b) or, inversely, to compute h4 for a given h5 (xi, v) , h∗5 6= 0,
√
|h4| = h[0]

(
xi
)
(
√
|h5 (xi, v) |)∗, (10.29)

with h[0] (x
i) given by boundary conditions.
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• The exact solutions of (10.15) for β 6= 0 is

wk = ∂k ln[
√
|h4h5|/|h∗5|]/∂v ln[

√
|h4h5|/|h∗5|], (10.30)

with ∂v = ∂/∂v and h∗5 6= 0. If h∗5 = 0, or even h∗5 6= 0 but β = 0, the coefficients
wk could be arbitrary functions on (xi, v) . For vacuum Einstein equations this is a
degenerated case which imposes the the compatibility conditions β = αi = 0, which
are satisfied, for instance, if the h4 and h5 are related as in the formula (10.29)
but with h[0] (x

i) = const.

• The exact solution of (10.16) is

nk = nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[h4/(
√
|h5|)3]dv, h∗5 6= 0;

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

h4dv, h∗5 = 0; (10.31)

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[1/(
√
|h5|)3]dv, h∗4 = 0,

for some functions nk[1,2] (x
i) stated by boundary conditions.

• The exact solution of (10.25) is given by some arbitrary functions ζi = ζi (x
i, v) if

both ∂iΩ = 0 and Ω∗ = 0, we chose ζi = 0 for Ω = const, and

ζi = −wi + (Ω∗)−1∂iΩ, Ω∗ 6= 0, (10.32)

= (Ω∗)−1∂iΩ, Ω∗ 6= 0, for vacuum solutions.

We note that a transform (10.27) is always possible for 2D metrics and the explicit
form of solutions depends on chosen system of 2D coordinates and on the signature
ǫ = ±1. In the simplest case the equation (10.13) is solved by arbitrary two functions
g2(x

3) and g3(x
2). The equation (10.14) is satisfied by arbitrary pairs of coefficients

h4 (xi, v) and h5[0] (x
i) .

The proof of Theorem 3 is given in the Appendix B.

10.2.4 Consequences of Theorems 1–3

We consider three important consequences of the Lemmas and Theorems formulated
in this Section:
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Corollary 10.2.1. The non–trivial diagonal components of the Einstein tensor, Gα
β =

Rα
β − 1

2
R δαβ , for the metric (10.10), given with respect to anholonomic N–bases, are

G1
1 = −

(
R2

2 + S4
4

)
, G2

2 = G3
3 = −S4

4 , G
4
4 = G5

5 = −R2
2. (10.33)

So, the dynamics of the system is defined by two values R2
2 and S4

4 . The rest of non–
diagonal components of the Ricci (Einstein tensor) are compensated by fixing correspond-
ing values of N–coefficients.

The formulas (10.33) are obtained following the relations for the Ricci tensor (10.13)–
(10.16).

Corollary 10.2.2. We can extend the system of 5D vacuum Einstein equations (10.13)–
(10.16) by introducing matter fields for which the energy–momentum tensor Υαβ given
with respect to anholonomic frames satisfy the conditions

Υ1
1 = Υ2

2 + Υ4
4,Υ

2
2 = Υ3

3,Υ
4
4 = Υ5

5. (10.34)

We note that, in general, the tensor Υαβ for the non–vacuum Einstein equations,

Rαβ −
1

2
gαβR = κΥαβ,

is not symmetric because with respect to anholonomic frames there are imposed con-
straints which makes non symmetric the Ricci and Einstein tensors (the symmetry condi-
tions hold only with respect to holonomic, coordinate frames; for details see the Appendix
and the formulas (4.18)).

For simplicity, in our further investigations we shall consider only diagonal matter
sources, given with respect to anholonomic frames, satisfying the conditions

κΥ2
2 = κΥ3

3 = Υ2, κΥ
4
4 = κΥ5

5 = Υ4, and Υ1 = Υ2 + Υ4, (10.35)

where κ is the gravitational coupling constant. In this case the equations (10.13) and
(10.14) are respectively generalized to

R2
2 = R3

3 = − 1

2g2g3

[g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

] = −Υ4 (10.36)

and

S4
4 = S5

5 = − β

2h4h5

= −Υ2. (10.37)
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Corollary 10.2.3. The class of metrics (10.18) satisfying vacuum Einstein equations
(10.13)–(10.16) and (10.25) contains as particular cases some solutions when the
Schwarzschild potential Φ = −M/(M2

pr), where Mp is the effective Planck mass on the
brane, is modified to

Φ = −Mσm
M2

pr
+
Qσq
2r2

,

where the ‘tidal charge’ parameter Q may be positive or negative.

As proofs of this corollary we can consider the Refs [4] where the possibility to modify
anisotropically the Newton law via effective anisotropic masses Mσm, or by anisotropic
effective 4D Plank constants, renormalized like σm/M

2
p , and with ”effective” electric

charge, Qσq was recently emphasized (see also the end of Section III in this paper).
For diagonal metrics, in the locally isotropic limit, we put the effective polarizations
σm = σq = 1.

10.2.5 Reduction from 5D to 4D gravity

The above presented results are for generic off–diagonal metrics of gravitational fields,
anholonomic transforms and nonlinear field equations. Reductions to a lower dimensional
theory are not trivial in such cases. We give a detailed analysis of this procedure.

The simplest way to construct a 5D → 4D reduction for the ansatz (10.9) and (10.19)
is to eliminate from formulas the variable x1 and to consider a 4D space (parametrized
by local coordinates (x2, x3, v, y5)) being trivially embedded into 5D space (parametrized
by local coordinates (x1, x2, x3, v, y5) with g11 = ±1, g1α = 0, α = 2, 3, 4, 5) with further
possible conformal and anholonomic transforms depending only on variables (x2, x3, v) .
We admit that the 4D metric gαβ could be of arbitrary signature. In order to emphasize
that some coordinates are stated just for a such 4D space we underline the Greek indices,
α, β, ... and the Latin indices from the middle of alphabet, i, j, ... = 2, 3, where uα =
(xi, ya) = (x2, x3, y4, y5) .

In result, the analogs of Lemmas 1and 2, Theorems 1-3 and Corollaries 1-3 can be
reformulated for 4D gravity with mixed holonomic–anholonomic variables. We outline
here the most important properties of a such reduction.

• The line element (10.8) with ansatz (10.9) and the line element (10.8) with (10.19)
are respectively transformed on 4D space to the values:

The first type 4D quadratic line element is taken

ds2 = gαβ
(
xi, v

)
duαduβ (10.38)
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with the metric coefficients gαβ parametrized (with respect to the coordinate frame
(10.3) in 4D) by an off–diagonal matrix (ansatz)




g2 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w2w3h4 + n2n3h5 g3 + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w2h4 w3h4 h4 0
n2h5 n3h5 0 h5


 , (10.39)

where the coefficients are some necessary smoothly class functions of type:

g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

k, v),

wi = wi(x
k, v), ni = ni(x

k, v); i, k = 2, 3.

The anholonomically and conformally transformed 4D line element is

ds2 = Ω2(xi, v)ĝαβ
(
xi, v

)
duαduβ, (10.40)

were the coefficients ĝαβ are parametrized by the ansatz




g2 + (w 2
2 + ζ 2

2 )h4 + n 2
2 h5 (w2w3 + +ζ2ζ3)h4 + n2n3h5 (w2 + ζ2)h4 n2h5

(w2w3 + +ζ2ζ3)h4 + n2n3h5 g3 + (w 2
3 + ζ 2

3 )h4 + n 2
3 h5 (w3 + ζ3)h4 n3h5

(w2 + ζ2)h4 (w3 + ζ3)h4 h4 0
n2h5 n3h5 0 h5 + ζ5h4


 . (10.41)

where ζi = ζi
(
xk, v

)
and we shall restrict our considerations for ζ5 = 0.

• In the 4D analog of Lemma 1 we have

δs2 = [g2(dx
2)2 + g3(dx

3)2 + h4(δv)
2 + h5(δy

5)2], (10.42)

with respect to the anholonomic co–frame (dxi, δv, δy5) , where

δv = dv + widx
i and δy5 = dy5 + nidx

i (10.43)

which is dual to the frame (δi, ∂4, ∂5) , where

δi = ∂i + wi∂4 + ni∂5. (10.44)

• In the conditions of the 4D variant of Theorem 1 we have the same equations
(10.13)–(10.16) were we must put h4 = h4

(
xk, v

)
and h5 = h5

(
xk, v

)
. As a conse-

quence we have that αi
(
xk, v

)
→ αi

(
xk, v

)
, β = β

(
xk, v

)
and γ = γ

(
xk, v

)
which

result that wi = wi
(
xk, v

)
and ni = ni

(
xk, v

)
.
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• The respective formulas from Lemma 2, for ζ5 = 0, transform into

δs2 = Ω2(xi, v)[g2(dx
2)2 + g3(dx

3)2 + h4(δ̂v)
2 + h5(δy

5)2], (10.45)

with respect to the anholonomic co–frame
(
dxi, δ̂v, δy5

)
, where

δv = dv + (wi + ζi)dx
i and δy5 = dy5 + nidx

i (10.46)

which is dual to the frame
(
δ̂i, ∂4, ∂̂5

)
, where

δ̂i = ∂i − (wi + ζi)∂4 + ni∂5, ∂̂5 = ∂5. (10.47)

• The formulas (10.23) and (10.25) from Theorem 2 must be modified into a 4D form

δ̂ih4 = 0 and δ̂iΩ = 0 (10.48)

and the values ζî =
(
ζ i, ζ5 = 0

)
are found as to be a unique solution of (10.23); for

instance, if

Ωq1/q2 = h4 (q1 and q2 are integers),

ζi satisfy the equations

∂iΩ− (wi + ζ i)Ω
∗ = 0. (10.49)

• One holds the same formulas (10.28)-(10.31) from the Theorem 3 on the general
form of exact solutions with that difference that their 4D analogs are to be obtained
by reductions of holonomic indices, i → i, and holonomic coordinates, xi → xi, i.
e. in the 4D solutions there is not contained the variable x1.

• The formulae (10.33) for the nontrivial coefficients of the Einstein tensor in 4D
stated by the Corollary 1 are written

G2
2 = G3

3 = −S4
4 , G

4
4 = G5

5 = −R2
2. (10.50)

• For symmetries of the Einstein tensor (10.50) we can introduce a matter field
source with a diagonal energy momentum tensor, like it is stated in the Corollary
2 by the conditions (10.34), which in 4D are transformed into

Υ2
2 = Υ3

3,Υ
4
4 = Υ5

5. (10.51)
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• In 4D Einstein gravity we are not having violations of the Newton law as it was
state in Corollary 3 for 5D. Nevertheless, off–diagonal and anholonomic frames can
induce an anholonomic particle and field dynamics, for instance, with deforma-
tions of horizons of black holes, which can be modelled by an effective anisotropic
renormalization of constants if some conditions are satisfied [1, 2].

There were constructed and analyzed various classes of exact solutions of the Ein-
stein equations (both in the vacuum, reducing to the system (10.13), (10.14), (10.15)
and (10.16) and non–vacuum, reducing to (10.36), (10.37), (10.15) and (10.16), cases)
in 3D, 4D and 5D gravity [1, 4]. The aim of the next Sections III – V is to prove that
such solutions contain warped factors which in the vacuum case are induced by a second
order anisotropy. We shall analyze some classes of such exact solutions with running con-
stants and/or their anisotropic polarizations induced from extra dimension gravitational
interactions.

10.3 5D Ellipsoidal Black Holes

Our goal is to apply the anholonomic frame method as to construct such exact solu-
tions of vacuum 5D Einstein equations as they will be static ones but, for instance, with
ellipsoidal horizon for a diagonal metric given with respect to some well defined anholo-
nomic frames. If such metrics are redefined with respect to usual coordinate frames, they
are described by some particular cases of off–diagonal ansatz of type (10.9), or (10.19)
which results in a very sophysticate form of the Einstein equations. That why it was not
possible to construct such solutions in the past, before elaboration of the anholonomic
frame method with associated nonlinear connection structure which allows to find exact
solutions of the Einstein equations for very general off–diagonal metric ansatz.

By using anholonomic transforms the Schwarzschild and Reissner-Nördstrom solu-
tions were generalized in anisotropic forms with deformed horizons, anisoropic polariza-
tions and running constants both in the Einstein and extra dimension gravity (see Refs.
[1, 4]). It was shown that there are possible anisotropic solutions which preserve the local
Lorentz symmetry. and that at large radial distances from the horizon the anisotropic
configurations transform into the usual one with spherical symmetry. So, the solutions
with anisotropic rotation ellipsoidal horizons do not contradict the well known Israel
and Carter theorems [19] which were proved in the assumption of spherical symmetry
at asymptotic. The vacuum metrics presented here differ from anisotropic black hole
solutions investigated in Refs. [1, 4].
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10.3.1 The Schwarzschild solution in ellipsoidal coordinates

Let us consider the system of isotropic spherical coordinates (ρ, θ, ϕ), where the
isotropic radial coordinate ρ is related with the usual radial coordinate r via the relation
r = ρ (1 + rg/4ρ)

2 for rg = 2G[4]m0/c
2 being the 4D gravitational radius of a point

particle of mass m0, G[4] = 1/M2
P [4] is the 4D Newton constant expressed via Plank

mass MP [4] (following modern string/brane theories, MP [4] can be considered as a value
induced from extra dimensions). We put the light speed constant c = 1. This system of
coordinates is considered for the so–called isotropic representation of the Schwarzschild
solution [17]

dS2 =

(
ρ̂− 1

ρ̂+ 1

)2

dt2 − ρ2
g

(
ρ̂+ 1

ρ̂

)4 (
dρ̂2 + ρ̂2dθ2 + ρ̂2 sin2 θdϕ2

)
, (10.52)

where, for our further considerations, we re–scaled the isotropic radial coordinate as
ρ̂ = ρ/ρg, with ρg = rg/4. The metric (10.52) is a vacuum static solution of 4D Einstein
equations with spherical symmetry describing the gravitational field of a point particle of
mass m0. It has a singularity for r = 0 and a spherical horizon for r = rg, or, in re–scaled
isotropic coordinates, for ρ̂ = 1. We emphasize that this solution is parametrized by a
diagonal metric given with respect to holonomic coordinate frames.

We also introduce the rotation ellipsoid coordinates (in our case considered as alter-
natives to the isotropic radial coordinates) [16] (u, λ, ϕ) with 0 ≤ u <∞, 0 ≤ λ ≤ π, 0 ≤
ϕ ≤ 2π, where σ = cosh u ≥ 1 are related with the isotropic 3D Cartezian coordinates

(x̃ = ρ̃ sinh u sinλ cosϕ, ỹ = ρ̃ sinh u sinλ sinϕ, z̃ = ρ̃ cosh u cosλ) (10.53)

and define an elongated rotation ellipsoid hypersurface

(
x̃2 + ỹ2

)
/(σ2 − 1) + z̃2/σ2 = ρ̃2. (10.54)

with σ = cosh u. The 3D metric on a such hypersurface is

dS2
(3D) = guudu

2 + gλλdλ
2 + gϕϕdϕ

2,

where
guu = gλλ = ρ̃2

(
sinh2 u+ sin2 λ

)
, gϕϕ = ρ̃2 sinh2 u sin2 λ.

We can relate the rotation ellipsoid coordinates (u, λ, ϕ) from (10.53) with the isotrop-
ic radial coordinates (ρ̂, θ, ϕ), scaled by the constant ρg, from (10.52) as

ρ̃ = 1, σ = cosh u = ρ̂
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and deform the Schwarzschild metric by introducing ellipsoidal coordinates and a new
horizon defined by the condition that vanishing of the metric coefficient before dt2 de-
scribe an elongated rotation ellipsoid hypersurface (10.54),

dS2
(S) =

(
cosh u− 1

cosh u+ 1

)2

dt2 − ρ2
g

(
cosh u+ 1

cosh u

)4

(sinh2 u+ sin2 λ) (10.55)

×[du2 + dλ2 +
sinh2 u sin2 λ

sinh2 u+ sin2 λ
dϕ2].

The ellipsoidally deformed metric (10.55) does not satisfy the vacuum Einstein equations,
but at long distances from the horizon it transforms into the usual Schwarzchild solution
(10.52).

For our further considerations we introduce two Classes (A and B) of 4D auxiliary
pseudo–Riemannian metrics, also given in ellipsoid coordinates, being some conformal
transforms of (10.55), like

dS2
(S) = ΩA,B (u, λ) dS2

(A,B)

but which are not supposed to be solutions of the Einstein equations:

• Metric of Class A:

dS2
(A) = −du2 − dλ2 + a(u, λ)dϕ2 + b(u, λ)dt2], (10.56)

where

a(u, λ) = − sinh2 u sin2 λ

sinh2 u+ sin2 λ
and b(u, λ) = − (cosh u− 1)2 cosh4 u

ρ2
g(cosh u+ 1)6(sinh2 u+ sin2 λ)

,

which results in the metric (10.55) by multiplication on the conformal factor

ΩA (u, λ) = ρ2
g

(cosh u+ 1)4

cosh4 u
(sinh2 u+ sin2 λ). (10.57)

• Metric of Class B:

dS2 = g(u, λ)
(
du2 + dλ2

)
− dϕ2 + f(u, λ)dt2, (10.58)

where

g(u, λ) = −sinh2 u+ sin2 λ

sinh2 u sin2 λ
and f(u, λ) =

(cosh u− 1)2 cosh4 u

ρ2
g(cosh u+ 1)6 sinh2 u sin2 λ

,

which results in the metric (10.55) by multiplication on the conformal factor

ΩB (u, λ) = ρ2
g

(cosh u+ 1)4

cosh4 u
sinh2 u sin2 λ.
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Now it is possible to generate exact solutions of the Einstein equations with rotation
ellipsoid horizons and anisotropic polarizations and running of constants by performing
corresponding anholonomic transforms as the solutions will have an horizon parametrized
by a hypersurface like rotation ellipsoid and gravitational (extra dimensional or nonlin-
ear 4D) renormalization of the constant ρg of the Schwarzschild solution, ρg → ρg = ωρg,
where the dependence of the function ω on some holonomic or anholonomic coordinates
depend on the type of anisotropy. For some solutions we can treat ω as a factor mod-
elling running of the gravitational constant, induced, induced from extra dimension, in
another cases we may consider ω as a nonlinear gravitational polarization which model
some anisotropic distributions of masses and matter fields and/or anholonomic vacuum
gravitational interactions.

10.3.2 Ellipsoidal 5D metrics of Class A

In this subsection we consider four classes of 5D vacuum solutions which are related
to the metric of Class A (10.56) and to the Schwarzschild metric in ellipsoidal coordinates
(10.55).

Let us parametrize the 5D coordinates as (x1 = χ, x2 = u, x3 = λ, y4 = v, y5 = p) ,
where the solutions with the so–called ϕ–anisotropy will be constructed for (v = ϕ, p = t)
and the solutions with t–anisotropy will be stated for (v = t, p = ϕ) (in brief, we shall
write respective ϕ–solutions and t–solutions).

Class A solutions with ansatz (10.9):

We take an off–diagonal metric ansatz of type (10.9) (equivalently, (10.8)) by repre-
senting

g1 = ±1, g2 = −1, g3 = −1, h4 = η4(x
i, v)h4(0)(x

i) and h5 = η5(x
i, v)h5(0)(x

i),

where η4,5(x
i, v) are corresponding ”gravitational renormalizations” of the metric coeffi-

cients h4,5(0)(x
i). For ϕ–solutions we state h4(0) = a(u, λ) and h5(0) = b(u, λ) (inversely,

for t–solutions, h4(0) = b(u, λ) and h5(0) = a(u, λ)).
Next we consider a renormalized gravitational ’constant’ ρg = ωρg, were for ϕ–

solutions the receptivity ω = ω (xi, v) is included in the gravitational polarization η5

as η5 = [ω (xi, ϕ)]
−2
, or for t–solutions is included in η4, when η4 = [ω (xi, t)]

−2
. We

can construct an exact solution of the 5D vacuum Einstein equations if, for explicit
dependencies on anisotropic coordinate, the metric coefficients h4 and h5 are related by
formula (10.29) with h[0] (x

i) = h(0) = const (see the Theorem 3, with statements on



10.3. 5D ELLIPSOIDAL BLACK HOLES 355

formulas (10.29) and (8.10)), which in its turn imposes a corresponding relation between
η4 and η5,

η4h4(0)(x
i) = h2

(0)h5(0)(x
i)
[(√

|η5|
)∗]2

.

In result, we express the polarizations η4 and η5 via the value of receptivity ω,

η4 (χ, u, λ, ϕ) = h2
(0)

b(u, λ)

a(u, λ)

{[
ω−1 (χ, u, λ, ϕ)

]∗}2
, η5 (χ, u, λ, ϕ) = ω−2 (χ, u, λ, ϕ) ,

(10.59)
for ϕ–solutions , and

η4 (χ, u, λ, t) = ω−2 (χ, u, λ, t) , η5 (χ, u, λ, t) = h−2
(0)

b(u, λ)

a(u, λ)

[∫
dtω−1 (χ, u, λ, t)

]2

,

(10.60)
for t–solutions, where a(u, λ) and b(u, λ) are those from (10.56).

For vacuum configurations, following the discussions of formula (8.10) in Theorem 3,
we put wi = 0. The next step is to find the values of ni by introducing h4 = η4h4(0) and
h5 = η5h5(0) into the formula (10.31), which, for convenience, is expressed via general
coefficients η4 and η5, with the functions nk[2] (x

i) redefined as to contain the values h2
(0),

a(u, λ) and b(u, λ)

nk = nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[η4/(
√
|η5|)3]dv, η∗5 6= 0; (10.61)

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

η4dv, η∗5 = 0;

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[1/(
√
|η5|)3]dv, η∗4 = 0.

By introducing the formulas (10.59) for ϕ–solutions (or (10.60) for t–solutions) and
fixing some boundary condition, in order to state the values of coefficients nk[1,2] (x

i) we
can express the ansatz components nk (xi, ϕ) as integrals of some functions of ω (xi, ϕ)
and ∂ϕω (xi, ϕ) (or, we can express the ansatz components nk (xi, t) as integrals of some
functions of ω (xi, t) and ∂tω (xi, t)). We do not present an explicit form of such formulas
because they depend on the type of receptivity ω = ω (xi, v) , which must be defined
experimentally, or from some quantum models of gravity in the quasi classical limit. We
preserved a general dependence on coordinates xi which reflect the fact that there is a
freedom in fixing holonomic coordinates (for instance, on ellipsoidal hypersurface and
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its extensions to 4D and 5D spacetimes). For simplicity, we write that ni are some
functionals of {xi, ω (xi, v) , ω∗ (xi, v)}

ni{x, ω, ω∗} = ni{xi, ω
(
xi, v

)
, ω∗ (xi, v

)
}.

In conclusion, we constructed two exact solutions of the 5D vacuum Einstein equa-
tions, defined by the ansatz (10.9) with coordinates and coefficients stated by the data:

ϕ–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = a(u, λ), h5(0) = b(u, λ), see (10.56);

h4 = η4(x
i, ϕ)h4(0)(x

i), h5 = η5(x
i, ϕ)h5(0)(x

i),

η4 = h2
(0)

b(u, λ)

a(u, λ)

{[
ω−1 (χ, u, λ, ϕ)

]∗}2
, η5 = ω−2 (χ, u, λ, ϕ) ,

wi = 0, ni{x, ω, ω∗} = ni{xi, ω
(
xi, ϕ

)
, ω∗ (xi, ϕ

)
}. (10.62)

and

t–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = t, y5 = p = ϕ), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = b(u, λ), h5(0) = a(u, λ), see (10.56);

h4 = η4(x
i, t)h4(0)(x

i), h5 = η5(x
i, t)h5(0)(x

i),

η4 = ω−2 (χ, u, λ, t) , η5 = h−2
(0)

b(u, λ)

a(u, λ)

[∫
dt ω−1 (χ, u, λ, t)

]2

,

wi = 0, ni{x, ω, ω∗} = ni{xi, ω
(
xi, t

)
, ω∗ (xi, t

)
}. (10.63)

Both types of solutions have a horizon parametrized by a rotation ellipsoid hyper-
surface (as the condition of vanishing of the ”time” metric coefficient states, i. e. when
the function b(u, λ) = 0). These solutions are generically anholonomic (anisotropic)
because in the locally isotropic limit, when η4, η5, ω → 1 and ni → 0, they reduce to the
coefficients of the metric (10.56). The last one is not an exact solution of 4D vacuum
Einstein equations, but it is a conformal transform of the 4D Schwarzschild solution with
a further trivial extension to 5D. With respect to the anholonomic frames adapted to
the coefficients ni (see (10.11)), the obtained solutions have diagonal metric coefficients
being very similar to the Schwarzschild metric (10.55) written in ellipsoidal coordinates.
We can treat such solutions as black hole ones with a point particle mass put in one of
the focuses of rotation ellipsoid hypersurface (for flattened ellipsoids the mass should be
placed on the circle described by ellipse’s focuses under rotation; we omit such details in
this work which were presented for 4D gravity in Ref. [1]).
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The initial data for anholonomic frames and the chosen configuration of gravitational
interactions in the bulk lead to deformed ”ellipsoidal” horizons even for static configu-
rations. The solutions admit anisotropic polarizations on ellipsoidal and angular coordi-
nates (u, λ) and running of constants on time t and/or on extra dimension coordinate χ.
Such renormalizations of constants are defined by the nonlinear configuration of the 5D
vacuum gravitational field and depend on introduced receptivity function ω (xi, v) which
is to be considered an intrinsic characteristics of the 5D vacuum gravitational ’ether’,
emphasizing the possibility of nonlinear self–polarization of gravitational fields.

Finally, we note that the data (10.62) and (10.63) parametrize two very different
classes of solutions. The first one is for static 5D vacuum black hole configurations with
explicit dependence on anholonomic coordinate ϕ and possible renormalizations on the
rest of 3D space coordinates u and λ and on the 5th coordinate χ. The second class of
solutions are similar to the static solutions but with an emphasized anholonomic time
running of constants and with possible anisotropic dependencies on coordinates (u, λ, χ).

Class A solutions with ansatz (10.19):

We construct here 5D vacuum ϕ– and t–solutions parametrized by an ansatz with
conformal factor Ω(xi, v) (see (10.19) and (10.20)). Let us consider conformal fac-
tors parametrized as Ω = Ω[0](x

i)Ω[1](x
i, v). We can generate from the data (10.62)

(or (10.63)) an exact solution of vacuum Einstein equations if there are satisfied the
conditions (10.24) and (10.32), i. e.

Ω
q1/q2
[0] Ω

q1/q2
[1] = η4h4(0),

for some integers q1 and q2, and there are defined the second anisotropy coefficients

ζi =
(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1].

So, taking a ϕ– or t–solution with corresponding values of h4 = η4h4(0), for some q1 and
q2, we obtain new exact solutions, called in brief, ϕc– or tc–solutions (with the index ”c”
pointing to an ansatz with conformal factor), of the vacuum 5D Einstein equations given
in explicit form by the data:
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ϕc–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = a(u, λ), h5(0) = b(u, λ), see (10.56);

h4 = η4(x
i, ϕ)h4(0)(x

i), h5 = η5(x
i, ϕ)h5(0)(x

i),

η4 = h2
(0)

b(u, λ)

a(u, λ)

{[
ω−1 (χ, u, λ, ϕ)

]∗}2
, η5 = ω−2 (χ, u, λ, ϕ) , (10.64)

wi = 0, ni{x, ω, ω∗} = ni{xi, ω
(
xi, ϕ

)
, ω∗ (xi, ϕ

)
},Ω = Ω[0](x

i)Ω[1](x
i, ϕ)

ζi =
(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (xi)Ω

q1/q2
[1] (xi, ϕ).

and

tc–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = t, y5 = p = ϕ), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = b(u, λ), h5(0) = a(u, λ), see (10.56);

h4 = η4(x
i, t)h4(0)(x

i), h5 = η5(x
i, t)h5(0)(x

i),

η4 = ω−2 (χ, u, λ, t) , η5 = h−2
(0)

b(u, λ)

a(u, λ)

[∫
dt ω−1 (χ, u, λ, t)

]2

, (10.65)

wi = 0, ni{x, ω, ω∗} = ni{xi, ω
(
xi, t

)
, ω∗ (xi, t

)
},Ω = Ω[0](x

i)Ω[1](x
i, t)

ζi =
(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1], η4a = Ω

q1/q2
[0] (xi)Ω

q1/q2
[1] (xi, t).

These solutions have two very interesting properties: 1) they admit a warped factor

on the 5th coordinate, like Ω
q1/q2
[1] ∼ exp[−k|χ|], which in our case is constructed for an

anisotropic 5D vacuum gravitational configuration and not following a brane configu-
ration like in Refs. [7]; 2) we can impose such conditions on the receptivity ω (xi, v)
as to obtain in the locally isotropic limit just the Schwarzschild metric (10.55) trivially
embedded into the 5D spacetime.

Let us analyze the second property in details. We have to chose the conformal factor
as to be satisfied three conditions:

Ω
q1/q2
[0] = ΩA,Ω

q1/q2
[1] η4 = 1,Ω

q1/q2
[1] η5 = 1, (10.66)

were ΩA is that from (10.24). The last two conditions are possible if

η
−q1/q2
4 η5 = 1, (10.67)
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which selects a specific form of receptivity ω (xi, v) . Putting into (10.67) the values
η4 and η5 respectively from (10.64), or (10.65), we obtain some differential, or integral,
relations of the unknown ω (xi, v) , which results that

ω
(
xi, ϕ

)
= (1− q1/q2)−1−q1/q2

[
h−1

(0)

√
|a/b|ϕ+ ω[0]

(
xi
)]
, for ϕc–solutions;

ω
(
xi, t

)
=

[
(q1/q2 − 1)h(0)

√
|a/b|t+ ω[1]

(
xi
)]1−q1/q2

, for tc–solutions, (10.68)

for some arbitrary functions ω[0] (x
i) and ω[1] (x

i) . So, receptivities of particular form
like (10.68) allow us to obtain in the locally isotropic limit just the Schwarzschild metric.

We conclude this subsection by the remark: the vacuum 5D metrics solving the Ein-
stein equations describe a nonlinear gravitational dynamics which under some particular
boundary conditions and parametrizations of metric’s coefficients can model anisotropic
solutions transforming, in a corresponding locally isotropic limit, in some well known ex-
act solutions like Schwarzschild, Reissner-Nördstrom, Taub NUT, various type of worm-
hole, solitonic and disk solutions (see details in Refs. [1, 2, 4]). Here we emphasize
that, in general, an anisotropic solution (parametrized by an off–diagonal ansatz) could
not have a locally isotropic limit to a diagonal metric with respect to some holonomic
coordinate frames. By some boundary conditions and suggested type of horizons, sin-
gularities, symmetries and topological configuration such solutions model new classes of
black hole/tori, wormholes and another type of solutions which defines a generic anholo-
nomic gravitational field dynamics and has not locally isotropic limits.

10.3.3 Ellipsiodal 5D metrics of Class B

In this subsection we construct and analyze another two classes of 5D vacuum solu-
tions which are related to the metric of Class B (10.58) and which can be reduced to the
Schwarzschild metric in ellipsoidal coordinates (10.55) by corresponding parametrizations
of receptivity ω (xi, v). We emphasize that because the function g(u, λ) from (10.58) is
not a solution of equation (10.13) we introduce an auxiliary factor ̟ (u, λ) for which ̟g
became a such solution, then we consider conformal factors parametrized as Ω = ̟−1

Ω[2] (x
i, v) and find solutions parametrized by the ansatz (10.19) and anholonomic metric

interval (10.20).

Because the method of definition of such solutions is similar to that from previous
subsection, in our further considerations we shall omit intermediary computations and
present directly the data which select the respective configurations for ϕc–solutions and
tc–solutions.
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The Class B of 5D solutions with conformal factor are parametrized by the data:

ϕc–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = g3 = ̟(u, λ)g(u, λ), h4(0) = −̟(u, λ),

h5(0) = ̟(u, λ)f(u, λ), see (10.58);

̟ = g−1̟0 exp[a2u+ a3λ], ̟0, a2, a3 = const; see (10.26)

h4 = η4(x
i, ϕ)h4(0)(x

i), h5 = η5(x
i, ϕ)h5(0)(x

i),

η4 = −h2
(0)f(u, λ)

{[
ω−1 (χ, u, λ, ϕ)

]∗}2
, η5 = ω−2 (χ, u, λ, ϕ) , (10.69)

wi = 0, ni{x, ω, ω∗} = ni{xi, ω
(
xi, ϕ

)
, ω∗ (xi, ϕ

)
},Ω = ̟−1(u, λ)Ω[2](x

i, ϕ)

ζi = ∂i ln |̟|)
(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2], η4 = −̟−q1/q2(xi)Ω

q1/q2
[2] (xi, ϕ).

and

tc–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = t, y5 = p = ϕ), g1 = ±1,

g2 = g3 = ̟(u, λ)g(u, λ), h4(0) = ̟(u, λ)f(u, λ),

h5(0) = −̟(u, λ), see (10.58);

̟ = g−1̟0 exp[a2u+ a3λ], ̟0, a2, a3 = const, see (10.26)

h4 = η4(x
i, t)h4(0)(x

i), h5 = η5(x
i, t)h5(0)(x

i),

η4 = ω−2 (χ, u, λ, t) , η5 = −h−2
(0)f(u, λ)

[∫
dt ω−1 (χ, u, λ, t)

]2

, (10.70)

wi = 0, ni{x, ω, ω∗} = ni{xi, ω
(
xi, t

)
, ω∗ (xi, t

)
},Ω = ̟−1(u, λ)Ω[2](x

i, t)

ζi = ∂i(ln |̟|)
(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2], η4 = −̟−q1/q2(xi)Ω

q1/q2
[2] (xi, t).

where the coefficients ni can be found explicitly by introducing the corresponding values
η4 and η5 in formula (10.61).

By a procedure similar to the solutions of Class A (see previous subsection) we
can find the conditions when the solutions (10.69) and (10.70) will have in the locally
anisotropic limit the Schwarzschild solutions, which impose corresponding parametriza-
tions and dependencies on Ω[2](x

i, v) and ω (xi, v) like (10.66) and (10.68). We omit
these formulas because, in general, for anholonomic configurations and nonlinear solu-
tions there are not hard arguments to prefer any holonomic limits of such off–diagonal
metrics.

Finally, in this Section, we remark that for the considered classes of ellipsoidal
black hole solutions the so–called tt–components of metric contain modifications of the
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Schwarzschild potential

Φ = − M

M2
P [4]r

into Φ = −Mω (xi, v)

M2
P [4]r

,

where MP [4] is the usual 4D Plank constant, and this is given with respect to the cor-
responding anholonomic frame of reference. The receptivity ω (xi, v) could model cor-
rections warped on extra dimension coordinate, χ, which for our solutions are induced
by anholonomic vacuum gravitational interactions in the bulk and not from a brane
configuration in AdS5 spacetime. In the vacuum case k is a constant characterizing the
receptivity for bulk vacuum gravitational polarizations.

10.4 4D Ellipsoidal Black Holes

For the ansatz (10.39), without conformal factor, some classes of ellipsoidal solutions
of 4D Einstein equations were constructed in Ref. [1] with further generalizations and
applications to brane physics [4] . The goal of this Section is to consider some alter-
native variants, both with and without conformal factors and for different coordinate
parametrizations and types of anisotropies. The bulk of 5D solutions from the previous
Section are reduced into corresponding 4D ones if one eliminates the 5th coordinate χ
from the formulas and the off–diagonal ansatz (10.39) and (10.41) are considered.

10.4.1 Ellipsiodal 5D metrics of Class A

Let us parametrize the 4D coordinates as (xi, ya) = (x2 = u, x3 = λ, y4 = v, y5 = p) ;
for the ϕ–solutions we shall take (v = ϕ, p = t) and for the solutions t–solutions we shall
consider (v = t, p = ϕ). Following the prescription from subsection IIE we can write
down the data for solutions without proofs and computations.

Class A solutions with ansat (10.39):

The off–diagonal metric ansatz of type (10.39) (equivalently, (10.8)) with the data

ϕ–solutions : (x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t)

g2 = −1, g3 = −1, h4(0) = a(u, λ), h5(0) = b(u, λ), see (10.56);

h4 = η4(u, λ, ϕ)h4(0)(u, λ), h5 = η5(u, λ, ϕ)h5(0)(u, λ),

η4 = h2
(0)

b(u, λ)

a(u, λ)

{[
ω−1 (u, λ, ϕ)

]∗}2
, η5 = ω−2 (u, λ, ϕ) ,

wi = 0, ni{x, ω, ω∗} = ni{u, λ, ω (u, λ, ϕ) , ω∗ (u, λ, ϕ)}. (10.71)
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and
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t–solutions : (x2 = u, x3 = λ, y4 = v = t, y5 = p = ϕ)

g2 = −1, g3 = −1, h4(0) = b(u, λ), h5(0) = a(u, λ), see (10.56);

h4 = η4(u, λ, t)h4(0)(u, λ), h5 = η5(u, λ, t)h5(0)(u, λ),

η4 = ω−2 (u, λ, t) , η5 = h−2
(0)

b(u, λ)

a(u, λ)

[∫
dt ω−1 (u, λ, t)

]2

,

wi = 0, ni{x, ω, ω∗} = ni{u, λ, ω (u, λ, t) , ω∗ (u, λ, t)}. (10.72)

where the ni are computed

nk = nk[1] (u, λ) + nk[2] (u, λ)

∫
[η4/(

√
|η5|)3]dv, η∗5 6= 0; (10.73)

= nk[1] (u, λ) + nk[2] (u, λ)

∫
η4dv, η∗5 = 0;

= nk[1] (u, λ) + nk[2] (u, λ)

∫
[1/(

√
|η5|)3]dv, η∗4 = 0.

These solutions have the same ellipsoidal symmetries and properties stated for their
5D analogs (10.62) and for (10.63) with that difference that there are not any warped
factors and extra dimension dependencies. We emphasize that the solutions defined
by the formulas (10.71) and (10.72) do not result in a locally isotropic limit into an
exact solution having diagonal coefficients with respect to some holonomic coordinate
frames. The data introduced in this subsection are for generic 4D vacuum solutions of
the Einstein equations parametrized by off–diagonal metrics. The renormalization of
constants and metric coefficients have a 4D nonlinear vacuum gravitational origin and
reflects a corresponding anholonomic dynamics.

Class A solutions with ansatz (10.41):

The 4D vacuum ϕ– and t–solutions parametrized by an ansatz with conformal factor
Ω(u, λ, v) (see (10.41) and (10.45)). Let us consider conformal factors parametrized as
Ω = Ω[0](u, λ)Ω[1](u, λ, v). The data are
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ϕc–solutions : (x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t)

g2 = −1, g3 = −1, h4(0) = a(u, λ), h5(0) = b(u, λ), see (10.56);

h4 = η4(u, λ, ϕ)h4(0)(u, λ), h5 = η5(u, λ, ϕ)h5(0)(u, λ),

η4 = h2
(0)

b(u, λ)

a(u, λ)

{[
ω−1 (u, λ, ϕ)

]∗}2
, η5 = ω−2 (u, λ, ϕ) , (10.74)

wi = 0, ni{x, ω, ω∗} = ni{u, λ, ω (u, λ, ϕ) , ω∗ (u, λ, ϕ)},
Ω = Ω[0](u, λ)Ω[1](u, λ, ϕ), ζi =

(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (u, λ)Ω

q1/q2
[1] (u, λ, ϕ).

and

tc–solutions : (x2 = u, x3 = λ, y4 = v = t, y5 = p = ϕ)

g2 = −1, g3 = −1, h4(0) = b(u, λ), h5(0) = a(u, λ), see (10.56);

h4 = η4(u, λ, t)h4(0)(u, λ), h5 = η5(u, λ, t)h5(0)(u, λ),

η4 = ω−2 (u, λ, t) , η5 = h−2
(0)

b(u, λ)

a(u, λ)

[∫
dt ω−1 (u, λ, t)

]2

, (10.75)

wi = 0, ni{x, ω, ω∗} = ni{u, λ, ω (u, λ, t) , ω∗ (u, λ, t)},
Ω = Ω[0](u, λ)Ω[1](u, λ, t), ζi =

(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (u, λ)Ω

q1/q2
[1] (u, λ, t),

where the coefficients the ni are given by the same formulas (10.73).
Contrary to the solutions (10.71) and for (10.72) theirs conformal anholonomic trans-

forms, respectively, (10.74) and (10.75), can be subjected to such parametrizations of the
conformal factor and conditions on the receptivity ω (u, λ, v) as to obtain in the locally
isotropic limit just the Schwarzschild metric (10.55). These conditions are stated for

Ω
q1/q2
[0] = ΩA, Ω

q1/q2
[1] η4 = 1, Ω

q1/q2
[1] η5 = 1,were ΩA is that from (10.24), which is possible

if η
−q1/q2
4 η5 = 1,which selects a specific form of the receptivity ω. Putting the values

η4 and η5, respectively, from (10.74), or (10.75), we obtain some differential, or integral,
relations of the unknown ω (xi, v) , which results that

ω (u, λ, ϕ) = (1− q1/q2)−1−q1/q2
[
h−1

(0)

√
|a/b|ϕ+ ω[0] (u, λ)

]
, for ϕc–solutions;

ω (u, λ, t) =
[
(q1/q2 − 1) h(0)

√
|a/b|t+ ω[1] (u, λ)

]1−q1/q2
, for tc–solutions,
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for some arbitrary functions ω[0] (u, λ) and ω[1] (u, λ) . The formulas for ω (u, λ, ϕ) and
ω (u, λ, t) are 4D reductions of the formulas (10.66) and (10.68).

10.4.2 Ellipsiodal 4D metrics of Class B

We construct another two classes of 4D vacuum solutions which are related to the
metric of Class B (10.58) and which can be reduced to the Schwarzschild metric in el-
lipsoidal coordinates (10.55) by corresponding parametrizations of receptivity ω (u, λ, v).
The solutions contain a 2D conformal factor ̟ (u, λ) for which ̟g becomes a solution
of (10.13) and a 4D conformal factor parametrized as Ω = ̟−1 Ω[2] (u, λ, v) in order to
set the constructions into the ansatz (10.41) and anholonomic metric interval (10.45).

The data selecting the 4D configurations for ϕc–solutions and tc–solutions:

ϕc–solutions : (x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t)

g2 = g3 = ̟(u, λ)g(u, λ),

h4(0) = −̟(u, λ), h5(0) = ̟(u, λ)f(u, λ), see (10.58);

̟ = g−1̟0 exp[a2u+ a3λ], ̟0, a2, a3 = const; see (10.26)

h4 = η4(u, λ, ϕ)h4(0)(u, λ), h5 = η5(u, λ, ϕ)h5(0)(u, λ),

η4 = −h2
(0)f(u, λ)

{[
ω−1 (u, λ, ϕ)

]∗}2
, η5 = ω−2 (u, λ, ϕ) , (10.76)

wi = 0, ni{x, ω, ω∗} = ni{u, λ, ω (u, λ, ϕ) , ω∗ (u, λ, ϕ)},
Ω = ̟−1(u, λ)Ω[2](u, λ, ϕ), ζi = ∂i ln |̟|)

(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2],

η4 = −̟−q1/q2(u, λ)Ω
q1/q2
[2] (u, λ, ϕ).

and

tc–solutions : (x2 = u, x3 = λ, y4 = v = t, y5 = p = ϕ)

g2 = g3 = ̟(u, λ)g(u, λ),

h4(0) = ̟(u, λ)f(u, λ), h5(0) = −̟(u, λ), see (10.58);

̟ = g−1̟0 exp[a2u+ a3λ], ̟0, a2, a3 = const, see (10.26)

h4 = η4(u, λ, t)h4(0)(x
i), h5 = η5(u, λ, t)h5(0)(x

i),

η4 = ω−2 (u, λ, t) , η5 = −h−2
(0)f(u, λ)

[∫
dt ω−1 (u, λ, t)

]2

, (10.77)

wi = 0, ni{x, ω, ω∗} = ni{u, λ, ω (u, λ, t) , ω∗ (u, λ, t)},
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Ω = ̟−1(u, λ)Ω[2](u, λ, t), ζi = ∂i(ln |̟|)
(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2],

η4 = −̟−q1/q2(u, λ)Ω
q1/q2
[2] (u, λ, t).

where the coefficients ni can be found explicitly by introducing the corresponding values
η4 and η5 in formula (10.61).

For the 4D Class B solutions one can be imposed some conditions (see previous sub-
section) when the solutions (10.76) and (10.77) have in the locally anisotropic limit the
Schwarzschild solution, which imposes some specific parametrizations and dependencies
on Ω[2](u, λ, v) and ω (u, λ, v) like (10.66) and (10.68). We omit these considerations
because for aholonomic configurations and nonlinear solutions there are not arguments
to prefer any holonomic limits of such off–diagonal metrics.

We conclude this Section by noting that for the considered classes of ellipsoidal black
hole 4D solutions the so–called t–component of metric contains modifications of the
Schwarzschild potential

Φ = − M

M2
P [4]r

into Φ = −Mω (u, λ, v)

M2
P [4]r

,

where MP [4] is the usual 4D Plank constant; the metric coefficients are given with respect
to the corresponding anholonomic frame of reference. In 4D anholonomic gravity the
receptivity ω (u, λ, v) is considered to renormalize the mass constant. Such gravitational
self-polarizations are induced by anholonomic vacuum gravitational interactions. They
should be defined experimentally or computed following a model of quantum gravity.

10.5 The Cosmological Constant and Anisotropy

In this Section we analyze the general properties of anholonomic Einstein equations
in 5D and 4D gravity with cosmological constant and construct a 5D exact solution with
cosmological constant.

10.5.1 4D and 5D Anholnomic Einstein spaces

There is a difference between locally anisotropic 4D and 5D gravity. The first theory
admits an ”isotropic” 4D cosmological constant Λ[4] = Λ even for anisotropic grav-
itational configurations. The second, 5D, theory admits extensions of vacuum anis-
toropic solutions to those with a cosmological constant only for anisotropic 5D sources
parametrized like Λ[5]αβ = (2Λg11,Λgαβ) (see the Corollary 4 below). We emphasize that
the conclusions from this subsection refer to the two classes of ansatz (10.9) and (10.19).
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The simplest way to consider a source into the 4D Einstein equations, both with or
not anistoropy, is to consider a gravitational constant Λ and to write the field equations

Gα
β = Λ[4]δ

α
β (10.78)

which means that we introduced a ”vacuum” energy–momentum tensor κΥα
β = Λ[4]δ

α
β

which is diagonal with respect to anholonomic frames and the conditions (10.51) trans-
forms into Υ2

2 = Υ3
3 = Υ4

4 = Υ5
5 = κ−1Λ. According to A. Z. Petrov [20] the spaces

described by solutions of the Einstein equations

Rαβ = Λgαβ,Λ = const

are called the Einstein spaces. With respect to anisotropic frames we shall use the term
anholonomic (equivalently, anisotropic) Einstein spaces.

In order to extend the equations (10.78) to 5D gravity we have to take into consid-
eration the compatibility conditions for the energy–momentum tensors (10.34).

Corollary 10.5.4. We are able to satisfy the conditions of the Corollary 2 if we con-
sider a 5D diagonal source Υα

β = {2Λ, Υα
β = Λδαβ}, for an anisotropic 5D cosmological

constant source (2Λg11,Λgαβ). The 5D Einstein equations with anisotropic cosmological
”constants”, for ansatz (10.9) are written in the form

R2
2 = S4

4 = −Λ. (10.79)

These equations without coordinate x1 and g11 hold for the (10.39). We can extend the
constructions for the ansatz with conformal factors, (10.19) and (10.41) by considering
additional coefficients ζi satisfying the equations (10.25) and (10.49) for non vanishing
values of wi.

The proof follows from Corollaries 1 and 2 formulated respectively to 4D and 5D
gravity (see formulas (10.50) and (10.51) and, correspondingly, (10.33) and (10.34)).

Theorem 10.5.4. The nontrivial components of the 5D Einstein equations with
anisotropic cosmological constant, R11 = 2Λg11 and Rαβ = Λgαβ, for the ansatz (10.19)
and anholonomic metric (10.20) given with respect to anholonomic frames (10.21) and
(10.22) are written in a form with separation of variables:

g••3 −
g•2g

•
3

2g2
− (g•3)

2

2g3
+ g

′′

2 −
g

′

2g
′

3

2g3
− (g

′

2)
2

2g2
= 2Λg2g3, (10.80)

h∗∗5 − h∗5[ln
√
|h4h5|]∗ = 2Λh4h5, (10.81)

wiβ + αi = 0, (10.82)

n∗∗
i + γn∗

i = 0, (10.83)

∂iΩ− (wi + ζi)Ω
∗ = 0. (10.84)



368CHAPTER 10. A NEW METHOD OF CONSTRUCTING EXACT SOLUTIONS

where

αi = ∂ih
∗
5 − h∗5∂i ln

√
|h4h5|, β = 2Λh4h5, γ = 3h∗5/2h5 − h∗4/h4. (10.85)

The Theorem 4 is a generalization of the Theorem 2 for energy–momentum tensors
induced by the an anisotropic 5D constant. The proof follows from (10.13)–(10.16)
and (10.25), revised as to satisfy the formulas (10.36) and (10.37) with that substantial
difference that β 6= 0 and in this case, in general, wi 6= 0.We conclude that in the presence
of a nonvanishing cosmological constant the equations (10.13) and (10.14) transform
respectively into (10.80) and (10.81) which have a more general nonlinearity because of
the 2Λg2g3 and 2Λh4h5 terms. For instance, the solutions with g2 = const and g3 = const
(and h4 = const and h5 = const) are not admitted. This makes more sophisticate the
procedure of definition of g2 for a given g3 (or inversely, of definition of g3 for a given
g2) from (10.80) [similarly of construction h4 for a given h5 from (10.81) and inversely],
nevertheless, the separation of variables is not affected by introduction of cosmological
constant and there is a number of possibilities to generate new exact solutions.

The general properties of solutions of the system (10.80)–(10.84) are stated by the

Theorem 10.5.5. The system of second order nonlinear partial differential equations
(10.80)-(10.83) and (10.84) can be solved in general form if there are given some values
of functions g2(x

2, x3) (or g3(x
2, x3)), h4 (xi, v) (or h5 (xi, v)) and Ω (xi, v) :

• The general solution of equation (10.80) is to be found from the equation

̟̟•• − (̟•)2 +̟̟
′′ − (̟

′

)2 = 2Λ̟3. (10.86)

for a coordinate transform coordinate transforms x2,3 → x̃2,3 (u, λ) for which

g2(u, λ)(du)2 + g3(u, λ)(dλ)2→ ̟
[
(dx̃2)2 + ǫ(dx̃3)2

]
, ǫ = ±1

and ̟• = ∂̟/∂x̃2 and ̟
′

= ∂̟/∂x̃3.

• The equation (10.81) relates two functions h4 (xi, v) and h5 (xi, v) with h∗5 6= 0. If
the function h5 is given we can find h4 as a solution of

h∗4 +
2Λ

τ
(h4)

2 + 2

(
τ ∗

τ
− τ
)
h4 = 0, (10.87)

where τ = h∗5/2h5.
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• The exact solutions of (10.82) for β 6= 0 is

wk = −αk/β, (10.88)

= ∂k ln[
√
|h4h5|/|h∗5|]/∂v ln[

√
|h4h5|/|h∗5|],

for ∂v = ∂/∂v and h∗5 6= 0.

• The exact solution of (10.83) is

nk = nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[h4/(
√
|h5|)3]dv, (10.89)

= nk[1]
(
xi
)

+ nk[2]
(
xi
) ∫

[1/(
√
|h5|)3]dv, h∗4 = 0,

for some functions nk[1,2] (x
i) stated by boundary conditions.

• The exact solution of (10.25) is given by

ζi = −wi + (Ω∗)−1∂iΩ, Ω∗ 6= 0, (10.90)

We note that by a corresponding re–parametrizations of the conformal factor Ω (xi, v)
we can reduce (10.86) to

̟̟•• − (̟•)2 = 2Λ̟3 (10.91)

which has an exact solution ̟ = ̟ (x̃2) to be found from

(̟•)2 = ̟3
(
C̟−1 + 4Λ

)
, C = const,

(or, inversely, to reduce to
̟̟

′′ − (̟
′

)2 = 2Λ̟3

with exact solution ̟ = ̟ (x̃3) found from

(̟′)2 = ̟3
(
C̟−1 + 4Λ

)
, C = const).

The inverse problem of definition of h5 for a given h4 can be solved in explicit form when
h∗4 = 0, h4 = h4(0)(x

i). In this case we have to solve

h∗∗5 +
(h∗5)

2

2h5
− 2Λh4(0)h5 = 0, (10.92)

which admits exact solutions by reduction to a Bernulli equation.
The proof of Theorem 5 is outlined in Appendix C.
The conditions of the Theorem 4 and 5 can be reduced to 4D anholonomic spacetimes

with ”isotropic” cosmological constant Λ. To do this we have to eliminate dependencies
on the coordinate x1 and to consider the 4D ansatz without g11 term as it was stated in
the subsection II E.
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10.5.2 5D anisotropic black holes with cosmological constant

We give an example of generalization of anisotropic black hole solutions of Class A
, constructed in the Section III, as they will contain the cosmological constant Λ; we
extend the solutions given by the data (10.64).

Our new 5D ϕ– solution is parametrized by an ansatz with conformal factor Ω(xi, v)
(see (10.19) and (10.20)) as Ω = ̟−1(u)Ω[0](x

i)̟−1(u)Ω[1](x
i, v). The factor ̟(u) is

chosen to be a solution of (10.91). This conformal data must satisfy the conditions
(10.24) and (10.32), i. e.

̟−q1/q2Ω
q1/q2
[0] Ω

q1/q2
[1] = η4̟h4(0)

for some integers q1 and q2, where η4 is found as h4 = η4̟h4(0) is a solution of equation
(10.87). The factor Ω[0](x

i) could be chosen as to obtain in the locally isotropic limit and
Λ→ 0 the Schwarzschild metric in ellipsoidal coordinates (10.55). Putting h5 = η5̟h5(0),
η5h5(0) in the ansatz for (10.64), for which we compute the value τ = h∗5/2h5, we obtain
from (10.87) an equation for η4,

η∗4 +
2Λ

τ
̟h4(0)(η4)

2 + 2

(
τ ∗

τ
− τ
)
η4 = 0

which is a Bernulli equation [18] and admit an exact solution, in general, in non explicit

form, η4 = η
[bern]
4 (xi, v,Λ, ̟, ω, a, b), were we emphasize the functional dependencies on

functions ̟,ω, a, b and cosmological constant Λ. Having defined η4[bern], η5 and ̟, we
can compute the αi–, β−, and γ–coefficients, expressed as

αi = α
[bern]
i (xi, v,Λ, ̟, ω, a, b), β = β [bern](xi, v,Λ, ̟, ω, a, b)

and γ = γ[bern](xi, v,Λ, ̟, ω, a, b), following the formulas (10.85).
The next step is to find

wi = w
[bern]
i (xi, v,Λ, ̟, ω, a, b) and ni = n

[bern]
i (xi, v,Λ, ̟, ω, a, b)

as for the general solutions (10.88) and (10.89).
At the final step we are able to compute the the second anisotropy coefficients

ζi = −w[bern]
i +

(
∂i ln |̟−1Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

which depends on an arbitrary function Ω[0](u, λ). If we state Ω[0](u, λ) = ΩA, as for ΩA

from (10.58), see similar details with respect to formulas (10.66), (10.67) and (10.68).
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The data for the exact solutions with cosmological constant for v = ϕ can be stated
in the form

ϕc–solutions : (x1 = χ, x2 = u, x3 = λ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = ̟(u), g3 = ̟(u),

h4(0) = a(u, λ), h5(0) = b(u, λ), see (10.56) and (10.91);

h4 = η4(x
i, ϕ)̟(u)h4(0)(x

i), h5 = η5(x
i, ϕ)̟(u)h5(0)(x

i),

η4 = η
[bern]
4 (xi, v,Λ, ̟, ω, a, b), η5 = ω−2 (χ, u, λ, ϕ) , (10.93)

wi = w
[bern]
i (xi, v,Λ, ̟, ω, a, b), ni{x, ω, ω∗} = n

[bern]
i (xi, v,Λ, ̟, ω, a, b),

Ω = ̟−1(u)Ω[0](x
i)Ω[1](x

i, ϕ), η4a = Ω
q1/q2
[0] (xi)Ω

q1/q2
[1] (xi, ϕ).

ζi = −w[bern]
i +

(
∂i ln |̟−1Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1].

We note that a solution with v = t can be constructed as to generalize (10.65) in
order to contain Λ. We can not present such data in explicit form because in this case
we have to define η5 by integrating an equation like (10.81) for h5, for a given h4, with
h∗4 6= 0 which can not be integrated in explicit form.

The solution (10.93) has has the same the two very interesting properties as the solu-

tion (10.64): 1) it admits a warped factor on the 5th coordinate, like Ω
q1/q2
[1] ∼ exp[−k|χ|],

which in this case is constructed for an anisotropic 5D vacuum gravitational configuration
with anisotropic cosmological constant and does not follow from a brane configuration
like in Refs. [7]; 2) we can impose such conditions on the receptivity ω (xi, ϕ) as to obtain
in the locally isotropic limit just the Schwarzschild metric (10.55) trivially embedded into
the 5D spacetime (the procedure is the same as in the subsection IIIB).

Finally, we note that in a similar manner like in the Sections III and IV we can
construct another classes of anisotropic black holes solutions in 5D and 4D spacetimes
with cosmological constants, being of Class A or Class B, with anisotropic ϕ–coordinate,
or anisotropic t–coordinate. We omit the explicit data which are some nonlinear anholo-
nomic generalizations of those solutions.

10.6 Conclusions

We formulated a new method of constructing exact solutions of Einstein equations
with off–diagonal metrics in 4D and 5D gravity. We introduced ahnolonomic trans-
forms which diagonalize metrics and simplify the system of gravitational field equations.
The method works also for gravitational configurations with cosmological constants and
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for non–trivial matter sources. We constructed different classes of new exact solutions
of the Einstein equations is 5D and 4D gravity which describe a generic anholonomic
(anisotropic) dynamics modelled by off–diagonal metrics and anholonomic frames with
mixed holonomic and anholonomic variables. They extend the class of exact solutions
with linear extensions to the bulk 5D gravity [21].

We emphasized such exact solutions which can be associated to some black hole like
configurations in 5D and 4D gravity. We consider that the constructed off–diagonal
metrics define anisotropic black holes because they have a static horizon parametrized
by a rotation ellipsoid hypersurface, they are singular in focuses of ellipsoid (or on the
circle of focuses, for flattened ellipsoids) and they reduce in the locally anisotropic limit,
with holonomic coordinates, to the Schwarzschild solution in ellipsoidal coordinates, or
to some conformal transforms of the Schwarzschild metric.

The new classes of solutions admit variations of constants (in time and extra di-
mension coordinate) and anholonomic gravitational polarizations of masses which are
induced by nonlinear gravitational interactions in the bulk of 5D gravity and by a con-
strained (anholonomic) dynamics of the fields in the 4D gravity. There are possible
solutions with warped factors which are defined by some vacuum 5D gravitational in-
teractions in the bulk and not by a specific brane configuration with energy–momentum
tensor source. We emphasized anisotropies which in the effective 4D spacetime preserve
the local Lorentz invariance but the method allows constructions with violation of local
Lorentz symmetry like in Refs. [22]. In order to generate such solutions we should admit
that the metric coefficients depends, for instance, anisotropically on extra dimension
coordinate.

It should be noted that the anholonomic frame method deals with generic off–diagonal
metrics and nonlinear systems of equations and allows to construct substantially non-
linear solutions. In general, such solutions could not have a locally isotropic limit with
a holonomic analog. We can understand the physical properties of such solutions by
analyzing both the metric coefficients stated with respect to an adapted anholonomic
frame of reference and by a study of the coefficients defining such frames.

There is a subclass of static anisotropic black holes solutions, with static ellipsoidal
horizons, which do not violate the well known Israel and Carter theorems [19] on spherical
symmetry of solutions in asymptotically flat spacetimes. Those theorems were proved
in the radial symmetry asymptotic limit and for holonomic coordinates. There is not a
much difference between 3D static spherical and ellipsoidal horizons at long distances.
In other turn, the statements of the mentioned theorems do not refers to generic off–
diagonal gravitational metrics, anholonomic frames and anholonomic deformations of
symmetries.

Finally, we note that the anholonomic frame method may have a number of ap-
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plications in modern brane and string/M–theory gravity because it defines a general
formalism of constructing exact solutions with off–diagonal metrics. It results in such
prescriptions on anholonomic ”mappings” of some known locally isotropic solutions from
a gravity/string theory that new types of anisotropic solutions are generated:

A vacuum, or non-vacuum, solution, and metrics conformally equivalent to a such
solution, parametrized by a diagonal matrix given with respect to a holonomic (coordinate)
base, contained in a trivial form of ansatz (10.9), or (10.19), can be generalized to
an anisotropic solution with similar but anisotropically renormalized physical constants
and diagonal metric coefficients given with respect to adapted anholonomic frames; the
new anholonomic metric defines an exact solution of a simplified form of the Einstein
equations (10.13)–(10.16) and (10.25); such solutions are parametrized by off–diagonal
metrics if they are re–defined with respect to coordinate frames .
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10.7 A: Anholonomic Frames and Nonlinear Con-

nections

For convenience, we outline here the basic formulas for connections, curvatures and,
induced by anholonomic frames, torsions on (pseudo) Riemannian spacetimes provided
with N–coefficient bases (10.5) and (10.6) [1, 4]. The N–coefficients define an associ-
ated nonlinear connection (in brief, N–connection) structure. On (pseudo)–Riemannian
spacetimes the N–connection structure can be treated as a ”pure” anholonomic frame
effect which is induced if we are dealing with mixed sets of holonomic–anholonomic basis
vectors. When we are transferring our considerations only to coordinate frames (10.2)
and (10.3) the N–connection coefficients are removed into both off–diagonal and diagonal
components of the metric like in (10.9). In some cases the N–connection (anholonomic)
structure is to be stated in a non–dynamical form by definition of some initial (bound-
ary) conditions for the frame structure, following some prescribed symmetries of the
gravitational–matter field interactions, or , in another cases, a subset of N–coefficients
have to be treated as some dynamical variables defined as to satisfy the Einstein equa-
tions.
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10.7.1 D–connections, d–torsions and d–curvatures

If a pseudo–Riemannian spacetime is enabled with a N–connection structure, the
components of geometrical objects (for instance, linear connections and tensors) are
distinguished into horizontal components (in brief h–components, labelled by indices
like i, j, k, ...) and vertical components (in brief v–components, labelled by indices like
a, b, c, ..). One call such objects, distinguished (d) by the N–connection structure, as
d–tensors, d–connections, d–spinors and so on [12, 3, 1].

D–metrics and d-connections:

A metric of type (10.10), in general, with arbitrary coefficients gij
(
xk, ya

)
and

hab
(
xk, ya

)
defined with respect to a N–elongated basis (10.6) is called a d–metric.

A linear connection Dδγδβ = Γαβγ (x, y) δα, associated to an operator of covariant
derivation D, is compatible with a metric gαβ and N–connection structure on a 5D
pseudo–Riemannian spacetime if Dαgβγ = 0. The linear d–connection is parametrized
by irreducible h–v–components, Γαβγ =

(
Li jk, L

a
bk, C

i
jc, C

a
bc

)
, where

Li jk =
1

2
gin (δkgnj + δjgnk − δngjk) , (10.94)

Labk = ∂bN
a
k +

1

2
hac
(
δkhbc − hdc∂bNd

k − hdb∂cNd
k

)
,

Ci
jc =

1

2
gik∂cgjk, C

a
bc =

1

2
had (∂chdb + ∂bhdc − ∂dhbc) .

This defines a canonical linear connection (distinguished by a N–connection, in brief,
the canonical d–connection) which is similar to the metric connection introduced by
Christoffel symbols in the case of holonomic bases.

D–torsions and d–curvatures:

The anholonomic coefficients W γ
αβ and N–elongated derivatives give nontrivial coef-

ficients for the torsion tensor, T (δγ, δβ) = T αβγδα, where

T αβγ = Γαβγ − Γαγβ + wαβγ , (10.95)

and for the curvature tensor, R(δτ , δγ)δβ = R α
β γτδα, where

R α
β γτ = δτΓ

α
βγ − δγΓαβτ

+ΓϕβγΓ
α
ϕτ − ΓϕβτΓ

α
ϕγ + Γαβϕw

ϕ
γτ . (10.96)
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We emphasize that the torsion tensor on (pseudo) Riemannian spacetimes is induced by
anholonomic frames, whereas its components vanish with respect to holonomic frames.
All tensors are distinguished (d) by the N–connection structure into irreducible h–v–
components, and are called d–tensors. For instance, the torsion, d–tensor has the follow-
ing irreducible, nonvanishing, h–v–components, T αβγ = {T ijk, Ci

ja, S
a
bc, T

a
ij , T

a
bi}, where

T i.jk = T ijk = Lijk − Likj, T ija = Ci
.ja, T iaj = −Ci

ja,

T i.ja = 0, T a.bc = Sa.bc = Ca
bc − Ca

cb, (10.97)

T a.ij = −Ωa
ij , T a.bi = ∂bN

a
i − La.bi, T a.ib = −T a.bi

(the d–torsion is computed by substituting the h–v–components of the canonical d–
connection (10.94) and anholonomic coefficients (10.7) into the formula for the torsion
coefficients (10.95)), where

Ωa
ij = δjN

a
i − δiNa

j

is called the N–connection curvature (N–curvature).

The curvature d-tensor has the following irreducible, non-vanishing, h–v–components
R α
β γτ = {R.i

h.jk, R
.a
b.jk, P

.i
j.ka, P

.c
b.ka, S

.i
j.bc, S

.a
b.cd}, where

R.i
h.jk = δkL

i
.hj − δjLi.hk + Lm.hjL

i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk, (10.98)

R.a
b.jk = δkL

a
.bj − δjLa.bk + Lc.bjL

a
.ck − Lc.bkLa.cj − Ca

.bcΩ
c
.jk,

P .i
j.ka = ∂aL

i
.jk + Ci

.jbT
b
.ka − (δkC

i
.ja + Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc),

P .c
b.ka = ∂aL

c
.bk + Cc

.bdT
d
.ka − (δkC

c
.ba + Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd),

S .ij.bc = ∂cC
i
.jb − ∂bCi

.jc + Ch
.jbC

i
.hc − Ch

.jcC
i
hb,

S .ab.cd = ∂dC
a
.bc − ∂cCa

.bd + Ce
.bcC

a
.ed − Ce

.bdC
a
.ec

(the d–curvature components are computed in a similar fashion by using the formula for
curvature coefficients (10.96)).

10.7.2 Einstein equations with holonomic–anholonomic variab-
les

In this subsection we write and analyze the Einstein equations on 5D (pseudo) Rie-
mannian spacetimes provided with anholonomic frame structures and associated N–
connections.
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Einstein equations with matter sources

The Ricci tensor Rβγ = R α
β γα has the d–components

Rij = R.k
i.jk, Ria = −2Pia = −P .k

i.ka, (10.99)

Rai = 1Pai = P .b
a.ib, Rab = S .ca.bc.

In general, since 1Pai 6= 2Pia, the Ricci d-tensor is non-symmetric (this could be with
respect to anholonomic frames of reference). The scalar curvature of the metric d–

connection,
←−
R = gβγRβγ, is computed

←−
R = GαβRαβ = R̂ + S, (10.100)

where R̂ = gijRij and S = habSab.
By substituting (10.99) and (10.100) into the 5D Einstein equations

Rαβ −
1

2
gαβR = κΥαβ , (10.101)

where κ and Υαβ are respectively the coupling constant and the energy–momentum
tensor we obtain the h-v-decomposition by N–connection of the Einstein equations

Rij −
1

2

(
R̂ + S

)
gij = κΥij , (10.102)

Sab −
1

2

(
R̂ + S

)
hab = κΥab,

1Pai = κΥai,
2Pia = κΥia.

The definition of matter sources with respect to anholonomic frames is considered in
Refs. [3, 1].

5D vacuum Einstein equations

The vacuum 5D, locally anisotropic gravitational field equations, in invariant h– v–
components, are written

Rij = 0, Sab = 0, (10.103)
1Pai = 0, 2Pia = 0.

The main ‘trick’ of the anholonomic frames method for integrating the Einstein equa-
tions in general relativity and various (super) string and higher / lower dimension grav-
itational theories is to find the coefficients Na

j such that the block matrices gij and hab
are diagonalized [3, 1, 4]. This greatly simplifies computations. With respect to such
anholonomic frames the partial derivatives are N–elongated (locally anisotropic).
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10.8 B: Proof of the Theorem 3

We prove step by step the items of the Theorem 3.
The first statement with respect to the solution of (10.13) is a connected with the

well known result from 2D (pseudo) Riemannian gravity that every 2D metric can be
redefined by using coordinate transforms into a conformally flat one.

The equation (10.14) can be treated as a second order differential equation on variable
v, with parameters xi, for the unknown function h5(x

i, v) if the value of h4(x
i, v) is given

(or inversely as a first order differential equation on variable v, with parameters xi, for
the unknown function h4(x

i, v) if the value of h5(x
i, v) is given). The formulas (10.29)

and (10.28) are consequences of integration on v of the equation (10.14) being considered
also the degenerated cases when h∗5 = 0 or h∗4 = 0.

Having defined the values h4 and h5, we can compute the values the coefficients αi, β
and γ (10.17) and find the coefficients wi and ni The first set (8.10) for wi is a solution
of three independent first order algebraic equations (10.15) with known coefficients αi
and β. The second set of solutions (10.31) for ni is found after two integrations on the
anisotropic variable v of the independent equations (10.16) with known γ (the variables
xi being considered as parameters). In the formulas (10.31) we distinguish also the
degenerated cases when h∗5 = 0 or h∗4 = 0.

Finally, we note that the formula (10.32) is a simple algebraic consequence from
(10.25).

The Theorem 3 has been proven.

10.9 C: Proof of Theorem 5

We emphasize the first two items:

• The equation (10.80) imposes a constraint on coefficients of a diagonal 2D metric
parametrized by coordinates x2 = u and x3 = λ. By coordinate transforms x2,3 →
x̃2,3 (u, λ) , see for instance, [20] we can reduce 2D every metric

ds2
[2] = g2(u, λ)du2 + g3(u, λ)dλ2

to a conformally flat one

ds2
[2] = ̟(x̃2, x̃3)

[
d(x̃2)2 + ǫd(x̃3)2

]
, ǫ = ±1.

with conformal factor ̟(x̃2, x̃3), for which (10.80) transforms into (10.86) with new
’dot’ and ’prime’ derivatives ̟• = ∂̟/∂x̃2 and ̟

′

= ∂̟/∂x̃3. It is not possible
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to find an explicit form of the general solution of (10.86). If we approximate, for
instance, that ̟ = ̟ (x̃2) , the equation

̟̟•• − (̟•)2 = 2Λ̟3

has an exact solution (see 6.127 in [18]) which can be found from a Bernulli equation

(̟•)2 = ̟3
(
C̟−1 + 4Λ

)
, C = const,

which allow us to find x̃2(̟), or, in non explicit form ̟ = ̟ (x̃2) . We can chose a
such solution as a background one and by using conformal factors Ω(x̃2, x̃3), trans-
forming ̟(x̃2, x̃3) into ̟ (x̃2) we can generate solutions of the 5D Einstein equa-
tions with anisotropic cosmological constant by inducing second order anisotropy
ζi. The case when ̟ = ̟ (x̃3) is to be obtained in a similar manner by changing
the ’dot’ derivative into ’prime’ derivative.

• The equation (10.81) does not admit h∗5 = 0 because in this case we must have
h5 = 0. For a given value of h5, introducing a new variable τ = h∗5/2h5 we can
transform (10.81) into a first order nonlinear equation for h4 (10.104),which can
be transformed [18] to a Ricatti, then to a Bernulli equation which admits exact
solutions. We note that the holonomic coordinates are considered as parameters.
The inverse problem, to find h5 for a given h4 is more complex because is connected
with solution of a second order nonlinear differential equation

h∗∗5 +
(h∗5)

2

2h5
− h∗4

2h4
h∗5 − 2Λh4h5 = 0, (10.104)

which can not integrated in general form. Nevertheless, a very general class of
solutions can be found explicitly if h∗4 = 0, i. e. if h4 depend only on holonomic co-
ordinates. In this case the equation (10.104) can be reduced to a Bernulli equation
[18] which admits exact solutions.

• The formulas (10.88), (10.89) and (10.90) solving respectively (10.82), (10.83) and
(10.84) are proven similarly as for the Theorem 3 with that difference that in the
presence of the cosmological term h∗5 6= 0, β 6= 0 and, in general, wi 6= 0.

The Theorem 5 has been proven.
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Chapter 11

Black Tori Solutions in Einstein and
5D Gravity

Abstract 1

The ’anholonomic frame’ method [1, 2, 3] is applied for constructing new classes of
exact solutions of vacuum Einstein equations with off–diagonal metrics in 4D and 5D
gravity. We examine several black tori solutions generated by anholonomic transforms
with non–trivial topology of the Schwarzschild metric, which have a static toroidal hori-
zon. We define ansatz and parametrizations which contain warping factors, running
constants (in time and extra dimension coordinates) and effective nonlinear gravita-
tional polarizations. Such anisotropic vacuum toroidal metrics, the first example was
given in [1], differ substantially from the well known toroidal black holes [4] which were
constructed as non–vacuum solutions of the Einstein–Maxwell gravity with cosmologi-
cal constant. Finally, we analyze two anisotropic 5D and 4D black tori solutions with
cosmological constant.

11.1 Introduction

Black hole - torus systems [5] and toroidal black holes [4, 1] became objects of as-
trophysical interest since it was shown that they are inevitable outcome of complete
gravitational collapse of a massive star, cluster of stars, or can be present in the center
of galactic systems.

Black hole and black tori solutions appear naturally as exact solutions in general
relativity and extra dimension gravity theories. Such solutions can be constructed in

1 c© S. Vacaru, Black Tori Solutions in Einstein and 5D Gravity, hep-th/0110284
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both asymptotically flat spacetiems and in spacetimes with cosmological constant, posses
a specific supersymmetry and could be with toroidal, cylindrical or planar topology [4].

String theory suggests that we may live in a fundamentally higher dimensional space-
time [6]. The recent approaches are based on the assumption that our Universe is realized
as a three dimensional (in brief, 3D) brane, modelling a 4D pseudo–Riemannian space-
time, embedded in the 5D anti–de Sitter (AdS5) bulk spacetime. It was proposed in the
Rundall and Sundrum (RS) papers [7] that such models could be with relatively large
extra dimension as a way to solve the hierarchy problem in high energy physics.

In the present paper we explore possible black tori solutions in 5D and 4D gravity.
We obtain a new class of exact solutions to the 5D vacuum Einstein equations in the
bulk, which have toroidal horizons and are related via anholonomic transforms with
toroidal deformations of the Schwarzschild solutions. The solutions could be with warped
factors, running constants and anisotropic gravitational polarizations. We than consider
4D black tori solutions and generalize both 5D and 4D constructions for spacetimes with
cosmological constant.

We also discuss implications of existence of such anisotropic black tori solutions with
non-trivial topology to the extra dimension gravity and general relativity theory. We
prove that warped metrics can be obtained from vacuum 5D gravity and not only from
a brane configurations with specific energy–momentum tensor.

We apply the Salam, Strathee and Peracci [8] idea on a gauge field like status of
the coefficients of off–diagonal metrics in extra dimension gravity and develop it in a
new fashion by applying the method of anholonomic frames with associated nonlinear
connections on 5D and 4D (pseudo) Riemannian spaces [1, 2, 3].

We use the term ’locally anisotropic’ spacetime (or ’anisotropic’ spacetime) for a 5D
(4D) pseudo-Riemannian spacetime provided with an anholonomic frame structure with
mixed holonomic and anholonomic variables. The anisotropy of gravitational interactions
is modelled by off–diagonal metrics, or, equivalently, by theirs diagonalized analogs given
with respect to anholonomic frames.

The paper is organized as follow: In Sec. II we consider two off–diagonal metric
ansatz, construct the corresponding exact solutions of 5D vacuum Einstein equations and
illustrate the possibility of extension by introducing matter fields and the cosmological
constant term. In Sec. III we construct two classes of 5D anisotropic black tori solutions
and consider subclasses and reparemetizations of such solutions in order to generate new
ones. Sec. IV is devoted to 4D black tori solutions. In Sec. V we extend the approach for
anisotropic 5D and 4D spacetimes with cosmological constant and give two examples of
5D and 4D anisotropic black tori solution. Finally, in Sec. VI, we conclude and discuss
the obtained results.
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11.2 Off–Diagonal Metric Ansatz

We introduce the basic denotations and two ansatz for off–diagonal 5D metrics (see
details in Refs. [1, 2, 3]) to be applied in definition of anisotropic black tori solutions.

Let us consider a 5D pseudo–Riemannian spacetime provided with local coordinates
uα = (xi, y4 = v, y5), for indices like i, j, k, .. = 1, 2, 3 and a, b, ... = 4, 5. The xi–
coordinates are called holonomic and ya–coordinates are called anholonomic (anisotrop-
ic); they are given respectively with respect to some holonomic and anholonomic sub-
frames (see the formulae (10.12) and (11.8)). Every coordinate xi or ya could be a
time like, 3D space, or the 5th (extra dimensional) coordinate; we shall fix on necessity
different parametrizations.

We investigate two classes of 5D metrics:
The first type of metrics are given by a line element

ds2 = gαβ
(
xi, v

)
duαduβ (11.1)

with the metric coefficients gαβ parametrized with respect to the coordinate co–frame
duα, being dual to ∂α = ∂/∂uα, by an off–diagonal matrix (ansatz)




g1 + w 2
1 h4 + n 2

1 h5 w1w2h4 + n1n2h5 w1w3h4 + n1n3h5 w1h4 n1h5

w1w2h4 + n1n2h5 g2 + w 2
2 h4 + n 2

2 h5 w2w3h4 + n2n3h5 w2h4 n2h5

w1w3h4 + n1n3h5 w2w3h4 + n2n3h5 g3 + w 2
3 h4 + n 2

3 h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0
n1h5 n2h5 n3h5 0 h5



, (11.2)

where the coefficients are some necessary smoothly class functions of type:

g1 = ±1, g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

i, v),

wi = wi(x
i, v), ni = ni(x

i, v).

The second type of metrics are given by a line element (with a conformal factor
Ω(xi, v) and additional deformations of the metric via coefficients ζı̂(x

i, v), indices with
’hat’ take values like î = 1, 2, 3, 5)) written as

ds2 = Ω2(xi, v)ĝαβ
(
xi, v

)
duαduβ, (11.3)

were the coefficients ĝαβ are parametrized by the ansatz



g1 + (w 2
1 + ζ 2

1 )h4 + n 2
1 h5 (w1w2 + ζ1ζ2)h4 + n1n2h5 (w1w3 + ζ1ζ3)h4 + n1n3h5 (w1 + ζ1)h4 n1h5

(w1w2 + ζ1ζ2)h4 + n1n2h5 g2 + (w 2
2 + ζ 2

2 )h4 + n 2
2 h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 (w2 + ζ2)h4 n2h5

(w1w3 + ζ1ζ3)h4 + n1n3h5 (w2w3 + ζ2ζ3)h4 + n2n3h5 g3 + (w 2
3 + ζ 2

3 )h4 + n 2
3 h5 (w3 + ζ3)h4 n3h5

(w1 + ζ1)h4 (w2 + ζ2)h4 (w3 + ζ3)h4 h4 0
n1h5 n2h5 n3h5 0 h5 + ζ5h4




(11.4)
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For trivial values Ω = 1 and ζı̂ = 0, the line interval (11.3) transforms into (11.1).
The quadratic line element (11.1) with metric coefficients (11.2) can be diagonalized,

δs2 = [g1(dx
1)2 + g2(dx

2)2 + g3(dx
3)2 + h4(δv)

2 + h5(δy
5)2], (11.5)

with respect to the anholonomic co–frame (dxi, δv, δy5) , where

δv = dv + widx
i and δy5 = dy5 + nidx

i (11.6)

which is dual to the frame (δi, ∂4, ∂5) , where

δi = ∂i + wi∂4 + ni∂5. (11.7)

The bases (11.6) and (11.7) are considered to satisfy some anholonomic relations of type

δiδj − δjδi = W k
ijδk (11.8)

for some non–trivial values of anholonomy coefficients W k
ij . We obtain a holonomic (co-

ordinate) base if the coefficients W k
ij vanish.

The quadratic line element (11.3) with metric coefficients (11.4) can be also diago-
nalized,

δs2 = Ω2(xi, v)[g1(dx
1)2 + g2(dx

2)2 + g3(dx
3)2 + h4(δ̂v)

2 + h5(δy
5)2], (11.9)

but with respect to another anholonomic co–frame
(
dxi, δ̂v, δy5

)
, with

δv = dv + (wi + ζi)dx
i + ζ5δy

5 and δy5 = dy5 + nidx
i (11.10)

which is dual to the frame
(
δ̂i, ∂4, ∂̂5

)
, where

δ̂i = ∂i − (wi + ζi)∂4 + ni∂5, ∂̂5 = ∂5 − ζ5∂4. (11.11)

The nontrivial components of the 5D Ricci tensor, Rβ
α, for the metric (11.5) given

with respect to anholonomic frames (11.6) and (11.7) are

R2
2 = R3

3 = − 1

2g2g3

[g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

], (11.12)

R4
4 = R5

5 = − β

2h4h5
, (11.13)

R4i = −wi
β

2h5
− αi

2h5
, (11.14)

R5i = − h5

2h4
[n∗∗
i + γn∗

i ] (11.15)
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where

αi = ∂ih
∗
5 − h∗5∂i ln

√
|h4h5|, β = h∗∗5 − h∗5[ln

√
|h4h5|]∗, γ = 3h∗5/2h5 − h∗4/h4. (11.16)

For simplicity, the partial derivatives are denoted like a× = ∂a/∂x1, a• = ∂a/∂x2, a
′

=
∂a/∂x3, a∗ = ∂a/∂v.

We obtain the same values of the Ricci tensor for the second ansatz (11.9) if there
are satisfied the conditions

δ̂ih4 = 0 and δ̂iΩ = 0 (11.17)

and the values ζî = (ζi, ζ5 = 0) are found as to be a unique solution of (11.17); for
instance, if

Ωq1/q2 = h4 (q1 and q2 are integers), (11.18)

the coefficients ζi must solve the equations

∂iΩ− (wi + ζi)Ω
∗ = 0. (11.19)

The system of 5D vacuum Einstein equations, Rβ
α = 0, reduces to a system of

nonlinear equations with separation of variables,

R2
2 = 0, R4

4 = 0, R4i = 0, R5i = 0,

which together with (11.19) can be solved in general form [3]: For any given values of g2

(or g3), h4 (or h5) and Ω, and stated boundary conditions we can define consequently
the set of metric coefficients g3(or g2), h4 (or h4), wi, ni and ζi.

The introduced ansatz can be used also for constructing solutions of 5D and 4D
Einstein equations with nontrivial energy-momentum tensor

Rαβ −
1

2
gαβR = κΥαβ.

The non–trivial diagonal components of the Einstein tensor, Gα
β = Rα

β − 1
2
Rδαβ , for

the metric (11.5), given with respect to anholonomic frames, are

G1
1 = −

(
R2

2 + S4
4

)
, G2

2 = G3
3 = −S4

4 , G
4
4 = G5

5 = −R2
2. (11.20)

So, we can extend the system of 5D vacuum Einstein equations by introducing matter
fields for which the energy–momentum tensor Υαβ given with respect to anholonomic
frames satisfy the conditions

Υ1
1 = Υ2

2 + Υ4
4,Υ

2
2 = Υ3

3,Υ
4
4 = Υ5

5. (11.21)
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We note that, in general, the tensor Υαβ may be not symmetric because with respect
to anholonomic frames there are imposed constraints which makes non symmetric the
Ricci and Einstein tensors [1, 2, 3].

In the simplest case we can consider a ”vacuum” source induced by a non–vanishing
4D cosmological constant, Λ. In order to satisfy the conditions (11.21) the source induced
by Λ should be in the form κΥαβ = (2Λg11,Λgαβ), where underlined indices α, β, ... run
4D values 2, 3, 4, 5. We note that in 4D anholonomic gravity the source κΥαβ = Λgαβ
satisfies the equalities Υ2

2 = Υ3
3 = Υ4

4 = Υ5
5.

By straightforward computations we obtain that the nontrivial components of the 5D
Einstein equations with anisotropic cosmological constant, R11 = 2Λg11 and Rαβ = Λgαβ ,
for the ansatz (11.4) and anholonomic metric (11.9) given with respect to anholonomic
frames (11.10) and (11.11), are written in a form with separated variables:

g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

= 2Λg2g3, (11.22)

h∗∗5 − h∗5[ln
√
|h4h5|]∗ = 2Λh4h5, (11.23)

wiβ + αi = 0, (11.24)

n∗∗
i + γn∗

i = 0, (11.25)

∂iΩ− (wi + ζi)Ω
∗ = 0. (11.26)

where

αi = ∂ih
∗
5 − h∗5∂i ln

√
|h4h5|, β = 2Λh4h5, γ = 3h∗5/2h5 − h∗4/h4. (11.27)

In the vacuum case (with Λ = 0) these equations are compatible if β = αi = 0 which
results that wi (x

i, v) could be arbitrary functions; this reflects a freedom in definition
of the holonomic coordinates. For simplicity, for vacuum solutions we shall put wi = 0.
Finally, we remark that we can ”select” 4D Einstein solutions from an ansatz (11.2) or
(11.4) by considering that the metric coefficients do not depend on variable x1, which
mean that in the system of equations (11.22)–(11.26) we have to deal with 4D values
wi
(
xk, v

)
, ni
(
xk, v

)
, ζi
(
xk, v

)
, and h4

(
xk, v

)
, h5

(
xk, v

)
,Ω
(
xk, v

)
.

11.3 5D Black Tori

Our goal is to apply the anholonomic frame method as to construct such exact so-
lutions of vacuum (and with cosmological constant) 5D Einstein equations as they have
a static toroidal horizon for a metric ansatz (11.2) or (11.4) which can be diagonalized
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with respect to some well defined anholonomic frames. Such solutions are defined as
some anholonomic transforms of the Schwarzschild solution to a toroidal configuration
with non–trivial topology. In general form, they could be defined with warped factors,
running constants (in time and extra dimension coordinate) and nonlinear polarizations.

11.3.1 Toroidal deformations of the Schwarzschild metric

Let us consider the system of isotropic spherical coordinates (ρ, θ, ϕ), where the
isotropic radial coordinate ρ is related with the usual radial coordinate r via the relation
r = ρ (1 + rg/4ρ)

2 for rg = 2G[4]m0/c
2 being the 4D gravitational radius of a point

particle of mass m0, G[4] = 1/M2
P [4] is the 4D Newton constant expressed via Plank

mass MP [4] (following modern string/brane theories, MP [4] can be considered as a value
induced from extra dimensions). We put the light speed constant c = 1. This system of
coordinates is considered for the so–called isotropic representation of the Schwarzschild
solution [10]

ds2 =

(
ρ̂− 1

ρ̂+ 1

)2

dt2 − ρ2
g

(
ρ̂+ 1

ρ̂

)4 (
dρ̂2 + ρ̂2dθ2 + ρ̂2 sin2 θdϕ2

)
, (11.28)

where, for our further considerations, we re–scaled the isotropic radial coordinate as
ρ̂ = ρ/ρg, with ρg = rg/4. The metric (11.28) is a vacuum static solution of 4D Einstein
equations with spherical symmetry describing the gravitational field of a point particle of
mass m0. It has a singularity for r = 0 and a spherical horizon for r = rg, or, in re–scaled
isotropic coordinates, for ρ̂ = 1. We emphasize that this solution is parametrized by a
diagonal metric given with respect to holonomic coordinate frames.

We also introduce the toroidal coordinates (in our case considered as alternatives to
the isotropic radial coordinates) [9] (σ, τ, ϕ), running values −π ≤ σ < π, 0 ≤ τ ≤ ∞, 0 ≤
ϕ < 2π, which are related with the isotropic 3D Cartezian coordinates via transforms

x̃ =
ρ̃ sinh τ

cosh τ − cosσ
cosϕ, ỹ =

ρ̃ sinh τ

cosh τ − cosσ
sinϕ, z̃ =

ρ̃ sinh σ

cosh τ − cosσ
(11.29)

and define a toroidal hypersurface

(√
x̃2 + ỹ2 − ρ̃cosh τ

sinh τ

)2

+ z̃2 =
ρ̃2

sinh2 τ
.

The 3D metric on a such toroidal hypersurface is

ds2
(3D) = gσσdσ

2 + gττdτ
2 + gϕϕdϕ

2,
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where

gσσ = gττ =
ρ̃2

(cosh τ − cosσ)2 , gϕϕ =
ρ̃2 sinh2 τ

(cosh τ − cosσ)2 .

We can relate the toroidal coordinates (σ, τ, ϕ) from (10.53) with the isotropic radial
coordinates (ρ̂, θ, ϕ), scaled by the constant ρg, from (11.28) as

ρ̃ = 1, sinh−1 τ = ρ̂

and transform the Schwarzschild solution into a new metric with toroidal coordinates by
changing the 3D radial line element into the toroidal one and stating the tt–coefficient
of the metric to have a toroidal horizon. The resulting metric is

ds2
(S) =

(
sinh τ − 1

sinh τ + 1

)2

dt2 − ρ2
g

(sinh τ + 1)4

(cosh τ − cosσ)2

(
dσ2 + dτ 2 + sinh2 τdϕ2

)
], (11.30)

Such deformed Schwarzschild like toroidal metric is not an exact solution of the vacuum
Einstein equations, but at long radial distances it transform into usual Schwarzschild
solution with the 3D line element parametrized by toroidal coordinates.

For our further considerations we introduce two Classes (A and B) of 4D auxiliary
pseudo–Riemannian metrics, also given in toroidal coordinates, being some conformal
transforms of (11.30), like

ds2
(S) = ΩA,B (σ, τ) ds2

(A,B)

but which are not supposed to be solutions of the Einstein equations:

• Metric of Class A:

ds2
(A) = −dσ2 − dτ 2 + a(τ)dϕ2 + b(σ, τ)dt2], (11.31)

where

a(τ) = − sinh2 τ and b(σ, τ) = −(sinh τ − 1)2 (cosh τ − cosσ)2

ρ2
g (sinh τ + 1)6

,

which results in the metric (11.30) by multiplication on the conformal factor

ΩA (σ, τ) = ρ2
g

(sinh τ + 1)4

(cosh τ − cosσ)2 . (11.32)
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• Metric of Class B:

ds2
(B) = g(τ)

(
dσ2 + dτ 2

)
− dϕ2 + f(σ, τ)dt2, (11.33)

where

g(τ) = − sinh−2 τ and f(σ, τ) = ρ2
g

(
sinh2 τ − 1

cosh τ − cos σ

)2

,

which results in the metric (11.30) by multiplication on the conformal factor

ΩB (σ, τ) = ρ−2
g

(cosh τ − cosσ)2

(sinh τ + 1)2
.

We shall use the metrics (11.30), (11.31) and (11.33) in order to generate exact solu-
tions of the Einstein equations with toroidal horizons and anisotropic polarizations and
running of constants by performing corresponding anholonomic transforms as the solu-
tions will have a horizon parametrized by a torus hypersurface and gravitational (extra
dimensional, or nonlinear 4D) renormalizations of the constant ρg of the Schwarzschild
solution, ρg → ρg = ωρg, where the dependence of the function ω on some holonomic
or anholonomic coordinates will depend on the type of anisotropy. For some solutions
we shall treat ω as a factor modelling running of the gravitational constant, induced,
induced from extra dimension, in another cases we will consider ω as a nonlinear gravi-
tational polarization which models some anisotropic distributions of masses and matter
fields and/or anholonomic vacuum gravitational interactions.

11.3.2 Toroidal 5D metrics of Class A

In this subsection we consider four classes of 5D vacuum solutions which are related
to the metric of Class A (11.31) and to the toroidally deformed Schwarzschild metric
(11.30).

Let us parametrize the 5D coordinates as (x1 = χ, x2 = σ, x3 = τ, y4 = v, y5 = p) ,
where the solutions with the so–called ϕ–anisotropy will be constructed for (v = ϕ, p = t)
and the solutions with t–anisotropy will be stated for (v = t, p = ϕ) (in brief, we write
respectively, ϕ–solutions and t–solutions).

Class A of vacuum solutions with ansatz (11.2):

We take an off–diagonal metric ansatz of type (11.2) (equivalently, (11.1)) by repre-
senting

g1 = ±1, g2 = −1, g3 = −1, h4 = η4(σ, τ, v)h4(0)(σ, τ) and h5 = η5(σ, τ, v)h5(0)(σ, τ),
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where η4,5(σ, τ, v) are corresponding ”gravitational renormalizations” of the metric coef-
ficients h4,5(0)(σ, τ). For ϕ–solutions we state h4(0) = a(τ) and h5(0) = b(σ, τ) (inversely,
for t–solutions, h4(0) = b(σ, τ) and h5(0) = a(σ, τ)).

Next we consider a renormalized gravitational ’constant’ ρg = ωρg, were for ϕ–
solutions the receptivity ω = ω (σ, τ, v) is included in the gravitational polarization
η5 as η5 = [ω (σ, τ, ϕ)]−2 , or for t–solutions is included in η4, when η4 = [ω (σ, τ, t)]−2 .
We can construct an exact solution of the 5D vacuum Einstein equations if, for explicit
dependencies on anisotropic coordinate, the metric coefficients h4 and h5 are related by
the equation (11.23), which in its turn imposes a corresponding relation between η4 and
η5,

η4h4(0) = h2
(0)h5(0)

[(√
|η5|
)∗]2

, h2
(0) = const.

In result, we express the polarizations η4 and η5 via the value of receptivity ω,

η4 (χ, σ, τ, ϕ) = h2
(0)

b(σ, τ)

a(τ)

{[
ω−1 (χ, σ, τ, ϕ)

]∗}2
, η5 (χ, σ, τ, ϕ) = ω−2 (χ, σ, τ, ϕ) ,

(11.34)
for ϕ–solutions , and

η4 (χ, σ, τ, t) = ω−2 (χ, σ, τ, t) , η5 (χ, σ, τ, t) = h−2
(0)

b(σ, τ)

a(τ)

[∫
dtω−1 (χ, σ, τ, t)

]2

,

(11.35)
for t–solutions, where a(τ) and b(σ, τ) are those from (11.31).

For vacuum configurations, following (11.24), we put wi = 0. The next step is to
find the values of ni by introducing h4 = η4h4(0) and h5 = η5h5(0) into the formula
(11.25), which, for convenience, is expressed via general coefficients η4 and η5. After two
integrations on variable v, we obtain the exact solution

nk(σ, τ, v) = nk[1] (σ, τ) + nk[2] (σ, τ)

∫
[η4/(

√
|η5|)3]dv, η∗5 6= 0; (11.36)

= nk[1] (σ, τ) + nk[2] (σ, τ)

∫
η4dv, η∗5 = 0;

= nk[1] (σ, τ) + nk[2] (σ, τ)

∫
[1/(

√
|η5|)3]dv, η∗4 = 0,

with the functions nk[2] (σ, τ) are defined as to contain the values h2
(0), a(τ) and b(σ, τ).

By introducing the formulas (11.34) for ϕ–solutions (or (11.35) for t–solutions) and
fixing some boundary condition, in order to state the values of coefficients nk[1,2] (σ, τ) we
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can express the ansatz components nk (σ, τ, ϕ) as integrals of some functions of ω (σ, τ, ϕ)
and ∂ϕω (σ, τ, ϕ) (or, we can express the ansatz components nk (σ, τ, t) as integrals of
some functions of ω (σ, τ, t) and ∂tω (σ, τ, t)). We do not present an explicit form of
such formulas because they depend on the type of receptivity ω = ω (σ, τ, v) , which
must be defined experimentally, or from some quantum models of gravity in the quasi
classical limit. We preserved a general dependence on coordinates (σ, τ) which reflect the
fact that there is a freedom in fixing holonomic coordinates (for instance, on a toroidal
hypersurface and its extensions to 4D and 5D spacetimes). For simplicity, we write that
ni are some functionals of {σ, τ, ω (σ, τ, v) , ω∗ (σ, τ, v)}

ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, v) , ω∗ (σ, τ, v)}.

In conclusion, we constructed two exact solutions of the 5D vacuum Einstein equa-
tions, defined by the ansatz (11.2) with coordinates and coefficients stated by the data:

ϕ–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = a(τ), h5(0) = b(σ, τ), see (11.31);

h4 = η4(σ, τ, ϕ)h4(0), h5 = η5(σ, τ, ϕ)h5(0),

η4 = h2
(0)

b(σ, τ)

a(τ)

{[
ω−1 (χ, σ, τ, ϕ)

]∗}2
, η5 = ω−2 (χ, σ, τ, ϕ) ,

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, ϕ) , ω∗ (σ, τ, ϕ)}. (11.37)

and

t–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = t, y5 = p = ϕ), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = b(σ, τ), h5(0) = a(τ), see (11.31);

h4 = η4(σ, τ, t)h4(0), h5 = η5(σ, τ, t)h5(0),

η4 = ω−2 (χ, σ, τ, t) , η5 = h−2
(0)

b(σ, τ)

a(τ)

[∫
dt ω−1 (χ, σ, τ, t)

]2

,

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, t) , ω∗ (σ, τ, t)}. (11.38)

Both types of solutions have a horizon parametrized by torus hypersurface (as the
condition of vanishing of the ”time” metric coefficient states, i. e. when the function
b(σ, τ) = 0). These solutions are generically anholonomic (anisotropic) because in the
locally isotropic limit, when η4, η5, ω → 1 and ni → 0, they reduce to the coefficients
of the metric (11.31). The last one is not an exact solution of 4D vacuum Einstein
equations, but it is a conformal transform of the 4D Schwarzschild metric deformed to
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a torus horizon, with a further trivial extension to 5D. With respect to the anholonomic
frames adapted to the coefficients ni (see (11.6)), the obtained solutions have diagonal
metric coefficients being very similar to the metric (11.30) written in toroidal coordinates.
We can treat such solutions as black tori with the mass distributed linearly on the circle
which can not transformed in a point, in the center of torus.

The solutions are constructed as to have singularities on the mentioned circle. The
initial data for anholonomic frames and the chosen configuration of gravitational inter-
actions in the bulk lead to deformed toroidal horizons even for static configurations. The
solutions admit anisotropic polarizations on toroidal coordinates (σ, τ) and running of
constants on time t and/or on extra dimension coordinate χ. Such renormalizations of
constants are defined by the nonlinear configuration of the 5D vacuum gravitational field
and depend on introduced receptivity function ω (σ, τ, v) which is to be considered an in-
trinsic characteristics of the 5D vacuum gravitational ’ether’, emphasizing the possibility
of nonlinear self–polarization of gravitational fields.

Finally, we point that the data (11.37) and (11.38) parametrize two very different
classes of solutions. The first one is for static 5D vacuum black tori configurations with
explicit dependence on anholonomic coordinate ϕ and possible renormalizations on the
rest of 3D space coordinates σ and τ and on the 5th coordinate χ. The second class of
solutions is similar to the static ones but with an emphasized anholonomic running on
time of constants and with possible anisotropic dependencies on coordinates (σ, τ, χ).

Class A of vacuum solutions with ansatz (11.4):

We construct here 5D vacuum ϕ– and t–solutions parametrized by an ansatz with
conformal factor Ω(σ, τ, v) (see (11.4) and (11.9)). Let us consider conformal factors
parametrized as Ω = Ω[0](σ, τ)Ω[1](σ, τ, v). We can generate from the data (11.37) (or
(11.38)) an exact solution of vacuum Einstein equations if there are satisfied the condi-
tions (11.17), (11.18) and (11.19), i. e.

Ω
q1/q2
[0] Ω

q1/q2
[1] = η4h4(0),

for some integers q1 and q2, and there are defined the second anisotropy coefficients

ζi =
(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1].

So, taking a ϕ– or t–solution with corresponding values of h4 = η4h4(0), for some q1 and
q2, we obtain new exact solutions, called in brief, ϕc– or tc–solutions (with the index ”c”
pointing to an ansatz with conformal factor), of the vacuum 5D Einstein equations given
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in explicit form by the data:

ϕc–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = a(τ), h5(0) = b(σ, τ), see (11.31);

h4 = η4(σ, τ, ϕ)h4(0), h5 = η5(σ, τ, ϕ)h5(0),

η4 = h2
(0)

b(σ, τ)

a(τ)

{[
ω−1 (χ, σ, τ, ϕ)

]∗}2
, η5 = ω−2 (χ, σ, τ, ϕ) , (11.39)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, ϕ) , ω∗ (σ, τ, ϕ)},
ζi =

(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (σ, τ)Ω

q1/q2
[1] (σ, τ, ϕ), Ω = Ω[0](σ, τ)Ω[1](σ, τ, ϕ)

and

tc–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = t, y5 = p = ϕ), g1 = ±1,

g2 = −1, g3 = −1, h4(0) = b(σ, τ), h5(0) = a(τ), see (11.31);

h4 = η4(σ, τ, t)h4(0), h5 = η5(σ, τ, t)h5(0),

η4 = ω−2 (χ, σ, τ, t) , η5 = h−2
(0)

b(σ, τ)

a(τ)

[∫
dt ω−1 (χ, σ, τ, t)

]2

, (11.40)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, t) , ω∗ (σ, τ, t)},
ζi =

(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (σ, τ)Ω

q1/q2
[1] (σ, τ, t), Ω = Ω[0](σ, τ)Ω[1](σ, τ, t)

These solutions have two very interesting properties: 1) they admit a warped factor

on the 5th coordinate, like Ω
q1/q2
[1] ∼ exp[−k|χ|], which in our case is constructed for an

anisotropic 5D vacuum gravitational configuration and not following a brane configura-
tion like in Refs. [7]; 2) we can impose such conditions on the receptivity ω (σ, τ, v) as
to obtain in the locally isotropic limit just the toroidally deformed Schwarzschild metric
(11.30) trivially embedded into the 5D spacetime.

We analyze the second property in details. We have to chose the conformal factor as
to be satisfied three conditions:

Ω
q1/q2
[0] = ΩA,Ω

q1/q2
[1] η4 = 1,Ω

q1/q2
[1] η5 = 1, (11.41)

were ΩA is that from (11.32). The last two conditions are possible if

η
−q1/q2
4 η5 = 1, (11.42)
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which selects a specific form of receptivity ω (xi, v) . Putting into (11.42) the values
η4 and η5 respectively from (11.39), or (11.40), we obtain some differential, or integral,
relations of the unknown ω (σ, τ, v) , which results that

ω (σ, τ, ϕ) = (1− q1/q2)−1−q1/q2
[
h−1

(0)

√
|a/b|ϕ+ ω[0] (σ, τ)

]
, for ϕc–solutions;

ω (σ, τ, t) =
[
(q1/q2 − 1) h(0)

√
|a/b|t+ ω[1] (σ, τ)

]1−q1/q2
, for tc–solutions, (11.43)

for some arbitrary functions ω[0] (σ, τ) and ω[1] (σ, τ) . So, a receptivity of particular form
like (11.43) allow us to obtain in the locally isotropic limit just the toroidally deformed
Schwarzschild metric.

We conclude this subsection: the vacuum 5D metrics solving the Einstein equations
describe a nonlinear gravitational dynamics which under some particular boundary con-
ditions and parametrizations of metric’s coefficients can model anisotropic, topologically
not–trivial, solutions transforming, in a corresponding locally isotropic limit, in some
toroidal or ellipsoidal deformations of the well known exact solutions like Schwarzschild,
Reissner-Nördstrom, Taub NUT, various type of wormhole, solitonic and disk solutions
(see details in Refs. [1, 2, 3]). We emphasize that, in general, an anisotropic solution
(parametrized by an off–diagonal ansatz) could not have a locally isotropic limit to a
diagonal metric with respect to some holonomic coordinate frames. This was proved in
explicit form by choosing a configuration with toroidal symmetry.

11.3.3 Toroidal 5D metrics of Class B

In this subsection we construct and analyze another two classes of 5D vacuum solu-
tions which are related to the metric of Class B (11.33) and which can be reduced to the
toroidally deformed Schwarzschild metric (11.30) by corresponding parametrizations of
receptivity ω (σ, τ, v). We emphasize that because the function g(σ, τ) from (11.33) is not
a solution of equation(11.22) we introduce an auxiliary factor ̟ (σ, τ) for which ̟g be-
came a such solution, then we consider conformal factors parametrized as Ω = ̟−1(σ, τ)
Ω[2] (σ, τ, v) and find solutions parametrized by the ansatz (11.4) and anholonomic metric
interval (11.9).

Because the method of definition of such solutions is similar to that from previous
subsection, in our further considerations we shall omit computations and present directly
the data which select the respective configurations for ϕc–solutions and tc–solutions.

The Class B of 5D solutions with conformal factor are parametrized by the data:
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ϕc–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = g3 = ̟(σ, τ)g(σ, τ),

h4(0) = −̟(σ, τ), h5(0) = ̟(σ, τ)f(σ, τ), see (11.33);

̟ = g−1(σ, τ)̟0 exp[a2σ + a3τ ], ̟0, a2, a3 = const;

h4 = η4(σ, τ, ϕ)h4(0), h5 = η5(σ, τ, ϕ)h5(0),

η4 = −h2
(0)f(σ, τ)

{[
ω−1 (χ, σ, τ, ϕ)

]∗}2
, η5 = ω−2 (χ, σ, τ, ϕ) , (11.44)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, ϕ) , ω∗ (σ, τ, ϕ)},
ζi = ∂i ln |̟|)

(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2],

η4 = −̟−q1/q2(σ, τ)Ω
q1/q2
[2] (σ, τ, ϕ),Ω = ̟−1(σ, τ)Ω[2](σ, τ, ϕ)

and

tc–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = t, y5 = p = ϕ), g1 = ±1,

g2 = g3 = ̟(σ, τ)g(σ, τ),

h4(0) = ̟(σ, τ)f(σ, τ), h5(0) = −̟(σ, τ), see (11.33);

̟ = g−1(σ, τ)̟0 exp[a2σ + a3τ ], ̟0, a2, a3 = const,

h4 = η4(σ, τ, t)h4(0), h5 = η5(σ, τ, t)h5(0),

η4 = ω−2 (χ, σ, τ, t) , η5 = −h−2
(0)f(σ, τ)

[∫
dt ω−1 (χ, σ, τ, t)

]2

, (11.45)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, t) , ω∗ (σ, τ, t)},
ζi = ∂i(ln |̟|)

(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2],

η4 = −̟−q1/q2(σ, τ)Ω
q1/q2
[2] (σ, τ, t), Ω = ̟−1(σ, τ)Ω[2](σ, τ, t),

where the coefficients ni can be found explicitly by introducing the corresponding values
η4 and η5 in formula (11.36).

By a procedure similar to the solutions of Class A (see previous subsection) we
can find the conditions when the solutions (11.44) and (11.45) will have in the locally
anisotropic limit the toroidally deformed Schwarzschild solutions, which impose corre-
sponding parametrizations and dependencies on Ω[2](σ, τ, v) and ω (σ, τ, v) like (11.41)
and (11.43). We omit these formulas because, in general, for anholonomic configurations
and nonlinear solutions there are not hard arguments to prefer any holonomic limits of
such off–diagonal metrics.
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Finally, in this Section, we remark that for the considered classes of black tori solu-
tions the so–called t–components of metric contain modifications of the Schwarzschild
potential

Φ = − M

M2
P [4]r

into Φ = −Mω (σ, τ, v)

M2
P [4]r

,

where MP [4] is the usual 4D Plank constant, and this is given with respect to the corre-
sponding anholonomic frame of reference. The receptivity ω (σ, τ, v) could model correc-
tions warped on extra dimension coordinate, χ, which for our solutions are induced by
anholonomic vacuum gravitational interactions in the bulk and not from a brane config-
uration in AdS5 spacetime. In the vacuum case k is a constant which characterizes the
receptivity for bulk vacuum gravitational polarizations.

11.4 4D Black Tori

For the ansatz (11.2), with trivial conformal factor, a black torus solution of 4D
vacuum Einstein equations was constructed in Ref. [1]. The goal of this Section is to
consider some alternative variants, with trivial or nontrivial conformal factors and for
different coordinate parametrizations and types of anisotropies. The bulk of 5D solutions
from the previous Section are reduced into corresponding 4D ones if we eliminate the
5th coordinate χ from the the off–diagonal ansatz (11.2) and (11.4) and corresponding
formulas and solutions.

11.4.1 Toroidal 4D vacuum metrics of Class A

Let us parametrize the 4D coordinates as (xi, ya) = (x2 = σ, x3 = τ, y4 = v, y5 = p) ;
for the ϕ–solutions we shall take (v = ϕ, p = t) and for the solutions t–solutions will
consider (v = t, p = ϕ). For simplicity, we write down the data for solutions without
proofs and computations.

Class A of vacuum solutions with ansatz (11.2):

The off–diagonal metric ansatz of type (11.2) (equivalently, (11.5)) with the data



11.4. 4D BLACK TORI 399

ϕ–solutions : (x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t)

g2 = −1, g3 = −1, h4(0) = a(τ), h5(0) = b(σ, τ), see (11.31);

h4 = η4(σ, τ, ϕ)h4(0), h5 = η5(σ, τ, ϕ)h5(0),

η4 = h2
(0)

b(σ, τ)

a(τ)

{[
ω−1 (σ, τ, ϕ)

]∗}2
, η5 = ω−2 (σ, τ, ϕ) ,

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, ϕ) , ω∗ (σ, τ, ϕ)}. (11.46)

and

t–solutions : (x2 = σ, x3 = τ, y4 = v = t, y5 = p = ϕ)

g2 = −1, g3 = −1, h4(0) = b(σ, τ), h5(0) = a(τ), see (11.31);

h4 = η4(σ, τ, t)h4(0), h5 = η5(σ, τ, t)h5(0),

η4 = ω−2 (σ, τ, t) , η5 = h−2
(0)

b(σ, τ)

a(τ)

[∫
dt ω−1 (σ, τ, t)

]2

,

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, t) , ω∗ (σ, τ, t)}. (11.47)

where the ni are computed

nk (σ, τ, v) = nk[1] (σ, τ) + nk[2] (σ, τ)

∫
[η4/(

√
|η5|)3]dv, η∗5 6= 0; (11.48)

= nk[1] (σ, τ) + nk[2] (σ, τ)

∫
η4dv, η∗5 = 0;

= nk[1] (σ, τ) + nk[2] (σ, τ)

∫
[1/(

√
|η5|)3]dv, η∗4 = 0.

when the integration variable is taken v = ϕ, for (11.46), or v = t, for (11.47). These
solutions have the same toroidal symmetries and properties stated for their 5D analogs
(11.37) and for (11.38) with that difference that there are not any warped factors and ex-
tra dimension dependencies. Such solutions defined by the formulas (11.46) and (11.47)
do not result in a locally isotropic limit into an exact solution having diagonal coeffi-
cients with respect to some holonomic coordinate frames. The data introduced in this
subsection are for generic 4D vacuum solutions of the Einstein equations parametrized
by off–diagonal metrics. The renormalization of constants and metric coefficients have
a 4D nonlinear vacuum gravitational nature and reflects a corresponding anholonomic
dynamics.
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Class A of vacuum solutions with ansatz (11.4):

The 4D vacuum ϕ– and t–solutions parametrized by an ansatz with conformal factor
Ω(σ, τ, v) (see (11.4) and (11.9)). Let us consider conformal factors parametrized as
Ω = Ω[0](σ, τ)Ω[1](σ, τ, v). The data are

ϕc–solutions : (x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t)

g2 = −1, g3 = −1, h4(0) = a(τ), h5(0) = b(σ, τ), see (11.31);

h4 = η4(σ, τ, ϕ)h4(0), h5 = η5(σ, τ, ϕ)h5(0),Ω = Ω[0](σ, τ)Ω[1](σ, τ, ϕ),

η4 = h2
(0)

b(σ, τ)

a(τ)

{[
ω−1 (σ, τ, ϕ)

]∗}2
, η5 = ω−2 (σ, τ, ϕ) , (11.49)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, λ, ω (σ, τ, ϕ) , ω∗ (σ, τ, ϕ)},
ζi =

(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (σ, τ)Ω

q1/q2
[1] (σ, τ, ϕ).

and

tc–solutions : (x2 = σ, x3 = τ, y4 = v = t, y5 = p = ϕ)

g2 = −1, g3 = −1, h4(0) = b(σ, τ), h5(0) = a(τ), see (11.31);

h4 = η4(σ, τ, t)h4(0), h5 = η5(σ, τ, t)h5(0),Ω = Ω[0](σ, τ)Ω[1](σ, τ, t),

η4 = ω−2 (σ, τ, t) , η5 = h−2
(0)

b(σ, τ)

a(τ)

[∫
dt ω−1 (σ, τ, t)

]2

, (11.50)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, t) , ω∗ (σ, τ, t)},
ζi =

(
∂i ln |Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

η4a = Ω
q1/q2
[0] (σ, τ)Ω

q1/q2
[1] (σ, τ, t),

where the coefficients the ni are given by the same formulas (11.48).

Contrary to the solutions (11.46) and for (11.47) theirs conformal anholonomic trans-
forms, respectively, (11.49) and (11.50), can be subjected to such parametrizations of
the conformal factor and conditions on the receptivity ω (σ, τ, v) as to obtain in the lo-
cally isotropic limit just the toroidally deformed Schwarzschild metric (11.30). These

conditions are stated for Ω
q1/q2
[0] = ΩA, Ω

q1/q2
[1] η4 = 1, Ω

q1/q2
[1] η5 = 1,were ΩA is that from

(11.32), which is possible if η
−q1/q2
4 η5 = 1,which selects a specific form of the receptivity

ω. Putting the values η4 and η5, respectively, from (11.49), or (11.50), we obtain some
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differential, or integral, relations of the unknown ω (σ, τ, v) , which results that

ω (σ, τ, ϕ) = (1− q1/q2)−1−q1/q2
[
h−1

(0)

√
|a/b|ϕ+ ω[0] (σ, τ)

]
, for ϕc–solutions;

ω (σ, τ, t) =
[
(q1/q2 − 1) h(0)

√
|a/b|t+ ω[1] (σ, τ)

]1−q1/q2
, for tc–solutions,

for some arbitrary functions ω[0] (σ, τ) and ω[1] (σ, τ) . The formulas for ω (σ, τ, ϕ) and
ω (σ, τ, t) are 4D reductions of the formulas (11.41) and (11.43).

11.4.2 Toroidal 4D vacuum metrics of Class B

We construct another two classes of 4D vacuum solutions which are related to the
metric of Class B (11.33) and can be reduced to the toroidally deformed Schwarzshild
metric (11.30) by corresponding parametrizations of receptivity ω (σ, τ, v). The solu-
tions contain a 2D conformal factor ̟(σ, τ) for which ̟g becomes a solution of (11.22)
and a 4D conformal factor parametrized as Ω = ̟−1 Ω[2] (σ, τ, v) in order to set the
constructions into the ansatz (11.4) and anholonomic metric interval (11.9).

The data selecting the 4D configurations for ϕc–solutions and tc–solutions:

ϕc–solutions : (x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t)

g2 = g3 = ̟(σ, τ)g(σ, τ),

h4(0) = −̟(σ, τ), h5(0) = ̟(σ, τ)f(σ, τ), see (11.33);

̟ = g−1̟0 exp[a2σ + a3τ ], ̟0, a2, a3 = const;

h4 = η4(σ, τ, ϕ)h4(0), h5 = η5(σ, τ, ϕ)h5(0),Ω = ̟−1(σ, τ)Ω[2](σ, τ, ϕ)

η4 = −h2
(0)f(σ, τ)

{[
ω−1 (σ, τ, ϕ)

]∗}2
, η5 = ω−2 (σ, τ, ϕ) , (11.51)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, ϕ) , ω∗ (σ, τ, ϕ)},
ζi = ∂i ln |̟|)

(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2],

η4 = −̟−q1/q2(σ, τ)Ω
q1/q2
[2] (σ, τ, ϕ)

and
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tc–solutions : (x2 = σ, x3 = τ, y4 = v = t, y5 = p = ϕ)

g2 = g3 = ̟(σ, τ)g(σ, τ),

h4(0) = ̟(σ, τ)f(σ, τ), h5(0) = −̟(σ, τ), see (11.33);

̟ = g−1̟0 exp[a2σ + a3τ ], ̟0, a2, a3 = const,

h4 = η4(σ, τ, t)h4(0), h5 = η5(σ, τ, t)h5(0),Ω = ̟−1(σ, τ)Ω[2](σ, τ, t)

η4 = ω−2 (σ, τ, t) , η5 = −h−2
(0)f(σ, τ)

[∫
dt ω−1 (σ, τ, t)

]2

, (11.52)

wi = 0, ni{σ, τ, ω, ω∗} = ni{σ, τ, ω (σ, τ, t) , ω∗ (σ, τ, t)},
ζi = ∂i(ln |̟|)

(
ln |Ω[2]|

)∗
+
(
Ω∗

[2]

)−1
∂iΩ[2],

η4 = −̟−q1/q2(σ, τ)Ω
q1/q2
[2] (σ, τ, t).

where the coefficients ni can be found explicitly by introducing the corresponding values
η4 and η5 in formula (11.36).

For the 4D Class B solutions, some conditions can be imposed (see previous sub-
section) when the solutions (11.51) and (11.52) have in the locally anisotropic limit the
toroidally deformed Schwarzschild solution, which imposes some specific parametriza-
tions and dependencies on Ω[2](σ, τ, v) and ω (σ, τ, v) like (11.41) and (11.43). We omit
these considerations because for anholonomic configurations and nonlinear solutions
there are not arguments to prefer any holonomic limits of such off–diagonal metrics.

We conclude this Section by noting that for the constructed classes of 4D black tori
solutions the so–called t–component of metric contains modifications of the Schwarzschild
potential

Φ = − M

M2
P [4]r

into Φ = −Mω (σ, τ, v)

M2
P [4]r

,

where MP [4] is the usual 4D Plank constant; the metric coefficients are given with respect
to the corresponding anholonomic frame of reference. In 4D anholonomic gravity the
receptivity ω (σ, τ, v) is considered to renormalize the mass constant. Such gravitational
self-polarizations are induced by anholonomic vacuum gravitational interactions. They
should be defined experimentally or computed following a model of quantum gravity.

11.5 The Cosmological Constant and Anisotropy

In this Section we analyze the general properties of anholonomic Einstein equations
in 5D and 4D gravity with cosmological constant and consider two examples of 5D and
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4D exact solutions.

A non–vanishing Λ term in the system of Einstein’s equations results in substantial
differences because t β 6= 0 and, in this case, one could be wi 6= 0; The equations (11.22)
and (11.23) are of more general nonlinearity because of presence of the 2Λg2g3 and 2Λh4h5

terms. In this case, the solutions with g2 = const and g3 = const (and h4 = const and
h5 = const) are not admitted. This makes more sophisticate the procedure of definition
of g2 for a stated g3 (or inversely, of definition of g3 for a stated g2) from (11.22) [similarly
of constructing h4 for a given h5 from (11.23) and inversely], nevertheless, the separation
of variables is not affected by introduction of cosmological constant and there is a number
of possibilities to generate exact solutions.

The general properties of solutions of the system (11.22)–(11.26), with cosmological
constant Λ, are stated in the form:

• The general solution of equation (11.22) is to be found from the equation

̟̟•• − (̟•)2 +̟̟
′′ − (̟

′

)2 = 2Λ̟3. (11.53)

for a coordinate transform coordinate transforms x2,3 → x̃2,3 (u, λ) for which

g2(σ, τ)(dσ)2 + g3(σ, τ)(dτ)
2 → ̟

[
(dx̃2)2 + ǫ(dx̃3)2

]
, ǫ = ±1

and ̟• = ∂̟/∂x̃2 and ̟
′

= ∂̟/∂x̃3.

• The equation (11.23) relates two functions h4 (σ, τ, v) and h5 (σ, τ, v) with h∗5 6= 0.
If the function h5 is given we can find h4 as a solution of

h∗4 +
2Λ

π
(h4)

2 + 2

(
π∗

π
− π

)
h4 = 0, (11.54)

where π = h∗5/2h5.

• The exact solutions of (11.24) for β 6= 0 is

wk = −αk/β, (11.55)

= ∂k ln[
√
|h4h5|/|h∗5|]/∂v ln[

√
|h4h5|/|h∗5|],

for ∂v = ∂/∂v and h∗5 6= 0.
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• The exact solution of (11.25) is

nk = nk[1] (σ, τ) + nk[2] (σ, τ)

∫
[h4/(

√
|h5|)3]dv, (11.56)

= nk[1] (σ, τ) + nk[2] (σ, τ)

∫
[1/(

√
|h5|)3]dv, h∗4 = 0,

for some functions nk[1,2] (σ, τ) stated by boundary conditions.

• The exact solution of (11.26) is given by

ζi = −wi + (Ω∗)−1∂iΩ, Ω∗ 6= 0, (11.57)

We note that by a corresponding re–parametrizations of the conformal factor
Ω (σ, τ, v) we can reduce (11.53) to

̟̟•• − (̟•)2 = 2Λ̟3 (11.58)

which gives and exact solution ̟ = ̟ (x̃2) found from

(̟•)2 = ̟3
(
C̟−1 + 4Λ

)
, C = const,

(or, inversely, to reduce to

̟̟
′′ − (̟

′

)2 = 2Λ̟3

with exact solution ̟ = ̟ (x̃3) found from

(̟′)2 = ̟3
(
C̟−1 + 4Λ

)
, C = const).

The inverse problem of definition of h5 for a given h4 can be solved in explicit form when
h∗4 = 0, h4 = h4(0)(σ, τ). In this case we have to solve

h∗∗5 +
(h∗5)

2

2h5

− 2Λh4(0)h5 = 0, (11.59)

which admits exact solutions by reduction to a Bernulli equation.
The outlined properties of solutions with cosmological constant hold also for 4D

anholonomic spacetimes with ”isotropic” cosmological constant Λ. To transfer general
solutions from 5D to 4D we have to eliminate dependencies on the coordinate x1 and to
consider the 4D ansatz without g11 term.
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11.5.1 A 5D anisotropic black torus solution with cosmological

constant

We give an example of generalization of ansiotropic black hole solutions of Class A
, constructed in the Section III as they will contain the cosmological constant Λ; we
extend the solutions given by the data (11.39).

Our new 5D ϕ– solution is parametrized by an ansatz with conformal factor Ω(xi, v)
(see (11.4) and (11.9)) as Ω = ̟−1(σ)Ω[0](σ, τ)Ω[1](σ, τ, v). The factor ̟(σ, τ) is chosen
as to be a solution of (11.58). This conformal data must satisfy the condition (11.18), i.
e.

̟−q1/q2Ω
q1/q2
[0] Ω

q1/q2
[1] = η4̟h4(0)

for some integers q1 and q2, where η4 is found as h4 = η4̟h4(0) satisfies the equation
(11.54) and Ω[0](σ, τ) could be chosen as to obtain in the locally isotropic limit and Λ→ 0
the toroidally deformed Schwarzschild metric (11.30). Choosing h5 = η5̟h5(0), η5h5(0) is
for the ansatz for (11.39), for which we compute the value π = h∗5/2h5, we obtain from
(11.54) an equation for η4,

η∗4 +
2Λ

π
̟h4(0)(η4)

2 + 2

(
π∗

π
− π

)
η4 = 0

which is a Bernulli equation [11] and admit an exact solution, in general, in non explicit

form, η4 = η
[bern]
4 (σ, τ, v,Λ, ̟, ω, a, b), were we emphasize the functional dependencies on

functions ̟,ω, a, b and cosmological constant Λ. Having defined η4[bern], η5 and ̟, we
can compute the αi–, β−, and γ–coefficients, expressed as

αi = α
[bern]
i (σ, τ, v,Λ, ̟, ω, a, b), β = β [bern](σ, τ, v,Λ, ̟, ω, a, b)

and γ = γ[bern](σ, τ, v,Λ, ̟, ω, a, b), following the formulas (11.16).
The next step is to find

wi = w
[bern]
i (σ, τ, v,Λ, ̟, ω, a, b) and ni = n

[bern]
i (σ, τ, v,Λ, ̟, ω, a, b)

as for the general solutions (11.55) and (11.56).
At the final step we are able to compute the the second anisotropy coefficients

ζi = −w[bern]
i + (∂i ln |̟−1Ω[0]|)

(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1],

which depends on an arbitrary function Ω[0](σ, τ). If we state Ω[0](σ, τ) = ΩA, as for ΩA

from (11.33), see similar details with respect to formulas (11.41), (11.42) and (11.43).
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The data for the exact solutions with cosmological constant for v = ϕ can be stated
in the form

ϕc–solutions : (x1 = χ, x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t), g1 = ±1,

g2 = ̟(σ), g3 = ̟(σ),

h4(0) = a(τ), h5(0) = b(σ, τ), see (11.31) and (11.58);

h4 = η4(σ, τ, ϕ)̟(σ)h4(0), h5 = η5(σ, τ, ϕ)̟(σ)h5(0),

η4 = η
[bern]
4 (σ, τ, v,Λ, ̟, ω, a, b), η5 = ω−2 (χ, σ, τ, ϕ) , (11.60)

wi = w
[bern]
i (σ, τ, v,Λ, ̟, ω, a, b),

ni = n
[bern]
i (σ, τ, v,Λ, ̟, ω, a, b),

Ω = ̟−1(σ)Ω[0](σ, τ)Ω[1](σ, τ, ϕ), η4a = Ω
q1/q2
[0] (σ, τ)Ω

q1/q2
[1] (σ, τ, ϕ).

ζi = −w[bern]
i +

(
∂i ln |̟−1Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1].

We note that a solution with v = t can be constructed as to generalize (11.40) to
the presence of Λ. We can not present such data in explicit form because in this case we
have to define η5 by solving a solution like (11.23) for h5, for a given h4, which can not
be integrated in explicit form.

The solution (11.60) preserves the two interesting properties of (11.39): 1) it admits

a warped factor on the 5th coordinate, like Ω
q1/q2
[1] ∼ exp[−k|χ|], which in this case is

constructed for an anisotropic 5D vacuum gravitational configuration with anisotropic
cosmological constant but not following a brane configuration like in Refs. [7]; 2) we can
impose such conditions on the receptivity ω (σ, τ, ϕ) as to obtain in the locally isotropic
limit just the toroidally deformed Schwarzschild metric (11.30) trivially embedded into
the 5D spacetime.

11.5.2 A 4D anisotropic black torus solution with cosmological

constant

The simplest way to construct a such solution is to take the data (11.60), for v = ϕ,
to eliminate the variable χ and to reduce the 5D indices to 4D ones. We obtain the 4D
data:
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ϕc–solutions : (x2 = σ, x3 = τ, y4 = v = ϕ, y5 = p = t),

g2 = ̟(σ), g3 = ̟(σ),

h4(0) = a(τ), h5(0) = b(σ, τ), see (11.31) and (11.58);

h4 = η4(σ, τ, ϕ)̟(σ)h4(0), h5 = η5(σ, τ, ϕ)̟(σ)h5(0),

η4 = η
[bern]
4 (σ, τ, v,Λ, ̟, ω, a, b), η5 = ω−2 (σ, τ, ϕ) , (11.61)

wi = w
[bern]
i (σ, τ, v,Λ, ̟, ω, a, b),

ni = n
[bern]
i (σ, τ, v,Λ, ̟, ω, a, b),

Ω = ̟−1(σ)Ω[0](σ, τ)Ω[1](σ, τ, ϕ), η4a = Ω
q1/q2
[0] (σ, τ)Ω

q1/q2
[1] (σ, τ, ϕ),

ζi = −w[bern]
i +

(
∂i ln |̟−1Ω[0]

)
|)
(
ln |Ω[1]|

)∗
+
(
Ω∗

[1]

)−1
∂iΩ[1].

The solution (11.61) describes a static black torus solution in 4D gravity with cosmolog-
ical constant, Λ. The parameters of solutions depends on the Λ as well are renormalized
by nonlinear anholonomic gravitational interactions. We can consider that the mass as-
sociated to such toroidal configuration can be anisotropically distributed in the interior
of the torus and gravitationally polarized.

Finally, we note that in a similar manner like in the Sections III and IV we can
construct another classes of anisotropic black holes solutions in 5D and 4D spacetimes
with cosmological constants, being of Class A or Class B, with anisotropic ϕ–coordinate,
or anisotropic t–coordinate. We omit the explicit data which are some nonlinear anholo-
nomic generalizations of those solutions.

11.6 Conclusions and Discussion

We have shown that static black tori solutions can be constructed both in vacuum Ein-
stein and five dimensional (5D) gravity. The solutions are parametrized by off–diagonal
metric ansatz which can diagonalized with respect to corresponding anholonomic frames
with mixtures of holonomic and anholonomic variables. Such metrics contain a toroidal
horizon being some deformations with non-trivial topology of the Schwarzschild black
hole solution.

The solutions were constructed by using the anholonomic frame method [1, 2, 3]
which results in a very substantial simplification of the Einstein equations which admit
general integrals for solutions.

The constructed black tori metrics depend on classes of two dimensional and three
dimensional functions which reflect the freedom in definition of toroidal coordinates as
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well the possibility to state by boundary conditions various configurations with running
constants, anisotropic gravitational polarizations and (in presence of extra dimensions)
with warping geometries. The new toroidal solutions can be extended for spacetimes
with cosmological constant.

In view of existence of such solutions, the old problem of the status of frames in
gravity theories rises once again, now in the context of ”effective” diagonalization of off–
diagonal metrics by using anholonomic transforms. The bulk of solutions with spherical,
cylindrical and plane symmetries were constructed in gravitational theories of diverse
dimensions by using diagonal metrics (sometimes with off–diagonal terms) given with
respect to ”pure” coordinate frames. Such solutions can be equivalently re–defined with
respect to arbitrary frames of reference and usually the problem of fixing some reference
bases in order to state the boundary conditions is an important physical problem but not
a dynamical one. This problem becomes more sophisticate when we deal with generic
off–diagonal metrics and anholonomic frames. In this case some ’dynamical, compo-
nents of metrics can be transformed into ”non–dynamical” components of frame bases,
which, following a more rigorous mathematical approach, reflects a constrained nonlin-
ear dynamics for gravitational and matter fields with both holonomic (unconstrained)
and anholonomic (constrained) variables. In result there are more possibilities in defi-
nition of classes of exact solutions with non–trivial topology, anisotropies and nonlinear
interactions.

The solutions obtained in this paper contain as particular cases (for corresponding
parametrizations of considered ansatz) the ’black ring’ metrics with event horizon of
topology S1 × S2 analyzed in Refs. [12]. In our case we emphasized the presence of
off–diagonal terms which results in warping, anisotropy and running of constants. Here
it should be noted that the generic nonlinear character of the Einstein equations written
with respect to anholonomic frames connected with diagonalization of off–diagonal met-
rics allow us to construct different classes of exact 5D and 4D solutions with the same
or different topology; such solutions can define very different vacuum gravitational and
gravitational–matter field configurations.

The method and results presented in this paper provide a prescription on anholonomic
transforming of some known locally isotropic solutions from a gravity/string theory into
corresponding classes of anisoropic solutions of the same, or of an extended theory:

A vacuum, or non-vacuum, solution, and metrics conformally equivalent to a known
solution, parametrized by a diagonal matrix given with respect to a holonomic (coordi-
nate) base, contained as a trivial form of ansatz (11.2), or (11.4), can be transformed into
a metric with non-trivial topological horizons and then generalized to be an anisotropic
solution with similar but anisotropically renormalized physical constants and diagonal
metric coefficients, given with respect to adapted anholonomic frames; the new anholo-
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nomic metric defines an exact solution of a simplified form of the Einstein equations
(11.22)–(11.26) and (11.19); such types of solutions are parametrized by off–diagonal
metrics if they are re–defined with respect to usual coordinate frames.

We emphasize that the anholonomic frame method and constructed black tori so-
lutions conclude in a general formalism of generating exact solutions with off–diagonal
metrics in gravity theories and may have a number of applications in modern astrophysics
and string/M–theory gravity.
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Chapter 12

Ellipsoidal Black Hole – Black Tori
Systems in 4D Gravity

Abstract 1

We construct new classes of exact solutions of the 4D vacuum Einstein equations
which describe ellipsoidal black holes, black tori and combined black hole – black tori
configurations. The solutions can be static or with anisotropic polarizations and running
constants. They are defined by off–diagonal metric ansatz which may be diagonalized
with respect to anholonomic moving frames. We examine physical properties of such
anholonomic gravitational configurations and discuss why the anholonomy may remove
the restriction that horizons must be with spherical topology.

12.1 Introduction

Torus configurations of matter around black hole – neutron star objects are inten-
sively investigated in modern astrophysics [1]. One considers that such tori may radiate
gravitational radiation powered by the spin energy of the black hole in the presence of
non–axisymmetries; long gamma–ray bursts from rapidly spinning black hole–torus sys-
tems may represent hypernovae or black hole–neutron star coalescence. Thus the topic
of constructing of exact vacuum and non–vacuum solutions with non–trivial topology in
the framework of general relativity and extra dimension gravitational theories becomes
of special importance and interest.

In the early 1990s, new solutions with non–spherical black hole horizons (black tori)
were found [2] for different states of matter and for locally anti-de Sitter space times; for

1 c© S. Vacaru, Ellipsoidal Black Hole – Black Tori Systems in 4D Gravity, hep-th/0111166
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a recent review, see [3]. Static ellipsoidal black hole, black tori, anisotropic wormhole
and Taub NUT metrics and solitonic solutions of the vacuum and non–vacuum Einstein
equations were constructed in Refs. [4, 5]. Non–trivial topology configurations (for
instance, black rings) are intensively studied in extra dimension gravity [6, 7, 8].

For four dimensional gravity (4D), it is considered that a number of classical theorems
[9] impose that a stationary, asymptotically flat, vacuum black hole solution is completely
characterized by its mass and spin and event horizons of non–spherical topology are
forbidden [10]; see [11] for further discussion of this issue.

Nevertheless, there were constructed various classes of exact solutions in 4D and 5D
gravity with non–trivial topology, anisotropies, solitonic configurations, running con-
stants and warped factors, under certain conditions defining static configurations in 4D
vacuum gravity. Such metrics were parametrized by off–diagonal ansazt (for coordinate
frames) which can be effectively diagonalized with respect to certain anholonomic frames
with mixtures of holonomic and anholonomic variables. The system of vacuum Einstein
equations for such ansatz becomes exactly integrable and describe a new ”anholonomic
nonlinear dynamics” of vacuum gravitational fields, which posses generic local anisotropy.
The new classes of solutions may have locally isotropic limits, or can be associated to
metric coefficients of some well known, for instance, black hole, cylindrical, or wormhole
soutions.

There is one important question if such anholonomic (anisotropic) solutions can exist
only in extra dimension gravity, with some specific effective reductions to lower dimen-
sions, or the anholonomic transforms generate a new class of solutions even in general rel-
ativity theory which might be not restricted by the conditions of Israel–Carter–Robinson
uniqueness and Hawking cosmic cenzorship theorems [9, 10]?

In the present paper, we explore possible 4D ellipsoidal black hole – black torus
systems which are defined by generic off–diagonal matrices and describe anholonomic
vacuum gravitational configurations. We present a new class of exact solutions of 4D
vacuum Einstein equations which can be associated to some exact solutions with el-
lipsoidal/toroidal horizons and signularities, and theirs superpositions, being of static
configuration, or, in general, with nonlinear gravitational polarization and running con-
stants. We also discuss implications of these anisotropic solutions to gravity theories and
ponder possible ways to solve the problem with topologically non–trivial and deformed
horizons.

The organization of this paper is as follows: In Sec. II, we consider ellipsoidal and
torus deformations and anistoropic conformal transforms of the Schwarzschild metric.
We introduce an off–diagonal ansatz which can be diagonalized by anholonomic trans-
forms and compute the non–trivial components of the vacuum Einstein equations in
Sec. III. In Sec. IV, we construct and analyze three types of exact static solutions with
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ellisoidal–torus horizons. Sec. V is devoted to generalization of such solutions for con-
figurations with running constants and anisotropic polarizations. The conclusion and
discussion are presented in Sec. VI.

12.2 Ellipsoidal/Torus Deformations of Metrics

In this Section we analyze anholonomic transforms with ellipsoidal/torus deforma-
tions of the Schwarzschild solution to some off–diagonal metrics. We define the conditions
when the new ’deformed’ metrics are exact solutions of vacuum Einstein equations.

The Schwarzschild solution may be written in isotropic spherical coordinates (ρ, θ, ϕ)
[12]

dS2 = −ρ2
g

(
ρ̂+ 1

ρ̂

)4 (
dρ̂2 + ρ̂2dθ2 + ρ̂2 sin2 θdϕ2

)
(12.1)

+

(
ρ̂− 1

ρ̂+ 1

)2

dt2,

where the isotropic radial coordinate ρ is related with the usual radial coordinate r via
the relation r = ρ (1 + rg/4ρ)

2 for rg = 2G[4]m0/c
2 being the 4D gravitational radius of

a point particle of mass m0, G[4] = 1/M2
P [4] is the 4D Newton constant expressed via

Plank mass MP [4]. In our further considerations, we put the light speed constant c = 1
and re–scale the isotropic radial coordinate as ρ̂ = ρ/ρg, with ρg = rg/4. The metric
(12.1) is a vacuum static solution of 4D Einstein equations with spherical symmetry
describing the gravitational field of a point particle of mass m0. It has a singularity for
r = 0 and a spherical horizon for r = rg, or, in re–scaled isotropic coordinates, for ρ̂ = 1.
We emphasize that this solution is parametrized by a diagonal metric given with respect
to holonomic coordinate frames.

We may introduce a new ’exponential’ radial coordinate ς = ln ρ̂ and write the
Schwarzschild metric as

ds2 = −ρ2
gb (ς)

(
dς2 + dθ2 + sin2 θdϕ2

)
+ a (ς) dt2, (12.2)

a (ς) =

(
exp ς − 1

exp ς + 1

)2

, b (ς) =
(exp ς + 1)4

(exp ς)2
. (12.3)

The condition of vanishing of coefficient a (ς) , exp ς = 1, defines the horizon 3D spherical
hypersurface

ς = ς
[
ρ̂
(√

x2 + y2 + z2
)]
,
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where x, y and z are usual Cartezian coordinates.
The 3D spherical line element

ds2
(3) = dς2 + dθ2 + sin2 θdϕ2,

may be written in arbitrary ellipsoidal, or toroidal, coordinates which transforms the
spherical horizon equation into very sophisticate relations (with respect to new coordi-
nates).

Our idea is to deform (renormalize) the coefficients (12.3), a (ς) → A (ς, θ) and
b (ς) → B (ς, θ) , as they would define a rotation ellipsoid and/or a toroidal horizon
and symmetry (for simplicity, we shall consider the elongated ellipsoid configuration; the
flattened ellipsoids may be analyzed in a similar manner). But such a diagonal metric
with respect to ellipsoidal, or toroidal, local coordinate frame does not solve the vacuum
Einstein equations. In order to generate a new vacuum solution we have to ”elongate”
the differentials dϕ and dt, i. e. to introduce some ”anholonomic transforms” (see details
in [7]), like

dϕ → δϕ+ wς (ς, θ, v) dς + wθ (ς, θ, v) dθ,

dt → δt+ nς (ς, θ, v) dς + nθ (ς, θ, v) dθ,

for v = ϕ (static configuration), or v = t (running in time configuration) and find the
conditions when w- and n–coefficients and the renormalized metric coefficients define off–
diagonal metrics solving the Einstein equations and possessing some ellipsoidal and/or
toroidal horizons and symmetries.

We shall define the 3D space ellipsoid – toroidal configuration in this manner: in the
center of Cartezian coordinates we put an rotation ellipsoid elongated along axis z (its

intersection by the xy–coordinate plane describes a circle of radius ρ
[e]
g =

√
x2 + y2 ∼

ρg); the ellipsoid is surrounded by a torus with the same z axis of symmetry, when
−z0 ≤ z ≤ z0, and the intersections of the torus with the xy–coordinate plane describe
two circles of radia ρ

[t]
g −z0 =

√
x2 + y2 and ρ

[t]
g + z0 =

√
x2 + y2; the parameters ρ

[e]
g , ρ

[t]
g

and z0 are chosen as to define not intersecting toroidal and ellipsoidal horizons, i. e. the
conditions

ρ[t]
g − z0 > ρ[e]

g > 0 (12.4)

are imposed.

12.2.1 Ellipsoidal Configurations

We shall consider the rotation ellipsoid coordinates [13] (u, λ, ϕ) with 0 ≤ u <∞, 0 ≤
λ ≤ π, 0 ≤ ϕ ≤ 2π, where σ = cosh u ≥ 1, are related with the isotropic 3D Cartezian



12.2. ELLIPSOIDAL/TORUS DEFORMATIONS OF METRICS 417

coordinates (x, y, z) as

(x = ρ̃ sinh u sinλ cosϕ, (12.5)

y = ρ̃ sinh u sinλ sinϕ, z = ρ̃ cosh u cosλ)

and define an elongated rotation ellipsoid hypersurface

(
x2 + y2

)
/(σ2 − 1) + z̃2/σ2 = ρ̃2. (12.6)

with σ = cosh u. The 3D metric on a such hypersurface is

dS2
(3D) = guudu

2 + gλλdλ
2 + gϕϕdϕ

2,

where

guu = gλλ = ρ̃2
(
sinh2 u+ sin2 λ

)
,

gϕϕ = ρ̃2 sinh2 u sin2 λ.

We can relate the rotation ellipsoid coordinates
(u, λ, ϕ) from (12.5) with the isotropic radial coordinates (ρ̂, θ, ϕ), scaled by the constant
ρg, from (12.1), equivalently with coordinates (ς, θ, ϕ) from (12.2), as

ρ̃ = 1, cosh u = ρ̂ = exp ς

and deform the Schwarzschild metric by introducing ellipsoidal coordinates and a new
horizon defined by the condition that vanishing of the metric coefficient before dt2 de-
scribe an elongated rotation ellipsoid hypersurface (12.6),

ds2
E = −ρ2

g

(
cosh u+ 1

cosh u

)4

(sinh2 u+ sin2 λ) (12.7)

×[du2 + dλ2 +
sinh2 u sin2 λ

sinh2 u+ sin2 λ
dϕ2]

+

(
cosh u− 1

cosh u+ 1

)2

dt2.

The ellipsoidaly deformed metric (12.7) does not satisfy the vacuum Einstein equations,
but at long distances from the horizon it transforms into the usual Schwarzschild solution
(12.1).
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We introduce two Classes (A and B) of 4D auxiliary pseudo–Riemannian metrics,
also given in ellipsoid coordinates, being some conformal transforms of (12.7), like

ds2
E = ΩA(B)E (u, λ) ds2

A(B)E

which also are not supposed to be solutions of the Einstein equations:
Metric of Class A:

ds2
(AE) = −du2 − dλ2 + aE(u, λ)dϕ2 + bE(u, λ)dt2], (12.8)

where

aE(u, λ) = − sinh2 u sin2 λ

sinh2 u+ sin2 λ
, (12.9)

bE(u, λ) =
(cosh u− 1)2 cosh4 u

ρ2
g(cosh u+ 1)6(sinh2 u+ sin2 λ)

,

which results in the metric (12.7) by multiplication on the conformal factor

ΩAE (u, λ) = ρ2
g

(cosh u+ 1)4

cosh4 u
(sinh2 u+ sin2 λ). (12.10)

Metric of Class B:

ds2
BE = gE(u, λ)

(
du2 + dλ2

)
− dϕ2 + fE(u, λ)dt2, (12.11)

where

gE(u, λ) = −sinh2 u+ sin2 λ

sinh2 u sin2 λ
,

fE(u, λ) =
(cosh u− 1)2 cosh4 u

ρ2
g(cosh u+ 1)6 sinh2 u sin2 λ

, (12.12)

which results in the metric (12.7) by multiplication on the conformal factor

ΩBE (u, λ) = ρ2
g

(cosh u+ 1)4

cosh4 u
sinh2 u sin2 λ.

In Ref. [7] we proved that there are anholonomic transforms of the metrics (12.7),
(12.8) and (12.11) which results in exact ellipsoidal black hole solutions of the vacuum
Einstein equations.



12.2. ELLIPSOIDAL/TORUS DEFORMATIONS OF METRICS 419

12.2.2 Toroidal Configurations

Fixing a scale parameter ρ
[t]
g which satisfies the conditions (12.4) we define the

toroidal coordinates (σ, τ, ϕ) (we emphasize that in in this paper we use different let-
ters for ellipsoidal and toroidal coordinates introduced in Ref. [13]). These coordinates
run the values −π ≤ σ < π, 0 ≤ τ ≤ ∞, 0 ≤ ϕ < 2π. They are related with the isotropic
3D Cartezian coordinates via transforms

x̃ =
ρ̃ sinh τ

cosh τ − cosσ
cosϕ, (12.13)

ỹ =
ρ̃ sinh τ

cosh τ − cosσ
sinϕ, z̃ =

ρ̃ sinh σ

cosh τ − cos σ

and define a toroidal hypersurface
(√

x̃2 + ỹ2 − ρ̃cosh τ

sinh τ

)2

+ z̃2 =
ρ̃2

sinh2 τ
.

The 3D metric on a such toroidal hypersurface is

ds2
(3D) = gσσdσ

2 + gττdτ
2 + gϕϕdϕ

2,

where

gσσ = gττ =
ρ̃2

(cosh τ − cos σ)2
,

gϕϕ =
ρ̃2 sinh2 τ

(cosh τ − cosσ)2 .

We can relate the toroidal coordinates (σ, τ, ϕ) from (12.13) with the isotropic radial

coordinates
(
ρ̂[t], θ, ϕ

)
, scaled by the constant ρ

[t]
g , as

ρ̃ = 1, sinh−1 τ = ρ̂[t]

and transform the Schwarzschild solution into a new metric with toroidal coordinates by
changing the 3D radial line element into the toroidal one and stating the tt–coefficient
of the metric to have a toroidal horizon. The resulting metric is

ds2
T = −

(
ρ[t]
g

)2 (sinh τ + 1)4

(cosh τ − cos σ)2 × (12.14)

(
dσ2 + dτ 2 + sinh2 τdϕ2

)
+

(
sinh τ − 1

sinh τ + 1

)2

dt2,
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Such a deformed Schwarzschild like toroidal metric is not an exact solution of the vacuum
Einstein equations, but at long radial distances it transforms into the usual Schwarzschild
solution with effective horizon ρ

[t]
g with the 3D line element parametrized by toroidal

coordinates.
We introduce two Classes (A and B) of 4D auxiliary pseudo–Riemannian metrics,

also given in toroidal coordinates, being some conformal transforms of (12.14), like

ds2
T = ΩA(B)T (σ, τ) ds2

A(B)T

but which are not supposed to be solutions of the Einstein equations:
Metric of Class A:

ds2
AT = −dσ2 − dτ 2 + aT (τ)dϕ2 + bT (σ, τ)dt2, (12.15)

where

aT (τ) = − sinh2 τ,

bT (σ, τ) =
(sinh τ − 1)2 (cosh τ − cosσ)2

ρ
[t]2
g (sinh τ + 1)6

, (12.16)

which results in the metric (12.14) by multiplication on the conformal factor

ΩAT (σ, τ) = ρ[t]2
g

(sinh τ + 1)4

(cosh τ − cosσ)2 . (12.17)

Metric of Class B:

ds2
BT = gT (τ)

(
dσ2 + dτ 2

)
− dϕ2 + fT (σ, τ)dt2, (12.18)

where

gT (τ) = − sinh−2 τ,

fT (σ, τ) = ρ[t]2
g

(
sinh2 τ − 1

cosh τ − cos σ

)2

,

which results in the metric (12.14) by multiplication on the conformal factor

ΩBT (σ, τ) =
(
ρ[t]
g

)−2 (cosh τ − cos σ)2

(sinh τ + 1)2 . (12.19)

In Ref. [8] we used the metrics (12.14), (12.15) and (12.18) in order to generate exact
solutions of the Einstein equations with toroidal horizons and anisotropic polarizations
and running constants by performing corresponding anholonomic transforms.
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12.3 The Metric Ansatz and Vacuum Einstein Equa-

tions

Let us denote the local system of coordinates as uα = (xi, ya) , where x1 = u and
x2 = λ for ellipsoidal coordinates (x1 = σ and x2 = τ for toroidal coordinates) and
y3 = v = ϕ and y4 = t for the so–called ϕ–anisotropic configurations (y4 = v = t
and y5 = ϕ for the so–called t–anisotropic configurations). Our spacetime is modelled
as a 4D pseudo–Riemannian space of signature (−,−,−,+) (or (−,−,+,−)), which in
general may be enabled with an anholonomic frame structure (tetrads, or vierbiend)
eα = Aβα (uγ) ∂/∂uβ subjected to some anholonomy relations

eαeβ − eβeα = W γ
αβ (uε) eγ , (12.20)

where W γ
αβ (uε) are called the coefficients of anholonomy.

The anholonomically and conformally transformed 4D line element is

ds2 = Ω2(xi, v)ĝαβ
(
xi, v

)
duαduβ, (12.21)

were the coefficients ĝαβ are parametrized by the ansatz




g1 + ζ 2
1 h3 + n 2

3 h4 ζ1ζ2h3 + n1n2h4 ζ1h3 n1h4

ζ1ζ2h3 + n1n2h4 g2 + ζ 2
2 h3 + n 2

3 h4 +ζ2h3 n2h4

ζ1h3 ζ2h3 h3 0
n1h4 n2h4 0 h4


 , (12.22)

with gi = gi (x
i) , ha = hai

(
xk, v

)
, ni = ni

(
xk, v

)
, ζi = ζi

(
xk, v

)
and Ω = Ω

(
xk, v

)

being some functions of necessary smoothly class or even singular in some points and
finite regions. So, the gi–components of our ansatz depend only on ”holonomic” variables
xi and the rest of coefficients may also depend on ”anisotropic” (anholonomic) variable
y3 = v; our ansatz does not depend on the second anisotropic variable y4.

We may diagonalize the line element

δs2 = Ω2[g1(dx
1)2 + g2(dx

2)2 + h3(δv)
2 + h4(δy

4)2], (12.23)

with respect to the anholonomic co–frame
δα = (dxi, δv, δy4) , where

δv = dv + ζidx
i and δy4 = dy4 + nidx

i, (12.24)

which is dual to the frame δα = (δi, ∂4, ∂5) , where

δi = ∂i + ζi∂3 + ni∂4. (12.25)
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The tetrads δα and δα are anholonomic because, in general, they satisfy some non–trivial
anholonomy relations (12.20). The anholonomy is induced by the coefficients ζi and ni
which ”elongate” partial derivatives and differentials if we are working with respect to
anholonomic frames. This result in a more sophisticate differential and integral calculus
(a usual situation in ’tetradic’ and ’spinor’ gravity), but simplifies substantially tensor
computations, because we are dealing with diagonalized metrics.

The vacuum Einstein equations for the (12.22) (equivalently, for (12.23)), Rβ
α = 0,

computed with respect to anholonomic frames (12.24) and (12.25), transforms into a
system of partial differential equations [4, 7, 8]:

R1
1 = R2

2 = − 1

2g1g2
[g••2 −

g•1g
•
2

2g1
− (g•2)

2

2g2

+g
′′

1 −
g

′

1g
′

2

2g2

− (g
′

1)
2

2g1

] = 0, (12.26)

R3
3 = R4

4 =
−1

2h3h4

[
h∗∗4 − h∗4

(
ln
√
|h3h4|

)∗]
= 0, (12.27)

R4i = − h4

2h3
[n∗∗
i + γn∗

i ] = 0, (12.28)

where

γ = 3h∗4/2h4 − h∗3/h3, (12.29)

and the partial derivatives are written in brief like g•1 = ∂g1/∂x
1, g

′

1 = ∂g1/∂x
2 and

h∗3 = ∂h3/∂v. The coefficients ζi are found as to consider non–trivial conformal factors
Ω : we compensate by ζi possible conformal deformations of the Ricci tensors, computed
with respect to anholonomic frames. The conformal invariance of such anholonomic
transforms holds if

Ωq1/q2 = h3 (q1 and q2 are integers), (12.30)

and there are satisfied the equations

∂iΩ− ζiΩ∗ = 0. (12.31)

The system of equations (12.26)–(12.28) and (12.31) can be integrated in general form
[7]. Physical solutions are defined from some additional boundary conditions, imposed
types of symmetries, nonlinearities and singular behavior and compatibility in locally
anisotropic limits with some well known exact solutions.

In this paper we give some examples of ellipsoidal and toroidal solutions and investi-
gate some classes of metrics for combined ellipsoidal black hole – black tori configurations.
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12.4 Static Black Hole – Black Torus Metrics

We analyzed in detail the method of anholonomic frames and constructed 4D and
5D ellipsoidal black hole and black tori solutions in Refs. [4, 7, 8]. In this Section we
give same new examples of metrics describing one static 4D black hole or one static
4D black torus configurations. Then we extend the constructions for metrics describing
combined variants of black hole – black torus solutions. We shall analyze solutions with
trivial and non–trivial conformal factors.

In this section the 4D local coordinates are written as (x1, x2, y3 = v = ϕ, y4 = t) ,
where we take xi = (u, λ) for ellipsoidal configurations and xi = (σ, τ) for toroidal
configurations. Here we note that, we can introduce a ”general” 2D space ellipsoidal
coordinate system, u = u(σ, τ) and λ = τ, for both ellipsoidal and toroidal configurations
if, for instance, we identify the ellipsoidal coordinate λ with the toroidal τ, and relate u
with σ and τ as

sinh u =
1

cosh τ − cosσ
.

In the vicinity of τ = 0 we can approximate cosh τ ≈ 1 and to write u = u (σ)and λ = τ.
For τ ≫ 1 we have

sinh u ≈ 1

cosh τ

(
1 +

1

cosσ

)
.

In general, we consider that the ”holonomic” coordinates are some functions xi =
xi (σ, τ) = x̃i (u, λ) for which the 2D line element can be written in conformal metric
form,

ds2
[2] = −µ2

(
xi
) [(

dx1
)2

+
(
dx2
)2]

.

For simplicity, we consider 4D coordinate parametrizations when the angular coordinate
ϕ and the time like coordinate t are not affected by any transforms of x–coordinates.

12.4.1 Static anisotropic black hole/torus solutions

An example of ellipsoidal black hole configuration

The simplest way to generate a static but anisotropic ellipsoidal black hole solution
with an anholonomically diagonalized metric (12.23) is to take a metric of type (12.8),
to ”elongate” its differentials,

dϕ → δϕ = dϕ+ ζi
(
xk, ϕ

)
dxi,

dt → δt = dt+ ni
(
xk, ϕ

)
dxi,
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than to multiply on a conformal factor

Ω2
(
xk, ϕ

)
= ω2

(
xk, ϕ

)
Ω2
AE(xk),

the factor ω2
(
xk, ϕ

)
is obtained by re–scaling the constant ρg from (12.10),

ρg → ρg = ω
(
xk, ϕ

)
ρg, (12.32)

in the simplest case we can consider only ”angular” on ϕ anisotropies. Then we ’renor-
malize’ (by introducing xi coordinates) the g1, g2 and h3 coefficients,

g1,2 = −1→ −µ2
(
xi
)
, (12.33)

h3 = h3[0] = aE(u, λ)→ h3 = −Ω−2
(
xk, ϕ

)
, (12.34)

we fix a relation of type (12.30), and take h4 = h4[0] = bE(xi). The anholonomically
transformed metric is parametrized in the form

δs2 = Ω2{−µ2
(
xi
) [

(dx1)2 + (dx2)2
]

(12.35)

−Ω−2
(
xk, ϕ

)
(δv)2 + bE(xi)(δy4)2},

where µ, ζi and ni are to be defined respectively from the equations (12.26), (12.31) and
(12.28). We note that the equation (12.27) is already solved because in our case h∗4 = 0.

The equation (12.26), with partial derivations on coordinates xi and parametrizations
(12.33) has the general solution

µ2 = µ2
[0] exp

[
c[1]x

1 (u, λ) + c[2]x
2 (u, λ)

]
, (12.36)

where µ[0], c[1] and c[2] are some constants which should be defined from boundary condi-
tions and by fixing a corresponding 2D system of coordinates; we pointed that we may
redefine the factor (12.36) in ’pure’ ellipsoidal coordinates (u, λ) .

The general solution of (12.31) for renormalization (12.32) and parametrization
(12.34) is

ζi
(
xk, ϕ

)
= (ω∗)−1 ∂iω + ∂i ln |ΩAE|/ (ln |ω|)∗ , (12.37)

= ∂i ln |ΩAE|/ (ln |ω|)∗ for ω = ω (ϕ) .

For a given h3 with h∗4 = 0, we can compute the coefficient γ from (12.29). After two
integrations on ϕ in (12.28) we find

ni
(
xk, ϕ

)
= ni[0]

(
xk
)

+ ni[1]
(
xk
) ∫

ω−2dϕ. (12.38)
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The set of functions (12.36), (12.37) and (12.38) for any given ΩAE (xi) and ω
(
xk, ϕ

)

defines an exact static solution of the vacuum Einstein equations parametrized by an
off–diagonal metric of type (12.35). This solution have an ellipsoidal horizon defined by
the condition of vanishing of the coefficient h4[0] = bE(xi), see the coefficients for the
auxiliary metric (12.8) and an anisotropic effective constant (12.32). This is a general
solution depending on arbitrary functions ω

(
xk, ϕ

)
and ni[0,1]

(
xk
)

and constants µ[0], c[1]
and c[2] which have to be stated from some additional physical arguments.

For instance, if we wont to impose the condition that our solution, far away from the
ellipsoidal horizon, transform into the Schwarzschild solution with an effective anisotropic
”mass”, or a renormalized gravitational Newton constant, we may put µ[0] = 1 and fix
the xi–coordinates and constants c[1,2] as to obtain the linear interval

ds2
[2] = −

[
du2 + dλ2

]
.

The coefficients ni[0,1]
(
xk
)

and ω
(
xk, ϕ

)
may be taken as at long distances from the

horizon one holds the limits ni[0,1]
(
xk
)
→ 0 and ζi

(
xk, ϕ

)
→ 0 for ω

(
xk, ϕ

)
→ 0. In this

case, at asymptotic, our solution will transform into a Schwarzschild like solution with
”renormalized” parameter ρg → const.

Nevertheless, we consider that it is not obligatory to select only such type of ellipsoidal
solutions (with imposed asymptotic spherical symmetry) parametrized by metrics of class
(12.35). The system of vacuum gravitational equations (12.26)–(12.31) for the ansatz
(12.35) defines a nonlinear static configuration (an alternative vacuum Einstein configu-
ration with ellipsoidal horizon) which, in general, is not equivalent to the Schwarzschild
vacuum. This points to some specific properties of the gravitational vacuum which fol-
low from the nonlinear character of the Einstein equations. In quantum field theory the
nonlinear effects may result in unitary non–equivalent vacua; in classical gravitational
theories we could obtain a similar behavior if we are dealing with off–diagonal metrics
and anholonomic frames.

The constructed new static vacuum solution (12.35) for a 4D ellipsoidal black hole is
stated by the coefficients

g1,2 = −1, µ = 1, ρg = ω
(
xk, ϕ

)
ρg,Ω

2 = ω2Ω2
AE,

h3 = −Ω−2
(
xk, ϕ

)
, h4 = bE(xi), ( see (12.8),(12.10)),

ζi = (ω∗)−1 ∂iω + ∂i ln |ΩAE|/ (ln |ω|)∗ ,

ni = ni[0]
(
xk
)

+ ni[1]
(
xk
) ∫

ω−2dϕ. (12.39)

These data define an ellipsoidal configuration, see Fig. 12.1.
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Figure 12.1: Ellipsoidal Configuration

Finally, we remark that we have generated a vacuum ellipsoidal gravitational config-
uration starting from the metric (12.8), i. e. we constructed an ellipsoidal ϕ–solution
of Class A (see details on classification in [7]). In a similar manner we can define an-
holonomic deformations of the metric (12.11) and renormalization of conformal factor
ΩBE (u, λ) in order to construct an ellipsoidal ϕ–solution of Class B. We omit such con-
siderations in this paper but present, in the next subsection, an example of toroidal
ϕ–solution of Class B.

An example of toroidal black hole configuration

We start with the metric (12.18), ”elongate” its differentials dϕ → δϕ and dt → δt
and than multiply on a conformal factor

Ω2
(
xk, ϕ

)
= ̟2

(
xk, ϕ

)
Ω2
BT (xk)gT (τ) ,

see (12.19) which is connected with the renormalization of constant ρ
[t]
g ,

ρ[t]
g → ρ[t]

g = ̟
(
xk, ϕ

)
ρ[t]
g . (12.40)

For toroidal configurations it is naturally to use 2D toroidal holonomic coordinates xi =
(σ, τ).

The anholonomically transformed metric is parametrized in the form

δs2 = Ω2{−
[
dσ2 + dτ 2

]
− η3 (σ, τ, ϕ) g−1

T (τ) δϕ2

+fT (σ, τ)g−1
T (τ) δt2}. (12.41)
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We state the coefficients

h3 = −η3 (σ, τ, ϕ) g−1
T (τ) and h4 = fT (σ, τ)g−1

T (τ) ,

where the polarization

η3 (σ, τ, ϕ) = ̟−2 (σ, τ, ϕ) Ω−2
BT (σ, τ)

is found from the condition (12.30) as h3 = −Ω−2. The equation (12.27) is solved by
arbitrary couples h3 (σ, τ, ϕ) and h4(σ, τ) when h∗4 = 0. The procedure of definition of
ζi (σ, τ, ϕ) and ni (σ, τ, ϕ) is similar to that from the previous subsection. We present the
final results as the data

g1,2 = −1, ρg = ̟ (σ, τ, ϕ) ρg,Ω
2 = ̟2Ω2

BT gT (τ) ,

h3 = −η3 (σ, τ, ϕ) g−1
T (τ) , h4 = fT (σ, τ)g−1

T (τ) ,

η3 = ̟−2 (σ, τ, ϕ) Ω−2
BT (σ, τ), ( see (12.18), (12.19)),

ζi = (̟∗)−1 ∂i̟ + ∂i ln |ΩBT
√
gT |/ (ln |̟|)∗ , (12.42)

ni = ni[0] (σ, τ) + ni[1] (σ, τ)

∫
̟−2dϕ

for the ansatz (12.41) which defines an exact static solution of the vacuum Einstein equa-
tions with toroidal symmetry, of Class B, with anisotropic dependence on coordinate ϕ,
see the torus configuration from Fig. 12.2. The off–diagonal solution is non–trivial for
anisotropic linear distributions of mass on the circle contained in the torus ring, or alter-
natively, if there is a renormalized gravitational constant with anisotropic dependence
on angle ϕ. This class of solutions have a toroidal horizon defined by the condition of
vanishing of the coefficient h4 which holds if fT (σ, τ) = 0. The functions ̟ (σ, τ, ϕ) and
ni[0,1] (σ, τ) may be stated in a form that at long distance from the toroidal horizon the
(12.41) with data (12.42) will have asymptotic like the Schwarzschild metric. We can also
consider alternative toroidal vacuum configurations. We note that instead of relations
like h3 = −Ω−2 we can use every type h3 ∼ Ωp/q, like is stated by (12.30); it depends on
what type of nonlinear configuration and asymptotic limits we wont to obtain.

We remark also that in a similar manner we can generate toroidal configurations of
Class A, starting from the auxiliary metric (12.15). In the next subsection we elucidate
this possibility by interfering it with a Class B ellipsoidal configuration.

12.4.2 Static Ellipsoidal Black Hole – Black Torus solutions

There are different possibilities to combine static ellipsoidal black hole and black
torus solutions as they will give configurations with two horizons. In this subsection
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Figure 12.2: Toroidal Configuration

we analyze two such variants. We consider a 2D system of holonomic coordinates xi,
which may be used both on the ’ellipsoidal’ and ’toroidal’ sectors via transforms like
u = u(xi), λ = τ (xi) and σ = σ (xi) .

Ellipsoidal–torus black configurations of Class BA

We construct a 4D vacuum metric with posses two type of horizons, ellipsoidal and
toroidal one, having both type characteristics like a metric of Class B for ellipsoidal
configurations and a metric of Class A for toroidal configurations (we conventionally call
this ellipsoidal torus metric to be of Class BA). The ansatz is taken

δs2 = Ω2{−µ2
(
xi
) [

(dx1)2 + (dx2)2
]

(12.43)

−η3

(
xk, ϕ

)
aT
(
xi
)
δϕ2 +

bT (xi)fE(xi)

gE(xi)
δt2},

with

Ω2 = ω2
(
xk, ϕ

)
̟2
(
xk, ϕ

)
Ω2
AT

(
xi
)
Ω2
BE

(
xi
)
,

η3 = −a−1
T

(
xi
)
Ω−2, h3 = −η3

(
xk, ϕ

)
aT
(
xi
)
,

h4 = bT (xi)fE(xi)/gE(xi),

µ2 = µ2
[0] exp

[
c[1]x

1 + c[2]x
2
]
.

So, in general we may having both type of anisotropic renormalizations of constants ρg
and ρ

[t]
g as in (12.32) and (12.40). The prolongations of differentials δϕ and δt are defined
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Figure 12.3: Ellipsoidal–Torus Configuration

by the coefficients

ζi
(
xk, ϕ

)
= (Ω∗)−1 ∂iΩ,

ni
(
xk, ϕ

)
= ni[0]

(
xk
)

+ ni[1]
(
xk
) ∫

ω−2̟−2dϕ.

The constants µ2
[0], c[1,2], functions ω2

(
xk, ϕ

)
, ̟2

(
xk, ϕ

)
and ni[0,1]

(
xk
)

and relation

h3 ∼ Ωp/q may be selected as to obtain at asymptotic a Schwarzschild like behavior. The
metric (12.43) has two horizons, a toroidal one, defined by the condition bT (xi) = 0, and
an ellipsoidal one, defined by the condition fE(xi) = 0 (see respectively these functions
in (12.16) and (12.12)).

The ellipsoidal–torus configuration is illustrated in Fig. 12.3.

We can consider different combinations of ellipsoidal black hole an black torus met-
rics in order to construct solutions of Class AA, AB and BB (we omit such similar
constructions).

A second example of ellipsoidal black hole – black torus system

In the simplest case we can construct a solution with an ellipsoidal and toroidal
horizon which have a trivial conformal factor Ω and vanishing coefficients ζi = 0 (see
(12.31)). Establishing a global 3D toroidal space coordinate system, we consider the



430 CHAPTER 12. 4D ELLIPSOIDAL – TOROIDAL SYSTEMS

ansatz

δs2 = {−
[
dσ2 + dτ 2

]
− η3 (σ, τ, ϕ)h3[0] (σ, τ) δϕ

2 (12.44)

+η4 (σ, τ, ϕ)h4[0] (σ, τ) δt
2},

where (in order to construct a Class AA solution) we put

h3[0] = aE (σ, τ) aT (σ, τ) , h4[0] = bE (σ, τ) bT (σ, τ) ,

η4 = ω−2 (σ, τ, ϕ)̟−2 (σ, τ, ϕ) ,

considering anisotropic renormalizations of constants as in (12.32) and (12.40). The
polarization η3 is to be found from the relation

h3 = h2
[0][(
√
|h4|)∗]2, h2

[0] = const, (12.45)

which defines a solution of equation (12.27) for h∗4 6= 0 , when h3 = −η3h3[0] and h4 =
η4h4[0]. Substituting the last values in (12.45) we get

|η3| = h2
[0]

bEbT
aEaT

(
ω∗ +̟∗

ω̟

)2

.

Then, computing the coefficient γ, see (12.29), after two integrations on ϕ we find

ni (σ, τ, ϕ) = ni[0] (σ, τ) + ni[1] (σ, τ)

∫
[η3/

(√
|η3|
)3

]dϕ

= ni[0] (σ, τ) + ñi[1] (σ, τ)

∫
ω̟ (ω∗ +̟∗)2 dϕ,

where we re-defined the function ni[1] (σ, τ) into a new ñi[1] (σ, τ) by including all factors
and constants like h2

[0], bE , bT , aE and aT .

The constructed solution (12.44) does not has as locally isotropic limit the Schwarzs-
child metric. It has also a toroidal and ellipsoidal horizons defined by the conditions of
vanishing of bE and bT , but this solution is different from the metric (12.43): it has a
trivial conformal factor and vanishing coefficients ζi which means that in this case we are
having a splitting of dynamics into three holonomic and one anholonomic coordinate.
We can select such functions ni[0,1] (σ, τ) , ω (σ, τ, ϕ) and ̟ (σ, τ, ϕ) , when at asymptotic
one obtains the Minkowski metric.
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12.5 Anisotropic Polarizations and Running Const-

ants

In this Section we consider non–static vacuum anholonomic ellipsoidal and/or toroidal
configurations depending explicitly on time variable t and on holonomic coordinates xi,
but not on angular coordinate ϕ. Such solutions are generated by dynamical anholonomic
deformations and conformal transforms of the Schwarzschild metric. For simplicity, we
analyze only Class A and AA solutions.

The coordinates are parametrized: xi are holonomic ones, in particular, xi = (u, λ) ,
for ellipsoidal configurations, and xi = (σ, τ) , for toroidal configurations; y3 = v = t and
y4 = ϕ. The metric ansatz is stated in the form

δs2 = Ω2
(
xi, t

)
[−(dx1)2 − (dx2)2

+h3

(
xi, t

)
δt2 + h4

(
xi, t

)
δϕ2], (12.46)

where the differentials are elongated

dϕ → δϕ = dϕ+ ζi
(
xk, t

)
dxi,

dt → δt = dt+ ni
(
xk, t

)
dxi.

The ansatz (12.46) is related with some ellipsoidal and/ or toroidal anholonomic defor-
mations of the Schwarzschild metric (see respectively, (12.7), (12.8), (12.11) and (12.14),
(12.15), (12.18)) via time running renormalizations of ellipsoidal and toroidal constants
(instead of the static ones, (12.32) and (12.40)),

ρg → ρ̂g = ω
(
xk, t

)
ρg, (12.47)

and
ρ[t]
g → ρ̂[t]

g = ̟
(
xk, t

)
ρ[t]
g . (12.48)

As particular cases we shall consider trivial values Ω2 = 1. The horizons of such classes
of solutions are defined by the condition of vanishing of the coefficient h3 (xi, t) .

12.5.1 Ellipsoidal/toroidal solutions with running constants

Trivial conformal factors, Ω2 = 1

The simplest way to generate a t–depending ellipsoidal (or toroidal) configuration
is to take the metric (12.8) (or (12.15)) and to renormalize the constant as (12.47) (or
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(12.48)). In result we obtain a metric (12.46) with Ω2 = 1, h3 = η3 (xi, t) h3[0] (x
i) and

h4 = h4[0] (x
i) , where

η3 = ω−2 (u, λ, t) , h3[0] = bE (u, λ) , h4[0] = aE (u, λ) ,

(η3 = ̟−2 (σ, τ, t) , h3[0] = bT (σ, τ) , h4[0] = aT (τ)).

The equation (12.27) is satisfied by these data because h∗4 = 0 and the condition (12.31)
holds for ζi = 0. The coefficient γ from (12.29) is defined only by polarization η3, which
allow us to write the integral of (12.28) as

ni = ni[0]
(
xi
)

+ ni[1]
(
xi
) ∫

η3

(
xi, t

)
dt.

The corresponding ellipsoidal (or toroidal) configuration may be transformed into asymp-
totically Minkowschi metric if the functions ω−2 (u, λ, t) (or ̟−2 (σ, τ, t)) and ni[0,1] (x

i)
are such way determined by boundary conditions that η3 → const and ni[0,1] (x

i) → 0,
far away from the horizons, which are defined by the conditions bE (u, λ) = 0 (or
bT (σ, τ) = 0).

Such vacuum gravitational configurations may be considered as to posses running of
gravitational constants in a local spacetime region. For instance, in Ref [4] we suggested
the idea that a vacuum gravitational soliton may renormalize effectively the constants,
but at asymptotic we have static configurations.

Non–trivial conformal factors

The previous configuration can not be related directly with the Schwarzschild metric
(we used its conformal transforms). A more direct relation is possible if we consider
non–trivial conformal factors. For ellipsoidal (or toroidal) configurations we renromalize
(as in (12.47), or (12.48)) the conformal factor (12.10) (or (12.17)),

Ω2
(
xk, t

)
= ω2

(
xk, t

)
Ω2
AE(xk)b−1

E

(
xk
)
,

(Ω2
(
xk, t

)
= ̟2

(
xk, t

)
Ω2
AT (xk)b−1

T

(
xk
)
).

In order to satisfy the condition (12.30) we choose h3 = Ω−2 but h4 = h4[0] as in previous
subsection: this solves the equation (12.27). The non–trivial values of ζi and ni are
defined from (12.31) and (12.28),

ζi
(
xk, t

)
= (Ω∗)−1 ∂iΩ,

ni
(
xk, t

)
= ni[0]

(
xk
)

+ ni[1]
(
xk
) ∫

h3

(
xi, t

)
dt.
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We note that the conformal factor Ω2 is singular on horizon, which is defined by the
condition of vanishing of the coefficient h3, i. e. of bE (or bT ). By a corresponding
parametrization of functions ω2

(
xk, t

)
(or ̟2

(
xk, t

)
) and ni[0,1]

(
xk
)

we may generate
asymptotically flat solutions, very similar to the Schwarzschild solution, which have
anholonomic running constants in a local region of spacetime.

12.5.2 Black Ellipsoid – Torus Metrics with Running Constants

Now we consider nonlinear superpositions of the previous metrics as to construct
solutions with running constants and two horizons (one ellipsoidal and another toroidal).

Trivial conformal factor, Ω2 = 1

The simplest way to generate such metrics with two horizons is to establish, for
instance, a common toroidal system of coordinate, to take the ellipsoidal and toroidal
metrics constructed in subsection V.A.1 and to multiply correspondingly their coeffi-
cients. The corresponding data, defining a new solution for the ansazt (12.46), are

g1,2 = −1, ρ̂g = ω
(
xk, t

)
ρg, ρ̂

[t]
g = ̟

(
xk, t

)
ρ[t]
g ,Ω = 1,

h3 = η3

(
xi, t

)
h3[0]

(
xi
)
, η3 = ω−2

(
xk, t

)
̟−2

(
xk, t

)
,

h3[0] = bE
(
xk
)
bT
(
xk
)
, h4 = h4[0] = aE

(
xi
)
aT (xi), (

ζi = 0, ni = ni[0]
(
xk
)

+ ni[1]
(
xk
) ∫

ω−2̟−2dt, (12.49)

where the functions aE , aT and bE , bT are given by formulas (12.9) and (12.16). An-
alyzing the data (12.49) we conclude that we have two horizons, when bE

(
xk
)

= 0
and bT

(
xk
)

= 0, parametrized respectively as ellipsoidal and torus hypersurfaces. The
boundary conditions on running constants and on off–diagonal components of the metric
may be imposed as the solution would result in an asymptotic flat metric. In a finite
region of spacetime we may consider various dependencies in time.

Non–trivial conformal factor

In a similar manner, we can multiply the conformal factors and coefficients of the
metrics from subsection V.A.2 in order to generate a solution parametrized by the (12.46)
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with nontrivial conformal factor Ω and non-vanishing coefficients ζi. The data are

g1,2 = −1, ρ̂g = ω
(
xk, t

)
ρg, ρ̂

[t]
g = ̟

(
xk, t

)
ρ[t]
g , (12.50)

Ω2 = ω2
(
xk, t

)
̟2
(
xk, t

)
Ω2
AE(xk)×

Ω2
AT (xk)b−1

E

(
xk
)
b−1
T

(
xk
)
, ( see (12.9),(12.16)),

h3 = Ω−2, h3[0] = bE
(
xk
)
bT
(
xk
)
,

h4 = h4[0] = aE
(
xi
)
aT (xi), ζi

(
xk, t

)
= (Ω∗)−1 ∂iΩ,

ni = ni[0]
(
xk
)

+ ni[1]
(
xk
) ∫

ω−2̟−2dt.

The data (12.50) define a new type of solution than that given by (12.49). It this case
there is a singular on horizons conformal factor. The behavior nearly horizons is very
complicated. By corresponding parametrizations of functions ω

(
xk, t

)
, ̟

(
xk, t

)
and

ni[0,1]
(
xk
)
, which approximate ω,̟→ const and ζi, ni → 0 we may obtain a stationary

flat asymptotic.
Finally, we note that instead of Class AA solutions with anisotropic and running

constants we may generate solutions with two horizons (ellipsoidal and toroidal) by
considering nonlinear superpositions, anholonomic deformations, conformal transforms
and combinations of solutions of Classes A, B. The method of construction is similar to
that considered in this Section.

12.6 Conclusions and Discussion

We constructed new classes of exact solutions of vacuum Einstein equations by con-
sidering anholonomic deformations and conformal transforms of the Schwarzschild black
hole metric. The solutions posses ellipsoidal and/ or toroidal horizons and symmetries
and could be with anisotropic renormalizations and running constants. Some of such
solutions define static configurations and have Schwarzschild like (in general, multiplied
to a conformal factor) asymptotically flat limits. The new metrics are parametrized
by off–diagonal metrics which can be diagonalized with respect to certain anholonomic
frames. The coefficients of diagonalized metrics are similar to the Schwarzschild metric
coefficients but describe deformed horizons and contain additional dependencies on one
’anholonomic’ coordinate.

We consider that such vacuum gravitational configurations with non–trivial topology
and deformed horizons define a new class of ellipsoidal black hole and black torus objects
and/or their combinations.



12.6. CONCLUSIONS AND DISCUSSION 435

Toroidal and ellipsoidal black hole solutions were constructed for different models
of extra dimension gravity and in the four dimensional (4D) gravity with cosmological
constant and specific configurations of matter [2, 3, 6]. There were defined also vacuum
configurations for such objects [4, 5, 7, 8]. However, we must solve the very important
problems of physical interpretation of solutions with anholonomy and to state their
compatibility with the black hole uniqueness theorems [9] and the principle of topological
censorship [10, 11].

It is well known that the Schwarzschild metric is no longer the unique asymptotically
flat static solution if the 4D gravity is derived as an effective theory from extra dimension
like in recent Randall and Sundrum theories (see basic results and references in [14]).
The Newton law may be modified at sub-millimeter scales and there are possible config-
urations with violation of local Lorentz symmetry [15]. Guided by modern conjectures
with extra dimension gravity and string/M–theory, we have to answer the question: it is
possible to give a physical meaning to the solutions constructed in this paper only from
a viewpoint of a generalized effective 4D Einstein theory, or they also can be embedded
into the framework of general relativity theory?

It should be noted that the Schwarzschild solution was constructed as the unique
static solution with spherical symmetry which was connected to the Newton spherical
gravitational potential ∼ 1/r and defined as to result in the Minkowski flat spacetime, at
long distances. This potential describes the static gravitational field of a point particle
with ”isotropic” mass m0. The spherical symmetry is imposed at the very beginning and
it is not a surprising fact that the spherical topology and spherical symmetry of horizons
are obtained for well defined states of matter with specific energy conditions and in the
vacuum limits. Here we note that the spherical coordinates and systems of reference are
holonomic ones and the considered ansatz for the Schwarzschild metric is diagonal in the
more ”natural” spherical coordinate frame.

We can approach in a different manner the question of constructing 4D static vacuum
metrics. We might introduce into consideration off–diagonal ansatz, prescribe instead of
the spherical symmetry a deformed one (ellipsoidal, toroidal, or their superposition) and
try to check if a such configurations may be defined by a metric as to satisfy the 4D vac-
uum Einstein equations. Such metrics were difficult to be found because of cumbersome
calculus if dealing with off–diagonal ansatz. But the problem was substantially simpli-
fied by an equivalent transferring of calculations with respect to anholonomic frames
[4, 7, 8]. Alternative exact static solutions, with ellipsoidal and toroidal horizons (with
possible extensions for nonlinear polarizations and running constants), were constructed
and related to some anholonomic and conformal transforms of the Schwarzschild metric.

It is not difficult to suit such solutions with the asymptotic limit to the locally
isotropic Minkowschi spacetime: ”an egg and/or a ring look like spheres far away from
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their non–trivial horizons”. The unsolved question is that what type of modified New-
ton potentials should be considered in this case as they would be compatible with non–
spherical symmetries of solutions? The answer may be that at short distances the masses
and constants are renormalized by specific nonlinear vacuum gravitational interactions
which can induce anisotropic effective masses, ellipsoidal or toroidal polarizations and
running constants. For instance, the Laplace equation for the Newton potential can be
solved in ellipsoidal coordinates [12]: this solution could be a background for construct-
ing ellipsoidal Schwarzschild like metrics. Such nonlinear effects should be treated, in
some approaches, as certain quasi–classical approximations for some 4D quantum gravity
models, or related to another type of theories of extra dimension classical or quantum
gravity.

Independently of the type of little, or more, internal structure of black holes with
non–spherical horizons we search for physical justification, it is a fact that exact vac-
uum solutions with prescribed non–spherical symmetry of horizons can be constructed
even in the framework of general relativity theory. Such solutions are parametrized
by off–diagonal metrics, described equivalently, in a more simplified form, with respect
to associated anholonomic frames; they define some anholonomic vacuum gravitational
configurations of corresponding symmetry and topology. Considering certain character-
istic initial value problems we can select solutions which at asymptotic result in the
Minkowschi flat spacetime, or into an anti–de Sitter (AdS) spacetime, and have a causal
behavior of geodesics with the equations solved with respect to anholonomic frames.

It is known that the topological censorship principle was reconsidered for AdS black
holes [11]. But such principles and uniqueness black hole theorems have not yet been
proven for spacetimes defined by generic off–diagonal metrics with prescribed non–
spherical symmetries and horizons and with associated anholonomic frames with mix-
tures of holonomic and anholonomic variables. It is clear that we do not violate the
conditions of such theorems for those solutions which are locally anisotropic and with
nontrivial topology in a finite region of spacetime and have locally isotropic flat and triv-
ial topology limits. We can select for physical considerations only the solutions which
satisfy the conditions of the mentioned restrictive theorems and principles but with re-
spect to well defined anholonomic frames with holonomic limits. As to more sophisticate
nonlinear vacuum gravitational configurations with global non–trivial topology we con-
clude that there are required a more deep analysis and new physical interpretations.

The off–diagonal metrics and associated anholonomic frames extend the class of vac-
uum gravitational configurations as to be described by a nonlinear, anholonomic and
anisotropic dynamics which, in general, may not have any well known locally isotropic
and holonomic limits. The formulation and proof of some uniqueness theorems and
principles of topological censorship as well analysis of physical consequences of such an-
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holonomic vacuum solutions is very difficult. We expect that it is possible to reconsider
the statements of the Israel–Carter–Robinson and Hawking theorems with respect to
anholonomic frames and spacetimes with non–spherical topology and anholonomically
deformed spherical symmetries. These subjects are currently under our investigation.
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Chapter 13

Noncommutative Finsler Geometry,
Gauge Fields and Gravity

Abstract 1

The work extends the A. Connes’ noncommutative geometry to spaces with generic
local anisotropy. We apply the E. Cartan’s anholonomic frame approach to geometry
models and physical theories and develop the nonlinear connection formalism for projec-
tive module spaces. Examples of noncommutative generation of anholonomic Riemann,
Finsler and Lagrange spaces are analyzed. We also present a research on noncommutative
Finsler–gauge theories, generalized Finsler gravity and anholonomic (pseudo) Riemann
geometry which appear naturally if anholonomic frames (vierbeins) are defined in the
context of string/M–theory and extra dimension Riemann gravity.

.

13.1 Introduction

In the last twenty years, there has been an increasing interest in noncommutative
and/or quantum geometry with applications both in mathematical and particle physics.
It is now generally considered that at very high energies, the spacetime can not be de-
scribed by a usual manifold structure. Because of quantum fluctuations, it is difficult
to define localized points and the quantum spacetime structure is supposed to posses
generic noncommutative, nonlocal and locally anisotropic properties. Such ideas origi-
nate from the suggestion that the spacetime coordinates do not commute at a quantum

1 c© S. Vacaru, Noncommutative Finsler Geometry, Gauge Fields and Gravity, math-ph/0205023
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level [44], they are present in the modern string theory [12, 38] and background the
noncommutative physics and geometry [8] and quantum geometry [33].

Many approaches can be taken to introducing noncommutative geometry and devel-
oping noncommutative physical theories (Refs. [8, 14, 15, 20, 27, 28, 31, 63] emphasize
some basic monographs and reviews). This paper has three aims: First of all we would
like to give an exposition of some basic facts on anholonomic frames and associated
nonlinear connection structures both on commutative and noncommutative spaces (re-
spectively modelled in vector bundles and in projective modules of finite type). Our
second goal is to state the conditions when different variants of Finsler, Lagrange and
generalized Lagrange geometries, in commutative and noncommutative forms, can be
defined by corresponding frame, metric and connection structures. The third aim is to
construct and analyze properties of gauge and gravitational noncommutative theories
with generic local anisotropy and to prove that such models can be elaborated in the
framework of noncommutative approaches to Riemannian gravity theories.

This paper does not concern the topic of Finsler like commutative and noncommu-
tative structures in string/M-theories (see the Ref. [59], which can be considered as a
string partner of this work).

We are inspired by the geometrical ideas from a series of monographs and works by
E. Cartan [6] where a unified moving frame approach to the Riemannian and Finsler
geometry, Einstein gravity and Pffaf systems, bundle spaces and spinors, as well the pre-
liminary ideas on nonlinear connections and various generalizations of gravity theories
were developed. By considering anholonomic frames on (pseudo) Riemannian manifolds
and in tangent and vector bundles, we can model very sophisticate geometries with local
anisotropy. We shall apply the concepts and methods developed by the Romanian school
on Finsler geometry and generalizations [35, 36, 3, 54] from which we leaned that the
Finsler and Cartan like geometries may be modelled on vector (tangent) and covector
(cotangent) bundles if the constructions are adapted to the corresponding nonlinear con-
nection structure via anholonomic frames. In this case the geometric ”picture” and phys-
ical models have a number of common points with those from the usual Einstein–Cartan
theory and/or extra dimension (pseudo) Riemannian geometry. As general references on
Finsler geometry and applications we cite the monographs [41, 35, 36, 3, 54, 62]) and
point the fact that the bulk of works on Finsler geometry and generalizations emphasize
differences with the usual Riemannian geometry rather than try to approach them from
a unified viewpoint (as we propose in this paper).

By applying the formalism of nonlinear connections (in brief, N–connection) and
adapted anholonomic frames in vector bundles and superbundles we extended the ge-
ometry of Clifford structures and spinors for generalized Finsler spaces and their higher
order extensions in vector–covector bundles [49, 62], constructed and analyzed differ-
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ent models of gauge theories and gauge gravity with generic anisotropy [61], defined an
anisotropic stochastic calculus in bundle and superbundle spaces provided with nonlinear
connection structure [50, 54], with a number of applications in the theory of anisotropic
kinetic and thermodynamic processes [55], developed supersymmetric theories with lo-
cal anisotropy [51, 54, 52] and proved that Finsler like (super) geometries are contained
alternatively in modern string theory [52, 54]. One should be emphasized here that
in our approach we have not proposed any ”exotic” locally anisotropic string theories
modifications but demonstrated that anisotropic structures, Finsler like or another ones,
may appear alternatively to the Riemannian geometry, or even can be modelled in the
framework of a such geometry, in the low energy limit of the string theory, because we
are dealing with frame, vierbein, constructions.

The most surprising fact was that the Finsler like structures arise in the usual
(pseudo) Riemannian geometry of lower and higher dimensions and even in the Einstein
gravity. References [56] contain investigations of a number of exact solutions in modern
gravity theories (Einstein, Kaluza–Klein and string/brane gravity) which describe locally
anisotropic wormholes, Taub NUT spaces, black ellipsoid/torus solutions, solitonic and
another type configurations. It was proposed a new consequent method of constructing
exact solutions of the Einstein equations for off–diagonal metrics, in spaces of dimen-
sion d > 2, depending on three and more isotropic and anisotropic variables which are
effectively diagonalized by anholonomic frame transforms. The vacuum and matter field
equations are reduced to very simplified systems of partial differential equations which
can be integrated in general form [57].

A subsequent research in Riemann–Finsler and noncommutative geometry and phy-
sics requires the investigation of the fact if the A. Connes functional analytic approach
to noncommutative geometry and gravity may be such way generalized as to include
the Finsler, and of another type anisotropy, spaces. The first attempt was made in
Refs. [58] where some models of noncommutative gauge gravity (in the commutative
limit being equivalent to the Einstein gravity, or to different generalizations to de Sitter,
affine, or Poincare gauge gravity with, or not, nonlinear realization of the gauge groups)
were analyzed. Further developments in formulation of noncommutative geometries
with anholonomic and anisotropic structures and their applications in modern particle
physics lead to a rigorous study of the geometry of anholonomic noncommutative frames
with associated N–connection structure, to which are devoted our present researches.

The paper has the following structure: in section 2 we present the necessary def-
initions and results on the functional approach to commutative and noncommutative
geometry. Section 3 is devoted to the geometry of vector bundles and theirs noncommu-
tative generalizations as finite projective modules. We define the nonlinear connection in
commutative and noncommutative spaces, introduce locally anisotropic Clifford/spinor
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structures and consider the gravity and gauge theories from the viewpoint of anholo-
nomic frames with associated nonlinear connection structures. In section 4 we prove
that various type of gravity theories with generic anisotropy, constructed on anholo-
nomic Riemannian spaces and their Kaluza–Klein and Finsler like generalizations can
be derived from the A. Connes’ functional approach to noncommutative geometry by
applying the canonical triple formalism but extended to vector bundles provided with
nonlinear connection structure. In section 5, we elaborate and investigate noncommuta-
tive gauge like gravity models (which in different limits contain the standard Einstein’s
general relativity and various its anisotropic and gauge generalizations). The approach
holds true also for (pseudo) Riemannian metrics, but is based on noncommutative ex-
tensions of the frame and connection formalism. This variant is preferred instead of the
usual metric models which seem to be more difficult to be tackled in the framework of
noncommutative geometry if we are dealing with pseudo–Euclidean signatures and with
complex and/or nonsymmetic metrics. Finally, we present a discussion and conclusion
of the results in section 6.

13.2 Commutative and Noncommutative Spaces

The A. Connes’ functional analytic approach [8] to the noncommutative topology
and geometry is based on the theory of noncommutative C∗–algebras. Any commutative
C∗–algebra can be realized as the C∗–algebra of complex valued functions over locally
compact Hausdorff space. A noncommutative C∗–algebra can be thought of as the
algebra of continuous functions on some ’noncommutative space’ (see details in Refs.
[8, 15, 20, 28, 31, 63]).

Commutative gauge and gravity theories stem from the notions of connections (linear
and nonlinear), metrics and frames of references on manifolds and vector bundle spaces.
The possibility of extending such theories to some noncommutative models is based on
the Serre–Swan theorem [46] stating that there is a complete equivalence between the
category of (smooth) vector bundles over a smooth compact space (with bundle maps)
and the category of projective modules of finite type over commutative algebras and
module morphisms. Following that theorem, the space Γ (E) of smooth sections of a
vector bundle E over a compact space is a projective module of finite type over the
algebra C (M) of smooth functions over M and any finite projective C (M)–module can
be realized as the module of sections of some vector bundle over M. This construction
may be extended if a noncommutative algebra A is taken as the starting ingredient: the
noncommutative analogue of vector bundles are projective modules of finite type over A.
This way one developed a theory of linear connections which culminates in the definition
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of Yang–Mills type actions or, by some much more general settings, one reproduced
Lagrangians for the Standard model with its Higgs sector or different type of gravity
and Kaluza–Klein models (see, for instance, Refs [11, 7, 29, 31]).

This section is devoted to the theory of nonlinear connections in projective modules
of finite type over a noncommutative algebra A. We shall introduce the basic definitions
and present the main results connected with anhlolonomic frames and metric structures
in such noncommutative spaces.

13.2.1 Algebras of functions and (non) commutative spaces

The general idea of noncommutative geometry is to shift from spaces to the algebras
of functions defined on them. In this subsection, we give some general facts about
algebras of continuous functions on topological spaces, analyze the concept of modules
as bundles and define the nonlinear connections. We present mainly the objects we shall
need later on while referring to [8, 14, 15, 20, 27, 28, 31, 63] for details.

We start with some necessary definitions on C∗–algebras and compact operators
In this work any algebra A is an algebra over the field of complex numbers IC, i. e.

A is a vector space over IC when the objects like αa± βb, with a, b ∈ A and α, β ∈ IC,
make sense. Also, there is defined (in general) a noncommutative product A ×A → A
when for every elements (a, b) and a, b, A ×A ∋ (a, b) → ab ∈ A the conditions of
distributivity,

a(b+ c) = ab+ ac, (a + b)c = ac + bc,

for any a, b, c ∈ A, in general, ab 6= ba. It is assumed that there is a unity I ∈ A.
The algebra A is considered to be a so–called ”∗–algebra”, for which an (antilinear)

involution ∗ : A → A is defined by the properties

a∗∗ = a, (ab)∗ = b∗a∗, (αa+ βb)∗ = αa∗ + βb∗,

where the bar operation denotes the usual complex conjugation.
One also considers A to be a normed algebra with a norm ||·|| : A → IR, where IR

the real number field, satisfying the properties

||αa|| = |α| ||a|| ; ||a|| ≥ 0, ||a|| = 0⇔ a = 0;

||a+ b|| ≤ ||a||+ ||b|| ; ||ab|| ≤ ||a|| ||b|| .

This allows to define the ’norm’ or ’uniform’ topology when an ε–neighborhood of any
a ∈ A is given by

U (a, ε) = {b ∈ A, ||a− b|| < ε} , ε > 0.
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A Banach algebra is a normed algebra which is complete in the uniform topology and
a Banach ∗–algebra is a normed ∗–algebra which is complete and such that ||a∗|| = ||a||
for every a ∈ A. We can define now a C∗–algebra A as a Banach ∗–algebra with the
norm satisfying the additional identity ||a∗a|| = ||a||2 for every a ∈ A.

We shall use different commutative and noncommutative algebras:
By C(M) one denotes the algebra of continuous functions on a compact Hausdorf

topological space M, with ∗ treated as the complex conjugation and the norm given by
the supremum norm, ||f ||∞ = supx∈M |f(x)|. If the space M is only locally compact, one
writes C0(M) for the algebra of continuous functions vanishing at infinity (this algebra
has no unit).

The B(H) is used for the noncommutative algebra of bounded operators on an infinite
dimensional Hilbert space H with the involution ∗ given by the adjoint and the norm
defined as the operator norm

||A|| = sup {||Aζ ||; ζ ∈ H, A ∈ B(H), ||ζ || ≤ 1} .

One considers the noncommutative algebra Mn (IC) of n×n matrices T with complex
entries, when T ∗ is considered as the Hermitian conjugate of T. We may define a norm
as

||T || = {the positive square root of the largest eigenvalue of T ∗T}
or as

||T ||′ = sup[Tij], T = {Tij}.
The last definition does not define a C∗–norm, but both norms are equivalent as Banach
norm because they define the same topology on Mn (IC) .

A left (right) ideal T is a subalgebra A ∈ T if a ∈ A and b ∈ T imply that
ab ∈ T (ba ∈ T ). A two sided ideal is a subalgebra (subspace) which is both a left and
right ideal. An ideal T is called maximal if there is not other ideal of the same type
which contain it. For a Banach ∗–algebra A and two–sided ∗–ideal T (which is closed
in the norm topology) we can make A/T a Banach ∗–algebra. This allows to define
the quotient A/T to be a C∗–algebra if A is a C∗–algebra. A C∗–algebra is called
simple if it has no nontrivial two–sided ideals. A two–sided ideal is called essential in a
C∗–algebra if any other non–zero ideal in this algebra has a non–zero intersection with
it.

One defines the resolvent set r(a) of an element a ∈ A as a the subset of complex
numbers given by r(a) = {λ ∈ IC|a − λI is invertible}. The resolvent of a at any λ ∈
r(a) is given by the inverse (a− λI)−1 . The spectrum σ (a) of an element a is introduced
as the complement of r(a) in IC. For C∗–algebras the spectrum of any element is
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a nonempty compact subset of IC. The spectral radius ρ (a) of a ∈ A is defined
ρ (a) = sup{|λ|, λ ∈ r(a)}; for A being a C∗–algebra, one obtains ρ (a) = ||a|| for every
a ∈ A. This distinguishes the C∗–algebras as those for which the norm may be uniquely
determined by the algebraic structure. One considers self–adjoint elements for which
a = a∗, such elements have real spectra and satisfy the conditions σ(a) ⊆ [−||a||, ||a||]
and σ(a2) ⊆ [0|, ||a||] . An element a is positive, i. e. a > 0, if its spectrum belongs to
the positive half–line. This is possible if and only if a = bb∗ for some b ∈ A.

One may consider ∗–morphisms between two C∗–algebras A and B as some IC–linear
maps π : A → B which are subjected to the additional conditions

π(ab) = π(a)π(b), π(a∗) = π(a)∗

which imply that π are positive and continuous and that π(A) is a C∗–subalgebra of B
(see, for instance, [28]). We note that a ∗–morphism which is bijective as a map defines
a ∗–isomorphism for which the inverse map π−1 is automatically a ∗–morphism.

In order to construct models of noncommutative geometry one uses representations
of a C∗–algebra A as pairs (H, π) where H is a Hilbert space and π is a ∗–morphism
π : A → B (H) with B (H) being the C∗–algebra of bounded operators on H. There
are different particular cases of representations: A representation (H, π) is faithful if
ker π = {0}, i. e. π is a ∗–isomorphism between A and π(A) which holds if and only if
||π(a)|| = ||a|| for any a ∈ A or π(a) > 0 for all a > 0. A representation is irreducible if
the only closed subspaces ofH which are invariant under the action of π(A) are the trivial
subspaces {0} and H. It can be proven that if the set of the elements in B (H) commute
with each element in π(A), i. e. the set consists of multiples of the identity operator, the
representation is irreducible. Here we note that two representations (H1, π1) and (H2, π2)
are said to be (unitary) equivalent if there exists a unitary operator U : H1 → H2 such
that π1(a) = U∗π2(a)U for every a ∈ A.

A subspace (subalgebra) T of the C∗–algebra A is a primitive ideal if T = ker π for
some irreducible representation (H, π) of A. In this case T is automatically a closed
two–sided ideal. One say that A is a primitive C∗–algebra if A has a faithful irreducible
representation on some Hilbert space for which the set {0} is a primitive ideal. One
denotes by Pr imA the set of all primitive ideals of a C∗–algebra A.

Now we recall some basic definitions and properties of compact operators on Hilbert
spaces [40]:

Let us first consider the class of operators which may be thought as some infinite
dimensional matrices acting on an infinite dimensional Hilbert space H. More exactly,
an operator on the Hilbert spaceH is said to be of finite rank if the orthogonal component
of its null space is finite dimensional. An operator T on H which can be approximated in
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norm by finite rank operators is called compact. It can be characterized by the property
that for every ε > 0 there is a finite dimensional subspace E ⊂ H : ||T|E⊥|| < ε, where the
orthogonal subspace E⊥ is of finite codimension in H. This way we may define the set
K(H) of all compact operators on the Hilbert spaces which is the largest two–sided ideal
in the C∗–algebra B (H) of all bounded operators. This set is also a C∗–algebra with
no unit, since the operator I on an infinite dimensional Hilbert space is not compact, it
is the only norm closed and two–sided when H is separable. We note that the defining
representation of K(H) by itself is irreducible and it is the only irreducible representation
up to equivalence.

For an arbitrary C∗–algebra A acting irreducibly on a Hilbert space H and having
non–zero intersection with K(H) one holds K(H) ⊆ A. In the particular case of finite
dimensional Hilbert spaces, for instance, for H = ICn, we may write B (ICn) = K(ICn) =
Mn (IC) , which is the algebra of n× n matrices with complex entries. Such algebra has
only one irreducible representation (the defining one).

13.2.2 Commutative spaces

Let us denote by C a fixed commutative C∗–algebra with unit and by Ĉ the cor-
responding structure space defined as the space of equivalence classes of irreducible
representations of C ( Ĉ does not contains the trivial representation C → {0}). One can
define a non–trivial ∗–linear multiplicative functional φ : C → IC with the property that
φ (ab) = φ (a)φ (b) for any a and b from C and φ(I) = 1 for every φ ∈ Ĉ. Every such

multiplicative functional defines a character of C, i. e. Ĉ is also the space of all characters
of C.

The Gel’fand topology is the one with point wise convergence on C. A sequence
{φ̟}̟∈Ξ of elements of Ĉ, where Ξ is any directed set, converges to φ(c) ∈ Ĉ if and
only if for any c ∈ C, the sequence {φ̟(c)}̟∈Ξ converges to φ(c) in the topology of

IC. If the algebra C has a unite, Ĉ is a compact Hausdorff space (a topological space is
Hausdorff if for any two points of the space there are two open disjoint neighborhoods
each containing one of the point, see Ref. [25]). The space Ĉ is only compact if C is

without unit. This way the space Ĉ (called the Gel’fand space) is made a topological

space. We may also consider Ĉ as a space of maximal ideals, two sided, of C instead of
the space of irreducible representations. If there is no unit, the ideals to be considered
should be regular (modular), see details in Ref. [13]. Considering φ ∈ IC, we can
decompose C = Ker (φ) ⊕ IC, where Ker (φ) is an ideal of codimension one and so is

a maximal ideal of C. Considered in terms of maximal ideals, the space Ĉ is given the
Jacobson topology, equivalently, hull kernel topology (see next subsection for general
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definitions for both commutative and noncommutative spaces), producing a space which
is homeomorphic to the one constructed by means of the Gel’fand topology.

Let us consider an example when the algebra C generated by s commuting self–adjoint
elements x1, ...xs. The structure space Ĉ can be identified with a compact subset of IRs

by the map φ(c) ∈ Ĉ → [φ(x1), ..., φ(xs)] ∈ IRs. This map has a joint spectrum of x1, ...xs
as the set of all s–tuples of eigenvalues corresponding to common eigenvectors.

In general, we get an interpretation of elements C as IC–valued continuous functions
on Ĉ. The Gel’fand–Naimark theorem (see, for instance, [13]) states that all continuous

functions on Ĉ are of the form ĉ(φ) = φ (c) , which defines the so–called Gel’fand trans-

form for every φ(c) ∈ Ĉ and the map ĉ : Ĉ → IC being continuous for each c. A transform
c → ĉ is isometric for every c ∈ C if ||ĉ||∞ = ||c||, with ||...||∞ defined at the supremum

norm on C
(
Ĉ
)
.

The Gel’fand transform can be extended for an arbitrary locally compact topological
space M for which there exists a natural C∗–algebra C (M). On can be identified both

set wise and topologically the Gel’fand space Ĉ(M) and the space M itself through the
evaluation map

φx : C(M)→ IC, φx(f) = f(x)

for each x ∈ M, where φx ∈ Ĉ(M) gives a complex homomorphism. Denoting by
Ix = ker φx, which is the maximal ideal of C (M) consisting of all functions vanishing at

x, one proves [13] that the map φx is a homomorphism ofM onto Ĉ(M), and, equivalently,
every maximal ideal of C (M) is of the form Ix for some x ∈M.

We conclude this subsection: There is a one–to–one correspondence between the
∗–isomorphism classes of commutative C∗–algebras and the homomorphism classes of
locally compact Hausdorff spaces (such commutative C∗–algebras with unit correspond
to compact Hausdorff spaces). This correspondence defines a complete duality between
the category of (locally) compact Hausdorff spaces and (proper, when a map f relating
two locally compact Hausdorff spaces f : X → Y has the property that f−1 (K) is a
compact subset of X when K is a compact subset of Y, and ) continuous maps and the
category of commutative (non necessarily) unital C∗–algebras and ∗–homomorphisms. In
result, any commutative C∗–algebra can be realized as the C∗–algebra of complex valued
functions over a (locally) compact Hausdorff space. It should be mentioned that the space
M is a metrizable topological space, i. e. its topology comes from a metric, if and only
if the C∗–algebra is norm separable (it admits a dense in norm countable subset). This
space is connected topologically if the corresponding algebra has no projectors which are
self–adjoint, p∗ = p and satisfy the idempotentity condition p2 = p.

We emphasize that the constructions considered for commutative algebras cannot be
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directly generalized for noncommutative C∗–algebras.

13.2.3 Noncommutative spaces

For a given noncommutative C∗–algebra, there is more than one candidate for the
analogue of the topological space M. Following Ref. [28] (see there the proofs of results
and Appendices), we consider two possibilities:

• To use the space Â , called the structure space of the noncommutative C∗–
algebra A, which is the space of all unitary equivalence classes of irreducible ∗–
representations.

• To use the space Pr imA, called the primitive spectrum of A, which is the space of
kernels of irreducible ∗–representations (any element of Pr imA is automatically a
two–sided ∗–ideal of A).

The spaces Â and Pr imA agree for a commutative C∗–algebra, for instance, Â may
be very complicate while Pr imA consisting of a single point.

Let us examine a simple example of generalization to noncommutative C∗–algebra
given by the 2× 2 complex matrix algebra

M2(IC) = {
[
a11 a12

a21 a22

]
, aij ∈ IC}.

The commutative subalgebra of diagonal matrices C = {diag[λ1, λ2], λ1,2 ∈ IC} has a

structure space consisting of two points given by the characters φ1,2(

[
λ1 0
0 λ2

]
) = λ1,2.

These two characters extend as pure states to the full algebra M2(IC) by the maps

φ̃1,2 : M2(IC)→ IC,

φ̃1

([
a11 a12

a21 a22

])
= a11, φ̃2

([
a11 a12

a21 a22

])
= a22.

Further details are given in Appendix B to Ref. [28].

It is possible to define natural topologies on Â and Pr imA, for instance, by means of
a closure operation. For a subset Q ⊂ Pr imA, the closure Q is by definition the subset
of all elements in Pr imA containing the intersection ∩Q of the elements of Q, Q +

{I ∈ Pr imA : ∩Q ⊆ I} . It is possible to check that such subsets satisfy the Kuratowski
topology axioms and this way defined topology on Pr imA is called the Jacobson topology
or hull–kernel topology, for which ∩Q is the kernel of Q and Q is the hull of ∩Q (see
[28, 13] on the properties of this type topological spaces).
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13.3 Nonlinear Connections in

Noncommutative Spaces

In this subsection we define the nonlinear connections in module spaces, i. e. in non-
commutative spaces. The concept on nonlinear connection came from Finsler geometry
(as a set of coefficients it is present in the works of E. Cartan [6], then the concept was
elaborated in a more explicit fashion by A. Kawaguchi [24]). The global formulation in
commutative spaces is due to W. Barthel [2] and it was developed in details for vector,
covector and higher order bundles [36, 35, 3], spinor bundles [49, 62], superspaces and
superstrings [51, 54, 52] and in the theory of exact off–diagonal solutions of the Einstein
equations [56, 57]. The concept of nonlinear connection can be extended in a similar
manner from commutative to noncommutative spaces if a differential calculus is fixed on
a noncommutative vector (or covector) bundle.

13.3.1 Modules as bundles

A vector bundle E → M over a manifold M is completely characterized by the space
E = Γ (E,M) over its smooth sections defined as a (right) module over the algebra of
C∞ (M) of smooth functions over M. It is known the Serre–Swan theorem [46] which
states that locally trivial, finite–dimensional complex vector bundles over a compact
Hausdorff space M correspond canonically to finite projective modules over the algebra
A = C∞ (M) . Inversely, for E being a finite projective modules over C∞ (M) , the fiber
Em of the associated bundle E over the point x ∈ M is the space Ex = E/EIx where
the ideal is given by

Ix = ker{ξx : C∞ (M)→ IC; ξx(x) = f(x)} = {f ∈ C∞ (M) |f(x) = 0} ∈ C (M) .

If the algebra A is taken to play the role of smooth functions on a noncomutative,
instead of the commutative algebra smooth functions C∞ (M), the analogue of a vector
bundle is provided by a projective module of finite type (equivalently, finite projective
module) over A. On considers the proper construction of projective modules of finite
type generalizing the Hermitian bundles as well the notion of Hilbert module when A is
a C∗–algebra in the Appendix C of Ref. [28].

A vector space E over the complex number field IC can be defined also as a right
module of an algebra A over IC which carries a right representation of A, when for
every map of elements E ×A ∋ (η, a)→ ηa ∈ E one hold the properties

λ(ab) = (λa)b, λ(a + b) = λa + λb, (λ+ µ)a = λa+ µa
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fro every λ, µ ∈ E and a, b ∈ A.
Having two A–modules E and F , a morphism of E into F is any linear map ρ : E

→ F which is also A–linear, i. e. ρ(ηa) = ρ(η)a for every η ∈ E and a ∈ A.
We can define in a similar (dual) manner the left modules and theirs morphisms

which are distinct from the right ones for noncommutative algebras A. A bimodule over
an algebraA is a vector space E which carries both a left and right module structures. We
may define the opposite algebra Ao with elements ao being in bijective correspondence
with the elements a ∈ A while the multiplication is given by aobo = (ba)o .A right
(respectively, left) A–module E is connected to a left (respectively right) Ao–module via
relations aoη = ηao (respectively, aη = ηa).

One introduces the enveloping algebra Aε = A ⊗IC Ao; any A–bimodule E can be
regarded as a right [left] Aε–module by setting η (a⊗ bo) = bηa [(a⊗ bo) η = aηb] .

For a (for instance, right) module E , we may introduce a family of elements (et)t∈T
parametrized by any (finite or infinite) directed set T for which any element η ∈ E is
expressed as a combination (in general, in more than one manner) η =

∑
t∈T etat with

at ∈ A and only a finite number of non vanishing terms in the sum. A family (et)t∈T is
free if it consists from linearly independent elements and defines a basis if any element
η ∈ E can be written as a unique combination (sum). One says a module to be free if it
admits a basis. The module E is said to be of finite type if it is finitely generated, i. e.
it admits a generating family of finite cardinality.

Let us consider the module AK + ICK ⊗IC A. The elements of this module can be
thought as K–dimensional vectors with entries in A and written uniquely as a linear
combination η =

∑K
t=1 etat were the basis et identified with the canonical basis of ICK .

This is a free and finite type module. In general, we can have bases of different cardinality.
However, if a module E is of finite type there is always an integer K and a module
surjection ρ : AK → E with a base being a image of a free basis, ǫj = ρ(ej); j = 1, 2, ..., K.

In general, it is not possible to solve the constraints among the basis elements as to
get a free basis. The simplest example is to take a sphere S2 and the Lie algebra of
smooth vector fields on it, G = G(S2) which is a module of finite type over C∞ (S2) ,
with the basis defined by Xi =

∑3
j,k=1 εijkxk∂/∂x

k; i, j, k = 1, 2, 3, and coordinates xi

such that
∑3

j=1 x
2
j = 1. The introduced basis is not free because

∑3
j=1 xjXj = 0; there

are not global vector field on S2 which could form a basis of G(S2). This means that the
tangent bundle TS2 is not trivial.

We say that a right A–module E is projective if for every surjective module morphism
ρ :M→N splits, i. e. there exists a module morphism s : E →M such that ρ◦s = idE .
There are different definitions of porjective modules (see Ref. [28] on properties of such
modules). Here we note the property that if a A–module E is projective, there exists a
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free module F and a module E ′ (being a priory projective) such that F = E ⊕ E ′.
For the rightA–module E being projective and of finite type with surjection ρ : AK →

E and following the projective property we can find a lift λ̃ : E →AK such that ρ◦λ̃ = idE .
There is a proof of the property that the module E is projective of finite type overA if and
only if there exists an idempotent p ∈ EndAAK = MK(A), p2 = p, the MK(A) denoting
the algebra ofK×K matrices with entry in A, such that E = pAK . We may associate the
elements of E to K–dimensional column vectors whose elements are in A, the collection
of which are invariant under the map p, E = {ξ = (ξ1, ..., ξK); ξj ∈ A, pξ = ξ}. For
simplicity, we shall use the term finite projective to mean projective of finite type.

The noncommutative variant of the theory of vector bundles may be constructed
by using the Serre and Swan theorem [46, 28] which states that for a compact finite
dimensional manifold M, a C∞ (M)–module E is isomorphic to a module Γ (E,M) of
smooth sections of a bundle E → M, if and only if it is finite projective. If E is
a complex vector bundle over a compact manifold M of dimension n, there exists a
finite cover {Ui, i = 1, ..., n} of M such that E|Ui

is trivial. Thus, the integer K which
determines the rank of the free bundle from which to project onto sections of the bundle
is determined by the equality N = mn where m is the rank of the bundle (i. e. of the
fiber) and n is the dimension of M.

13.3.2 The commutative nonlinear connection geometry

Let us remember the definition and the main results on nonlinear connections in
commutative vector bundles as in Ref. [36].

Vector bundles, Riemannian spaces and nonlinear connections

We consider a vector bundle ξ = (E, µ,M) whose fibre is IRm and µT : TE → TM
denotes the differential of the map µ : E → M. The map µT is a fibre–preserving
morphism of the tangent bundle (TE, τE, E) to E and of tangent bundle (TM, τ,M) to
M. The kernel of the morphism µT is a vector subbundle of the vector bundle (TE, τE, E) .
This kernel is denoted (V E, τV , E) and called the vertical subbundle over E. We denote
by i : V E → TE the inclusion mapping and the local coordinates of a point u ∈ E by
uα = (xi, ya) , where indices i, j, k, ... = 1, 2, ..., n and a, b, c, ... = 1, 2, ..., m.

A vector Xu ∈ TE, tangent in the point u ∈ E, is locally represented
(
x, y,X, X̃

)
=

(xi, ya, X i, Xa) , where (X i) ∈IRn and (Xa) ∈IRm are defined by the equality Xu =
X i∂i +Xa∂a [∂α = (∂i, ∂a) are usual partial derivatives on respective coordinates xi and

ya]. For instance, µT
(
x, y,X, X̃

)
= (x,X) and the submanifold V E contains elements



456 CHAPTER 13. NONCOMMUTATIVE FINSLER GRAVITY

of type
(
x, y, 0, X̃

)
and the local fibers of the vertical subbundle are isomorphic to IRm.

Having µT (∂a) = 0, one comes out that ∂a is a local basis of the vertical distribution
u→ VuE on E, which is an integrable distribution.

A nonlinear connection (in brief, N–connection) in the vector bundle ξ = (E, µ,M)
is the splitting on the left of the exact sequence

0→ V E → TE/V E → 0,

i. e. a morphism of vector bundles N : TE → V E such that C ◦ i is the identity on V E.
The kernel of the morphism N is a vector subbundle of (TE, τE , E) , it is called

the horizontal subbundle and denoted by (HE, τH , E) . Every vector bundle (TE, τE , E)
provided with a N–connection structure is Whitney sum of the vertical and horizontal
subbundles, i. e.

TE = HE ⊕ V E. (13.1)

It is proven that for every vector bundle ξ = (E, µ,M) over a compact manifold M there
exists a nonlinear connection [36].

Locally a N–connection N is parametrized by a set of coefficients
Na
i (u

α) = Na
i (x

j , yb) which transforms as

Na′

i′
∂xi

′

∂xi
= Ma′

a N
a
i −

∂Ma′

a

∂xi
ya

under coordinate transforms on the vector bundle ξ = (E, µ,M) ,

xi
′

= xi
′ (
xi
)

and ya
′

= Ma′

a (x)ya.

If a N–connection structure is defined on ξ, the operators of local partial derivatives
∂α = (∂i, ∂a) and differentials dα = duα = (di = dxi, da = dya) should be elongated as
to adapt the local basis (and dual basis) structure to the Whitney decomposition of the
vector bundle into vertical and horizontal subbundles, (13.1):

∂α = (∂i, ∂a)→ δα =
(
δi = ∂i −N b

i ∂b, ∂a
)
, (13.2)

dα =
(
di, da

)
→ δα =

(
di, δa = da +N b

i d
i
)
. (13.3)

The transforms can be considered as some particular case of frame (vielbein) transforms
of type

∂α → δα = eβα∂β and dα → δα = (e−1)αβδ
β,

eβα(e
−1)γβ = δγα, when the ”tetradic” coefficients δβα are induced by using the Kronecker

symbols δba, δ
i
j and N b

i .
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The bases δα and δα satisfy in general some anholonomy conditions, for instance,

δαδβ − δβδα = W γ
αβδγ, (13.4)

where W γ
αβ are called the anholonomy coefficients.

Tensor fields on a vector bundle ξ = (E, µ,M) provided with N–connection structure
N, we shall write ξN , may be decomposed with in N–adapted form with respect to the
bases δα and δα, and their tensor products. For instance, for a tensor of rang (1,1)
T = {T β

α =
(
T j
i , T

a
i , T

j
b , T

b
a

)
} we have

T = T β
α δα ⊗ δβ = T j

i d
i ⊗ δi + T a

i d
i ⊗ ∂a + T j

b δ
b ⊗ δj + T b

a δ
a ⊗ ∂b. (13.5)

Every N–connection with coefficients N b
i automatically generates a linear connection

on ξ as Γ
(N)γ
αβ = {Na

bi = ∂Na
i (x, y)/∂yb} which defines a covariant derivative D

(N)
α Aβ =

δαA
β + Γ

(N)β
αγ Aγ .

Another important characteristic of a N–connection is its curvature Ω = {Ωa
ij} with

the coefficients

Ωa
ij = δjN

a
i − δiNa

j = ∂jN
a
i − ∂iNa

j +N b
iN

a
bj −N b

jN
a
bi.

In general, on a vector bundle we consider arbitrary linear connection and, for in-
stance, metric structure adapted to the N–connection decomposition into vertical and
horizontal subbundles (one says that such objects are distinguished by the N–connection,
in brief, d–objects, like the d-tensor (13.5), d–connection, d–metric:

• the coefficients of linear d–connections Γ = {Γβαγ =
(
Lijk, L

a
bk, C

i
jc, C

b
ac

)
} are defined

for an arbitrary covariant derivative D on ξ being adapted to the N–connection
structure as Dδα(δβ) = Γγβαδγ with the coefficients being invariant under horizontal
and vertical decomposition

Dδi(δj) = Lkjiδk, Dδi(∂a) = Lbai∂b, D∂c(δj) = Ck
jcδk, D∂c(∂a) = Cb

ac∂b.

• the d–metric structure G = gαβδ
a ⊗ δb which has the invariant decomposition as

gαβ = (gij , gab) following from

G = gij(x, y)d
i ⊗ dj + gab(x, y)δ

a ⊗ δb. (13.6)

We may impose the condition that a d–metric and a d–connection are compatible, i.
e. there are satisfied the conditions

Dγgαβ = 0. (13.7)
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With respect to the anholonomic frames (13.2) and (13.3), there is a linear connec-
tion, called the canonical distinguished linear connection, which is similar to the metric
connection introduced by the Christoffel symbols in the case of holonomic bases, i. e.
being constructed only from the metric components and satisfying the metricity condi-
tions (13.7). It is parametrized by the coefficients, Γαβγ =

(
Li jk, L

a
bk, C

i
jc, C

a
bc

)
with

the coefficients

Li jk =
1

2
gin (δkgnj + δjgnk − δngjk) , (13.8)

Labk = ∂bN
a
k +

1

2
hac
(
δkhbc − hdc∂bNd

k − hdb∂cNd
k

)
,

Ci
jc =

1

2
gik∂cgjk, C

a
bc =

1

2
had (∂chdb + ∂bhdc − ∂dhbc) .

We note that on Riemannian spaces the N–connection is an object completely defined by
anholonomic frames, when the coefficients of frame transforms, eβα (uγ) , are parametrized
explicitly via certain values

(
Na
i , δ

j
i , δ

a
b

)
, where δji and δab are the Kronecker symbols.

By straightforward calculations we can compute that the coefficients of the Levi–Civita
metric connection

Γ▽
αβγ = g (δα,▽γδβ) = gατΓ

▽τ
βγ ,

associated to a covariant derivative operator ▽, satisfying the metricity condition
▽γgαβ = 0 for gαβ = (gij , hab) ,

Γ▽
αβγ =

1

2

[
δβgαγ + δγgβα − δαgγβ + gατW

τ
γβ + gβτW

τ
αγ − gγτW τ

βα

]
, (13.9)

are given with respect to the anholonomic basis (13.3) by the coefficients

Γ▽τ
βγ =

(
Li jk, L

a
bk, C

i
jc +

1

2
gikΩa

jkhca, C
a
bc

)
. (13.10)

A specific property of off–diagonal metrics is that they can define different classes of
linear connections which satisfy the metricity conditions for a given metric, or inversely,
there is a certain class of metrics which satisfy the metricity conditions for a given linear
connection. This result was originally obtained by A. Kawaguchi [24] (Details can be
found in Ref. [36], see Theorems 5.4 and 5.5 in Chapter III, formulated for vector bundles;
here we note that similar proofs hold also on manifolds enabled with anholonomic frames
associated to a N–connection structure).

With respect to anholonomic frames, we can not distinguish the Levi–Civita connec-
tion as the unique both metric and torsionless one. For instance, both linear connections
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(13.8) and (13.10) contain anholonomically induced torsion coefficients, are compatible
with the same metric and transform into the usual Levi–Civita coefficients for vanishing
N–connection and ”pure” holonomic coordinates. This means that to an off–diagonal
metric in general relativity one may be associated different covariant differential calculi,
all being compatible with the same metric structure (like in the non–commutative geom-
etry, which is not a surprising fact because the anolonomic frames satisfy by definition
some non–commutative relations (13.4)). In such cases we have to select a particular
type of connection following some physical or geometrical arguments, or to impose some
conditions when there is a single compatible linear connection constructed only from the
metric and N–coefficients. We note that if Ωa

jk = 0 the connections (13.8) and (13.10)

coincide, i. e. Γαβγ = Γ▽α
βγ .

D–torsions and d–curvatures:

The anholonomic coefficients W γ
αβ and N–elongated derivatives give nontrivial coef-

ficients for the torsion tensor, T (δγ, δβ) = T αβγδα, where

T αβγ = Γαβγ − Γαγβ + wαβγ , (13.11)

and for the curvature tensor, R(δτ , δγ)δβ = R α
β γτδα, where

R α
β γτ = δτΓ

α
βγ − δγΓαβτ

+ΓϕβγΓ
α
ϕτ − ΓϕβτΓ

α
ϕγ + Γαβϕw

ϕ
γτ . (13.12)

We emphasize that the torsion tensor on (pseudo) Riemannian spacetimes is induced by
anholonomic frames, whereas its components vanish with respect to holonomic frames.
All tensors are distinguished (d) by the N–connection structure into irreducible (horizont-
al–vertical) h–v–components, and are called d–tensors. For instance, the torsion, d–
tensor has the following irreducible, nonvanishing, h–v–components,
T αβγ = {T ijk, Ci

ja, S
a
bc, T

a
ij, T

a
bi}, where

T i.jk = T ijk = Lijk − Likj, T ija = Ci
.ja, T iaj = −Ci

ja,

T i.ja = 0, T a.bc = Sa.bc = Ca
bc − Ca

cb, (13.13)

T a.ij = −Ωa
ij , T a.bi = ∂bN

a
i − La.bi, T a.ib = −T a.bi

(the d–torsion is computed by substituting the h–v–components of the canonical d–
connection (13.8) and anholonomy coefficients(13.4) into the formula for the torsion
coefficients (13.11)).
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The curvature d-tensor has the following irreducible, non-vanishing, h–v–components
R α
β γτ = {R.i

h.jk, R
.a
b.jk, P

.i
j.ka, P

.c
b.ka, S

.i
j.bc, S

.a
b.cd}, where

R.i
h.jk = δkL

i
.hj − δjLi.hk + Lm.hjL

i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk, (13.14)

R.a
b.jk = δkL

a
.bj − δjLa.bk + Lc.bjL

a
.ck − Lc.bkLa.cj − Ca

.bcΩ
c
.jk,

P .i
j.ka = ∂aL

i
.jk + Ci

.jbT
b
.ka − (δkC

i
.ja + Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc),

P .c
b.ka = ∂aL

c
.bk + Cc

.bdT
d
.ka − (δkC

c
.ba + Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd),

S .ij.bc = ∂cC
i
.jb − ∂bCi

.jc + Ch
.jbC

i
.hc − Ch

.jcC
i
hb,

S .ab.cd = ∂dC
a
.bc − ∂cCa

.bd + Ce
.bcC

a
.ed − Ce

.bdC
a
.ec

(the d–curvature components are computed in a similar fashion by using the formula for
curvature coefficients (13.12)).

Einstein equations in d–variables

In this subsection we write and analyze the Einstein equations on spaces provided
with anholonomic frame structures and associated N–connections.

The Ricci tensor Rβγ = R α
β γα has the d–components

Rij = R.k
i.jk, Ria = −2Pia = −P .k

i.ka, (13.15)

Rai = 1Pai = P .b
a.ib, Rab = S .ca.bc.

In general, since 1Pai 6= 2Pia, the Ricci d-tensor is non-symmetric (this could be with
respect to anholonomic frames of reference). The scalar curvature of the metric d–

connection,
←−
R = gβγRβγ, is computed

←−
R = GαβRαβ = R̂ + S, (13.16)

where R̂ = gijRij and S = habSab.
By substituting (13.15) and (13.16) into the Einstein equations

Rαβ −
1

2
gαβR = κΥαβ , (13.17)

where κ and Υαβ are respectively the coupling constant and the energy–momentum
tensor we obtain the h-v-decomposition by N–connection of the Einstein equations

Rij −
1

2

(
R̂ + S

)
gij = κΥij , (13.18)

Sab −
1

2

(
R̂ + S

)
hab = κΥab,

1Pai = κΥai,
2Pia = κΥia.
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The definition of matter sources with respect to anholonomic frames is considered in
Refs. [49, 54, 36].

The vacuum 5D, locally anisotropic gravitational field equations, in invariant h– v–
components, are written

Rij = 0, Sab = 0, (13.19)
1Pai = 0, 2Pia = 0.

We emphasize that vector bundles and even the (pseudo) Riemannian space-times
admit non–trivial torsion components, if off–diagonal metrics and anholomomic frames
are introduced into consideration. This is a ”pure” anholonomic frame effect: the tor-
sion vanishes for the Levi–Civita connection stated with respect to a coordinate frame,
but even this metric connection contains some torsion coefficients if it is defined with
respect to anholonomic frames (this follows from the W–terms in (3.10)). For (pseudo)
Riemannian spaces we conclude that the Einstein theory transforms into an effective
Einstein–Cartan theory with anholonomically induced torsion if the general relativity is
formulated with respect to general frame bases (both holonomic and anholonomic).

The N–connection geometry can be similarly formulated for a tangent bundle TM
of a manifold M (which is used in Finsler and Lagrange geometry [36]), on cotangent
bundle T ∗M and higher order bundles (higher order Lagrange and Hamilton geometry
[35]) as well in the geometry of locally anisotropic superspaces [51], superstrings [53],
anisotropic spinor [49] and gauge [61] theories or even on (pseudo) Riemannian spaces
provided with anholonomic frame structures [62].

13.3.3 Nonlinear connections in projective modules

The nonlinear connection (N–connection) for noncommutative spaces can be de-
fined similarly to commutative spaces by considering instead of usual vector bundles
theirs noncommutative analogs defined as finite projective modules over noncommuta-
tive algebras. The explicit constructions depend on the type of differential calculus we
use for definition of tangent structures and theirs maps.

In general, there can be several differential calculi over a given algebra A (for a
more detailed discussion within the context of noncommutative geometry see Refs. [8,
31, 15]; a recent approach is connected with Lie superalgebra structures on the space
of multiderivations [18]). For simplicity, in this work we fix a differential calculus on
A, which means that we choose a (graded) algebra Ω∗(A) = ∪pΩp(A) which gives a
differential structure to A. The elements of Ωp(A) are called p–forms. There is a linear
map d which takes p–forms into (p+ 1)–forms and which satisfies a graded Leibniz rule
as well the condition d2 = 0. By definition Ω0(A) = A.
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The differential df of a real or complex variable on a vector bundle ξN

df = δif dx
i + ∂af δy

a,

δif = ∂if −Na
i ∂af , δy

a = dya +Na
i dx

i

in the noncommutative case is replaced by a distinguished commutator (d–commutator)

df = [F, f ] =
[
F [h], f

]
+
[
F [v], f

]

where the operator F [h] (F [v]) is acting on the horizontal (vertical) projective submodule
being defined by some fixed differential calculus Ω∗(A[h]) (Ω∗(A[v])) on the so–called
horizontal (vertical) A[h] (A[v]) algebras.

Let us consider instead of a vector bundle ξ an A–module E being projective and
of finite type. For a fixed differential calculus on E we define the tangent structures TE
and TM. A nonlinear connectionN in an A–module E is defined by an exact sequence
of finite projective A–moduli

0→ V E → TE/V E → 0,

where all subspaces are constructed as in the commutative case with that difference that
the vector bundle objects are substituted by theirs projective modules equivalents. A
projective module provided with N–connection structures will be denoted as EN . All
objects on a EN have a distinguished invariant character with respect to the horizontal
and vertical subspaces.

To understand how the N–connection structure may be taken into account on non-
commutative spaces we analyze in the next subsection an example.

13.3.4 Commutative and noncommutative gauge d–fields

Let us consider a vector bundle ξN and a another vector bundle β = (B, π, ξN) with
π : B → ξN with a typical k-dimensional vector fiber. In local coordinates a linear
connection (a gauge field) in β is given by a collection of differential operators

▽α = Dα +Bα(u),

acting on TξN where

Dα = δα ± Γ·
·α with Di = δi ± Γ·

·i and Da = ∂a ± Γ·
·a
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is a d–connection in ξN (α = 1, 2, ..., n + m), with δα N–elongated as in (13.2), u =
(x, y) ∈ ξN and Bα are k × k–matrix valued functions. For every vector field

X = Xα(u)δα = X i(u)δi +Xa(u)∂a ∈ TξN
we can consider the operator

Xα(u)▽α (f · s) = f · ▽Xs+ δXf · s (13.20)

for any section s ∈ B and function f ∈ C∞(ξN), where

δXf = Xαδα and ▽fX = f ▽X .

In the simplest definition we assume that there is a Lie algebra GLB that acts on
associative algebra B by means of infinitesimal automorphisms (derivations). This means
that we have linear operators δX : B → B which linearly depend on X and satisfy

δX(a · b) = (δXa) · b+ a · (δXb)

for any a, b ∈ B. The mapping X → δX is a Lie algebra homomorphism, i. e. δ[X,Y ] =
[δX , δY ].

Now we consider respectively instead of vector bundles ξ and β the finite projective
A–module EN , provided with N–connection structure, and the finite projective B–module
Eβ.

A d–connection ▽X on Eβ is by definition a set of linear d–operators, adapted to the
N–connection structure, depending linearly on X and satisfying the Leibniz rule

▽X(b · e) = b · ▽X(e) + δXb · e (13.21)

for any e ∈ Eβ and b ∈ B. The rule (13.21) is a noncommutative generalization of (13.20).
We emphasize that both operators ▽X and δX are distinguished by the N–connection
structure and that the difference of two such linear d–operators, ▽X − ▽′

X commutes
with action of B on Eβ, which is an endomorphism of Eβ. Hence, if we fix some fiducial
connection ▽′

X (for instance, ▽′
X = DX) on Eβ an arbitrary connection has the form

▽X = DX +BX ,

where BX ∈ EndBEβ depend linearly on X.
The curvature of connection ▽X is a two–form FXY which values linear operator in B

and measures a deviation of mapping X → ▽X from being a Lie algebra homomorphism,

FXY = [▽X ,▽Y ]−▽[X,Y ].
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The usual curvature d–tensor is defined as

Fαβ = [▽α,▽β]−▽[α,β].

The simplest connection on a finite projective B–module Eβ is to be specified by a
projector P : Bk⊗Bk when the d–operator δX acts naturally on the free module Bk. The
operator ▽LC

X = P · δX · P is called the Levi–Civita operator and satisfy the condition
Tr[▽LC

X , φ] = 0 for any endomorphism φ ∈ EndBEβ. From this identity, and from the
fact that any two connections differ by an endomorphism that

Tr[▽X, φ] = 0

for an arbitrary connection ▽X and an arbitrary endomorphism φ, that instead of ▽LC
X

we may consider equivalently the canonical d–connection, constructed only from d-metric
and N–connection coefficients.

13.4 Distinguished Spectral Triples

In this section we develop the basic ingredients introduced by A. Connes [8] to define
the analogue of differential calculus for noncommutative distinguished algebras. The
N–connection structures distinguish a commutative or a noncommutative spaces into
horizontal and vertical subspaces. The geometric objects possess a distinguished invari-
ant character with respect to a such splitting. The basic idea in definition of spectral
triples generating locally anisotropic spaces (Rimannian spaces with anholonomic struc-
ture, or, for more general constructions, Finsler and Lagrange spaces) is to consider
pairs of noncommutative algebras A[d] = (A[h],A[v]), given by respective pairs of ele-
ments a =

(
a[h], a[v]

)
∈ A[d], called also distinguished algebras (in brief, d–algebras),

together with d-operators D[d] = (D[h], D[v]) on a Hilbert space H (for simplicity we shall
consider one Hilbert space, but a more general construction can be provided for Hilbert
d-spaces, H[d] =

(
H[h],H[v]

)
.

The formula of Wodzicki–Adler–Manin–Guillemin residue (see, for instance, [28])
may be written for vector bundles provided with N–connection structure. It is necessary
to introduce the N–elongated differentials (13.2) in definition of the measure: Let Q be
a pseudo–differential operator of order −n acting on sections of a complex vector bundle
E →M over an n–dimensional compact Riemannian manifold M. The residue ResQ of
Q is defined by the formula

ResQ =:
1

n (2π)n

∫

S∗M

trEσ−n(Q)δµ,
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where σ−n(Q) is the principal symbol (a matrix–valued function on T ∗M which is ho-
mogeneous of degree −n in the fiber coordinates), the integral is taken over the unit
co–sphere S∗M = {(x, y) ∈ T ∗M : ||y|| = 1} ⊂ T ∗M, the trE is the matrix trace over
”internal indices” and the measures δµ = dxiδya.

A spectral d–triple
[
A[d],H, D[d]

]
is given by an involutive d–algebra of d–operators

D[d] consisting from pairs of bounded operators D[h] and D[v] on the Hilbert space H,
together with the self–adjoint operation D[d] = D∗

[d] for respective h- and v–components
on H being satisfied the properties:

1. The resolvents (D[h]−λ[h])
−1 and (D[v]−λ[v])

−1, λ[h], λ[v] ∈ IR, are compact operators
on H;

2. The commutators
[
D[h,], a[h]

]
+ D[h]a[h] − a[h]D[h] ∈ B(H) and

[
D[v,], a[v]

]
+

D[v]a[v] − a[v]D[v] ∈ B(H) for any a ∈ A[d], where by B(H) we denote the alge-
bra of bounded operators on H.

The h(v)–component of a d–triple is said to be even if there is a IZ2–grading for H,
i. e. an operator Υ on H such that

Υ = Υ∗,Υ2 = 1, ΥD[h(v)] −D[h(v)]Υ = 0, Υa− aΥ = 0

for every a ∈ A[d]. If such a grading does not exist, the h(v)–component of a d–triple is
said to be odd.

13.4.1 Canonical triples over vector bundles

The basic examples of spectral triples in connections with noncommutative field the-
ory and geometry models were constructed by means of the Dirac operator on a closed
n–dimensional Riemannian spin manifold (M, g) [8, 11]. In order to generate by us-
ing functional methods some anisotropic geometries, it is necessary to generalize the
approach to vector and covector bundles provided with compatible N–connection, d–
connection and metric structures. The theory of spinors on locally anisotropic spaces
was developed in Refs. [49, 62]. This section is devoted to the spectral d–triples defined
by the Dirac operators on closed regions of (n+m)–dimensional spin–vector manifolds.
We note that if we deal with off–diagonal metrics and/or anholonomic frames there is an
infinite number of d–connections which are compatible with d–metric and N–connection
structures, see discussion and details in Ref. [56]. For simplicity, we restrict our consid-
eration only to the Euclidean signature of metrics of type (13.6) (on attempts to define
triples with Minkowskian signatures see, for instance, Refs. [16]).
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For a spectral d–triple
[
A[d],H, D[d]

]
associated to a vector bundle ξN one takes the

components:

1. A[d] = F(ξN) is the algebra of complex valued functions on ξN .

2. H = L2(ξN , S) is the Hilbert space of square integrable sections of the irreducible
d–spinor bundle (of rank 2(n+m)/2 over ξN [49, 62]. The scalar product in L2(ξN , S)
is the defined by the measure associated to the d–metric (13.6),

(ψ, φ) =

∫
δµ(g)ψ(u)φ(u)

were the bar indicates to the complex conjugation and the scalar product in d–
spinor space is the natural one in IC2[n/2] ⊕ IC2[m/2].

3. D is a Dirac d–operator associated to one of the d–metric compatible d–connection,
for instance, with the Levi–Civita connection, canonical d–connection or another
one, denoted with a general symbol Γ = Γµδu

µ.

We note that the elements of the algebra A[d] acts as multiplicative operators on H,

(aψ)(u) =: f(u)ψ(u),

for every a ∈ A[d], ψ ∈ H.

Distinguished spinor structures

Let us analyze the connection between d–spinor structures and spectral d–triples over
a vector bundle ξN . One consider a (n+m)–bein (frame) decomposition of the d–metric
gαβ (13.6) (and its inverse gαβ),

gαβ(u) = eαα(u)e
β
β(u)η

αβ, ηαβ = eαα(u)e
β
β(u)gαβ,

ηαβ it the diagonal Euclidean (n + m)–metric, which is adapted to the N–connection
structure because the coefficients gαβ are defined with respect to the dual N–distinguish-
ed basis (13.3). We can define compatible with this decomposition d–connections Γ

α
βµ

(for instance, the Levi–Civita connection, which with respect to anholonomic frames
contains torsions components, or the canonical d–connection), defined by

Dµeβ = Γαβµeα,
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as the solution of the equations

δµe
ν
v − δνeνµ = Γ

ν
βµe

β
v − Γ

ν
βνe

β
µ.

We define by C (ξN) the Clifford bundle over ξN with the fiber at u ∈ ξN being
just the complexified Clifford d–algebra CliffIC (T ∗

uξN) , T ∗
uξN being dual to TuξN , and

Γ[ξN , C (ξN)] is the module of corresponding sections. By defining the maps

γ (δα) =
(
γ
(
di
)
, γ (δa)

)
+ γα(u) = γαeαα(u) =

(
γαeiα(u), γ

αeaα(u)
)
,

extended as an algebra map by A[d]–linearity, we construct an algebra morphism

γ : Γ (ξN , C (ξN))→ B(H). (13.22)

The indices of the ”curved” γα(u) and ”flat” γα gamma matrices can be lowered by using
respectively the d-metric components gαβ (u) and ηαβ, i. e. γβ(u) =γα(u) gαβ (u) and
γβ = γαηαβ. We take the gamma matrices to be Hermitian and to obey the relations,

γαγβ + γβγα = −2gαβ (γiγj + γjγi = −2gij, γaγb + γbγa = −2gab) ,

γαγβ + γβγα = −2ηαβ.

Every d–connection Γ
ν
βµ can be shifted as a d–covariant operator ▽[S]

µ =
(
▽[S]
i ,▽[S]

a

)
on

the bundle of d–spinors,

▽[S]
µ = δµ +

1

2
Γαβµγ

αγβ, Γ[S]
µ =

1

2
Γαβµγ

αγβ,

which defines the Dirac d–operator

[d]D =: γ ◦ ▽[S]
µ = γα(u)

(
δµ + Γ[S]

µ

)
= γαeµα

(
δµ + Γ[S]

µ

)
. (13.23)

Such formulas were introduced in Refs. [49] for distinguished spinor bundles (of first
and higher order). In this paper we revise them in connection to spectral d–triples and
noncommutative geometry. On such spaces one also holds a variant of Lichnerowicz
formula [4] for the square of the Dirac d–operator

[d]D
2 = ▽[S] +

1

4

←−
R, (13.24)

where the formulas for the scalar curvature
←−
R is given in (13.16) and

▽[S] = −gµν
(
▽[S]
µ ▽[S]

v −Γρµν▽[S]
ρ

)
.

In a similar manner as in Ref. [28] but reconsidering all computations on a vector
bundle ξN we can prove that for every d–triple

[
A[d],H, D[d]

]
one holds the properties:
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1. The vector bundle ξN is the structure space of the algebra A[d] of continuous
functions on ξN (the bar here points to the norm closure of A[d]).

2. The geodesic distance ρ between two points p1, p2 ∈ ξN is defined by using the
Dirac d–operator,

ρ (p1, p2) = sup
f∈

{
|f(p)− f(q)| : ||[D[d], f ]|| ≤ 1

}
.

3. The Dirac d–operator also defines the Riemannian measure on ξN ,
∫

ξN

f = c (n+m) trΓ
(
f |D[d]|−(n+m)

)

for every f ∈ A[d] and c (n+m) = 2[n+m−(n+m)/2−1]π(n+m)/2(n + m)Γ
(
n+m

2

)
,Γ

being the gamma function.

The spectral d–triple formalism has the same properties as the usual one with that
difference that we are working on spaces provided with N–connection structures and the
bulk of constructions and objects are distinguished by this structure.

Noncommutative differential forms

To construct a differential algebra of forms out a spectral d–triple
[
A[d],H, D[d]

]

one follows universal graded differential d–algebras defined as couples of universal ones,
respectively associated to the h– and v–components of some splitting to subspaces defined
by N–connection structures. Let A[d] be an associative d–algebra (for simplicity, with
unit) over the field of complex numbers IC. The universal d–algebra of differential forms
ΩA[d] = ⊕pΩpA[d] is introduced as a graded d–algebra when Ω0A[d] = A[d] and the space
Ω1A[d] of one–forms is generated as a left A[d]–module by symbols of degree δa, a ∈ A[d]

satisfying the properties

δ(ab) = (δa)b+ aδb and δ(αa+ βb) = α(δa) + βδb

from which follows δ1 = 0 which in turn implies δIC = 0. These relations state the
Leibniz rule for the map

δ : A[d] → Ω1A[d]

An element ̟ ∈ Ω1A[d] is expressed as a finite sum of the form

̟ =
∑

i

aibi
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for ai, bi ∈ A[d]. The left A[d]–module Ω1A[d] can be also endowed with a structure of
right A[d]–module if the elements are imposed to satisfy the conditions

(
∑

i

aiδbi

)
c =:

∑

i

ai(δbi)c =
∑

i

aiδ(bic)−
∑

i

aibiδc.

Given a spectral d–triple
[
A[d],H, D[d]

]
, one constructs and exterior d–algebra of

forms by means of a suitable representation of the universal algebra ΩA[d] in the d–
algebra of bounded operators on H by considering the map

π : ΩA[d] → B(H),

π (a0δa1...δap) = : a0 [D, a1] ... [D, ap]

which is a homomorphism since both δ and [D, .] are distinguished derivations on A[d].
More than that, since [D, a]∗ = − [D, a∗] , we have π (̟)∗ = π (̟∗) for any d–form
̟ ∈ ΩA[d] and π being a ∗–homomorphism.

Let J0 =: ⊕pJp0 be the graded two–sided ideal of ΩA[d] given by Jp0 =: {π (̟) = 0}
when J = J0 + δJ0 is a graded differential two–sided ideal of ΩA[d]. At the next step we
can define the graded differential algebra of Connes’ forms over the d–algebra A[d] as

ΩDA[d] =: ΩA[d]/J ≃ π
(
ΩA[d]

)
/π (δJ0) .

It is naturally graded by the degrees of ΩA[d] and J with the space of p–forms being given
by Ωp

DA[d] = ΩpA[d]/J
p. Being J a differential ideal, the exterior differential δ defines a

differential on ΩDA[d],

δ : Ωp
DA[d] → Ωp+1

D A[d], δ[̟] =: [δ̟]

with ̟ ∈ Ωp
DA[d] and [̟] being the corresponding class in Ωp

DA[d].
We conclude that the theory of distinguished d–forms generated by d–algebras, as

well of the graded differential d–algebra of Connes’ forms, is constructed in a usual form
(see Refs. [8, 28]) but for two subspaces (the horizontal and vertical ones) defined by a
N–connection structure.

The exterior d–algebra

The differential d–form formalism when applied to the canonical d–triple[
A[d],H, D[d]

]
over an ordinary vector bundle ξN provided with N–connection structure

reproduce the usual exterior d–algebra over this vector bundle. Consider our d–triple
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on a closed (n+m)–dimensional Riemannian spinc manifold as described in subsection
13.4.1 when A[d] = F(ξN) is the algebra of smooth complex valued functions on ξN
and H = L2(ξN , S) is the Hilbert space of square integrable sections of the irreducible
d–spinor bundle (of rank 2(n+m)/2 over ξN . We can identify

π (δf) =: [[d]D, f ] = γµ(u)δµf = γ (δξNf) (13.25)

for every f ∈ A[d], see the formula for the Dirac d–operator (13.23), where γ is the
d–algebra morphism (13.22) and δξN denotes the usual exterior derivative on ξN . In a
more general case, with f[i] ∈ A[d], [i] = [1], ..., [p], we can write

π
(
f[0]δf[1]...δf[p]

)
=: f[0][[d]D, f[1]]...[[d]D, f[p]] = γ

(
f[0]δξNf[1] · ... · δξNf[p]

)
, (13.26)

where the d–differentials δξNf[1] are regarded as sections of the Clifford d–bundle C1(ξN),
while f[i] can be thought of as sections of C0(ξN) and the dot · the Clifford product in
the fibers of C(ξN) = ⊕kCk(ξN), see details in Refs. [49, 62].

A generic differential 1–form on ξN can be written as
∑

[i] f
[i]
0 δξNf

[i]
1 with f

[i]
0 , f

[i]
1

∈ A[d]. Following the definitions (13.25) and (13.26), we can identify the distinguished
Connes’ 1–forms Ωp

DA[d] with the usual distinguished differential 1–forms, i. e.

Ωp
DA[d] ≃ Λp (ξN) .

For each u ∈ ξN , we can introduce a natural filtration for the Clifford d–algebra,
Cu(ξN) = ∪C(p)

u , where C
(p)
u is spanned by products of type χ[1] · χ[2] · ... · χ[p′], p

′ ≤
p, χ[i] ∈ T ∗

uξN . One defines a natural graded d–algebra,

grCu =:
∑

p

grpCu, grpCu = C(p)
u /C(p−1)

u , (13.27)

for which the natural projection is called the symbol map,

σp : C(p)
u → grpCu.

The natural graded d–algebra is canonical isomorphic to the complexified exterior d–
algebra ΛIC (T ∗

uξN) , the isomorphism being defined as

ΛIC (T ∗
uξN) ∋ χ[1] ∧ χ[2] ∧ ... ∧ χ[p] → σp

(
χ[1] · χ[2] · ... · χ[p]

)
∈ grpCu. (13.28)

As a consequence of formulas (13.27) and (13.28), for a canonical d–triple[
A[d],H, D[d]

]
over the vector bundle ξN , one follows the property: a pair of operators
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Q1 and Q2 on H is of the form Q1 = π(̟) and Q2 = π(δ̟) for some universal form
̟ ∈ ΩpA[d], if and only if there are sections ρ1 of C(p) and ρ2 of C(p+1) such that

Q1 = γ (ρ1) and Q2 = γ (ρ2)

for which

δξNσp (ρ1) = σp+1 (ρ2) .

The introduced symbol map defines the canonical isomorphism

σp : Ωp
DA[d] ≃ Γ

(
Λp

IC
T ∗ξN

)
(13.29)

which commutes with the differential. With this isomorphism the inner product on
Ωp
DA[d] (the scalar product of forms) is proportional to the Riemannian inner product of

distinguished p–forms on ξN ,

< ̟1, ̟2 >p= (−1)p
2(n+m)/2+1−(n+m)π−(n+m)/2

(n +m)Γ ((n +m)/2)

∫

ξN

̟1 ∧ ∗̟2 (13.30)

for every ̟1, ̟2 ∈ Ωp
DA[d] ≃ Γ

(
Λp

IC
T ∗ξN

)
.

The proofs of formulas (13.29) and (13.30) are similar to those given in [28] for
ξN = M.

13.4.2 Noncommutative Geometry and Anholonomic Gravity

We introduce the concepts of generalized Lagrange and Finsler geometry and outline
the conditions when such structures can be modelled on a Riemannian space by using
anholnomic frames.

Anisotropic spacetimes

Different classes of commutative anisotropic spacetimes are modelled by correspond-
ing parametriztions of some compatible (or even non–compatible) N–connection, d–
connection and d–metric structures on (pseudo) Riemannian spaces, tangent (or cotan-
gent) bundles, vector (or covector) bundles and their higher order generalizations in their
usual manifold, supersymmetric, spinor, gauge like or another type approaches (see Refs.
[56, 35, 36, 3, 49, 61, 54, 62]). Here we revise the basic definitions and formulas which
will be used in further noncommutative embedding and generalizations.
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Anholonomic structures on Riemannian spaces: We can generate an anholo-
nomic (equivalently, anisotropic) structure on a Rieman space of dimension (n+m) space
(let us denote this space V (n+m) and call it as a anholonomic Riemannian space) by
fixing an anholonomic frame basis and co-basis with associated N–connection Na

i (x, y),
respectively, as (13.2) and (13.3) which splits the local coordinates uα = (xi, ya) into two
classes: n holonomic coorinates, xi, and m anholonomic coordinates, ya. The d–metric
(13.6) on V (n+m),

G[R] = gij(x, y)dx
i ⊗ dxj + gab(x, y)δy

a ⊗ δyb (13.31)

written with respect to a usual coordinate basis duα = (dxi, dya) ,

ds2 = g
αβ

(x, y) duαduβ

is a generic off–diagonal Riemannian metric parametrized as

g
αβ

=

[
gij +Na

i N
b
j gab habN

a
i

habN
b
j gab

]
. (13.32)

Such type of metrics were largely investigated in the Kaluza–Klein gravity [42], but also
in the Einstein gravity [56]. An off–diagonal metric (13.32) can be reduced to a block
(n× n) ⊕ (m×m) form (gij, gab) , and even effectively diagonalized in result of a su-
perposition of ahnolonomic N–transforms. It can be defined as an exact solution of the
Einstein equations. With respect to anholonomic frames, in general, the Levi–Civita
connection obtains a torsion component (3.10). Every class of off–diagonal metrics can
be anholonomically equivalent to another ones for which it is not possible to a select
the Levi–Civita metric defied as the unique torsionless and metric compatible linear
connection. The conclusion is that if anholonomic frames of reference, which authomat-
ically induce the torsion via anholonomy coefficients, are considered on a Riemannian
space we have to postulate explicitly what type of linear connection (adapted both to
the anholonomic frame and metric structure) is chosen in order to construct a Rieman-
nian geometry and corresponding physical models. For instance, we may postulate the
connection (13.10) or the d–connection (13.8). Both these connections are metric com-
patible and transform into the usual Christoffel symbols if the N–connection vanishes,
i. e. the local frames became holonomic. But, in general, anholonomic frames and
off–diagonal Riemannian metrics are connected with anisotropic configurations which
allow, in principle, to model even Finsler like structures in (pseudo) Riemannian spaces
[55, 56].
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Finsler geometry and its almost Kahlerian model: The modern approaches to
Finsler geometry are outlined in Refs. [41, 36, 35, 3, 54, 62]. Here we emphasize that
a Finsler metric can be defined on a tangent bundle TM with local coordinates uα =
(xi, ya → yi) of dimension 2n, with a d–metric (13.6) for which the Finsler metric, i. e.
the quadratic form

g
[F ]
ij = gab =

1

2

∂2F 2

∂yi∂yj

is positive definite, is defined in this way: 1) A Finsler metric on a real manifold

M is a function F : TM → IR which on T̃M = TM\{0} is of class C∞ and F is
only continuous on the image of the null cross–sections in the tangent bundle to M. 2)

F (x, λy) = λF (x, λy) for every IR∗
+. 3) The restriction of F to T̃M is a positive function.

4) rank
[
g

[F ]
ij (x, y)

]
= n.

The Finsler metric F (x, y) and the quadratic form g
[F ]
ij can be used to define the

Christoffel symbols (not those from the usual Riemannian geometry)

cιjk(x, y) =
1

2
gih (∂jghk + ∂kgjh − ∂hgjk)

which allows to define the Cartan nonlinear connection as

N i
j(x, y) =

1

4

∂

∂yj
[
cιlk(x, y)y

lyk
]

(13.33)

where we may not distinguish the v- and h- indices taking on TM the same values.
In Finsler geometry there were investigated different classes of remarkable Finsler

linear connections introduced by Cartan, Berwald, Matsumoto and other ones (see details

in Refs. [41, 36, 3]). Here we note that we can introduce g
[F ]
ij = gab and N i

j(x, y) in (13.6)
and construct a d–connection via formulas (13.8).

A usual Finsler space F n = (M,F (x, y)) is completely defined by its fundamental

tensor g
[F ]
ij (x, y) and Cartan nonlinear connection N i

j(x, y) and its chosen d–connection
structure. But the N–connection allows us to define an almost complex structure I on
TM as follows

I (δi) = −∂/∂yi and I
(
∂/∂yi

)
= δi

for which I2 = −1.
The pair

(
G[F ], I

)
consisting from a Riemannian metric on TM,

G[F ] = g
[F ]
ij (x, y)dxi ⊗ dxj + g

[F ]
ij (x, y)δyi ⊗ δyj (13.34)
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and the almost complex structure I defines an almost Hermitian structure on T̃M asso-
ciated to a 2–form

θ = g
[F ]
ij (x, y)δyi ∧ dxj .

This model of Finsler geometry is called almost Hermitian and denoted H2n and it is
proven [36] that is almost Kahlerian, i. e. the form θ is closed. The almost Kahlerian

space K2n =
(
T̃M,G[F ], I

)
is also called the almost Kahlerian model of the Finsler

space F n.
On Finsler (and their almost Kahlerian models) spaces one distinguishes the almost

Kahler linear connection of Finsler type, D[I] on T̃M with the property that this covariant
derivation preserves by parallelism the vertical distribution and is compatible with the
almost Kahler structure

(
G[F ], I

)
, i.e.

D
[I]
X G

[F ] = 0 and D
[I]
X I = 0

for every d–vector field on T̃M. This d–connection is defined by the data

Γ =
(
Lijk, L

a
bk = 0, Ci

ja = 0, Ca
bc → Ci

jk

)

with Lijk and Ci
jk computed as in the formulas (13.8) by using g

[F ]
ij and N i

j from (13.33).
We emphasize that a Finsler space F n with a d–metric (13.34) and Cartan’s N–

connection structure (13.33), or the corresponding almost Hermitian (Kahler) model
H2n, can be equivalently modelled on a Riemannian space of dimension 2n provided
with an off–diagonal Riemannian metric (13.32). From this viewpoint a Finsler geome-
try is a corresponding Riemannian geometry with a respective off–diagonal metric (or,
equivalently, with an anholonomic frame structure with associated N–connection) and
a corresponding prescription for the type of linear connection chosen to be compatible
with the metric and N–connection structures.

Lagrange and generalized Lagrange geometry: The Lagrange spaces were intro-
duced in order to generalize the fundamental concepts in mechanics [26] and investigated
in Refs. [36] (see [49, 61, 51, 53, 54, 62] for their spinor, gauge and supersymmetric gen-
eralizations).

A Lagrange space Ln = (M,L (x, y)) is defined as a pair which consists of a real,
smooth n–dimensional manifold M and regular Lagrangian L : TM → IR. Similarly as
for Finsler spaces one introduces the symmetric d–tensor field

g
[L]
ij = gab =

1

2

∂2L

∂yi∂yj
. (13.35)
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So, the Lagrangian L(x, y) is like the square of the fundamental Finsler metric, F 2(x, y),
but not subjected to any homogeneity conditions.

In the rest me can introduce similar concepts of almost Hermitian (Kahlerian) models
of Lagrange spaces as for the Finsler spaces, by using the similar definitions and formulas
as in the previous subsection, but changing g

[F ]
ij → g

[L]
ij .

R. Miron introduced the concept of generalized Lagrange space, GL–space (see de-
tails in [36]) and a corresponding N–connection geometry on TM when the fundamental
metric function gij = gij (x, y) is a general one, not obligatory defined as a second deriva-
tive from a Lagrangian as in (13.35). The corresponding almost Hermitian (Kahlerian)
models of GL–spaces were investigated and applied in order to elaborate generalizations
of gravity and gauge theories [36, 61].

Finally, a few remarks on definition of gravity models with generic local anisotropy
on anholonomic Riemannian, Finsler or (generalized) Lagrange spaces and vector bun-

dles. So, by choosing a d-metric (13.6) (in particular cases (13.31), or (13.34) with g
[F ]
ij ,

or g
[L]
ij ) we may compute the coefficients of, for instance, d–connection (13.8), d–torsion

(13.13) and (13.14) and even to write down the explicit form of Einstein equations (13.18)
which define such geometries. For instance, in a series of works [55, 56, 62] we found
explicit solutions when Finsler like and another type anisotropic configurations are mod-
elled in anisotropic kinetic theory and irreversible thermodynamics and even in Einstein
or low/extra–dimension gravity as exact solutions of the vacuum (13.18) and nonvac-
uum (13.19) Einstein equations. From the viewpoint of the geometry of anholonomic
frames is not much difference between the usual Riemannian geometry and its Finsler
like generalizations. The explicit form and parametrizations of coefficients of metric,
linear connections, torsions, curvatures and Einstein equations in all types of mentioned
geometric models depends on the type of anholomic frame relations and compatibility
metric conditions between the associated N–connection structure and linear connections
we fixed. Such structures can be correspondingly picked up from a noncommutative
functional model, for instance from some almost Hermitian structures over projective
modules and/or generalized to some noncommutative configurations.

13.4.3 Noncommutative Finsler like gravity models

We shall briefly describe two possible approaches to the construction of gravity models
with generic anisotropy following from noncommutative geometry which while agreeing
for the canonical d–triples associated with vector bundles provided with N–connection
structure. Because in the previous section we proved that the Finsler geometry and
its extensions are effectively modelled by anholonomic structures on Riemannian man-
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ifolds (bundles) we shall only emphasize the basic ideas how from the beautiful result
by Connes [8, 9] we may select an anisotropic gravity (possible alternative approaches
to noncommutative gravity are examined in Refs. [7, 31, 16, 29, 30]; by introducing an-
holonomic frames with associated N–connections those models also can be transformed
into certain anisotropic ones; we omit such considerations in the present work).

Anisotropic gravity a la Connes–Deximier–Wodzicki

The first scheme to construct gravity models in noncommutative geometry (see details
in [8, 28]) may be extend for vector bundles provided with N–connection structure (i. e.
to projective finite distinguished moduli) and in fact to reconstruct the full anisotorpic
(for instance, Finsler) geometry from corresponding distinguishing of the Diximier trace
and the Wodzicki residue.

Let us consider a smooth compact vector bundle ξN without boundary and of dimen-
sion n+m and D[t] as a ”symbol” for a time being operator and denote A[d] = C∞ (ξN) .
For a unitary representation [Aπ, Dπ] of the couple

(
A[d], D[t]

)
as operators on an Hilbert

space Hπ provided with a real structure operator Jπ, such that [Aπ, Dπ,H, Jπ] satisfy
all axioms of a real spectral d–triple. Then, one holds the properties:

1. There is a unique Riemannian d–metric gπ on ξN such the geodesic distance in the
total space of the vector bundle between every two points u[1] and u[2] is given by

d
(
u[1], u[2]

)
= sup

a∈A[d]

{∣∣a(u[1])− a(u[2])
∣∣ : ‖Dπ, π (a)‖B(Hπ) ≤ 1

}
.

2. The d–metric gπ depends only on the unitary equivalence class of the representa-
tions π. The fibers of the map π → gπ form unitary equivalence classes of represen-
tations to metrics define a finite collection of affine spaces Aσ parametrized by the
spin structures σ on ξN . These spin structures depends on the type of d–metrics
we are using in ξN .

3. The action functional given by the Diximier trace

G
(
D[t]

)
= tr̟

(
Dn+m−2

[t]

)

is a positive quadratic d–form with a unique minimum πσ for each Aσ. At the
minimum, the values of G

(
D[t]

)
coincides with the Wodzicki residue of Dn+m−2

σ
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and is proportional to the Hilbert–Einstein action for a fixed d–connection,

G (Dσ) = ResW
(
Dn+m−2
σ

)
= :

1

(n +m) (2π)n+m

∫

S∗ξN

tr
[
σ−(n+m) (u, u′) δuδu′

]

= cn+m

∫

ξN

←−
Rδu,

where

cn+m =
n +m− 2

12

2[(n+m)/2]

(4π)(n+m)/2 Γ
(
n+m

2
+ 1
) ,

σ−(n+m) (u, u′) is the part of order −(n +m) of the total symbol of Dn+m−2
σ ,

←−
R is

the scalar curvature (13.16) on ξN and tr is a normalized Clifford trace.

4. It is defined a representation of
(
A[d], D[t]

)
for every minimum πσ on the Hilbert

space of square integrable d–spinors H = L2(ξN , Sσ) where A[d] acts by multiplica-
tive operators and Dσ is the Dirac operator of chosen d–connection. If there is no
real structure J, one has to replace spin by spinc (for d–spinors investigated in
Refs. [49, 54, 62]). In this case there is not a uniqueness and the minimum of
the functional G (D) is reached on a linear subspace of Aσ with σ a fixed spinc

structure. This subspace is parametrized by the U (1) gauge potentials entering in
the spinc Dirac operator (the rest properties hold).

The properties 1-4 are proved in a similar form as in [23, 16, 28], but all computations
are distinguished by the N–connection structure and a fixed type of d–connection (we
omit such details). We can generate an anholonomic Riemannian, Finsler or Lagrange
gravity depending on the class of d–metrics ((13.31), (13.34), (13.35), or a general one
for vector bundles (13.6)) we choose.

Spectral anisotropic Gravity

Consider a canonical d–triple
[
A[d] = C∞ (ξN) ,H = L2 (ξN) ,[d]D

]
defined in subsec-

tion 13.4.1 for a vector bundle ξN , where [d]D is the Dirac d–operator (13.23) defined for
a d–connection on ξN . We are going to compute the action

SG
(
[d]D,Λ

)
= trH

[
χ

(
[d]D

2

Λ2

)]
, (13.36)

depending on the spectrum of [d]D, were trH is the usual trace in the Hilbert space, Λ is
the cutoff parameter and χ will be closed as a suitable cutoff function which cut off all
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eigenvalues of [d]D
2 larger than Λ2. By using the Lichnerowicz formula, in our case with

operators for a vector bundle, and the heat kernel expansion (similarly as for the proof
summarized in Ref. [28])

SG
(
[d]D,Λ

)
=
∑

k≥0

fkak
(
[d]D

2/Λ2
)
,

were the coefficients fk are computed

f0 =

∞∫

0

χ (z) zdz, f2 =

∞∫

0

χ (z) dz, f2(k′+2) = (−1)k
′

χ(k′) (0) , k′ ≥ 0,

χ(k′) denotes the k′th derivative on its argument, the so–called non–vanishing Seeley–de
Witt coefficients ak

(
[d]D

2/Λ2
)

are defined for even values of k as integrals

ak
(
[d]D

2/Λ2
)

=

∫

ξN

ak
(
u;[d]D

2/Λ2
)√

gδu

with the first three subintegral functions given by

a0

(
u;[d]D

2/Λ2
)

= Λ4 (4π)−(n+m)/2 trI2[(n+m)/2] ,

a2

(
u;[d]D

2/Λ2
)

= Λ2 (4π)−(n+m)/2
(
−←−R/6 + E

)
trI2[(n+m)/2] ,

a4

(
u;[d]D

2/Λ2
)

= (4π)−(n+m)/2 1

360
(−12DµD

µ←−R + 5
←−
R 2 − 2RµνR

µν

−7

4
RµναβR

µναβ − 60RE + 180E2 + 60DµD
µ←−E )trI2[(n+m)/2] ,

and
←−
E =:[d] D

2 − ▽[S] =
←−
R/4, see (13.24). We can use for the function χ the charac-

teristic value of the interval [0, 1], namely χ (z) = 1 for z ≤ 1 and χ (z) = 0 for z ≥ 1,
possibly ’smoothed out’ at z = 1, we get

f0 = 1/2, f2 = 1, f2(k′+2) = 0, k′ ≥ 0.

We compute (a similar calculus is given in [28]; we only distinguish the curvature
scalar, the Ricci and curvature d–tensor) the action (13.36),

SG
(
[d]D,Λ

)
= Λ4 2(n+m)/2−1

(4π)(n+m)/2

∫

ξN

√
gδu+

Λ2

6

2(n+m)/2−1

(4π)(n+m)/2

∫

ξN

√
g
←−
Rδu.
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This action is dominated by the first term with a huge cosmological constant. But this
constant can be eliminated [30] if the function χ (z) is replaced by χ̃ (z) = χ (z)−αχ (βz)
with any two numbers α and β such that α = β2 and β ≥ 0, β 6= 1. The final form of
the action becomes

SG
(
[d]D,Λ

)
=

(
1− α

β2

)
f2

Λ2

6

2(n+m)/2−1

(4π)(n+m)/2

∫

ξN

√
g
←−
Rδu+O

(
(Λ2)0

)
. (13.37)

From the action (13.37) we can generate different models of anholonomic Riemannian,
Finsler or Lagrange gravity depending on the class of d–metrics ((13.31), (13.34), (13.35),
or a general one for vector bundles (13.6)) we parametrize for computations. But this
construction has a problem connected with ”spectral invariance versus diffeomorphysm
invariance on manifolds or vector bundles. Let us denote by spec

(
ξN ,[d]D

)
the spec-

trum of the Dirac d–operator with each eigenvalue repeated according to its multiplicity.
Two vector bundles ξN and ξ′N are called isospectral if spec

(
ξN ,[d]D

)
= spec

(
ξ′N ,[d]D

)
,

which defines an invariant transform of the action (13.36). There are manifolds (and in
consequence vector bundles) which are isospectral without being isometric (the converse
is obviously true). This is known as a fact that one cannot ’hear the shape of a drum
[19] because the spectral invariance is stronger that usual diffeomorphysm invariance.

In spirit of spectral gravity, the eigenvalues of the Dirac operator are diffeomorphic
invariant functions of the geometry and therefore true observable in general relativity.
As we have shown in this section they can be taken as a set of variables for invariant
descriptions to the anholonomic dynamics of the gravitational field with (or not) local
anisotropy in different approaches of anholonomic Riemannian gravity and Finsler like
generalizations. But in another turn there exist isospectral vector bundles which fail to
be isometric. Thus, the eigenvalues of the Dirac operator cannot be used to distinguish
among such vector bundles (or manifolds). A rigorous analysis is also connected with
the type of d–metric and d–connection structures we prescribe for our geometric and
physical models.

Finally, we remark that there are different models of gravity with noncommutative
setting (see, for instance, Refs. [7, 31, 16, 29, 30, 11, 23]). By introducing nonlinear
connections in a respective commutative or noncommutative variant we can transform
such theories to be anholonomic, i. e. locally anisotropic, in different approaches with
(pseudo) Riemannian geometry and Finsler/Lagrange or Hamilton extensions.
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13.5 Noncommutative Finsler–Gauge Theories

The bulk of noncommutative models extending both locally isotropic and anisotropic
gravity theories are confrunted with the problem of definition of noncommutative vari-
ants of pseudo–Eucliedean and pseudo–Riemannian metrics. The problem is connected
with the fact of generation of noncommutative metric structures via the Moyal results in
complex and noncommutative metrics. In order to avoid this difficulty we elaborated a
model of noncommutative gauge gravity (containing as particular case the Einstein gen-
eral relativity theory) starting from a variant of gauge gravity being equivalent to the
Einstein gravity and emphasizing in a such approach the tetradic (frame) and connection
structures, but not the metric configuration (see Refs. [58]). The metric for such theories
is induced from the frame structure which can be holonomic or anholonomic. The aim
of this section is to generalize our results on noncommutative gauge gravity as to in-
clude also possible anisotropies in different variants of gauge realization of anholonomic
Einstein and Finsler like generalizations formally developed in Refs. [61, 54, 62].

A still presented drawback of noncommutative geometry and physics is that there is
not yet formulated a generally accepted approach to interactions of elementary particles
coupled to gravity. There are improved Connes–Lott and Chamsedine–Connes models
of nocommutative geometry [9, 11] which yielded action functionals typing together the
gravitational and Yang–Mills interactions and gauge bosons the Higgs sector (see also
the approaches [16] and, for an outline of recent results, [34]).

In the last years much work has been made in noncommutative extensions of physical
theories (see reviews and original results in Refs. [14, 45]). It was not possible to
formulate gauge theories on noncommutative spaces [10, 43, 21, 32] with Lie algebra
valued infinitesimal transformations and with Lie algebra valued gauge fields. In order
to avoid the problem it was suggested to use enveloping algebras of the Lie algebras
for setting this type of gauge theories and showed that in spite of the fact that such
enveloping algebras are infinite–dimensional one can restrict them in a way that it would
be a dependence on the Lie algebra valued parameters, the Lie algebra valued gauge fields
and their spacetime derivatives only.

We follow the method of restricted enveloping algebras [21] and construct gauge gra-
vitational theories by stating corresponding structures with semisimple or nonsemisimple
Lie algebras and their extensions. We consider power series of generators for the affine
and non linear realized de Sitter gauge groups and compute the coefficient functions
of all the higher powers of the generators of the gauge group which are functions of
the coefficients of the first power. Such constructions are based on the Seiberg–Witten
map [43] and on the formalism of ∗–product formulation of the algebra [65] when for
functional objects, being functions of commuting variables, there are associated some
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algebraic noncommutative properties encoded in the ∗–product.
The concept of gauge theory on noncommutative spaces was introduced in a geometric

manner [32] by defining the covariant coordinates without speaking about derivatives
and this formalism was developed for quantum planes [64]. In this section we shall
prove the existence for noncommutative spaces of gauge models of gravity which agrees
with usual gauge gravity theories being equivalent, or extending, the general relativity
theory (see works [39, 47] for locally isotropic and anisotropic spaces and corresponding
reformulations and generalizations respectively for anholonomic frames [60] and locally
anisotropic (super) spaces [61, 51, 52, 54]) in the limit of commuting spaces.

13.5.1 Star–products and enveloping algebras in noncommuta-
tive spaces

For a noncommutative space the coordinates ûi, (i = 1, ..., N) satisfy some noncom-
mutative relations

[ûi, ûj] =





iθij , θij ∈ IC, canonical structure;

if ijk û
k, f ijk ∈ IC, Lie structure;

iCij
klû

kûl, Cij
kl ∈ IC, quantum plane

(13.38)

where IC denotes the complex number field.
The noncommutative space is modelled as the associative algebra of IC; this algebra

is freely generated by the coordinates modulo ideal R generated by the relations (one
accepts formal power series) Au = IC[[û1, ..., ûN ]]/R. One restricts attention [22] to
algebras having the (so–called, Poincare–Birkhoff–Witt) property that any element of
Au is defined by its coefficient function and vice versa,

f̂ =
∞∑

L=0

fi1,...,iL : ûi1 . . . ûiL : when f̂ ∼ {fi} ,

where : ûi1 . . . ûiL : denotes that the basis elements satisfy some prescribed order (for in-
stance, the normal order i1 ≤ i2 ≤ . . . ≤ iL, or, another example, are totally symmetric).
The algebraic properties are all encoded in the so–called diamond (⋄) product which is
defined by

f̂ ĝ = ĥ ∼ {fi} ⋄ {gi} = {hi} .
In the mentioned approach to every function f(u) = f(u1, . . . , uN) of commuting

variables u1, . . . , uN one associates an element of algebra f̂ when the commuting variables
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are substituted by anticommuting ones,

f(u) =
∑

fi1...iLu
1 · · ·uN → f̂ =

∞∑

L=0

fi1,...,iL : ûi1 . . . ûiL :

when the ⋄–product leads to a bilinear ∗–product of functions (see details in [32])

{fi} ⋄ {gi} = {hi} ∼ (f ∗ g) (u) = h (u) .

The ∗–product is defined respectively for the cases (13.38)

f ∗ g =





exp[ i
2
∂
∂ui θ

ij ∂
∂u′j

]f(u)g(u′)|u′→u,

exp[ i
2
ukgk(i

∂
∂u′
, i ∂
∂u′′

)]f(u′)g(u′′)|u′→u
u′′→u,

q
1
2
(−u′ ∂

∂u′ v
∂

∂v
+u ∂

∂u
v′ ∂

∂v′
)f(u, v)g(u′, v′)|u′→u

v′→v ,

where there are considered values of type

eiknûn
eipnlû

n

= ei{kn+pn+ 1
2
gn(k,p)}ûn, (13.39)

gn (k, p) = −kipjf ijn +
1

6
kipj (pk − kk) f ijmfmkn + ...,

eAeB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]+[B,[B,A]]) + ...

and for the coordinates on quantum (Manin) planes one holds the relation uv = qvu.
A non–abelian gauge theory on a noncommutative space is given by two algebraic

structures, the algebra Au and a non–abelian Lie algebra AI of the gauge group with
generators I1, ..., IS and the relations

[Is, Ip] = if
sp

t I
t. (13.40)

In this case both algebras are treated on the same footing and one denotes the generating
elements of the big algebra by ûi,

ẑi = {û1, ..., ûN , I1, ..., IS},Az = IC[[û1, ..., ûN+S]]/R
and the ∗–product formalism is to be applied for the whole algebra Az when there are
considered functions of the commuting variables ui (i, j, k, ... = 1, ..., N) and Is (s, p, ... =
1, ..., S).

For instance, in the case of a canonical structure for the space variables ui we have

(F ∗G)(u) = e
i
2(θij ∂

∂u′i
∂

∂u′′j +tsgs(i ∂
∂t′
,i ∂

∂t′′ ))×F (u′,t′)G(u′′,t′′)|u
′
→u,u′′

→u

t′→t,t′′→t
.

(13.41)

This formalism was developed in [22] for general Lie algebras. In this section we consider
those cases when in the commuting limit one obtains the gauge gravity and general
relativity theories or some theirs anisotropic generalizations..
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13.5.2 Enveloping algebras for gauge gravity connections

In order to construct gauge gravity theories on noncommutative space we define the
gauge fields as elements the algebra Au that form representation of the generator I–
algebra for the de Sitter gauge group. For commutative spaces it is known [39, 47, 61]
that an equivalent re–expression of the Einstein theory as a gauge like theory implies,
for both locally isotropic and anisotropic spacetimes, the nonsemisimplicity of the gauge
group, which leads to a nonvariational theory in the total space of the bundle of locally
adapted affine frames (to this class one belong the gauge Poincare theories; on metric–
affine and gauge gravity models see original results and reviews in [48]). By using
auxiliary biliniear forms, instead of degenerated Killing form for the affine structural
group, on fiber spaces, the gauge models of gravity can be formulated to be variational.
After projection on the base spacetime, for the so–called Cartan connection form, the
Yang–Mills equations transforms equivalently into the Einstein equations for general
relativity [39]. A variational gauge gravitational theory can be also formulated by using
a minimal extension of the affine structural group Af3+1 (IR) to the de Sitter gauge
group S10 = SO (4 + 1) acting on IR4+1 space.

Nonlinear gauge theories of de Sitter group in commutative spaces

Let us consider the de Sitter space Σ4 as a hypersurface given by the equations
ηABu

AuB = −l2 in the four dimensional flat space enabled with diagonal metric ηAB,
ηAA = ±1 (in this section A,B,C, ... = 1, 2, ..., 5), where {uA} are global Cartesian
coordinates in IR5; l > 0 is the curvature of de Sitter space. The de Sitter group S(η) =
SO(η) (5) is defined as the isometry group of Σ5–space with 6 generators of Lie algebra
so(η) (5) satisfying the commutation relations

[MAB,MCD] = ηACMBD − ηBCMAD − ηADMBC + ηBDMAC . (13.42)

Decomposing indices A,B, ... as A = (α, 5) , B =
(
β, 5
)
, ..., the metric ηAB as ηAB =(

ηαβ, η55

)
, and operators MAB as Mαβ = Fαβ and Pα = l−1M5α, we can write (13.42)

as
[
Fαβ,Fγδ

]
= ηαγFβδ − ηβγFαδ + ηβδFαγ − ηαδFβγ ,

[
Pα, Pβ

]
= −l−2Fαβ,

[
Pα,Fβγ

]
= ηαβPγ − ηαγPβ, (13.43)
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where we decompose the Lie algebra so(η) (5) into a direct sum, so(η) (5) = so(η)(4)⊕V4,
where V4 is the vector space stretched on vectors Pα. We remark that Σ4 = S(η)/L(η),
where L(η) = SO(η) (4) . For ηAB = diag (1,−1,−1,−1) and S10 = SO (1, 4) , L6 =
SO (1, 3) is the group of Lorentz rotations.

In this paper the generators Ia and structure constants f
sp

t from (13.40) are parametr-
ized just to obtain de Sitter generators and commutations (13.43).

The action of the group S(η) can be realized by using 4×4 matrices with a parametriza-
tion distinguishing the subgroup L(η) :

B = bBL, (13.44)

where

BL =

(
L 0
0 1

)
,

L ∈ L(η) is the de Sitter bust matrix transforming the vector (0, 0, ..., ρ) ∈ IR5 into the
arbitrary point (V 1, V 2, ..., V 5) ∈ Σ5

ρ ⊂ R5 with curvature ρ, (VAV
A = −ρ2, V A = tAρ).

Matrix b can be expressed as

b =

(
δα β +

tαtβ

(1+t5)
tα

tβ t5

)
.

The de Sitter gauge field is associated with a so(η) (5)–valued connection 1–form

Ω̃ =

(
ωα β θ̃α

θ̃β 0

)
, (13.45)

where ωα β ∈ so(4)(η), θ̃
α ∈ R4, θ̃β ∈ ηβαθ̃α.

Because S(η)–transforms mix the components of the matrix ω
α

β and θ̃α fields in

(13.45) (the introduced parametrization is invariant on action on SO(η) (4) group we

cannot identify ωα β and θ̃α, respectively, with the connection Γαβγ and the fundamental

form χα in a metric–affine spacetime). To avoid this difficulty we consider [47] a nonlinear
gauge realization of the de Sitter group S(η), namely, we introduce into consideration the
nonlinear gauge field

Γ = b−1Ω̃b+ b−1db =

(
Γ
α
β θα

θβ 0

)
, (13.46)
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where

Γα β = ωα β −
(
tαDtβ − tβDtα

)
/
(
1 + t5

)
,

θα = t5θ̃α +Dtα − tα
(
dt5 + θ̃γt

γ
)
/
(
1 + t5

)
,

Dtα = dtα + ωα βt
β .

The action of the group S (η) is nonlinear, yielding transforms

Γ′ = L′Γ (L′)
−1

+ L′d (L′)
−1
, θ′ = Lθ,

where the nonlinear matrix–valued function

L′ = L′ (tα, b, BT )

is defined from Bb = b′BL′ (see the parametrization (13.44)). The de Sitter algebra with

generators (13.43) and nonlinear gauge transforms of type (13.46) is denoted A(dS)
I .

De Sitter nonlinear gauge gravity and Einstein and Finsler like gravity

Let us consider the de Sitter nonlinear gauge gravitational connection (13.46) rewrit-
ten in the form

Γ =

(
Γ
α

β l−1
0 χα

l−1
0 χβ 0

)
(13.47)

where

Γ
α

β = Γ
α

βµδu
µ,

Γ
α

βµ = χα αχ
β

βΓ
α

βγ + χα αδµχ
α

β, χ
α = χα µδu

µ,

and
Gαβ = χα αχ

β

βηαβ,

ηαβ = (1,−1, ...,−1) and l0 is a dimensional constant. As Γα βγ we take the Christoffel
symbols for the Einstein theory, or every type of d–connection (13.8) for an anisotropic
spacetime. Correspondingly, Gαβ can be the pseudo–Rieamannian metric in general rel-
ativity or any d–metric (13.6), which can be particularized for the anholonomic Einstein
gravity (13.31) or for a Finsler type gravity (13.34).

The curvature of (13.47),

R(Γ) = dΓ + Γ
∧

Γ,
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can be written

R(Γ) =

( Rα
β + l−1

0 παβ l−1
0 T α

l−1
0 T β 0

)
, (13.48)

where

παβ = χα
∧

χβ,Rα
β =

1

2
Rα

βµνδu
µ
∧

δuν ,

and
Rα

βµν = χ β
β χ α

α Rα
βµν
.

with the Rα
βµν being the metric–affine (for Einstein-Cartan–Weyl spaces), or the (pseu-

do) Riemannian curvature, or for anisotropic spaces the d–curvature (13.14). The de
Sitter gauge group is semisimple and we are able to construct a variational gauge gravi-
tational theory with the Lagrangian

L = L(G) + L(m)

where the gauge gravitational Lagrangian is defined

L(G) =
1

4π
Tr
(
R(Γ)

∧
∗GR(Γ)

)
= L(G) |G|1/2 δn+mu,

with

L(G) =
1

2l2
T α µνT

µν
α +

1

8λ
Rα

βµνR
β µν

α − 1

l2

(←−
R (Γ)− 2λ1

)
,

δ4u being the volume element, T α µν = χα αT
α
µν (the gravitational constant l2 satisfies

the relations l2 = 2l20λ, λ1 = −3/l0), T r denotes the trace on α, β indices, and the
matter field Lagrangian is defined

L(m) = −1
1

2
Tr
(
Γ
∧
∗GI

)
= L(m) |G|1/2 δn+mu,

where

L(m) =
1

2
Γ
α

βµS
β µ
α − tµ αl

α
µ.

The matter field source J is obtained as a variational derivation of L(m) on Γ and is
parametrized as

J =

(
S
α
β −l0tα

−l0tβ 0

)

with tα = tα µδu
µ and Sα β = Sα βµδu

µ being respectively the canonical tensors of

energy–momentum and spin density.
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Varying the action

S =

∫
δ4u

(
L(G) + L(m)

)

on the Γ–variables (1a), we obtain the gauge–gravitational field equations, in general,
with local anisotropy,

d
(
∗R(Γ)

)
+ Γ

∧(
∗R(Γ)

)
−
(
∗R(Γ)

)∧
Γ = −λ (∗J ) , (13.49)

were the Hodge operator ∗ is used.
Specifying the variations on Γα β and χ–variables, we rewrite (13.49)

D̂
(
∗R(Γ)

)
+

2λ

l2
(D̂ (∗π) + χ

∧(
∗T T

)
− (∗T )

∧
χT ) = −λ (∗S) ,

D̂ (∗T ) −
(
∗R(Γ)

)∧
χ− 2λ

l2
(∗π)

∧
χ =

l2

2

(
∗t+

1

λ
∗ τ
)
,

where

T t = {Tα = ηαβT
β, T β =

1

2
T
β
µνδu

µ
∧

δuν},

χT = {χα = ηαβχ
β, χβ = χβ̂ µδu

µ}, D̂ = d+ Γ̂,

(Γ̂ acts as Γα βµ on indices γ, δ, ... and as Γα βµ on indices γ, δ, ...). The value τ defines

the energy–momentum tensor of the gauge gravitational field Γ̂ :

τµν

(
Γ̂
)

=
1

2
Tr

(
RµαRα

ν −
1

4
RαβRαβGµν

)
.

Equations (13.49) make up the complete system of variational field equations for
nonlinear de Sitter gauge anisotropic gravity.

We note that we can obtain a nonvariational Poincare gauge gravitational theory if
we consider the contraction of the gauge potential (13.47) to a potential with values in
the Poincare Lie algebra

Γ =

(
Γα̂

β̂
l−1
0 χα̂

l−1
0 χβ̂ 0

)
→ Γ =

(
Γα̂

β̂
l−1
0 χα̂

0 0

)
. (13.50)

A similar gauge potential was considered in the formalism of linear and affine frame
bundles on curved spacetimes by Popov and Daikhin [39]. They treated (13.50) as the
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Cartan connection form for affine gauge like gravity and by using ’pure’ geometric meth-
ods proved that the Yang–Mills equations of their theory are equivalent, after projection
on the base, to the Einstein equations. The main conclusion for a such approach to
Einstein gravity is that this theory admits an equivalent formulation as a gauge model
but with a nonsemisimple structural gauge group. In order to have a variational the-
ory on the total bundle space it is necessary to introduce an auxiliary bilinear form on
the typical fiber, instead of degenerated Killing form; the coefficients of auxiliary form
disappear after projection on the base. An alternative variant is to consider a gauge
gravitational theory when the gauge group was minimally extended to the de Sitter one
with nondegenerated Killing form. The nonlinear realizations have to be introduced if
we consider in a common fashion both the frame (tetradic) and connection components
included as the coefficients of the potential (13.47). Finally, we note that the models
of de Sitter gauge gravity were generalized for Finsler and Lagrange theories in Refs.
[61, 54].

Enveloping nonlinear de Sitter algebra valued connection

Let now us consider a noncommutative space. In this case the gauge fields are
elements of the algebra ψ̂ ∈ A(dS)

I that form the nonlinear representation of the de Sitter

algebra so(η) (5) when the whole algebra is denoted A(dS)
z . Under a nonlinear de Sitter

transformation the elements transform as follows

δψ̂ = iγ̂ψ̂, ψ̂ ∈ Au, γ̂ ∈ A(dS)
z .

So, the action of the generators (13.43) on ψ̂ is defined as this element is supposed to

form a nonlinear representation of A(dS)
I and, in consequence, δψ̂ ∈ Au despite γ̂ ∈ A(dS)

z .
It should be emphasized that independent of a representation the object γ̂ takes values in
enveloping de Sitter algebra and not in a Lie algebra as would be for commuting spaces.
The same holds for the connections that we introduce [32], in order to define covariant
coordinates,

Ûν = ûv + Γ̂ν , Γ̂ν ∈ A(dS)
z .

The values Ûνψ̂ transform covariantly,

δÛνψ̂ = iγ̂Ûνψ̂,

if and only if the connection Γ̂ν satisfies the transformation law of the enveloping non-
linear realized de Sitter algebra,

δΓ̂νψ̂ = −i[ûv, γ̂] + i[γ̂, Γ̂ν ],
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where δΓ̂ν ∈ A(dS)
z . The enveloping algebra–valued connection has infinitely many compo-

nent fields. Nevertheless, it was shown that all the component fields can be induced from
a Lie algebra–valued connection by a Seiberg–Witten map ([43, 21] and [5] for SO(n)
and Sp(n)). In this subsection we show that similar constructions could be proposed for
nonlinear realizations of de Sitter algebra when the transformation of the connection is
considered

δΓ̂ν = −i[uν ,∗ γ̂] + i[γ̂,∗ Γ̂ν ].

For simplicity, we treat in more detail the canonical case with the star product (13.41).

The first term in the variation δΓ̂ν gives

−i[uν ,∗ γ̂] = θνµ
∂

∂uµ
γ.

Assuming that the variation of Γ̂ν = θνµQµ starts with a linear term in θ, we have

δΓ̂ν = θνµδQµ, δQµ =
∂

∂uµ
γ + i[γ̂,∗ Qµ].

We follow the method of calculation from the papers [32, 22] and expand the star product
(13.41) in θ but not in ga and find to first order in θ,

γ = γ1
aI

a + γ1
abI

aIb + ..., Qµ = q1
µ,aI

a + q2
µ,abI

aIb + ... (13.51)

where γ1
a and q1

µ,a are of order zero in θ and γ1
ab and q2

µ,ab are of second order in θ.

The expansion in Ib leads to an expansion in ga of the ∗–product because the higher
order Ib–derivatives vanish. For de Sitter case as Ib we take the generators (13.43), see

commutators (13.40), with the corresponding de Sitter structure constants f
bc
d ≃ f

αβ

β (in

our further identifications with spacetime objects like frames and connections we shall
use Greek indices).

The result of calculation of variations of (13.51), by using ga to the order given in
(13.39), is

δq1
µ,a =

∂γ1
a

∂uµ
− f bcaγ1

b q
1
µ,c,

δQτ = θµν∂µγ
1
a∂νq

1
τ,bI

aIb + ...,

δq2
µ,ab = ∂µγ

2
ab − θντ∂νγ1

a∂τq
1
µ,b − 2f bca{γ1

b q
2
µ,cd + γ2

bdq
1
µ,c}.

Next, we introduce the objects ε, taking the values in de Sitter Lie algebra and Wµ,
being enveloping de Sitter algebra valued,

ε = γ1
aI

a and Wµ = q2
µ,abI

aIb,
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with the variation δWµ satisfying the equation [32, 22]

δWµ = ∂µ(γ
2
abI

aIb)− 1

2
θτλ{∂τε, ∂λqµ}+ i[ε,Wµ] + i[(γ2

abI
aIb), qν ].

This equation has the solution (found in [32, 43])

γ2
ab =

1

2
θνµ(∂νγ

1
a)q

1
µ,b, q

2
µ,ab = −1

2
θντq1

ν,a

(
∂τq

1
µ,b +R1

τµ,b

)

where

R1
τµ,b = ∂τq

1
µ,b − ∂µq1

τ,b + f ecdq
1
τ,eq

1
µ,e

could be identified with the coefficients Rα
βµν of de Sitter nonlinear gauge gravity

curvature (see formula (13.48)) if in the commutative limit q1
µ,b ≃

(
Γ
α

β l−1
0 χα

l−1
0 χβ 0

)

(see (13.47)).
The below presented procedure can be generalized to all the higher powers of θ.

13.5.3 Noncommutative Gravity Covariant Gauge Dynamics

First order corrections to gravitational curvature

The constructions from the previous section are summarized by the conclusion that
the de Sitter algebra valued object ε = γ1

a (u) Ia determines all the terms in the enveloping
algebra

γ = γ1
aI

a +
1

4
θνµ∂νγ

1
a q

1
µ,b

(
IaIb + IbIa

)
+ ...

and the gauge transformations are defined by γ1
a (u) and q1

µ,b(u), when

δγ1ψ = iγ
(
γ1, q1

µ

)
∗ ψ.

For de Sitter enveloping algebras one holds the general formula for compositions of two
transformations

δγδς − δςδγ = δi(ς∗γ−γ∗ς)

which is also true for the restricted transformations defined by γ1,

δγ1δς1 − δς1δγ1 = δi(ς1∗γ1−γ1∗ς1).
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Applying the formula (13.41) we calculate

[γ,∗ ζ ] = iγ1
aζ

1
b f

ab
c I

c +
i

2
θνµ{∂v

(
γ1
aζ

1
b f

ab
c

)
qµ,c

+
(
γ1
a∂vζ

1
b − ζ1

a∂vγ
1
b

)
qµ,bf

ab
c + 2∂vγ

1
a∂µζ

1
b }IdIc.

Such commutators could be used for definition of tensors [32]

Ŝµν = [Ûµ, Ûν ]− iθ̂µν , (13.52)

where θ̂µν is respectively stated for the canonical, Lie and quantum plane structures.
Under the general enveloping algebra one holds the transform

δŜµν = i[γ̂, Ŝµν ].

For instance, the canonical case is characterized by

Sµν = iθµτ∂τΓ
ν − iθντ∂τΓµ + Γµ ∗ Γν − Γν ∗ Γµ

= θµτθνλ{∂τQλ − ∂λQτ +Qτ ∗Qλ −Qλ ∗Qτ}.

By introducing the gravitational gauge strength (curvature)

Rτλ = ∂τQλ − ∂λQτ +Qτ ∗Qλ −Qλ ∗Qτ , (13.53)

which could be treated as a noncommutative extension of de Sitter nonlinear gauge
gravitational curvature (2a), we calculate

Rτλ,a = R1
τλ,a + θµν{R1

τµ,aR
1
λν,b −

1

2
q1
µ,a

[
(DνR

1
τλ,b) + ∂νR

1
τλ,b

]
}Ib,

where the gauge gravitation covariant derivative is introduced,

(DνR
1
τλ,b) = ∂νR

1
τλ,b + qν,cR

1
τλ,df

cd
b .

Following the gauge transformation laws for γ and q1 we find

δγ1R1
τλ = i

[
γ,∗R1

τλ

]

with the restricted form of γ.
Such formulas were proved in references [43] for usual gauge (nongravitational) fields.

Here we reconsidered them for gravitational gauge fields.
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Gauge covariant gravitational dynamics

Following the nonlinear realization of de Sitter algebra and the ∗–formalism we can
formulate a dynamics of noncommutative spaces. Derivatives can be introduced in such
a way that one does not obtain new relations for the coordinates. In this case a Leibniz
rule can be defined that

∂̂µû
ν = δνµ + dντµσ û

σ ∂̂τ

where the coefficients dντµσ = δνσδ
τ
µ are chosen to have not new relations when ∂̂µ acts

again to the right hand side. In consequence one holds the ∗–derivative formulas

∂τ ∗ f =
∂

∂uτ
f + f ∗ ∂τ , [∂l,

∗(f ∗ g)] = ([∂l,
∗f ]) ∗ g + f ∗ ([∂l,

∗g])

and the Stokes theorem
∫

[∂l, f ] =

∫
dNu[∂l,

∗ f ] =

∫
dNu

∂

∂ul
f = 0,

where, for the canonical structure, the integral is defined,
∫
f̂ =

∫
dNuf

(
u1, ..., uN

)
.

An action can be introduced by using such integrals. For instance, for a tensor of
type (13.52), when

δL̂ = i
[
γ̂, L̂

]
,

we can define a gauge invariant action

W =

∫
dNu TrL̂, δW = 0,

were the trace has to be taken for the group generators.
For the nonlinear de Sitter gauge gravity a proper action is

L =
1

4
RτλR

τλ,

where Rτλ is defined by (13.53) (in the commutative limit we shall obtain the connection
(13.47)). In this case the dynamic of noncommutative space is entirely formulated in
the framework of quantum field theory of gauge fields. In general, we are dealing with
anisotropic gauge gravitational interactions. The method works for matter fields as well
to restrictions to the general relativity theory.
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13.6 Outlook and Conclusions

In this work we have extended the A. Connes’ approach to noncommutative geometry
by introducing into consideration anholonomic frames and locally anisotropic structures.
We defined nonlinear connections for finite projective module spaces (noncommutative
generalization of vector bundles) and related this geometry with the E. Cartan’s moving
frame method.

We have explicitly shown that the functional analytic approach and noncommutative
C∗–algebras may be transformed into arena of modelling geometries and physical theories
with generic local anisotropy, for instance, the anholonomic Riemannian gravity and
generalized Finsler like geometries. The formalism of spectral triples elaborated for
vector bundles provided with nonlinear connection structure allows a functional and
algebraic generation of new types of anholonomic/ anisotropic interactions.

A novel future in our work is that by applying anholonomic transforms associated
to some nonlinear connections we may generate various type of spinor, gauge and grav-
ity models, subjected to some anholonomic constraints and/or with generic anisotropic
interactions, which can be included in noncommutative field theory.

We can address a number of questions which were put or solved partially in this
paper and may have further generalizations:

One of the question is how to combine the noncommutative geometry contained in
string theory with locally anisotropic configurations arising in the low energy limits.
It is known that the nonsymmetric background field results in effective noncommuta-
tive coordinates. In other turn, a (super) frame set consisting from mixed subsets of
holonomic and anholonomic vectors may result in an anholonomic geometry with asso-
ciated nonlinear connection structure. A further work is to investigate the conditions
when from a string theory one appears explicit variants of commutative–anisotropic,
commutative–isotropic, noncommutative–isotropic and, finally, nocommutative–aniso-
tropic geometries.

A second question is connected with the problem of definition of noncommutative
(pseudo) Riemannian metric structures which is connected with nonsymmetric and/or
complex metrics. We have elaborated variants of noncommutative gauge gravity with
noncommutative representations of the affine and de Sitter algebras which contains in
the commutative limit an Yang–Mills theory (with nonsemisimple structure group) being
equivalent to the Einstein theory. The gauge connection in such theories is constructed
from the frame and linear connection coefficients. Metrics, in this case, arise as some
effective configurations which avoid problems with their noncommutative definition. The
approach can be generated as to include anholonomic frames and, in consequence, to
define anisotropic variants of commutative and noncommutative gauge gravity with the
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Einstein type or Finsler generalizations.
Another interesting open question is to establish a relation between quantum groups

and geometries with anisotropic models of gravity and field theories. Different variants
of quantum generalizations for anholonomic frames with associated nonlinear connection
structures are possible.

Finally, we give some historical remarks. An approach to Finsler and spinor like
spaces of infinite dimensions (in Banach and/or Hilbert spaces) and to nonsymmetric
locally anisotropic metrics was proposed by some authors belonging to the Romanian
school on Finsler geometry and generalizations (see, Refs. [36, 17, 1, 37]). It could not
be finalized before elaboration of the A. Connes’ models of noncommutative geometry
and gravity and before definition of Clifford and spinor distinguished structures [49, 62],
formulation of supersymmetric variants of Finsler spaces [51] and establishing theirs
relation to string theory [52, 53, 54]. This paper concludes a noncommutative interference
and a development of the mentioned results.
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Chapter 14

(Non) Commutative Finsler
Geometry from String/ M–Theory

Abstract 1

We synthesize and extend the previous ideas about appearance of both noncommuta-
tive and Finsler geometry in string theory with nonvanishing B–field and/or anholonomic
(super) frame structures [42, 43, 48, 50]. There are investigated the limits to the Einstein
gravity and string generalizations containing locally anisotropic structures modelled by
moving frames. The relation of anholonomic frames and nonlinear connection geometry
to M–theory and possible noncommutative versions of locally anisotropic supergrav-
ity and D–brane physics is discussed. We construct and analyze new classes of exact
solutions with noncommutative local anisotropy describing anholonomically deformed
black holes (black ellipsoids) in string gravity, embedded Finsler–string two dimensional
structures, solitonically moving black holes in extra dimensions and wormholes with
noncommutativity and anisotropy induced from string theory.

14.1 Introduction

The idea that string/M–theory results in a noncommutative limit of field theory and
spacetime geometry is widely investigated by many authors both from mathematical
and physical perspectives [57, 38, 9] (see, for instance, the reviews [13]). It is now
generally accepted that noncommutative geometry and quantum groups [8, 16, 19] play
a fundamental role in further developments of high energy particle physics and gravity
theory.

1 c© S. Vacaru, (Non) Commutative Finsler Geometry from String/M-Theory, hep-th/0211068
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First of all we would like to give an exposition of some basic facts about the geometry
of anholonomic frames (vielbeins) and associated nonlinear connection (N–connection)
structures which emphasize surprisingly some new results: We will consider N–connecti-
ons in commutative geometry and we will show that locally anisotropic spacetimes (an-
holonomic Riemannian, Finsler like and their generalizations) can be obtained from the
string/M–theory. We shall discuss the related low energy limits to Einstein and gauge
gravity. Our second goal is to extend A. Connes’ differential noncommutative geome-
try as to include geometries with anholonomic frames and N–connections and to prove
that such ’noncommutative anisotropies’ also arise very naturally in the framework of
strings and extra dimension gravity. We will show that the anholonomic frame method
is very useful in investigating of new symmetries and nonperturbative states and for
constructing new exact solutions in string gravity with anholonomic and/or noncom-
mutative variables. We remember here that some variables are considered anholonomic
(equivalently, nonholonomic) if they are subjected to some constraints (equivalently,
anholonomy conditions).

Almost all of the physics paper dealing with the notion of (super) frame in string
theory do not use the well developed apparatus of E. Cartan’s ’moving frame’ method [6]
which gave an unified approach to the Riemannian and Finsler geometry, to bundle spaces
and spinors, to the geometric theory of systems of partial equations and to Einstein (and
the so–called Einstein–Cartan–Weyl) gravity. It is considered that very ”sophisticate”
geometries like the Finsler and Cartan ones, and theirs generalizations, are less related to
real physical theories. In particular, the bulk of frame constructions in string and gravity
theories are given by coefficients defined with respect to coordinate frames or in abstract
form with respect to some general vielbein bases. It is completely disregarded the fact
that via anholonomic frames on (pseudo) Riemannian manifolds and on (co) tangent
and (co) vector bundles we can model different geometries and interactions with local
anisotropy even in the framework of generally accepted classical and quantum theories.
For instance, there were constructed a number of exact solutions in general relativity and
its lower/higher dimension extensions with generic local anisotropy, which under certain
conditions define Finsler like geometries [45, 44, 46, 53, 54, 52]. It was demonstrated
that anholonomic geometric constructions are inevitable in the theory of anisotropic
stochastic, kinetic and thermodynamic processes in curved spacetimes [44] and proved
that Finsler like (super) geometries are contained alternatively in modern string theory
[42, 43, 47].

We emphasize that we have not proposed any ”exotic” locally anisotropic modifi-
cations of string theory and general relativity but demonstrated that such anisotropic
structures, Finsler like or another type ones, may appear alternatively to the Rieman-
nian geometry, or even can be modelled in the framework of a such geometry, in the low
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energy limit of the string theory, if we are dealing with frame (vielbein) constructions.
One of our main goals is to give an accessible exposition of some important notions and
results of N–connection geometry and to show how they can be applied to concrete prob-
lems in string theory, noncommutative geometry and gravity. We hope to convince a
reader–physicist, who knows that ’the B–field’ in string theory may result in noncommu-
tative geometry, that the anholonomic (super) frames could define nonlinear connections
and Finsler like commutative and/ or noncommutative geometries in string theory and
(super) gravity and this holds true in certain limits to general relativity.

We address the present work to physicists who would like to learn about some new
geometrical methods and to apply them to mathematical problems arising at the forefront
of modern theoretical physics. We do not assume that such readers have very deep
knowledge in differential geometry and nonlinear connection formalism (for convenience,
we give an Appendix outlining the basic results on the geometry of commutative spaces
provided with N–connection structures [29, 47, 55]) but consider that they are familiar
with some more geometric approaches to gravity [14, 30] and string theories [15].

Finally, we note that the first attempts to relate Riemann–Finsler spaces (and spaces
with anisotropy of another type) to noncommutative geometry and physics were made
in Refs. [48] where some models of noncommutative gauge gravity (in the commuta-
tive limit being equivalent to the Einstein gravity, or to different generalizations to de
Sitter, affine, or Poincare gauge gravity with, or not, nonlinear realization of the gauge
groups) were analyzed. Further developments of noncommutative geometries with an-
holonomic/ anisotropic structures and their applications in modern particle physics lead
to a rigorous study of the geometry of noncommutative anholonomic frames with as-
sociated N–connection structure [50] (that work should be considered as the non–string
partner of the present paper).

The paper has the following structure:
In Section 2 we consider stings in general manifolds and bundles provided with an-

holonomic frames and associated nonlinear connection structures and analyze the low
energy string anholonomic field equations. The conditions when anholonomic Einstein
or Finsler like gravity models can be derived from string theory are stated.

Section 3 outlines the geometry of locally anisotropic supergravity models contained
in superstring theory. Superstring effective actions and anisotropic toroidal compactifi-
cations are analyzed. The corresponding anholonomic field equations with distinguishing
of anholonomic Riemannian–Finesler (super) gravities are derived.

In Section 4 we formulate the theory of noncommutative anisotropic scalar and gauge
fields interactions and examine their anholonomic symmetries.

In Section 5 we emphasize how noncommutative anisotropic structures are embedded
in string/M–theory and discuss their connection to anholonomic geometry.
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Section 6 is devoted to locally anisotropic gravity models generated on noncommu-
tative D–branes.

In Section 7 we construct four classes of exact solutions with noncommutative and
locally anisotropic structures. We analyze solutions describing locally anisotropic black
holes in string theory, define a class of Finsler–string structures containing two dimen-
sional Finsler metrics, consider moving solitonic string–black hole configurations and give
an examples of anholonomic noncommutative wormhole solution induced from string
theory.

Finally, in Section 8, some additional comments and questions for further develop-
ments are presented. The Appendix outlines the necessary results from the geometry of
nonlinear connections and generalized Finsler–Riemannian spaces.

14.2 String Theory and Commutative

Riemann–Finsler Gravity

The string gravitational effects are computed from corresponding low–energy effec-
tive actions and moving equations of stings in curved spacetimes (on string theory, see
monographs [15]). The basic idea is to consider propagation of a string not only of a flat
26–dimensional space with Minkowski metric ηµν but also its propagation in a background
more general manifold with metric tensor gµν from where one derived string–theoretic
corrections to general relativity when the vacuum Einstein equations Rµν = 0 correspond
to vanishing of the one–loop beta function in corresponding sigma model. More rigor-
ous theories were formulated by adding an antisymmetric tensor field Bµν , the dilaton
field Φ and possible other background fields, by introducing supersymmetry, higher loop
corrections and another generalizations. It should be noted here that propagation of
(super) strings may be considered on arbitrary (super) manifolds. For instance, in Refs.
[42, 43, 47], the corresponding background (super) spaces were treated as (super) bundles
provided with nonlinear connection (N–connection) structure and, in result, there were
constructed some types of generalized (super) Finsler corrections to the usual Einstein
and to locally anisotropic (Finsler type, or theirs generalizations) gravity theories.

The aim of this section is to demonstrate that anisotropic corrections and extensions
may be computed both in Einstein and string gravity [derived for string propagation in
usual (pseudo) Riemannian backgrounds] if the approach is developed following a more
rigorous geometrical formalism with off–diagonal metrics and anholonomic frames. We
note that (super) frames [vielbeins] were used in general form, for example, in order to
introduce spinors and supersymmetry in sting theory but the anholonomic transforms
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with mixed holonomic–anholonomic variables, resulting in diagonalization of off–diagonal
(super) metrics and effective anisotropic structures, were not investigated in the previous
literature on string/M–theory.

14.2.1 Strings in general manifolds and bundles

Generalized nonlinear sigma models (some basics)

The first quantized string theory was constructed in flat Minkowski spacetime of
dimension k ≥ 4. Then the analysis was extended to more general manifolds with
(pseudo) Riemannian metric g

µν
, antisymmetric Bµν and dilaton field Φ and possible

other background fields, including tachyonic matter associated to a field U in a tachyon
state. The starting point in investigating the string dynamics in the background of these
fields is the generalized nonlinear sigma model action for the maps u : Σ → M from a
two dimensional surface Σ to a spacetime manifold M of dimension k,

S = Sg,B + SΦ + SU , (14.1)

with

Sg,B[u, g] =
1

8πl2

∫

Σ

dµg∂Au
µ∂Bu

ν
[
gAB[2] gµν(u) + εABBµν(u)

]
,

SΦ[u, g] =
1

2π

∫

Σ

dµgRgΦ(u), SU [u, g] =
1

4π

∫

Σ

dµgU(u),

where Bµν is the pullback of a two–form B = Bµνdu
µ∧duν under the map u,written out

in local coordinates uµ; g[2]AB is the metric on the two dimensional surface Σ (indices

A,B = 0, 1); εAB = εAB/
√

det |gAB|, ε01 = −ε10 = 1; the integration measure dµg
is defined by the coefficients of the metric gAB, Rg is the Gauss curvature of Σ. The
constants in the action are related as

k =
1

4πα′ =
1

8πℓ2
, α′ = 2ℓ2

where α′ is the Regge slope parameter α′ and ℓ ∼ 10−33cm is the Planck length scale.
The metric coefficients g

µν
(u) are defined by the quadratic metric element given with

respect to the coordinate co–basis dµ = duµ (being dual to the local coordinate basis
∂µ = ∂/∂µ),

ds2 = g
µν

(u)duµduν. (14.2)
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The parameter ℓ is a very small length–scale, compared to experimental scales Lexp ∼
10−17 accessible at present. This defines the so–called low energy, or α′–expansion. A
perturbation theory may be carried out as usual by letting u = u0 + ℓu[1] for some refer-
ence configuration u0 and considering expansions of the fields g, B and Φ, for instance,

g
µν

(u) = g
µν

(u0) + ℓ∂αgµν(u0)u
α
[1] +

1

2
ℓ2∂α∂βgµν(u0)u

α
[1]u

β
[1] + ... (14.3)

This reveals that the quantum field theory defined by the action (14.1) is with an infinite
number of couplings; the independent couplings of this theory correspond to the succes-
sive derivatives of the fields g, B and Φ at the expansion point u0. Following an analysis
of the general structure of the Weyl dependence of Green functions in the quantum field
theory, standard regularizations schemes (see, for instance, Refs. [15]) and conditions
of vanishing of Weyl anomalies, computing the β–functions, one derive the low energy
string effective actions and field equations.

Anholonomic frame transforms of background metrics

Extending the general relativity principle to the string theory, we should consider
that the string dynamics in the background of fields g, B and Φ and possible another
ones, defined in the low energy limit by certain effective actions and moving equations,
does not depend on changing of systems of coordinates, uα

′ → uα
′

(uα) , for a fixed
local basis (equivalently, system, frame, or vielbein) of reference, eα (u) , on spacetime
M (for which, locally, u = uαeα = uα

′

eα′ , eα′ = ∂uα/∂uα
′

eα, usually one considers
local coordinate bases when eα = ∂/∂uα) as well the string dynamics should not depend
on changing of frames like eα → e α

α (u) eα, parametrized by non–degenerated matrices
e α
α (u) .

Let us remember some details connected with the geometry of moving frames in
(pseudo) Riemannian spaces [6] and discuss its applications in string theory, where the
orthonormal frames were introduced with the aim to eliminate non–trivial dependencies
on the metric g

µν
and on the background field uµ0 which appears in elaboration of the

covariant background expansion method for the nonlinear sigma models [15, 21]. Such
orthonormal frames, in the framework of a SO (1, k − 1) like gauge theory are stated by
the conditions

g
µν

(u) = e
µ
µ (u) e ν

ν (u) ηµν , (14.4)

e
µ
µ e

ν
µ = δνµ, e

µ
µ e

µ
ν = δ

µ
ν ,
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where ηµν = diag (−1,+1, ...,+1) is the flat Minkowski metric and δνµ, δ
µ
ν are Kronecker’s

delta symbols. One considers the covariant derivative Dµ with respect to an affine con-
nection Γ and a corresponding spin connection ω α

µ β for which the frame e
µ
µ is covariantly

constant,

Dµe
α
ν ≡ ∂µe

α
ν − Γαµνe

α
α + ω

α
µ βe

β
α = 0.

One also uses the covariant derivative

Dµe α
ν = Dµe

α
ν +

1

2
H ρ
µν e α

ρ (14.5)

including the torsion tensor Hµνρ which is the field strength of the field Bνρ, given by
H = dB, or, in component notation,

Hµνρ ≡ ∂µBνρ + ∂νBρµ + ∂νBρµ. (14.6)

All tensors may be written with respect to an orthonormal frame basis, for instance,

Hµνρ = e
µ
µ e

ν
ν e

ρ
ρ Hµνρ

and
Rµνρσ = e

µ
µ e

ν
ν e

ρ
ρ e

σ
σ Rµνρσ,

where the curvature Rµνρσ of the connection Dµ, defined as

(DµDν −DνDµ)ξρ + [DµDν ]ξρ = Hσ
µνDσξρ +Rρ

σµνξ
σ,

can be expressed in terms of the Riemannian tensor Rµνρσ and the torsion tensor Hσ
µν ,

Rµνρσ = Rµνρσ +
1

2
DρHσµν −

1

2
DσHρµν +

1

4
HρµαH

α
σν −

1

4
HσµαH

α
ρν .

Let us consider a generic off–diagonal metric, a non-degenerated matrix of dimension
k×k with the coefficients g

µν
(u) defined with respect to a local coordinate frame like in

(14.2). This metric can transformed into a block (n× n)⊕(m×m) form, for k = n+m,

g
µν

(u)→ {gij(u), hab (u)}

if we perform a frame map with the vielbeins

e
µ
µ (u) =

(
e i
i (xj , ya) Na

i (x
j , ya)e a

a (xj , ya)
0 e a

a (xj , ya)

)
(14.7)

eµν(u) =

(
ei i(x

j , ya) −Na
k (x

j , ya)eki(x
j , ya)

0 eaa(x
j , ya)

)
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which conventionally splits the spacetime into two subspaces: the first subspace is
parametrized by coordinates xi provided with indices of type i, j, k, ... running values
from 1 to n and the second subspace is parametrized by coordinates ya provided with
indices of type a, b, c, ... running values from 1 to m. This splitting is induced by the co-
efficients Na

i (x
j , ya). For simplicity, we shall write the local coordinates as uα = (xi, ya) ,

or u = (x, y) .
The coordinate bases ∂α = (∂i, ∂a) and theirs duals dα = duα = (di = dxi, da = dya)

are transformed under maps (14.7) as

∂α → eα = eαα(u)∂α, d
α → eα = e α

α (u)dα,

or, in ’N–distinguished’ form,

ei = ei i∂i −Na
k e

k
i∂a, ea = eaa∂a, (14.8)

ei = e i
i d

i, ea = Na
i e

a
a d

i + e a
a d

a. (14.9)

The quadratic line element (14.2) may be written equivalently in the form

ds2 = gij(x, y)e
iej + hab(x, y)e

aeb (14.10)

with the metric g
µν

(u) parametrized in the form

g
αβ

=

[
gij +Na

i N
b
jhab habN

a
i

habN
b
j hab

]
. (14.11)

If we choose e i
i (xj , ya) = δ i

i and e a
a (xj , ya) = δ a

a , we may not distinguish the
’underlined’ and ’non–underlined’ indices. The operators (14.8) and (14.9) transform
respectively into the operators of ’N–elongated’ partial derivatives and differentials

ei = δi = ∂i −Na
i ∂a, ea = ∂a, (14.12)

ei = di, ea = δa = da +Na
i d

i

(which means that the anholonomic frames (14.8) and (14.9) generated by vielbein trans-
forms (14.7) are, in general, anholonomic; see the respective formulas (13.2), (13.3) and
(13.4) in the Appendix) and the quadratic line element (14.10) trasforms in a d–metric
element (see (13.6) in the Appendix).

The physical treatment of the vielbein transforms (14.7) and associatedN–coefficients
depends on the types of constraints (equivalently, anholonomies) we impose on the string
dynamics and/or on the considered curved background. There were considered different
possibilities:



14.2. RIEMANN–FINSLER STRING GRAVITY 511

• Ansatz of type (14.11) were used in Kaluza–Klein gravity [35], as well in order
to describe toroidal Kaluza–Klein reductions in string theory (see, for instance,
[25])). The coefficients Na

i , usually written as Aai , are considered as the potentials
of some, in general, non–Abelian gauge fields, which in such theories are generated
by a corresponding compactification. In this case, the coordinates xi can be used
for the four dimensional spacetime and the coordinates ya are for extra dimensions.

• Parametrizations of type (14.11) were considered in order to elaborate an unified
approach on vector/tangent bundles to Finsler geometry and its generalizations
[29, 28, 4, 40, 47, 41, 42, 43]. The coefficientsNa

i were supposed to define a nonlinear
connection (N–connection) structure in corresponding (super) bundles and the
metric coefficients gij(u) and gab (u) were taken for a corresponding Finsler metric,
or its generalizations (see formulas (14.127), (13.33), (13.34), (13.35) and related
discussions in Appendix). The coordinates xi were defined on base manifolds and
the coordinates ya were used for fibers of bundles.

• In a series of papers [45, 44, 49, 46, 53, 54, 52] the concept of N–connection was
introduced for (pseudo) Riemannian spaces provided with off–diagonal metrics
and/or anholonomic frames. In a such approach the coefficients Na

i are associated
to an anholonomic frame structure describing a gravitational and matter fields dy-
namics with mixed holonomic and anholonomic variables. The coordinates xi are
defined with respect to the subset of holonomic frame vectors, but ya are given
with respect to the subset of anholonomic, N–ellongated, frame vectors. It was
proven that by using vielbein transforms of type (14.7) the off–diagonal metrics
could be diagonalized and, for a very large class of ansatz of type (14.11), with
the coefficients depending on 2,3 or 4 coordinate variables, it was shown that the
corresponding vacuum and non–vacuum Einstein equations may be integrated in
general form. This allowed an explicit construction of new classes of exact solu-
tions parametrized by off–diagonal metrics with some anholonomically deformed
symmetries. Two new and very surprising conclusions were those that the Finsler
like (and another type) anisotropies may be modelled even in the framework of the
general relativity theory and its higher/lower dimension modifications, as some
exact solutions of the Einstein equations, and that the anholonomic frame method
is very efficient for constructing such solutions.

There is an important property of the off–diagonal metrics g
µν

(14.11) which does

not depend on the type of space (a pseudo–Riemannian manifold, or a vector/tangent
bundle) this metric is given. With respect to the coordinate frames it is defined a unique
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torsionless and metric compatible linear connection derived as the usual Christoffel sym-
bols (or the Levi Civita connection). If anholonomic frames are introduced into con-
sideration, we can define an infinite number of metric connections constructed from the
coefficients of off–diagonal metrics and induced by the anholonomy coefficients (see for-
mulas (3.10) and (13.10) and the related discussion from Appendix); this property is
also mentioned in the monograph [30] (pages 216, 223, 261) for anholonomic frames but
without any particularities related to associated N–connection structures. In this case
there is an infinite number of metric compatible linear connections, constructed from
metric and vielbein coefficients, all of them having non–trivial torsions and transforming
into the usual Christoffel symbols for Na

i → 0 and m → 0. For off–diagonal metrics
considered, and even diagonalized, with respect to anholonomic frames and associated
N–connections, we can not select a linear connection being both torsionless and met-
ric. The problem of establishing of a physical linear connection structure constructed
from metric/frame coefficients is to be solved together with that of fixing of a system
of reference on a curved spacetime which is not a pure dynamical task but depends on
the type of prescribed constraints, symmetries and boundary conditions are imposed on
interacting fields and/or string dynamics.

In our further consideration we shall suppose that both a metric g
µν

(equivalently,

a set {gij, gab, Na
i }) and metric linear connection Γαβγ, i.e. satisfying the conditions

Dαgαβ = 0, exist in the background spacetime. Such spaces will be called locally
anisotropic (equivalently, anolonomic) because the anholonomic frames structure im-
poses locally a kind of anisotropy with respective constraints on string and effective
string dynamics. For such configurations the torsion, induced as an anholonomic frame
effect, vanishes only with respect coordinate frames. Here we note that in the string the-
ory there are also another type of torsion contributions to linear connections like Hσ

µν ,
see formula (14.5).

Anholonomic background field quantization method

We revise the perturbation theory around general field configurations for background
spaces provided with anholonomic frame structures (14.8) and (14.9), δα = (δi =
∂i − Na

i ∂a, ∂a) and δα = (di, δa = da + Na
i d

i), with associated N–connections, Na
i , and

{gij, hab} (14.10) adapted to such structures (distinguished metrics, or d–metrics, see for-
mula (13.6)). The linear connection in such locally anisotropic backgrounds is considered
to be compatible both to the metric and N–connection structure (for simplicity, being
a d–connection or an anholonomic variant of Levi Civita connection, both with nonvan-
ishing torsion, see formulas (13.8), (3.10), (13.10), and (13.13), and related discussions
in the Appendix). The general rule for the tensorial calculus on a space provided with
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N–connection structure is to split indices α, β, ... into ”horozontal”, i, j, ..., and ”verti-
cal”, a, b, ..., subsets and to apply for every type of indices the corresponding operators
of N–adapted partial and covariant derivations.

The anisotropic sigma model is to be formulated by anholonomic transforms of the
metric, g

µν
→ {gij, hab}, partial derivatives and differentials, ∂α → δα and dα → δa,

volume elements, dµg → δµg in the action (14.1)

S = SgN ,B + SΦ + SU , (14.13)

with

SgN ,B[u, g] =
1

8πl2

∫

Σ

δµg{gAB
[
∂Ax

i∂Bx
jgij(x, y) + ∂Ax

a∂Bx
bhab(x, y)

]

+εAB∂Au
µ∂Bu

νBµν(u)},

SΦ[u, g] =
1

2π

∫

Σ

δµgRgΦ(u), SU [u, g] =
1

4π

∫

Σ

δµgU(u),

where the coefficients Bµν are computed for a two–form B = Bµνδu
µ ∧ δuν .

The perturbation theory has to be developed by changing the usual partial derivatives
into N–elongated ones, for instance, the decomposition (14.3) is to be written

g
µν

(u) = g
µν

(u0) + ℓδαgµν(u0)u
α
[1] + ℓ2δαδβgµν(u0)u

α
[1]u

β
[1] + ℓ2δβδαgµν(u0)u

α
[1]u

β
[1] + ...,

where we should take into account the fact that the operators δα do not commute but
satisfy certain anholonomy relations (see (13.4) in Appendix).

The action (14.13) is invariant under the group of diffeomorphisms on Σ and M
(on spacetimes provided with N–connections the diffeomorphisms may be adapted to
such structures) and posses a U(1)B gauge invariance, acting by B → B + δγ for some
γ ∈ Ω(1) (M) , where Ω(1) denotes the space of 1–forms on M. Wayl’s conformal trans-
formations of Σ leave SgN ,B invariant but result in anomalies under quantization. SΦ

and SU fail to be conformal invariant even classically. We discuss the renormalization of
quantum filed theory defined by the action (14.13) for general fields gij, hab, N

a
µ , Bµν and

Φ. We shall not discus in this work the effects of the tachyon field.
The string corrections to gravity (in both locally isotropic and locally anisotropic

cases) may be computed following some regularizatons schemes preserving the classical
symmetries and determining the general structure of the Weyl dependence of Green func-
tions specified by the action (14.13) in terms of fixed background fields gij, hab, N

a
µ , Bµν

and Φ. One can consider un–normalized correlation functions of operators φ1, ..., φp, in-
stead of points ξ1, ..., ξp ∈ Σ [15].
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By definition of the stress tensor TAB, under conformal transforms on the two dimen-
sional hypersurface, g[2] → exp[2δσ]g[2] with support away from ξ1, ..., ξp, we have

△σ < φ1...φp >g[2]=
1

2π

∫

Σ

δµg△σ < T A
A φ1...φp >g[2],

when assuming throughout that correlation functions are covariant under the diffeo-
morphisms on Σ, ▽ATAB = 0. The value T A

A receives contributions from the explicit
conformal non–invariance of SΦ, from conformal (Weyl) anomalies which are local func-
tions of u, i.e. dependent on u and on finite order derivatives on u, and polynomial in the
derivatives of u. For spaces provided with N–connection structures we should consider
N–elongated partial derivatives, choose a N–adapted linear connection structure with
some coefficients Γαµν (for instance the Levi Civita connection (3.10), or d–connection
(13.8)). The basic properties of T A

A are the same as for trivial values of Na
i [15], which

allows us to write directly that

T A
A = gAB[∂Ax

i∂Bx
jβg,Nij (x, y) + ∂Ax

i∂By
bβg,Nib (x, y) + ∂Ay

a∂Bx
jβg,Naj (x, y)

+∂Ay
a∂By

bβg,Nab (x, y) + εAB∂Au
α∂Bu

ββBαβ(x, y) + βΦ(x, y)Rg,

where the functions βg,Nαβ = {βg,Nij , βg,Nab }, βBαβ and βΦ(x, y) are called beta functions. On
general grounds, the expansions of β–functions are of type

β(x, y) =
∞∑

r=0

ℓ2rβ [2r](x, y).

One considers expanding up to and including terms with two derivatives on the fields
including expansions up to order r = 0 of βg,Nαβ and βBαβ and orders s = 0, 2 for βΦ. In
this approximation, after cumbersome but simple calculations (similar to those given in
[15], in our case on locally anisotropic backgrounds)

βg,Nij = a1[1]Rij + a2[1]gij + a3[1]gijR̂ + a4[1]H
[N ]
iρσH

[N ]ρσ
j + a5[1]gijH

[N ]
ρστH

[N ]ρστ

+a6[1]DiDjΦ + a7[1]gijD
2Φ + a8[1]gijD

ρΦDρΦ,

βg,Nib = a1[2]Rib + a4[2]H
[N ]
iρσH

[N ]ρσ
b + a6[2]DiDbΦ, (14.14)

βg,Naj = a1[3]Raj + a4[3]H
[N ]
aρσH

[N ]ρσ
j + a6[3]DaDjΦ,

βg,Nab = a1[4]Sab + a2[4]hab + a3[4]habS + a4[4]H
[N ]
aρσH

[N ]ρσ
b + a5[4]habH

[N ]
ρστH

[N ]ρστ

+a6[4]DaDbΦ + a7[4]habD
2Φ + a8[4]habD

ρΦDρΦ,
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βBαβ = b1D
λH

[N ]
λµν + b2(D

λΦ)H
[N ]
λµν ,

βΦ = c0 + ℓ2
[
c1[1]R̂ + c1[2]S + c2D

2Φ + c3
(
DλΦ

)
DλΦ + c4H

[N ]
ρστH

[N ]ρστ
]
,

where Rαβ = {Rij, Rib, Raj, Sab} and
←−
R = {R̂, S} are given respectively by the formulas

(13.15) and (13.16) and theB–strengthH
[N ]
λµν is computed not by using partial derivatives,

like in (14.6), but with N–adapted partial derivatives,

H [N ]
µνρ ≡ δµBνρ + δνBρµ + δνBρµ. (14.15)

The formulas for β–functions (14.14) are adapted to the N–connection structure being
expressed via invariant decompositions for the Ricci d–tensor and curvature scalar; every
such invariant object was provided with proper constants. In order to have physical
compatibility with the case N → 0 we should take

az[1] = az[2] = az[3] = az[4] = az, z = 1, 2, ..., 8;

c1[1] = c1[2] = c1,

where az and c1 are the same as in the usual string theory, computed from the 1– and
2–loop ℓ–dependence of graphs (a2 = 0, a6 = 1, a7 = a8 = 0 and b2 = 1/2, c3 = 2) and
by using the background field method (in order to define the values a1, a3, a4, a5, b1 and
c1, c2, c4).

14.2.2 Low energy string anholonomic field equations

The effective action, as the generating functional for 1–particle irreducible Feynman
diagrams in terms of a functional integral, can be obtained following the background
quantization method adapted, in our constructions, to sigma models on spacetimes with
N–connection structure. On such spaces, we can also make use of the Riemannian
coordinate expansion, but taking into account that the coordinates are defined with
respect to N–adapted bases and that the covariant derivative D is of type (13.8), (3.10)
or (13.10), i. e. is d–covariant, defined by a d–connection.

For two infinitesimally closed points uµ0 = uµ(τ0) and uµ(τ), with τ being a parameter
on a curve connected the points, we denote ζα = duα/dτ|0 and write uµ = eℓζuµ0 . We
can consider diffeomorphism invariant d–covariant expansions of d–tensors in powers of
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ℓ, for instance,

Φ(u) = Φ(u0) + ℓDα[Φ(u)ζα]|u=u0 +
ℓ2

2
DαDβ[Φ(u)ζαζβ]|u=u0 + o

(
ℓ3
)
,

Aαβ (u) = Aαβ (u0) + ℓDα[Aαβ(u)ζ
α]|u=u0 +

ℓ2

2
{DαDβ[Aµν(u)ζ

αζβ

−1

3
R

[N ]ρ
αµβ(u)Aρν(u)−

1

3
R

[N ]ρ
ανβ(u)Aρµ(u)]}|u=u0 + o

(
ℓ3
)
,

where the Riemannian curvature d–tensor R
[N ]ρ
αµβ = {R.i

h.jk, R
.a
b.jk, P

.i
j.ka, P

.c
b.ka, S

.i
j.bc, S

.a
b.cd}

has the invariant components given by the formulas (13.14) from Appendix. Putting
such expansions in the action for the nonlinear sigma model (14.13), we obtain the
decomposition

SgN ,B[u, g] = SgN ,B[u0, g] + ℓ

∫

Σ

δµgζ
βSβ[u0, g] + S[u, ζ, g],

where Sβ is given by the variation

Sβ [u0, g] = (det |g|)−1/2△S[eχu0, g]

△χβ |χ=0

and the last term S is an expansion on ℓ,

S = S [0] + ℓS[1] + ℓ2S [2] + o
(
ℓ3
)
,

with

S [0] =
1

8π

∫

Σ

δµg{gAB[gij(u0)D∗
Aζ

iD∗
Bζ

j + hab(u0)D∗
Aζ

aD∗
Bζ

b] (14.16)

+R[N ]
µνρσ(u0)[g

AB − εAB]∂Au
µ
0∂Bu

ρ
0ζ
νζσ},

S [1] =
1

24π

∫

Σ

δµgH
[N ]
µνρε

ABζµD∗
Aζ

νD∗
Bζ

ρ,

S [2] =
1

8π

∫

Σ

δµg{
gAB

3
R[N ]
µνρσζ

νζρD∗
Aζ

µD∗
Bζ

σ

−ε
AB

2
R[N ]
µνρσζ

νζρD∗
Aζ

µD∗
Bζ

σ + 2DαDβΦ(u0)ζ
αζβRg}.
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The operator D∗
Aζ

ν from (14.16) is defined according the rule

D∗
Aζ

ν = D∗
Aζ

ν +
1

2
H [N ]σ

µρgABε
BC∂Cu

µζρ,

with D∗
A being the covariant derivative on T ∗Σ ⊗ TM pulled back to Σ by the map uα

and acting as

D∗
A∂Bu

ν = ▽A∂Bu
ν + Γαµν∂Bu

ν∂Au
ν ,

with a h– and v–invariant decomposition Γαβγ = {Li jk, Labk, Ci
jc, C

a
bc}, see (13.8) from

Appendix, and the operator R[N ]
µνρσ is computed as

R[N ]
µνρσ = R[N ]

µνρσ +
1

2
DρH

[N ]
σµν −

1

2
DσH

[N ]
ρµν +

1

4
H [N ]
ρµαH

[N ]α
σν − 1

4
H [N ]
σµαH

[N ]α
ρν .

A comparative analysis of the expansion (14.16) with a similar one for N = 0 from
the usual nonlinear sigma model (see, for instance, [15]) define the ’geometric d–covariant
rule’: we may apply the same formulas as in the usual covariant expansions but with that
difference that 1) the usual spacetime partial derivatives and differentials are substituted
by N–elongated ones; 2) the Christoffell symbols of connection are changed into certain

d–connection ones, of type (13.8), (3.10) or (13.10); 3) the torsion H
[N ]
σµν is computed

via N–elongated partial derivatives as in (14.15) and 4) the curvature R
[N ]
µνρσ is split

into horizontal–vertical, in brief, h–v–invariant, components according the the formulas
(13.14). The geometric d–covariant rule allows us to transform directly the formulas
for spacetime backgrounds with metrics written with respect to coordinate frames into
the respective formulas with N–elongated terms and splitting of indices into h– and v–
subsets.

Low energy string anisotropic field equations and effective action

Following the geometric d–covariant rule we may apply the results of the holonomic
sigma models in order to define the coefficients a1, a3, a4, a5, b1 and c1, c2, c4 of beta
functions (14.14) and to obtain the following equations of (in our case, anholonomic)
string dynamics,

2βg,Nij = Rij −
1

4
H

[N ]
iρσH

[N ]ρσ
j + 2DiDjΦ = 0,

2βg,Nib = Rib −
1

4
H

[N ]
iρσH

[N ]ρσ
b + 2DiDbΦ = 0,
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2βg,Naj = Raj −
1

4
H [N ]
aρσH

[N ]ρσ
j + 2DaDjΦ = 0,

2βg,Nab = Sab −
1

4
H [N ]
aρσH

[N ]ρσ
b + 2DaDbΦ = 0,

2βBαβ = −1

2
DλH

[N ]
λµν + (DλΦ)H

[N ]
λµν = 0, (14.17)

2βΦ =
n+m− 26

3
+ ℓ2

[
1

12
H [N ]
ρστH

[N ]ρστ − R̂− S − 4D2Φ + 4
(
DλΦ

)
DλΦ

]
= 0,

where n + m denotes the total dimension of a spacetime with n holonomic and m an-
holonomic variables. It should be noted that βg,N = βB = 0 imply the condition that
βΦ = const, which is similar to the holonomic strings. The only way to satisfy βΦ = 0
with integers n and m is to take n +m = 26.

The equations (14.17) are similar to the Einstein equations for the locally anisotropic
gravity (see (13.18) in Appendix) with the matter energy–momentum d–tensor defined
from the string theory. From this viewpoint the fields Bαβ and Φ can be viewed as
certain matter fields and the effective field equations (14.17) can be derived from action

S (gij, hab, N
a
i , Bµν ,Φ) =

1

2κ2

∫
δ26u

√
| det gαβ|e−2Φ

[
R̂ + S + 4(DΦ)2 − 1

12
H2

]
,

(14.18)
where κ is a constant and, for instance, DΦ = DαΦ, H

2 = HµH
µ and the critical

dimension n + m = 26 is taken. For N → 0 and m → 0 the metric gαβ is called the
string metric. We shall call gαβ the string d–metric for nontrivial values of N.

Instead of action (14.18), a more standard action, for arbitrary dimensions, can be
obtained via a conformal transform of d–metrics of type (13.6),

gαβ → g̃αβ = e−4Φ/(n+m−2)gαβ.

The action in d–metric g̃αβ (by analogy with the locally isotropic backgrounds we call it
the Einstein d–metric) is written

S
(
g̃ij, h̃ab, N

a
i , Bµν ,Φ

)
=

1

2κ2

∫
δ26u

√
| det g̃αβ|[ ˜̂R + S̃

+
4

n +m− 2
(DΦ)2 − 1

12
e−8Φ/(n+m−2)H2].

This action, for N → 0 and m → 0, is known in supergravity theory as a part of
Chapline–Manton action, see Ref. [15] and for the so–called locally anisotropic super-
gravity, [43, 47]. When we deal with superstirngs, the susperstring calculations to the
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mentioned orders give the same results as the bosonic string except the dimension. For
anholonomic backrounds we have to take into account the nontrivial contributions of Na

i

and splitting into h– and v–parts.

Ahnolonomic Einstein and Finsler gravity from string theory

It is already known that the B–field can be used for generation of different types
of noncommutative geometries from string theories (see original results and reviews in
Refs. [57, 13, 9, 38, 50]). Under certain conditions such B–field configurations may result
in different variants of geometries with local anistropy like anholonomic Riemannian
geometry, Finsler like spaces and their generalizations. There is also an alternative
possibility when locally anisotropic interactions are modelled by anholonomic frame fields
with arbitrary B–field contributions. In this subsection, we investigate both type of
anisotropic models contained certain low energy limits of string theory.

B–fields and anholonomic Einstein–Finsler structures
The simplest way to generate an anholonomic structure in a low energy limit of string

theory is to consider a background metric gµν =

(
gij 0
0 hab

)
with symmetric Christoffel

symbols {αβγ} and such Bµν , with corresponding H
[N ]
µνρ from (14.15), as there are the

nonvanishing values H
[N ]ρ
µν = {H [N ]a

ij , H
[N ]a
bj = −H [N ]a

jb }. The next step is to consider a

covariant operator Dµ = D
{}
µ + 1

2
H

[N ]ρ
µν (14.5), where 1

2
H

[N ]ρ
µν is identified with the torsion

(13.11). This way the torsion H
[N ]
µνρ is associated to an aholonomic frame structure

with non–trivial W a
ij = δiN

a
j − δjN

a
i , W

b
ai = −W b

ia = −∂aN b
i (14.108), when Bµν is

parametrized in the form Bµν = {Bij = −Bji, Bbj = −Bjb} by identifying

gµνW
ν
γβ = δµBγβ ,

i. .e.

hcaW
a
ij = ∂cBij and hcaW

a
bj = ∂cBbj . (14.19)

Introducing the formulas for the anholonomy coefficients (14.108) into (14.19), we find
some formulas relating partial derivatives ∂αN

a
j and the coefficients Na

j with partial
derivatives of {Bij, Bbj},

hca
(
∂iN

a
j −N b

i ∂bN
a
j − ∂jNa

i +N b
j ∂bN

a
i

)
= ∂cBij ,

−hca∂bNa
j = ∂cBbj . (14.20)
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So, given any data (hca, N
a
i ) we can define from the system of first order partial derivative

equations (14.20) the coefficients Bij and Bbj , or, inversely, from the data (hca, Bij, Bbj)
we may construct some non–trivial valuesNa

j .We note that the metric coefficients gij and
the B–field components Bab = −Bba could be arbitrary ones, in the simplest approach
we may put Bab = 0.

The formulas (14.20) define the conditions when a B–field may be transformed into
a N–connection structure, or inversely, a N–connection can be associated to a B–field
for a prescribed d–metric structure hca, (13.6).

The next step is to decide what type of d–connection we consider on our background
spacetime. If the values {gij, hca} andW ν

γβ (defined by N b
i as in (14.108), but also induced

from {Bij, Bbj} following (14.20)) are introduced in formulas (3.10) we construct a Levi
Civita d–connection Dµ with nontrivial torsion induced by anholonomic frames with
associated nonlinear connection structure. This spacetime is provided with a d–metric
(13.6), gαβ = {gij, hca}, which is compatible with Dµ, i. e. Dµgαβ = 0. The coefficients

of Dµ with respect to anholonomic frames (13.2) and (13.3), Γ▽τ
βγ , can be computed in

explicit form by using formulas (3.10). It is proven in the Appendix that on spacetimes
provided with anholonomic structures the Levi Civita connection is not a priority one
being both metric and torsion vanishing. We can construct an infinite number of metric
connections, for instance, the canonical d–connection with the coefficients (13.8), or,
equivalently, following formulas (13.10), to substitute from the coefficients (3.10) the
values 1

2
gikΩa

jkhca, where the coefficients of N–connection curvature are defined by Na
i

as in (5.7). In general, all such type of linear connections are with nontrivial torsion
because of anholonomy coefficients.

We may generate by B–fields an anholonomic (pseudo) Riemannian geometry if (for
given values of gαβ = {gij, hca} and Na

i , satisfying the conditions (14.20)) the metric is
considered in the form (13.32) with respect to coordinate frames, or, equivalently, in
the form (13.6) with respected to N–adapted frame (13.3). The metric has to satisfy the
gravitational field equations (13.18) for the Einstein gravity of arbitrary dimensions with
holonomic–anholonomic variables, or the equations (14.17) if the gravity with anholo-
nomic constraints is induced in a low energy string dynamics. We emphasize that the
Ricci d–tensor coefficients from β–functions (14.17) should be computed by using the
formulas (13.15), derived from those for d–curvatures (13.14) and for d–torsions (13.13)
for a chosen variant of d–connection coefficients, for instance, (13.8) or (3.10).
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We note here that a number of particular ansatz of form (13.32) were considered in
Kaluza–Klein gravity [35] for different type of compactifications. In Refs. [45, 46, 53, 54,
52] there were constructed and investigated a number exact solutions with off–diagonal
metrics and anholonomic frames with associated N–connection structures in the Einstein
gravity of different dimensions (see also the Section 2.5).

Now, we discuss the possibility to generate a Finsler geometry from string theory.
We note that the standard definition of Finsler quadratic form

g
[F ]
ij = (1/2)∂2F/∂yi∂yj

is considered to be positively definite (see (14.127) in Appendix). There are different pos-
sibilities to include Finsler like structures in string theories. For instance, we can consider
quadratic forms with non–constant signatures and to generate (pseudo) Finsler geome-
tries [similarly to (pseudo) Eucliedean/Riemannian metrics], or, as a second approach,
to consider some embedding of Finsler d–metrics (13.34) of signature (+ + ...+) into a 26
dimensional pseudo–Riemannian anholonomic background with signature (−+ +...+) .
In the last case, a particular class of Finsler background d–metrics may be chosen in the
form

G[F ] = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + g
[F ]
i′j′(x, y)dx

i′ ⊗ dxj′ + g
[F ]
i′j′(x, y)δy

i′ ⊗ δyj′ (14.21)

where i′, j′, ...run values 1, 2, .., n′ ≤ 12 for bosonic strings. The coefficients g
[F ]
i′j′ are of

type (14.127) or may take the value +δi′j′ for some values of i 6= i′, j 6= j′. We may

consider some static Finsler backgrounds if g
[F ]
i′j′ do not depend on coordinates (x0, x1) ,

but, in general, we are not imposed to restrict ourselves only to such constructions.
The N–coefficients from δyi

′

= dyi
′

+ N i′

j′dx
i′ must be of the form (13.33) if we wont

to generate in the low energy string limit a Finsler structure with Cartan nonlinear
connection (there are possible different variants of nonlinear and distinguished nonlinear
connections, see details in Refs. [34, 29, 4] and Appendix).

Let us consider in details how a Finsler metric can be included in a low energy string
dynamics. We take a Finsler metric F which generate the metric coefficients g

[F ]
i′j′ and

the N–connection coefficients N
[F ]i′

j′ , respectively, via formulas (14.127) and (13.33). The

Cartan’s N–connection structure N
[F ]i′

j′ may be induced by a B–field if there are some

nontrivial values, let us denote them {B[F ]
ij , B

[F ]
bj }, which satisfy the conditions (14.20).

This way the B–field is expressed via a Finsler metric F (x, y) and induces a d–metric
(14.21). This Finsler structure follows from a low energy string dynamics if the Ricci
d–tensor Rαβ = {Rij , Ria, Rai, Rab} (13.15) and the torsion

H [N ]ρ
µν = {H [N ]a

ij , H
[N ]a
bj = −H [N ]a

jb }
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related with N
[F ]i′

j′ as in (14.19), all computed for d–metric (14.21) are solutions of the
motion equations (14.17) for any value of the dilaton field Φ. In the Section 2.5 we shall
consider an explicit example of a string–Finsler metric.

Here it should be noted that instead of a Finsler structure, in a similar manner, we
may select from a string locally anisotropic dynamics a Lagrange structure if the metric
coefficients gi′j′ are generated by a Lagrange function L(x, y) (13.35). The N–connection
may be an arbitrary one, or of a similar Cartan form. We omit such constructions in
this paper.

Anholonomic Einstein–Finsler structures for arbitrary B–fields
Locally anisotropic metrics may be generated by anholonomic frames with associated
N–connections which are not induced by some B–field configurations.

For an anholonomic (pseudo) Riemannian background we consider an ansatz of form
(13.32) which by anholonomic transform can be written as an equivalent d–metric (13.6).
The coefficients Na

i and Bµν are related only via the string motion equations (14.17)
which must be satisfied by the Ricci d–tensor (13.15) computed, for instance, for the
canonical d–connection (13.8).

A Finsler like structure, not induced directly by B–fields, may be emphasized if the
d-metric is taken in the form (14.21), but the values δyi

′

= dyi
′

+N i′

j′dx
i′ being elongated

by some N i′

j′ are not obligatory constrained by the conditions (14.20). Of course, the
Finsler metric F and Bµν are not completely independent; these fields must be chosen
as to generate a solution of string–Finsler equations (14.17).

In a similar manner we can model as some alternative low energy limits of the string
theory, with corresponding nonlinear sigma models, different variants of spacetime ge-
ometries with anholonomic and N–connection structures, derived on manifold or vector
bundles when the metric, linear and N–connection structures are proper for a Lagrange,
generalized Lagrange or anholonomic Riemannian geometry [29, 34, 4, 24, 45, 44, 46, 51,
53].

14.3 Superstrings and Anisotropic Supergravity

The bosonic string theory, from which in the low energy limits we may generate
different models of anholonomic Riemannian–Finsler gravity, suffers from at least four
major problems: 1) there are tachyonic states which violates the physical causality and
divergence of transitions amplitudes; 2) there are not included any fermionic states
transforming under a spinor representation of the spacetime Lorentz group; 3) it is
not clear why Yang–Mills gauge particles arise in both type of closed and open string
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theories and to what type of strings should be given priority; 4) experimentally there
are 4 dimensions and not 26 as in the bosonic string theory: it must be understood why
the remaining dimensions are almost invisible.

The first three problems may be resolved by introducing certain additional dynamical
degrees of freedom on the string worldsheet which results in fermionic string states in
the physical Hibert space and modifies the critical dimension of spacetime. One tries
to solve the forth problem by developing different models of compactification.

There are distinguished five, consistent, tachyon free, spacetime supersymmetric
string theories in flat Minkowski spacetime (see, for instance, [15, 25] for basic results and
references on types I, IIA, IIB, Heterotic Spin(32)/Z2 and Heterotic E8×E8 string theo-
ries). The (super) string and (super) gravity theories in geralized Finsler like, in general,
supersymmetric backgrounds provided with N–connection structure, and corresponding
anisotropic superstring perturbation theories, were investigated in Refs. [41, 43, 47].
The goal of this Section is to illustrate how anholonomic type structures arise in the low
energy limits of the mentioned string theories if the backgrounds are considered with
certain anholonomic frame and off–diagonal metric structures. We shall consider the
conditions when generalized Finsler like geometries arise in (super) string theories.

We would like to start with the example of the two–dimensional N = 1 supergravity
coupled to the dimension 1 superfields, containing a bosonic coordinate Xµ and two
fermionic coordinates, one left–moving ψµ and one right moving ψ

µ
(we use the symbol

N for the supersimmetric dimension which must be not confused with the symbol N
for a N–connection structure). We note that the two dimensional N = 1 supergravity
multiplet contains the metric and a gravitino χA.In order to develop models in back-
grounds distinguished by a N–connection structure, we have to consider splitting into

h– and v–components, i. e. to write Xµ = (X i, Xa) and ψµ = (ψi, ψa) , ψ
µ

=
(
ψ
i
, ψ

a
)
.

The spinor differential geometry on anisotropic spacetimes provided with N–connections
(in brief, d–spinor geometry) was developed in Refs. [40, 55]. Here we shall present only
the basic formulas, emphasizing the fact that the coefficients of d–spinors have the usual
spinor properties on separated h– (v-) subspaces.

The simplest distinguished superstring model can be developed from an analog of the
bosonic Polyakov action,
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SP =
1

4πα′

∫

Σ

δµg{gAB
[
∂AX

i∂BX
jgij + ∂AX

a∂BX
bhab

]
(14.22)

+
i

2
[ψkγA∂Aψ

k + ψaγA∂Aψ
a] +

i

2

(
χAγ

BγAψk
)(

∂BX
k − i

4
χBψ

k

)

+
i

2

(
χAγ

BγAψa
)(

∂BX
a − i

4
χBψ

a

)
}

being invariant under transforms (i. e. being N = 1 left–moving (1, 0) supersymmetric)

△gAB = iǫ (γAχB + γBχA) , △ χA = 2▽A ǫ,

△X i = iǫψi, △ ψk = γA
(
∂AX

k − i

2
χAψ

k

)
ǫ, △ ψ

i
= 0,

△Xa = iǫψa, △ ψa = γA
(
∂AX

a − i

2
χAψ

a

)
ǫ, △ ψ

a
= 0,

where the gamma matrices γA and the covariant differential operator ▽A are defined on
the two dimensional surface, ǫ is a left–moving Majorana–Weyl spinor. There is also
a similar right–moving (0, 1) supersymmetry involving a right moving Majorana–Weyl
spinor ǫ and the fermions ψ

µ
which means that the model has a (1, 1) supersymmetry.

The superconformal gauge for the action (14.22) is defined as

gAB = eΦδAB, χA = γAζ,

for a constant Majorana spinor ζ. This action has also certain matter like supercurents
iψµ∂Xµ and iψ

µ
∂Xµ.

We remark that the so–called distinguished gamma matrices (d–matrices), γα =
(γi, γa) and related spinor calculus are derived from γ–decompositions of the h– and v–
components of d–metrics gαβ = {gij, hab} (13.6)

γiγj + γjγi = −2gij, γaγb + γbγa = −2hab,

see details in Refs. [40, 55].
In the next subsections we shall distinguish more realistic superstring actions than

(14.22) following the geometric d–covariant rule introduced in subsection 14.2.2, when
the curved spacetime geometric objects like metrics, connections, tensors, spinors, ... as
well the partial and covariant derivatives and differentials are decomposed in invariant
h– and v–components, adapted to the N–connection structure. This will allow us to
extend directly the results for superstring low energy isotropic actions to backgrounds
with local anisotropy.
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14.3.1 Locally anisotropic supergravity theories

We indicate that many papers on supergravity theories in various dimensions are
reprinted in a set of two volumes [36]. The bulk of supergravity models contain locally
anisotropic configurations which can be emphasized by some vielbein transforms (14.7)
and metric anzatz (14.11) with associated N–connection. For corresponding parametriza-
tions of the d–metric coefficients, gαβ(u) = {gij , hab}, N–connection, Na

i (x, y), and d–
connection, Γαβγ =

(
Li jk, L

a
bk, C

i
jc, C

a
bc

)
, with possible superspace generalizations, we

can generate (pseudo) Riemannian off–diagonal metrics, Finsler or Lagrange (super) ge-
ometries. In this subsection, we analyze the anholonomic frame transforms of some
supergravity actions which can be coupled to superstring theory.

We note that the field components will be organized according to multiplets of
Spin (1, 10) . We shall use 10 dimensional spacetime indices α, β... = 0, 1, 2, ..., 9 or 11
dimensional ones α, β... = 0, 1, 2, ..., 9, 10. The coordinate u10 could be considered as a
compactified one, or distinguished in a non–compactified manner, by the N–connection
structure. There is a general argument [31] is that 11 is the largest possible dimension
in which supersymmetric multiplets can exist with spin less, or equal to 2, with a single
local supersymmetry. We write this as n + m = 11, which points to possible splittings
of indices like α =

(
i, a
)

where i and a run respectively n and m values. A consistent
superstring theory holds if n + m = 10. In this case, indices are to be decomposed as
α = (i, a) . For simplicity, we shall consider that a metric tensor in n+m = 11 dimensions
decomposes as gαβ (uµ, u10)→ gαβ (uµ) and that in low energy approximation the fields
are locally anisotropically interacting and independent on u10. The antisymmetric rank
3 tensor is taken to decompose as Aαβγ (uµ, u10)→ Aαβγ(u

µ). A fitting with superstring

theory is to be obtained if
(
A

[3]
αβγ , Bµν

)
→ Aαβγ and consider for spinors ”dilatino” fields

(
χ τ
µ , λτ

)
→ χ τ

µ , see, for instance, Refs. [15] for details on couplings of supergravity and
low energy superstrings.

N = 1, n+m = 11 anisotropic supergravity

The field content ofN = 1 and 11 dimensional supergravity is given by gαβ (graviton),
Aαβγ (U(1) gauge fields) and χαµ (gravitino). The dimensional reduction is stated by

gα10 = g10α = A
[1]
α and g10 10 = e−2Φ, where the coefficients are given with respect to an

N–elongated basis. We suppose that an effective action

S(gij, hab, N
a
i , Bµν ,Φ) =

1

2κ2

∫
δµ[g,h]e

−2Φ

[
−R̂ − S + 4(DΦ)2 − 1

12
H2

]
,
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is to be obtained if the values A
[1]
α , A

[3]
αβγ , χ

τ
µ , λτ vanish. For N → 0, m → 0 this action

results from the so–called NS sector of the superstring theory, being related to the sigma
model action (14.18). A full N = 1 and 11 dimensional locally anisotropic supergravity
can be constructed similarly to the locally isotropic case [11] but considering that H [N ] =
δB and F [N ] = δA are computed as differential forms with respect to N–elongated
differentials (13.3),

S (gij , hab, N
a
i , Aα, χ) = − 1

2κ2

∫
δµ[g,h][R̂ + S − κ2

12
F 2 + κ2χµΓ

µνλDνχλ (14.23)

+

√
2κ3

384

(
χµΓ

µνρστλχλ + 12Γρνσχτ
)(

F + F̂
)
νρστ

]

−
√

2κ

81× 56

∫
A ∧ F ∧ F,

where Γµνρστλ = Γ[µΓν ...Γλ] is the standard notation for gamma matrices for 11 dimen-
sional spacetimes, the field F̂ = F + χ–terms and Dν is the covariant derivative with
respect to 1

2
(ω + ω̂) where

ω̂µαβ = ωµαβ +
1

8
χνΓνµαβρχ

ρ

with ωµαβ being the spin connection determined by its equation of motion. We put
the same coefficients in the action (14.23) as in the locally isotropic case as to have
compatibility for such limits. Every object (tensors, connections, connections) has a N–
distinguished invariant character with indices split into h– and v–subsets. For simplicity
we omit here further decompositions of fields with splitting of indices.

Type IIA anisotropic supergravity

The action for a such model can be deduced from (14.23) if Aαβγ = κ1/4A
[3]
αβγ and

Aαβ10 = κ−1Bαβ with further h– and v– decompositions of indices. The bosonic part of
the type IIA locally anisotropic supergravity is described by

S
(
gij, hab, N

a
i ,Φ, A

(1), A(3)
)

= − 1

2κ2

∫
δµ[g,h]{e−2Φ[R̂ + S − 4(DΦ)2 +

1

12
H2]

+
√
κG[A] +

√
κ

12
F 2 − κ−3/2

288

∫
B ∧ F ∧ F}, (14.24)

with G[A] = δA(1), H = δB and F = δA(3). This action may be written directly from the
locally isotropic analogous following the d–covariant geometric rule.
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Type IIB, n+m=10, N = 2 anisotropic supergravity

In a similar manner, geometrically, for d–objects, we may compute possible anhol-
nomic effects from an action describing a model of locally anisotropic supergravity with
a super Yang–Mills action (the bosonic part)

SIIB = − 1

2κ2

∫
δµ[g,h]e

−2Φ[R̂ + S + 4(DΦ)2 − 1

12
H̃2 − 1

4
F â
µνF

âµν ], (14.25)

when the super–Yang–Mills multiplet is stated by the action

SYM =
1

κ

∫
δµ[g,h]e

−2Φ[−1

4
F â
µνF

âµν − 1

2
ψ
â
ΓµDµψ

â].

In these actions

A = Aâµt
âδuµ

is the gauge d–field of E8×E8 or Spin (32) /Z2 group (with generators tâ labelled by the
index â), having the strength

F = δA+ gFA ∧A =
1

2
F â
µνt

âδuµ ∧ δuν,

gF being the coupling constant, and ψ is the gaugino of E8 ×E8 or Spin (32) /Z2 group
(details on constructions of locally anisotropic gauge and spinor theories can be found
in Refs. [51, 50, 47, 55, 48, 40]). The action with B–field strength in (14.25) is defined
as follows

H̃ = δB − κ√
2
ωCS (A) ,

for

ωCS (A) = tr

(
A ∧ δA+

2

3
gFA ∧ A ∧ A

)
.

Such constructions conclude in a theory with SIIB + SYM+ fermionic terms with an-
holonomies and N = 1 supersymmetry.

Finally, we emphasize that the actions for supersymmetric anholonomic models can
considered in the framework of (super) geometric formulation of supergravities in n+m =
10 and 11 dimensions on superbundles provided with N–connection structure [41, 43, 47].
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14.3.2 Superstring effective actions and anisotropic toroidal co-

mpactifications

The supergravity actions presented in the previous subsection can be included in
different supersymmetric string theories which emphasize anisotropic effects if spacetimes
provided with N–connection structure are considered. In this subsection we analyze a
model with toroidal compactification when the background is locally anisotropic. In
order to obtain four–dimensional (4D) theories, the simplest way is to make use of the
Kaluza–Klein idea: to propose a model when some of the dimensions are curled–up into
a compact manifold, the rest of dimensions living only for non–compact manifold. Our
aim is to show that in result of toroidal compactifications the resulting 4D theory could
be locally anisotropic.

The action (14.25) can be obtained also as a 10 dimensional heterotic string effective
action (in the locally isotropic variant see, for instance, Ref. [25])

(α′)
8
S10−n′−m′ =

∫
δ10u

√
|gαβ|e−Φ′

[R̂+S+(DΦ′)2− 1

12
H̃2−1

4
F â
µνF

âµν ]+o (α′) , (14.26)

where we redefined 2Φ→ Φ′, use the string constant α′ and consider the (n′, m′) as the
(holonomic, anholonomic) dimensions of the compactified spacetime (as a particular case
we can consider n′ + m′ = 4, or n′ + m′ < 10 for any brane configurations. Let us use
parametrizations of indices and of vierbeinds: Greek indices α, β, ...µ... run values for a

10 dimensional spacetime and split as α = (α′, α̂) , β =
(
β ′, β̂

)
, ... when primed indices

α′, β ′, ...µ′... run values for compactified spacetime and split into h- and v–components
like α′ = (i′, a′) , β ′ = (j′, b′) , ...; the frame coefficients are split as

e
µ
µ (u) =

(
e
α′

α′ (uβ
′

) Aα̂α′(uβ
′

)e
α̂
α̂ (uβ

′

)

0 e α̂
α̂ (uβ

′

)

)

where e α′

α′ (uβ
′

), in their turn, are taken in the form (14.7),

e α′

α′ (uβ
′

) =

(
e i′

i′ (xj
′

, ya
′

) Na′

i′ (xj
′

, ya
′

)e a′

a′ (xj
′

, ya
′

)

0 e a′

a′ (xj
′

, ya
′

)

)
. (14.27)

For the metric we have the recurrent ansatz

g
αβ

=

[
gα′β′(uβ

′

) +N α̂
α′(uβ

′

)N β̂
β′(uβ

′

)hα̂β̂(u
β′

) hα̂β̂(u
β′

)N α̂
α′(uβ

′

)

hα̂β̂(u
β′

)N β̂
β′(uβ

′

) hα̂β̂(u
β′

)

]
.
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where

gα′β′ =

[
gi′j′(u

β′

) +Na′

i′ (uβ
′

)N b′

j′ (u
β′

)ha′b′(u
β′

) ha′b′(u
β′

)Na′

i′ (uβ
′

)

ha′b′(u
β′

)N b′

j′ (u
β′

) ha′b′(u
β′

)

]
. (14.28)

The part of action (14.26) containing the gravity and dilaton terms becomes

(α′)
n′+m′

Sheteroticn′+m′ =

∫
δn

′+m′

u
√
|gαβ|e−φ[R̂′ + S ′ + (δµ′φ)(δµ

′

φ) (14.29)

+
1

4
(δµ′hα̂β̂)(δ

µ′hα̂β̂)− 1

4
hα̂β̂F

[A]α̂
µ′ν′ F

[A]β̂µ′ν′ ],

where φ = Φ′− 1
2
log
(
det |hα̂β̂|

)
and F

[A]α̂
µ′ν′ = δµ′A

α̂
ν′−δν′Aα̂µ′ and the h- and v–components

of the induced scalar curvature, respectively, R̂′ and S ′ (see formula (13.16) in Appendix)
are primed in order to point that these values are for the lower dimensional space. The
antisymmetric tensor part may be decomposed in the form

− 1

12

∫
δ10u

√
|gαβ|e−Φ′

HµνρHµνρ = −1

4

∫
δn

′+m′

u
√
|gα′β′ |e−φ × (14.30)

[Hµ′α̂β̂Hµ′α̂β̂ +Hµ′ν′β̂Hµ′ν′β̂ +
1

3
Hµ′ν′ρ′Hµ′ν′ρ′ ],

where, for instance,

Hµ′α̂β̂ = e
µ′

µ′ e
µ
µ′Hµα̂β̂

and we have considered Hα̂β̂γ̂ = 0. In a similar manner we can decompose the action for

gauge fields ÂIµ with index I = 1, ..., 32,

∫
δ10u

√
|gαβ|e−Φ′

16∑

I=1

F̂ I,µνF̂ I
µν =

∫
δn

′+m′

u
√
|gα′β′ |e−φ

16∑

I=1

[F̂ I,µ′ν′F̂ I
µ′ν′ + 2F̂ I,µ′ν̂F̂ I

µ′ν̂ ],

(14.31)
with

Y I
α̂ = AIα̂, A

I
α′ = ÂIα′ − Y I

α̂A
α̂
µ,

F̂ I
µ′ν′ = F I

µ′ν′ + Y I
α̂F

[A]α̂
µ′ν′ , F̂

I
µ′ν̂ = δµ′Y

I
α̂ , F̂

I
µ′ν′ = δµ′A

I
ν′ − δν′AIµ′ ,

where the scalars Y I
α̂ coming from the ten–dimensional vectors should be associated to

a normal Higgs phenomenon generating a mass matrix for the gauge fields. Thy are



530CHAPTER 14. (NON) COMMUTATIVE FINSLER GEOMETRY AND STRINGS

related to the fact that a non–Abelian gauge field strength contains nonlinear terms not
being certain derivatives of potentials.

After a straightforward calculus of the actions’ components (14.29), (14.30) and
(14.31) (for locally isotropic gauge theories and strings, see a similar calculus, for in-
stance, in Refs. [25]), putting everything together, we can write the n′ +m′ dimensional
action including anholonomic interactions in the form

Sheteroticn′+m′ =

∫
δn

′+m′

u
√
|gα′β′|e−φ[R̂′ + S ′ + (δµ′φ)(δµ

′

φ)− 1

12
Hµ′ν′ρ′Hµ′ν′ρ′

−1

4
(M−1)IJF

I
µ′ν′F

Jµ′ν′ +
1

8
Tr
(
δµ′Mδµ

′

M−1
)
], (14.32)

where
←−
R

′
=R̂′ + S ′ is the d–scalar curvature of type (13.16) induced after toroidal com-

pactification, the (2p+ 16)× (2p+ 16) dimensional symmetric matrix M has the struc-
ture

M =




g−1 g−1C g−1Y t

Ctg−1 g + Ctg−1C + Y tY Ctg−1Y t + Y t

Y g−1 Y g−1C + Y I16 + Y g−1Y t




with the block sub–matrices

g =
(
g
αβ

)
, C =

(
Cα̂β̂ = Bα̂β̂ −

1

2
Y I
α̂Y

I
β̂

)
, Y =

(
Y I
α̂

)
,

for which I16 is the 16 dimensional unit matrix; for instance, Y t denotes the transposition
of the matrix Y. The dimension p satisfies the condition n′ + m′ − p = 16 relevant to
the heterotic string describing p left–moving bosons and n′ +m′ right–moving ones with
m′ constrained degrees of freedom. To have good modular properties p− n′−m′ should
be a multiple of eight. The indices I, J run values 1, 2, ... (2p+ 16) . The action (14.32)
describes a heterotic string effective action with local anisotropies (contained in the

values R̂′, S ′ and δµ′) induced by the fact that the dynamics of the right–moving bosons
are subjected to certain constraints. The induced metric gα′β′ is of type (13.6) given with
respect to an N–elongated basis (13.3) (in this case, primed), δµ′ = ∂µ′ +Nµ′ . ForNa′

i′ → 0
and m′, i. e. for a subclass of effective backgrounds with block n′×n′⊕m′×m′ metrics
gα′β′, the action (14.32) transforms in the well known isotropic form (see, for instance,
formula (C22), from the Appendix C in Ref. [25], from which following the ’geometric
d–covariant rule’ we could write down directly (14.32); this is a more formal approach
which hides the physical meaning and anholonomic character of the components (14.29),
(14.30) and (14.31)).
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14.3.3 4D NS–NS anholonomic field equations

As a matter of principle, compactifications of all type in (super) string theory can
be performed in such ways as to include anholonomic frame effects as in the previous
subsection. The simplest way to define anisotropic generalizations or such models is to
apply the ’geometric d–covariant rule’ when the tensors, spinors and connections are
changed into theirs corresponding N–distinguished analogous. As an example, we write
down here the anholonomic variant of the toroidally compactified (from ten to four
dimensions) NS–NS action (we write in brief NS instead of Neveu–Schwarz) [37],

S =

∫
δ4u
√
|gα′β′|e−ϕ[R̂′+S ′+(δµ′φ)(δµ

′

φ)− 1

2
(δµ′β)(δµ

′

β)− 1

2
e2ϕ(δµ′σ)(δµ

′

σ)], (14.33)

for a d–metric parametrized as

δs2 = −ǫδ(x0′)2 + gα′β′δuα
′

δuβ
′

+ eβ/
√

3δα̂γ̂δu
α̂δuβ̂,

where, for instance, uα
′

= (x0′ , uα
′

), α′ = 1, 2, 3 and α̂, β̂, ... = 4, 5, ...9 are indices of extra
dimension coordinates, ǫ = ±1 depending on signature (in usual string theory one takes
x0′ = t and ǫ = −1), the modulus field β is normalized in such a way that it becomes
minimally coupled to gravity in the Einstein d–frame, σ is a pseudo–scalar axion d–field,
related with the anti–symmetric strength,

Hα′β′γ′(uα
′

) = εα
′β′γ′τ ′eϕ(uα′

)Dτ ′σ(uα
′

),

εα
′β′γ′τ ′ being completely antisymmetric and ϕ(uα

′

) = Φ′(uα
′

)−
√

3β(uα
′

), with Φ′(uα
′

)
taken as in (14.26).

We can derive certain locally anisotropic field equations from the action (14.33) by
varying with respect to N–adapted frames for massless excitations of gα′β′ , Bα′β′ , β and
ϕ, which are given by

2

[
Rµ′ν′ −

1

2

(
R̂′ + S ′

)
gµ′ν′

]
=

1

2
Hµ′λ′τ ′H

λ′τ ′

ν′ −H2gµ′ν′+ (14.34)

(
δλ

′

µ′δ
τ ′

ν′ −
1

2
gµ′ν′g

λ′τ ′
)
Dλ′βDτ ′β − gµ′ν′(Dϕ)2 + 2

(
gµ′ν′g

λ′τ ′ − δλ′µ′δτ
′

ν′

)
Dλ′Dτ ′ϕ = 0,

Dµ′

(
e−ϕHµ′ν′λ′

)
= 0,

Dµ′

(
e−ϕDµ′β

)
= 0,

2Dµ′D
µ′ϕ = −R̂′ − S ′ + (Dϕ)2 +

1

2
(Dβ)2 +

1

12
H2 = 0,
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where H2 = Hµ′λ′τ ′H
µ′ λ′τ ′ and, for instance, (Dϕ)2 = Dµ′ϕD

µ′ϕ. We may select a
consistent solution of these field equations when the internal space is static with Dµ′β =
0.

The equations (14.34) can be decomposed in invariant h– and v–components like
the Einstein d–equations (13.18) (we omit a such trivial calculus). We recall [15] that
the NS–NS sector is common to both the heterotic and type II string theories and is
comprised of the dilaton, graviton and antisymmetric two–form potential. The obtained
equations (14.34) define respective anisotropic string corrections to the anholonomic
Einstein gravity.

14.3.4 Distinguishing anholonomic Riemannian–Finsler
(super) gravities

There are two classes of general anisotropies contained in supergravity and super-
string effective actions:

• Generic local anisotropies contained in the higher dimension (11, for supergravity
models, or 10, for superstring models) which can be also induced in lower dimension
after compactification (like it was considered for actions (14.23), (14.24), (14.25)
and (14.26)).

• Local anisotropies which are in induced on the lower dimensional spacetime (for
instance, actions (14.32) and (14.33) and respective field equations).

All types of general supergravity/superstring anisotropies may be in their turn to be
distinguished to be of ”pure” B–field origin, of ”pure” anholonomic frame origin with
arbitrary B–field, or of a mixed type when local anisotropies are both induced in a
nonlinear form by both anholonomic (super) vielbeins and B–field (like we considered
in subsection 14.2.2 for bosonic strings). In explicit form, a model of locally anisotropic
superstring corrected gravity is to be constructed following the type of parametrizations
we establish for the N–coefficients, d–metrics and d–connections.

For instance, if we choose the frame ansatz (14.27) and corresponding metric ansatz
(14.28) with general coefficients gi′j′(x

j′, yc
′

), ha′b′(x
j′ , ya

′

) and Na′

i′ (xj
′

, ya
′

) satisfying the
effective field equations (14.34) (containing also the fields Hµ′λ′τ ′ , ϕ and β) we define
an anholonomic gravity model corrected by toroidally compactified (from ten to four
dimensions) NS–NS superstring model. In four and five dimensional Einstein/ Kaluza–
Klein gravities, there were constructed a number of anisotropic black hole, wormhole,
solitonic, spinor waive and Taub/NUT metrics [45, 49, 46, 53, 52]; in section 2.5 we shall
consider some generalizations to string gravity.
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Another possibility is to impose the condition that gi′j′, ha′b′ and Na′

i′ are of Finsler

type, g
[F ]
i′j′ = h

[F ]
i′j′ = ∂2F 2/2∂yi∂yj (14.127) and N

[F ]i
j (x, y) = ∂

[
cιlk(x, y)y

lyk
]
/ 4∂yj

(13.33), with an effective d–metric (13.34). If a such set of metric/N–connection coef-
ficients can found as a solution of some string gravity equations, we may construct a
lower dimensional Finsler gravity model induced from string theory (it depends of what
kind of effective action, (14.32) or (14.33), we consider). Instead of a Finsler gravity we
may search for a Lagrange model of string gravity if the d–metric coefficients are taken
in the form (13.35).

We conclude this section by a remark that we may construct various type of anho-
lonomic Riemannian and generalized Finsler/Lagrange string gravity models, with aniso-
tropies in higher and/or lower dimensions by prescribing corresponding parametriza-
tions for gij, hab and Na

i (for ’higher’ anisotropies) and gi′j′, ha′b′ and Na′

i′ (for ’lower’
anisotropies). The anholonomic structures may be of mixed type, for instance, in some
dimensions being of Finsler configuration, in another ones being with anholonomic Rie-
mannian metric, in another one of Lagrange type and different combinations and gener-
alizations, see explicit examples in Section 2.5.

14.4 Noncommutative Anisotropic Field Interacti-

ons

We define the noncommutative field theory in a new form when spacetimes and config-
uration spaces are provided with some anholonomic frame and associated N–connection
structures. The equations of motions are derived from functional integrals in a usual
manner but considering N–elongated partial derivatives and differentials.

14.4.1 Basic definitions and conventions

The basic concepts on noncommutative geometry are outlined here in a somewhat
pedestrian way by emphasizing anholonomic structures. More rigorous approaches on
mathematical aspects of noncommutative geometry may be found in Refs. [8, 19, 16, 18],
physical versions are given in Refs. [13, 57, 9, 38] (the review [50] is a synthesis of results
on noncommutative geometry, N–connections and Finsler geometry, Clifford structures
and anholonomic gauge gravity based on monographs [18, 47, 55, 29]).

As a fundamental ingredient we use an associative, in general, noncommutative alge-
bra A with a product of some elements a, b ∈ A denoted ab = a · b, or in the conotation
to noncommutative spaces, written as a ”star” product ab = a ⋆ b. Every element a ∈ A
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corresponds to a configuration of a classical complex scalar field on a ”space” M, a topo-
logical manifold, which (in our approach) can be enabled with a N–connection structure.
This associated noncommutative algebra generalize the algebra of complex valued func-
tions C(M) on a manifold M (for different theories we may consider instead M a tangent
bundle TM, or a vector bundle E (M)). We consider that all functions referring to the
algebra A, denoted as A (M) , arising in physical considerations are of necessary smooth
class (continuous, smooth, subjected to certain bounded conditions etc.).

Matrix algebras and noncommutativity

As the most elementary examples of noncommutative algebras, which are largely
applied in quantum field theory and noncommutative geometry, one considers the algebra
Matk(IC) of complex k×k matrices and the algebraMatk (C(M)) of k×k matrices whose
matrix elements are elements of C(M). The last algebra may be also defined as a tensor
product,

Matk (C(M)) = Matk(IC)⊗ C(M).

The last construction is easy to be generalized for arbitrary noncommutative algebra A
as

Matk (A) = Matk(IC)⊗A,
which is just the algebra of k × k matrices with elements in A. The algebra Matk (A)
admits an authomorphism group GL(k, IC) with the action defined as a → ς−1aς, for
a ∈ A, ς ∈ GL(k, IC). One considers the subgroup U (k) ⊂ GL(k, IC) which is preserved
by hermitian conjugations, a → a+, and reality conditions, a = a+. To define the
hermitian conjugation, for which the hermitian matrices a = a+ have real eigenvalues,
it is considered that (a+)

+
= a and (ca)+ = c∗a+, for c ∈ IC and c∗ being the complex

conjugated element of c, i. e. it defined an antiholomorphic involution.

Noncommutative Euclidean space IRk
θ

Another simple example of a noncommutative space is the ’noncommutative Eu-
clidean space’ IRk

θ defined by all complex linear combinations of products of variables
x = {xj} satisfying

[xj , xl] = xjxl − xlxj = iθjl, (14.35)

where i is the complex ’imaginary’ unity and θjl are real constants treated as some
noncommutative parameters or a ”Poison tensor” by analogy to the Poison bracket in
quantum mechanics where the commutator [...] of hermitian operators is antihermitian.
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A set of partial derivatives ∂j = ∂/∂xi on IRk
θ can be defined by postulating the relations

∂jx
n = δnj ,

[∂j , ∂n] = −iΞjn (14.36)

where Ξjn may be zero, but in general is non–trivial if we wont to incorporate some addi-
tional magnetic fields or anholonomic relations. A simplified noncommutative differential
calculus can be constructed if Ξjn = − (θ−1)jn .

The metric structure on IRk
θ is stated by a constant symmetric tensor ηnj for which

∂jηnj = 0.
Infinitesimal translations xj → xj + aj on IRk

θ are defined as actions on functions ϕ
of type △ϕ = aj∂jϕ. Because the coordinates are non–commuting there are formally
defined inner derivations as

∂jϕ =
[
−i
(
θ−1
)
jn
xn, ϕ

]
(14.37)

which result in exponential global tanslations

ϕ
(
xj + ǫj

)
= e−iθljǫ

lxj

ϕ
(
xj
)
eiθljǫ

lxj

.

In order to understand the symmetries of the space IRk
θ it is better to write the metric

and Poisson tensor in the forms

ds2 =
r∑

A=1

dzAdzA +
∑

B

dy2
B, (14.38)

= dq2
A + dp2

A + dy2
B;

θ =
1

2

∑

A=1

θA∂zA
∧ ∂zA

, θA > 0,

where zA = qA + ipA and zA = qA − ipA are some convenient complex coordinates for
which there are satisfied the commutation rules

[yA, yB] = [yB, qA] = [yB, pA] = 0,

[qA, pB] = iθAδAB.

Now, it is obvious that for fixed types of metric and Poisson structures (14.38) there are
two symmetry groups on IRk

θ , the group of rotations, denoted O (k) , and the group of
invariance of the form θ, denoted Sp (2r) .
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The noncommutative derivative and integral

In order to elaborate noncommutative field theories in terms of an associative non-
commutative algebraA, additionally to the derivatives ∂j we need an integral

∫
Tr which

following the examples of noncommutative matrix spaces must contain also the ”trace”
operator. In this case we can not separate the notations of trace and integral.

It should be noted here that the role of derivative ∂j can be played by any sets of
elements dj ∈ A which some formal derivatives as ∂jA = [dj, A] , for A ∈ A; derivations
written in this form are called as inner derivations while those which can not written in
this form are referred to as outer derivations.

The general derivation and integration operations are defined as some general dual
linear operators satisfying certain formal properties: 1) the Leibnitz rule of the derivative,
∂j(AB) = ∂j(A)B + A(∂jB); 2) the integral of the trace of a total derivative is zero,∫
Tr∂jA = 0; 3) the integral of the trace of a commutator is zero,

∫
Tr[A,B] = 0, for

any A,B ∈ A. For some particular classes of functions in some noncommutative models
the condition 2) and/or 3) may be violated, see details and discussion in Ref. [13].

Given a noncommutative space induced by some relations (14.35), the algebra of
functions on IRk is deformed on IRk

θ such that

f (x) ⋆ ϕ (x) = e
i
2
θjk ∂

∂ξj
∂

∂ζk f (x+ ξ)ϕ (x+ ζ)|ξ=ς=0

= fϕ+
i

2
θjk∂jf∂kϕ+ o

(
θ2
)
, (14.39)

which define the Moyal bracket (product), or star product (⋆–product), of functions
which is associative compatible with integration in the sense that for matrix valued
functions f and ϕ that vanish rapidly enough at infinity we can integrate by parts in the
integrals ∫

Tr f ⋆ ϕ =

∫
Tr ϕ ⋆ f.

In a more rigorous operator form the star multiplication is defined by considering a
space Mθ, locally covered by coordinate carts with noncommutative coordinates (14.35),
and choosing a linear map S from Mθ to C(M), called the ”symbol” of the operator,

when f̂ → S
[
f̂
]
. This way, the original operator multiplication is expressed in terms of

the star product of symbols as

f̂ ϕ̂ = S−1
[
S
[
f̂
]
⋆ S [ϕ̂]

]
.

It should be noted that there could be many valid definitions of S, corresponding to
different choices of operator ordering prescription for S−1. One writes, for simplicity,∫
Tr f ⋆ ϕ =

∫
Tr fϕ in some special cases.
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14.4.2 Anholonomic frames and noncommutative spacetimes

One may consider that noncommutative relations for coordinates and partial deriva-
tives (14.35) and (14.36) are introduced by specific form of anholonomic relations (13.4)
for some formal anholonomic frames of type (13.2) and/or (13.3) (see Appendix) when an-
holonomy coefficients are complex and depend nonlinearly on frame coefficients. We shall
not consider in this work the method of complex nonlinear operator anholonomic frames
with associated nonlinear connection structure, containing as particular cases various
type of Finsler/Cartan and Lagrange/Hamilton geometries in complexified form, which
could consist in a general complex geometric formalism for noncommutative theories but
we shall restrict our analysis to noncommutative spaces for which the coordinates and
partial derivatives are distinguished by a N–connection structure into certain holonomic
and anholonomic subsets which generalize the N–elongated commutative differential
calculus (considered in the previous Sections) to a variant of both N– and θ–deformed
one.

In order to emphasize the N–connection structure on respective spaces we shall write
MN

θ , TM
N
θ , E

M
θ (Mθ) , C(MN ),AN and A

(
MN

)
. For a space MN provided with N–

connection structure, the matrix algebras considered in the previous subsection may be
denoted Matk

(
C(MN )

)
and Matk

(
AN
)
.

Noncommutative anholonomic derivatives

We introduce splitting of indices, α = (i, a) , β = (j, b) , ..., and coordinates, uα =
(xi, ya) , ..., into ’horizontal’ and ’vertical’ components for a space Mθ (being in general
a manifold, tangeng/vector bundle, or their duals, or higher order models [28, 40, 43,
47, 55]. The derivatives ∂i satisfying the conditions (14.36) must be changed into some
N–elongated ones if both anholnomy and noncommutative structures are introduced into
consideration.

In explicit form, the anholonomic analogous of (14.35) is stated by a set of coordinates
uα = (xi, ya) satisfying the relations

[uα, uβ] = iΘαβ , (14.40)

with Θαβ =
(
Θij,Θab

)
parametrized as to have a noncommutative structure locally

adapted to the N–connection, and the analogouses of (14.36) redefined for operators
(13.2) as

δαu
β = δβα, for δα = (δi = ∂i −Na

i ∂a, ∂b) ,

[δα, δβ ] = −iΞαβ , (14.41)
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where Ξαβ = − (Θ−1)αβ for a simplified N–elongated noncommutative differential cal-
culus. We emphasize that if the vielbein transforms of type (14.7) and frames of type
(14.8) and (14.9) are considered, the values Θαβ and Ξαβ could be some complex func-
tions depending on variables uβ including also the anholonomy contributions of Na

i . In
particular cases, they my constructed by some anholonomic frame transforms from some
constant real tensors.

An anholonomic noncommutative Euclidean space IRn+m
N,θ is defined as a usual one of

dimension k = n + m for which a N–connection structure is prescribed by coefficients
Na
i (x, y) which states an N–elongated differential calculus. The d–metric ηαβ = (ηij , ηab)

and Poisson d–tensor Θαβ =
(
Θij,Θab

)
are introduced via vielbein transforms (14.7)

depending on N–coefficients of the corresponding constant values contained in (14.35)
and (14.38). As a matter of principle such noncommutative spaces are already curved.

The interior derivative (14.37) is to be extended on IRn+m
N,θ as

δαϕ =
[
−i
(
Θ−1

)
αβ
uβ, ϕ

]
.

In a similar form, by introducing operators δα instead of ∂α, we can generalize the Moyal
product (14.39) for anisotropic spaces:

f (x) ⋆ ϕ (x) = e
i
2
Θαβ δ

∂ξα
δ

∂ζβ f (x+ ξ)ϕ (x+ ζ)|ξ=ς=0

= fϕ+
i

2
Θαβδαfδβϕ+ o

(
θ2
)
.

For elaborating of perturbation and scattering theory, the more useful basis is the
plane wave basis, which for anholonomic noncommutative Euclidean spaces, consists of
eigenfunctions of the derivatives

δαe
ipu = ipαe

ipu, pu = pαu
α.

In this basis, the integral can be defined as

N

∫
Tr eipu = δp,0

where the symbol
∫
Tr is enabled with the left upper index N in order to emphasize

that integration is to be performed on a N–deformed space (we shall briefly call this
as ”N–integration”) and the delta function may be interpreted as usually (its value
at zero represents the volume of physical space, in our case, N–deformed). There is a
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specific multiplication low with respect to the plane wave basis: for instance, by operator
reordering,

eipu · eip′u = e−
1
2
Θαβpαp′β ei(p+p

′)u,

when Θαβpαp
′
β may be written as p× p′ ≡ Θαβpαp

′
β = p×Θ p

′. There is another example
of multiplication, when the N–elongated partial derivative is involved,

eipu · f (u) · e−ipu = e−Θαβpαδβf (u) = f
(
uβ −Θαβpα

)
,

which shows that multiplication by a plane wave in anholonomic noncommutative Eu-
clidean space translates and N–deform a general function by uβ → uβ − Θαβpα. This
exhibits both the nonlocality and anholonomy of the theory and preserves the principles
that large momenta lead to large nonlocality which can be also locally anisotropic.

Noncommutative anholonomic torus

Let us define the concept of noncommutative anholonomic torus, Tn+m
N,θ , i. e. the

algebra of functions on a noncommutative torus with some splitting of coordinates into
holonomic and anholonomic ones. We note that a function f on a anholonomic torus
Tn+m
N with N–decomposition is a function on IRn+m

N which satisfies a periodicity con-
dition, f (uα) = f (uα + 2πzα) for d–vectors zα with integer coordinates. Then the
noncommutative extension is to define Tn+m

N,θ as the algebra of all sums of products
of arbitrary integer powers of the set of distinguished n + m variables Uα = (Ui, Uj)
satisfying

UαUβ = e−iΘ
αβ

UβUα. (14.42)

The variables Uα are taken instead of eiu
α

for plane waves and the derivation of a Weyl
algebra from (14.40) is possible if we take

[δαUβ ] = iδαβUβ ,

N

∫
Tr Uz1

1 ...U
zn+m

n+m = δ−→z ,0.

In addition to the usual topological aspects for nontrivial values of N–connection there
is much more to say in dependence of the fact what type of topology is induced by the
N–connection curvature. We omit such consideration in this paper. The introduced in
this subsection formulas and definitions transform into usual ones from noncommutative
geometry if N,m→ 0.
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14.4.3 Anisotropic field theories and anholonomic symmetries

In a formal sense, every field theory, commutative or noncommutative, can be an-
holonomically transformed by changing partial derivatives into N–elongated ones and
redefining the integrating measure in corresponding Lagrangians. We shall apply this
rule to noncommutative scalar, gauge and Dirac fields and make them to be locally
anisotropic and to investigate their anholonomic symmetries.

Locally anisotropic matrix scalar field theory

A generic matrix locally anisotropic matrix scalar field theory with a hermitian matrix
valued field φ (u) = φ+ (u) and anholonomically N–deformed Euclidean action

S = N

∫
δn+mu

√
|gαβ|

[
1

2
gαβTr δαφ δβφ+ V (φ)

]

where V (φ) is polynomial in variable φ, gαβ is a d–metric of type (13.6) and δα are N–
elongated partial derivatives (13.2). It is easy to check that if we replace the matrix
algebra by a general associative noncommutative algebra A, the standard procedure
of derivation of motion equations, classical symmetries from Noether’s theorem and
related physical considerations go through but with N–elongated partial derivatives and
N–integration: The field equations are

gαβδα δβφ =
∂V (φ)

∂φ

and the conservation laws

δαJ
α = 0

for the current Jα is associated to a symmetry △φ (ǫ, φ) determined by the N–adapted
variational procedure, △S = N

∫
Tr Jαδαǫ. We emphasize that these equations are ob-

tained according the prescription that we at the first stage perform a usual variational
calculus then we change the usual derivatives and differentials into N–elongated ones. If
we treat the N–connection as an object which generates and associated linear connec-
tion with corresponding curvature we have to introduce into the motion equations and
conservation laws necessary d–covariant objects curvature/torsion terms.

We may define the momentum operator

Pα = −i
(
Θ−1

)
αβ

N

∫
Tr uβT 0,
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which follows from the anholonomic transform of the restricted stress–energy tensor’
constructed from the Noether procedure with symmetries △φ = i[φ, ǫ] resulting in

T α = igαβ[φ, δβφ].

We chosen the simplest possibility to define for noncommutative scalar fields certain
energy–momentum values and their anholonomic deformations. In general, in noncom-
mutatie field theory one introduced more conventional stress–energy tensors [1].

Locally anisotropic noncommutative gauge fields

Some models of locally anisotropic Yang–Mills and gauge gravity noncommutative
theories are analyzed in Refs. [48, 50]. Here we say only the basic facts about such
theories with possible supersymmetry but not concerning points of gauge gravity.

Anholonomic Yang–Mills actions and MSYM model
A gauge field is introduced as a one form Aα having each component taking values

in A and satisfying Aα = A+
α and curvature (equivalently, field strength)

Fαβ = δαAβ − δβAα + i [AαAβ]

with gauge locally anisotropic transformation laws,

△Fαβ = i [Fαβ , ǫ] for △ Aα = δαǫ+ i [Aα, ǫ] . (14.43)

Now we can introduce the noncommutative locally anisotropic Yang–Mills action

S = − 1

4gYM

N ∫
Tr F 2

which describes the N–anholonomic dynamics of the gauge field Aα. Coupling to matter
field can be introduced in a standard way by using N–elongated partial derivatives δα,

▽αϕ = δαϕ+ i [Aα, ϕ] .

Here we note that by using MatZ (A) we can construct both noncommutative and
anisotropic analog of U (Z) gauge theory, or, by introducing supervariables adapted to
N–connections [43] and locally anisotropic spinors [40, 55], we can generate supersym-
metric Yang–Mills theories. For instance, the maximally supersymmetric Yang–Mills
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(MSYM) Lagrangian in ten dimensions with N = 4 can be deduced in anisotropic form,
by corresponding dimensional reductions and anholonomic constraints, as

S = N

∫
δ10u Tr

(
F 2
αβ + iχ

−→▽χ
)

where χ is a 16 component adjoint Majorana–Weyl fermion and the spinor d–covariant

derivative operator
−→▽ is written by using N–anholonomic frames.

The emergence of locally anisotropic spacetime
It is well known that spacetime translations may arise from a gauge group transforms

in noncommutative gauge theory (see, for instance, Refs. [13]). If the same procedure
is reconsidered for N–elongated partial derivatives and distinguished noncommutative
parameters, we can write

δAα = vβδβAα

as a gauge transform (14.43) when the parameter ǫ is expressed as

ǫ = vα
(
Θ−1

)
αβ
uβ = vi

(
Θ−1

)
jk
xk + va

(
Θ−1

)
ab
xb,

which generates
△Aα = vβδβAα + vβ

(
Θ−1

)
αβ
.

This way the spacetime anholonomy is induced by a noncommutative gauge anisotropy.
For another type of functions ǫ(u), we may generate another spacetime locally anisotrop-
ic transforms. For instance, we can generate a Poisson bracket {ϕ, ǫ} with N–elongated
derivatives,

△ϕ = i [ϕ, ǫ] = Θαβδαϕδβǫ+ o
(
δ2
αϕδ

2
βǫ
)
→ {ϕ, ǫ}

which proves that at leading order the locally anisotropic gauge transforms preserve the
locally anisotropic noncommutative structure of parameter Θαβ.

Now, we demonstrate that the Yang–Mills action may be rewritten as a ”matrix
model” action even the spacetime background is N–deformed. This is another side of
unification of noncommutative spacetime and gauge field with anholonomically deformed
symmetries. We can absorb a inner derivation into a vector potential by associating the
covariant operator ▽α = δα + iAα to connection operators in IRn+m

N,θ ,

▽αϕ→ [Cα, ϕ]

for
Cα =

(
−iΘ−1

)
αβ
uβ + iAα. (14.44)
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As in usual noncommutative gauge theory we introduce the ”covariant coordinates” but
distinguished by the N–connection,

Y α = uα + ΘαβAβ (u) .

For invertible Θαβ, one considers another notation, Y α = iΘαβCβ. Such transforms allow
to express Fαβ = i [▽α,▽β] as

Fαβ = i [Cα, Cβ]−
(
Θ−1

)
αβ

for which the Yang–Mills action transform into a matrix relation,

S = NTr
∑

α,β

(
ı́ [Cα, Cβ]−

(
Θ−1

)
αβ

)2

(14.45)

= NTr{
[
ı́ [Ck, Cj]−

(
Θ−1

)
kj

] [
ı́
[
Ck, Cj

]
−
(
Θ−1

)kj]

+
[
ı́ [Ca, Cb]−

(
Θ−1

)
ab

] [
ı́
[
Ca, Cb

]
−
(
Θ−1

)ab]}

where we emphasize the N–distinguished components.

The noncommutative Dirac d–operator

If we consider multiplications a · ψ with a ∈ A on a Dirac spinor ψ, we can have
two different physics depending on the orders of such multiplications we consider, aψ or
ψa. In order to avoid infinite spectral densities, in the locally isotropic noncommutative
gauge theory, one writes the Dirac operator as

−→▽ψ = γi
(−→▽iψ − ψ∂i

)
= 0.

In the locally anisotropic case we have to introduce N–elongated partial derivatives,

−→▽ψ = γα
(−→▽αψ − ψδα

)

= γi
(−→▽iψ − ψδi

)
+ γa

(−→▽aψ − ψδa
)

= 0

and use a d–covariant spinor calculus [40, 55].
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The N–adapted stress–energy tensor
The action (14.45) produces a stress–energy d–tensor

Tαβ (p) =
∑

γ

∫ 1

0

ds N

∫
Tr eispτY τ

[Cα, Cγ] e
i(1−s)pτY τ

[Cβ, Cγ]

as a Noether current derived by the variation Cα → Cα + aα (p) eispτY τ
. This d–tensor

has a property of conservation,

pτΘ
τλTλβ (p) = 0

for the solutions of field equations and seem to be a more natural object in string theory,
which admits an anholonomic generalizations by ”distinguishing of indices”.

The anholonomic Seiberg–Witten map
There are two different types of gauge theories: commutative and noncommutative

ones. They my be related by the so–called Seiberg–Witten map [38] which explicitly
transforms a noncommutative vector potential to a conventional Yang–Mills vector po-
tential. This map can be generalized in gauge gravity and for locally anisotropic gravity
[48, 50]. Here we define the Seiberg–Witten map for locally anisotropic gauge fields with
N–elongated partial derivatives.

The idea is that if there exists a standard, but locally anisotropic, Yang–Mills poten-
tial Aα with gauge transformation laws parametrized by the parameter ǫ like in (14.43), a

noncommutative gauge potential Âα (Aα) with gauge transformation parameter ǫ̂ (A, ǫ) ,
when

△̂ǫ̂Âα = δαǫ̂+ i
(
Âα ⋆ ǫ̂− ǫ̂ ⋆ Âα

)
,

should satisfy the equation

Â (A) + △̂ǫ̂Â (A) = Â (A+△ǫA) , (14.46)

where, for simplicity, the indices were omitted. This is the Seiberg–Witten equation
which, in our case, contains N–adapted operators δα (13.2) and d–vector gauge potentials,

respectively, Âα =
(
Âi, Âa

)
and Aα = (Ai, Aa) . To first order in Θαβ = △Θαβ, the

equation (14.46) can be solved in a usual way, by related respectively the potentials and
transformation parameters,

Âα (Aα)− Aα = −1

4
△Θβλ [Aβ (δλAα + Fλα) + (δλAα + Fλα)Aβ] + o(△Θ2),

ǫ̂ (A, ǫ)− ǫ =
1

4
△Θβλ (δβǫ Aλ + Aλδβǫ) + o(△Θ2),
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from which we can also find a first order relation for the field strength,

F̂λα − Fλα =
1

2
△Θβτ (FλβFατ + FατFλβ)

−Aβ (▽τFλα + δτFλα)− (▽τFλα + δτFλα)Aβ + o(△Θ2).

By a recurrent procedure the solution of (14.46) can be constructed in all orders of△Θαβ

as in the locally isotropic case (see details on recent supersymmetric generalizations in
Refs. [27] which can be transformed at least in a formal form into certain anisotropic
analogs following the d–covariant geometric rule.

14.5 Anholonomy and Noncommutativity:

Relations to String/ M–Theory

The aim of this Section is to discuss how both noncommutative and locally anisotropic
field theories arise from string theory and M–theory. The first use of noncommutative
geometry in string theory was suggested by E. Witten (see Refs. [57, 38] for details
and developments). Noncommutativity is natural in open string theory: interactions of
open strings with two ends contains formal similarities to matrix multiplication which
explicitly results in noncommutative structures. In other turn, matrix noncommuta-
tivity is contained in off–diagonal metrics and anholonomic vielbeins with associated
N–connection and anholonomic relations (see (13.4) and related details in Appendix)
which are used in order to develop locally anisotropic geometries and field theories.
We emphasize that the constructed exact solutions with off–diagonal metrics in general
relativity and extra dimension gravity together with the existence of a string field frame-
work strongly suggest that noncommutative locally anisotropic structures have a deep
underlying significance in such theories [45, 46, 53, 54, 48, 50, 42, 43].

14.5.1 Noncommutativity and anholonomy in string theory

In this subsection, we will analyze strings in curved spacetimes with constant coef-
ficients {gij, hab} of d–metric (13.6) (the coefficients Na

i

(
xk, ya

)
are not constant and

the off–diagonal metric (14.11) has a non–trivial curvature tensor). With respect to
N–adapted frames (13.2) and (13.3) the string propagation is like in constant Neveu–
Schwarz constant B–field and with Dp–branes. We work under the conditions of string
and brane theory which results in noncommutative geometry [57] but the background
under consideration here is an anholonomic one. The B–field is a like constant mag-
netic field which is polarized by the N–connection structure. The rank of the matrix
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Bαβ is denoted k = n + m = 11 ≤ p + 1, where p ≥ 10 is a constant. For a target
space, defined with respect to anholonomic frames, we will assume that B0β = 0 with
”0” the time direction (for a Euclidean signature, this condition is not necessary). We
can similarly consider another dimensions than 11, or to suppose that some dimensions
are compactified. We can pick some torus like coordinates, in general anholonomic, by
certain conditions, uα ∼ uα + 2πkα. For simplicity, we parametrize Bαβ = const 6= 0
for α, β = 1, ..., k and gαβ = 0 for α = 1, ..., r, β 6= 1, ..., k = n + m with a further
distinguishing of indices

There are two possibilities of writing out the worldsheet action,

S =
1

4πα′

∫

Σ

δµ
g

(
gαβ∂Au

α∂Auβ − 2πα′iBαβε
AB∂Au

α∂Bu
β
)

(14.47)

=
1

4πα′

∫

Σ

δµ
g
gαβ∂Au

α∂Auβ − i

2

∫

∂Σ

δµ
g
Bαβ u

α∂tanu
β;

=
1

4πα′

∫

Σ

δµg(gij∂Ax
i∂Axj + hab∂Ay

a∂Ayb

−2πα′iBijε
AB∂Ax

i∂Bx
j − 2πα′iBabε

AB∂Ay
a∂By

b)

=
1

4πα′

∫

Σ

δµg
(
gij∂Ax

i∂Axj + hab∂Ay
a∂Ayb

)

− i
2

∫

∂Σ

δµgBij x
i∂tanx

j − i

2

∫

∂Σ

δµgBab y
a∂tany

b,

where the first variant is written by using metric ansatz gαβ (14.11) but the second variant
is just the term SgN ,B from action (14.13) with d–metric (13.6) and different boundary
conditions and ∂tan is the tangential derivative along the worldwheet boundary ∂Σ. We
emphasize that the values gij, hab and Bij, Bab, given with respect to N–adapted frames
are constant, but the off–diagonal gαβ and Bαβ, in coordinate base, are some functions
on (x, y) . The worldsheet Σ is taken to be with Euclidean signature (for a Lorentzian
wolrdsheet the complex i should be omitted multiplying B).

The equation of motion of string in anholonomic constant background define re-
spective anholonomic, N–adapted boundary conditions. For coordinated α along the
Dp–branes they are

gαβ∂normu
β + 2πiα′Bαβ∂tanu

β = (14.48)

gij∂normx
j + hab∂normy

b + 2πiα′Bij∂Bx
j − 2πα′iBab∂tany

b|∂Σ = 0,

where ∂norm is a normal derivative to ∂Σ. By transforms of type gαβ = eαα(u)e
β
β(u)gαβ

and Bαβ = eαα(u)e
β
β(u)Bαβ we can remove these boundary conditions into a holonomic
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off–diagonal form which is more difficult to investigate. With respect to N–adapted
frames (with non–underlined indices) the analysis is very similar to the case constant
values of the metric and B–field. For B = 0, the boundary conditions (14.48) are
Neumann ones. If B has the rank r = p and B → ∞ (equivalently, gαβ → 0 along the
spactial directions of the brane, the boundary conditions become of Dirichlet type). The
effect of all such type conditions and their possible interpolations can be investigated
as in the usual open string theory with constant B–field but, in this subsection, with
respect to N–adapted frames.

For instance, we can suppose that Σ is a disc, conformally and anholonomically
mapped to the upper half plane with complex variables z and z and Im z ≥ 0. The
propagator with such boundary conditions is the same as in [20] with coordinates rede-
fined to anholonomic frames,

< xi(z)xj(z′) > = −α′[gij log
|z − z′|
|z − z′| +H ij log |z − z′|2

+
1

2πα′Θ
ij log

|z − z′|
|z − z′| +Qij ],

< ya(z)yb(z′) > = −α′[hab log
|z − z′|
|z − z′| +Hab log |z − z′|2

+
1

2πα′Θ
ab log

|z − z′|
|z − z′| +Qab],

where the coefficients are correspondingly computed,

Hij = gij − (2πα′)2
(
Bg−1B

)
ij
, Hab = hab − (2πα′)2

(
Bg−1B

)
ab
, (14.49)

H ij =

(
1

g + 2πα′B

)ij

[sym]

=

(
1

g + 2πα′B
g

1

g − 2πα′B

)ij
,

Hab =

(
1

h+ 2πα′B

)ij

[sym]

=

(
1

h+ 2πα′B
h

1

h− 2πα′B

)ij
,

Θij = 2πα′
(

1

g + 2πα′B

)ij

[antisym]

= −(2πα′)2

(
1

g + 2πα′B
g

1

g − 2πα′B

)ij
,

Θab = 2πα′
(

1

g + 2πα′B

)ab

[antisym]

= −(2πα′)2

(
1

g + 2πα′B
g

1

g − 2πα′B

)ab
,
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with [sym] and [antisym] prescribing, respectively, the symmetric and antisymmetric
parts of a matrix and constants Qij and Qab (in general, depending on B, but not on z
or z′) do to not play an essential role which allows to set them to a convenient value.
The last two terms are signed–valued (if the branch cut of the logarithm is taken in lower
half plane) and the rest ones are manifestly sign–valued.

Restricting our considerations to the open string vertex operators and interactions
with real z = τ and z = τ ′, evaluating at boundary points of Σ for a convenient value of
Dαβ , the propagator (in non–distinguished form) becomes

< uα(τ)uβ(τ ′) >= −α′Hαβ log (τ − τ ′)2
+
i

2
Θαβǫ (τ − τ ′)

for ǫ (τ − τ ′) being 1 for τ > τ ′ and -1 for τ < τ ′. The d–tensor Hαβ defines the
effective metric seen by the open string subjected to some anholonomic constraints being
constant with respect to N–adapted frames. Working as in conformal field theory, one
can compute commutators of operators from the short distance behavior of operator
products (by interpreting time ordering as operator ordering with time τ) and find that
the coordinate commutator [

uα(τ), uβ(τ)
]

= iΘαβ

which is just the relation (14.40) for noncommutative coordinates with constant non-
commutativity parameter Θαβ distinguished by a N–connection structure.

In a similar manner we can introduce gauge fields and consider worldsheet super-
symmetry together with noncommutative relations with respect to N–adapted frames.
This results in locally anisotropic modifications of the results from [57] via anholonomic
frame transforms and distinguished tensor and noncommutative calculus (we omit here
the details of such calculations).

We emphasize that even the values Hαβ and Θαβ (14.49) are constant with respect
to N–adapted frames the anholonomic noncommutative string configurations are char-
acterized by locally anisotropic values Hαβ and θαβ which are defined with respect to
coordinate frames as

Hαβ = e α
α (u)e

β

β (u)Hαβ and θαβ = e α
α (u)e

β

β (u)θαβ

with e α
α (u) (14.7) defined by Na

i as in (14.12), i. e.

e i
i = δ i

i , e
a
i = −Na

i (u), e a
a = δaa , e

i
a = 0.

Now, we make use of he standard relation between world–sheet correlation function
of vertex operators, the S–matrix for string scattering and effective actions which can



14.5. STRING ANHOLONOIC NONCOMMUTATIVITY 549

reproduce this low energy string physics [15] but generalizing them for anholonomic
structures. We consider that operators in the bulk of the world–sheet correspond to
closed strings, while operators on the boundary correspond to open strings and thus
fields which propagate on the world volume of a D–brane. The basic idea is that each
local world–sheet operator Vs (z) corresponds to an interaction with a spacetime field
ϕs (z) which results in the effective Lagrangian

∫
δp+1u

√
| det gαβ| NTr ϕ1ϕ2...ϕs

which is computed by integrating on zs following the prescribed order for the correlation
function 〈∫

dz1V1 (z1)

∫
dz2V2 (z2) ...

∫
dzsVs (zs)

〉

on a world–sheet Σ with disk topology, with operators Vs as successive points zs on
the boundary ∂Σ. The integrating measure is constructed from N–elongated values and
coefficients of d–metric. In the leading limit of the S–matrix with vertex operators only
for the massless fields we reproduce a locally anisotropic variant of the MSYM effective
action which describes the physics of a D–brane with arbitrarily large but anisotropically
and slowly varying field strength,

S
[anh]
BNI =

1

gsls (2πls)
p

∫
δp+1u

√
| det(gαβ + 2πl2s(B + F ))| (14.50)

where gs is the string coupling, the constant ls is the usual one from D–brane theory
and gαβ is the induced d–metric on the brane world–volume. The action (14.50) is just
the Nambu–Born–Infeld (NBI) action [20] but defined for d–metrics and d–tensor fields
with coefficients computed with respect to N–adapted frames.

14.5.2 Noncommutative anisotropic structures in M(atrix) the-

ory

For an introduction to M–theory, we refer to [32, 15]. Throughout this subsection
we consider M–theory as to be not completely defined but with a well–defined quantum
gravity theory with the low energy spectrum of the 11 dimensional supergravity theory
[11], containing solitonic ”branes”, the 2–brane, or supermembrane, and five–branes and
that from M–theory there exists connections to the superstring theories. Our claim
is that in the low energy limits the noncommutative structures are, in general, locally
anisotropic.
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The simplest way to derive noncommutativity from M–theory is to start with a
matrix model action such in subsection 14.4.3 and by introducing operators of type Cα
(14.44) and actions (14.45). For instance, we can consider the action for maximally
supersymmetric quantum mechanics, i. e. a trivial case with p = 0 of MSYM, when

S =

∫
δt NTr

9∑

α=1

(DtX)2 −
∑

α<β

[
Xα, Xβ

]2
+ χ+ (Dt + ΓαX

α)χ, (14.51)

where Dt = δ/∂t + iA0 with d–derivative (13.2) with varying A0 which introduces con-
straints in physical states because of restriction of unitary symmetry. This action is
written in anholonomic variables and generalizes the approach of entering the M–theory
as a regularized form of the actions for the supermembranes [56]. In this interpreta-
tion the the compact eleventh dimension does not disappear and the M–theory is to be
considered as to be anisotropically compactified on a light–like circle.

In order to understand how anisotropic torus compactifications may be performed
(see subsection 14.4.2) we use the general theory of D–branes on quotient spaces [39].
We consider Uα = γ (βα) for a set of generators of IZn+m with A = Matn+m (IC) which
satisfy the equations

U−1
α XβUα = Xβ + δβα2πRα

having solutions of type

Xβ = −iδ/∂σβ + Aβ

for Aβ commuting with Uα and indices distinguished by a N–connection structure as
α = (i, a) , β = (j, b) . For such variables the action (14.51) leads to a locally anisotropic
MSYM on T n+m×IR.Of course, this construction admits a natural generalization for vari-
ables Uα satisfying relations (14.40) for noncommutative locally anisotropic tori which
leads to noncommutative anholonomic gauge theories [48, 50]. In original form this type
of noncommutativity was introduced in M–theory (without anisotropies) in Ref. [9].

The anisotropic noncommutativity in M–theory can related to string model via non-
trivial components Cαβ− of a three–form potential (”-” denotes the compact light–like
direction). This potential has as a background value if the M(atrix) theory is treated
as M–theory on a light–like circle as in usual isotropic models. In the IIA string inter-
pretation of Cαβ− as a Neveu–Schwarz B–field which minimally coupled to the string
world–sheet, we obtain the action (14.47) compactified on a IR× T n+m spacetime where
torus has constant d–metric and B–field coefficients.



14.6. ANISOTROPIC GRAVITY ON NONCOMMUTATIVE D–BRANES 551

14.6 Anisotropic Gravity on Noncommutative D–

Branes

We develop a model of locally anisotropic gravity on noncommutative D–branes (see
Refs. [2] for a locally isotropic variant). We investigate what kind of deformations of
the low energy effective action of closed strings are induced in the presence of constant
background antisymmetric field (or it anholonomic transforms) and/or in the presence
of generic off–diagonal metric and associated nonlinear connection terms. It should be
noted that there were proposed and studied different models of nocommutative defor-
mations of gravity [7], which were not derived from string theory but introduced ”ad
hoc”. Anholonomic and/or gauge transforms in noncommutative gravity were consid-
ered in Refs. [50, 48]. In this Section, we illustrate how such gravity models with generic
anisotropy and noncommutativity can be embedded in D–brane physics.

We can compute the tree level bosonic string scattering amplitude of two massless
closed string off a noncommutative D–brane with locally anisotropic contributions by
considering boundary conditions and correlators stated with respect to anholonomic
frames. By using the ’geometric d–covariant rule’ of changing the tensors, spinors and
connections into theirs corresponding N–distinguished d–objects we derive the locally
anisotropic variant of effective actions in a straightforword manner.

For instance, the action which describes this amplitude to order of the string constant
(α′)0 is just the so–called DBI and Einstein–Hilbert action. With respect to the Einstein
N–emphasized frame the DBI action is

S
[0]
D−brane = −Tp

∫
δp+1u e−Φ

√
|det (e−γΦgαβ + Bαβ + fαβ)| (14.52)

where gαβ is the induced metric on the D–brane, Bαβ = Bαβ − 2κbαβ is the pull back
of the antisymmetric d–field B being constant with respect to N–adapted frames along
D–brane, fαβ is the gauge d–field strength and γ = −4/ (n+m− 2) and the constant
Tp = C(α′)2/Cκ2 is taken as in Ref. [2] for usual D–brane theory (this allow to obtain
in a limit the Einstein–Hilber action in the bulk). There are used such parametrizations
of indices:

µ′, ν ′, ... = 0, ..., 25;µ′ = (µ, µ̂) ; µ̂, ν̂... = p+ 1, ..., 25; µ̂ = (̂ı, â)

where i takes n–dimensional ’horizontal’ values and a takes m–dimensional ’vertical’
being used for a D–brane localized at up+1, ...u25 with the boundary conditions given
with respect to a N–adapted frame,

gαβ
(
∂ − ∂

)
Uα +Bαβ

(
∂ + ∂

)
Uα
|z=z = 0,
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which should be distinguished in h- and v–components, and the two point correlator of
string anholonomic coordinates Uα′

(z, z) on the D–brane is

< Uα′

µ̂ U
β′

ν̂ > = −α
′

2
{gα′β′

log [(zµ̂ − zν̂) (zµ̂ − zν̂)]

+Dα′β′

log (zµ̂ − zν̂) +Dβ′α′

log (zµ̂ − zν̂)}

where

Dβα = 2

(
1

η +B

)αβ
− ηαβ, Dµ̂ν̂ = −δµ̂ν̂ , Dβ′

α′D
ν′α′

= ηβ
′α′

for constant ηα
′β′

given with respect to N–adapted frames.
The scattering amplitude of two closed strings off a D–brane is computed as the

integral

A = g2
c e

−λ
∫
d2z1 d

2z2 < V (z1, z1)V (z2, z2) >, (14.53)

for gc being the closed string coupling constant, λ being the Euler number of the world
sheet and the vertex operators for the massless closed strings with the momenta kiµ′ =

(kii′ , kia′) and polarizations ǫµ′ν′ (satisfying the conditions ǫµ′ν′k
µ′

i = ǫµ′ν′k
ν′

i = 0 and

kiµ′k
µ′

i = 0 taken as

V (zi, zi) = ǫµ′ν′ Dν′

α′ : ∂Xµ′ (zi) exp [ikiX (zi)] : : ∂Xα′

(zi) exp
[
ikiβ′Dβ′

τ ′X
τ ′ (zi)

]
: .

Calculation of such calculation functions can be performed as in usual string theory with
that difference that the tensors and derivatives are distinguished by N–connections.

Decomposing the metric gαβ as

gαβ = ηαβ + 2κχαβ

where ηαβ is constant (Minkowski metric but with respect to N–adapted frames) and
χαβ could be of (pseudo) Riemannian or Finsler like type. Action (14.52) can be written
to the first order of χ,

S
[0]
D−brane = −κTpc

∫
δp+1u χαβQ

αβ , (14.54)

where

Qαβ =
1

2

(
ηαβ +Dαβ

)
(14.55)
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and c =
√
| det (ηαβ +Bαβ) |, which exhibits a source for locally anisotropic gravity on

D–brane,

T αβχ = −1

2
TpκC

(
ηαβ +Dβα

(S)

)
,

for Dβα
(S) denoting symmetrization of the matrix Dβα. This way we reproduce the same

action as in superstring theory [22] but in a manner when anholonomic effects and
anisotropic scattering can be included.

Next order terms on α′ in the string amplitude are included by the term

S
[1]
bulk =

α′

8κ2

∫
δ26u′ eγΦ

√
|gµ′ν′ |[Rh′i′j′k′R

h′i′j′k′ +Ra′b′j′k′R
a′b′j′k′ + Pj′i′k′a′P

j′i′k′a′

+Pc′d′k′a′P
c′d′k′a′ + Sj′i′b′c′S

j′i′b′c′ + Sd′e′b′c′S
d′e′b′c′

−4
(
Ri′j′R

ι′j′ +Ri′a′R
i′a′ + Pa′i′P

a′i′ +Ra′b′R
a′b′
)

+ (gi
′j′Ri′j′ + ha

′b′Sa′b′)
2]

where the indices are split as µ′ = (i′, a′) and we use respectively the d–curvatures (13.14),
Ricci d–tensors (13.15) and d–scalars (13.16). Splitting of ”primed’ indices reduces to
splitting of D–brane values.

The DBI action on D–brane (14.53) is defined with a gauge field strength

fαβ = δαaβ − δβaα

and with the induced metric
gαβ = δαX

µ′δβXµ′

expanded around the flat space in the static gauge Uµ = uµ,

gµν = ηµν + 2κχµν + 2κ
(
χµ̂µδνU

µ̂ + χµ̂νδµU
µ̂
)

+ δµU
µ̂δνUµ̂ + 2κχµ̂ν̂δµU

µ̂δνU
ν̂ .

In order to describe D–brane locally anisotropic processes in the first order in α′ we need
to add a new term to the DBI as follow,

S1 = −α
′Tp
2

∫
δp+1u

√
| det qµν |{ Rαβγτq

ατ −
(
Ψµ̂
αγΨµ̂βτ −Ψµ̂

ατΨµ̂βγ

)
q̃ατ}q̃βγ (14.56)

where qµν = ηµν + Bµν + fµν , q
µν is the inverse of qµν , q̃µν = gµν + Bµν + fµν , q̃

µν is the
inverse of q̃µν , the curvature d–tensor Rαβγτ is constructed from the induced d–metric
by using the canonical d–connection (see (13.14) and (13.8)) and

Ψµ̂
αβ = κ

(
−δµ̂χαβ + δαχ

µ̂
β + δβχ

µ̂
α

)
+ δαδβU

µ̂.
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The action (14.56) can be related to the Einstein–Hilbert action on the D–brane if
the the B–field is turned off. To see this we consider the field Qαβ = ηαβ (14.55) which
reduces (up to some total d–derivatives, which by the momentum conservation relation
have no effects in scattering amplitudes, and ignoring gauge fields because they do not
any contraction with gravitons because of antisymmetry of fαβ) to

S
[1]
D−brane = −α

′Tp
2

∫
δp+1u

√
| det gµν |

(
R̂ + S + Ψµ̂ α

α Ψ β
µ̂β −Ψµ̂

αβΨ
αβ

µ̂

)
(14.57)

were R̂ and S are computed as d–scalar objects (13.16) and by following the relation at
O(χ2),

√
| det ηµν |Rαβγτη

ατgβγ =
√
| det gµν |Rαβγτg

αγgβτ + total d–derivatives.

The action (14.57) transforms into the Einstein–Hilbert action as it was proven for the
locally isotropic D–brane theory [10] for vanishing N–connections and trivial vertical
(anisotropic) dimensions.

In conclusion, it has been shown in this Section that the D–brane dynamics can be
transformed into a locally anisotropic one, which in low energy limits contains different
models of generalized Lagrange/ Finsler or anholonomic Riemannian spacetimes, by
introducing corresponding anholonomic frames with associated N–connection structures
and d–metric fields (like (13.33) and (13.35) and (13.34)).

14.7 Exact Solutions: Noncommutative and/ or Lo-

cally Anisotropic Structures

In the previous sections we demonstrated that locally anisotropic noncommutative
geometric structures are hidden in string/ M–theory. Our aim here is to construct and
analyze four classes of exact solutions in string gravity with effective metrics possessing
generic off–diagonal terms which for associated anholonomic frames and N–connections
can be extended to commutative or noncommutative string configurations.

14.7.1 Black ellipsoids from string gravity

A simple string gravity model with antisymmetric two form potential field Hα′β′γ′ ,
for constant dilaton φ, and static internal space, β, is to be found for the NS–NS sector
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which is common to both the heterotic and type II string theories [26]. The equations
(14.34) reduce to

Rµ′ν′ =
1

4
Hµ′λ′τ ′H

λ′τ ′

ν′ , (14.58)

Dµ′H
µ′ λ′τ ′ = 0,

for
Hµ′ν′λ′ = δµ′Bν′λ′ + δλ′Bµ′ν′ + δν′Bλ′µ′ .

If Hµ′ν′λ′ =
√
|gµ′ν′ |ǫµ′ν′λ′ , we obtain the vacuum equations for the gravity with cosmo-

logical constant λ,
Rµ′ν′ = λgµ′ν′ , (14.59)

for λ = 1/4 where Rµ′ν′ is the Ricci d–tensor (13.15), with ”primed” indices emphasizing
that the geometry is induced after a topological compactification.

For an ansatz of type

δs2 = g1(dx
1)2 + g2(dx

2)2 + h3

(
xi

′

, y3
)

(δy3)2 + h4

(
xi

′

, y3
)

(δy4)2, (14.60)

δy3 = dy3 + wi′
(
xk

′

, y3
)
dxi

′

, δy4 = dy4 + ni′
(
xk

′

, y3
)
dxi

′

,

for the d–metric (13.6) the Einstein equations (14.59) are written (see [49, 45] for details
on computation)

R1
1 = R2

2 = − 1

2g1g2
[g••2 −

g•1g
•
2

2g1
− (g•2)

2

2g2
+ g

′′

1 −
g

′

1g
′

2

2g2
− (g

′

1)
2

2g1
] = λ, (14.61)

R3
3 = R4

4 = − β

2h3h4

= λ, (14.62)

R3i′ = −wi′
β

2h4
− αi′

2h4
= 0, (14.63)

R4i′ = − h4

2h3
[n∗∗
i′ + γn∗

i′ ] = 0, (14.64)

where the indices take values i′, k′ = 1, 2 and a′, b′ = 3, 4. The coefficients of equations
(14.61) - (14.64) are given by

αi = ∂ih
∗
4 − h∗4∂i ln

√
|h3h4|, β = h∗∗4 − h∗4[ln

√
|h3h4|]∗, γ =

3h∗4
2h4
− h∗3
h3
. (14.65)

The various partial derivatives are denoted as a• = ∂a/∂x1, a
′

= ∂a/∂x2, a∗ = ∂a/∂y3.
This system of equations (14.61)–(14.64) can be solved by choosing one of the ansatz
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functions (e.g. g1 (xi) or g2 (xi)) and one of the ansatz functions (e.g. h3 (xi, y3) or
h4 (xi, y3)) to take some arbitrary, but physically interesting form. Then the other ansatz
functions can be analytically determined up to an integration in terms of this choice.
In this way we can generate a lost of different solutions, but we impose the condition
that the initial, arbitrary choice of the ansatz functions is “physically interesting” which
means that one wants to make this original choice so that the generated final solution
yield a well behaved metric.

In references [46] it is proved that for

g1 = −1, g2 = r2 (ξ) q (ξ) , (14.66)

h3 = −η3 (ξ, ϕ) r2 (ξ) sin2 θ,

h4 = η4 (ξ, ϕ)h4[0] (ξ) = 1− 2µ

r
+ ε

Φ4 (ξ, ϕ)

2µ2
,

with coordinates x1 = ξ =
∫
dr
√

1− 2m/r + ε/r2, x2 = θ, y3 = ϕ, y4 = t (the (r, θ, ϕ)
being usual radial coordinates), the ansatz (14.60) is a vacuum solution with λ = 0 of
the equations (14.59) which defines a black ellipsoid with mass µ, eccentricity ε and
gravitational polarizations q (ξ) , η3 (ξ, ϕ) and Φ4 (ξ, ϕ) . Such black holes are certain de-
formations of the Schwarzschild metrics to static configurations with ellipsoidal horizons
which is possible if generic off–diagonal metrics and anholonomic frames are considered.
In this subsection we show that the data (14.66) can be extended as to generate exact
black ellipsoid solutions with nontrivial cosmological constant λ = 1/4 which can be
imbedded in string theory.

At the first step, we find a class of solutions with g1 = −1 and g2 = g2 (ξ) solving
the equation (14.61), which under such parametrizations transforms to

g••2 −
(g•2)

2

2g2
= 2g2λ.

With respect to the variable Z = (g2)
2 this equation is written as

Z•• + 2λZ = 0

which can be integrated in explicit form, Z = Z[0] sin
(√

2λξ + ξ[0]

)
, for some constants

Z[0] and ξ[0] which means that

g2 = −Z2
[0] sin

2
(√

2λξ + ξ[0]

)
(14.67)

parametrize a class of solution of (14.61) for the signature (−,−,−,+) . For λ → 0 we
can approximate g2 = r2 (ξ) q (ξ) = −ξ2 and Z2

[0] = 1 which has compatibility with the



14.7. ANISOTROPIC AND NONCOMMUTATIVE SOLUTIONS 557

data (14.66). The solution (14.67) with cosmological constant (of string or non–string
origin) induces oscillations in the ”horozontal” part of the d–metric.

The next step is to solve the equation (14.62),

h∗∗4 − h∗4[ln
√
|h3h4|]∗ = −2λh3h4.

For λ = 0 a class of solution is given by any ĥ3 and ĥ4 related as

ĥ3 = η0

[(√
|ĥ4|
)∗]2

for a constant η0 chosen to be negative in order to generate the signature (−,−,−,+) .
For non–trivial λ, we may search the solution as

h3 = ĥ3 (ξ, ϕ) q3 (ξ, ϕ) and h4 = ĥ4 (ξ, ϕ) , (14.68)

which solves (14.62) if q3 = 1 for λ = 0 and

q3 =
1

4λ

[∫
ĥ3ĥ4

ĥ∗4
dϕ

]−1

for λ 6= 0.

Now it is easy to write down the solutions of equations (14.63) (being a linear equation
for wi′) and (14.64) (after two integrations of ni′ on ϕ),

wi′ = εŵi′ = −αi′/β, (14.69)

were αi′ and β are computed by putting (14.68) into corresponding values from (14.65)
(we chose the initial conditions as wi′ → 0 for ε→ 0) and

n1 = εn̂1 (ξ, ϕ)

where

n̂1 (ξ, ϕ) = n1[1] (ξ) + n1[2] (ξ)

∫
dϕ η3 (ξ, ϕ) /

(√
|η4 (ξ, ϕ) |

)3

, η∗4 6= 0; (14.70)

= n1[1] (ξ) + n1[2] (ξ)

∫
dϕ η3 (ξ, ϕ) , η∗4 = 0;

= n1[1] (ξ) + n1[2] (ξ)

∫
dϕ/

(√
|η4 (ξ, ϕ) |

)3

, η∗3 = 0;

with the functions nk[1,2] (ξ) to be stated by boundary conditions.
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We conclude that the set of data g1 = −1, with non–trivial g2 (ξ) , h3, h4, wi′, n1

stated respectively by (14.67), (14.68), (14.69), (14.70) define a black ellipsoid solution
with explicit dependence on cosmological constant λ, i. e. a d–metric (14.60), which
can be induced from string theory for λ = 1/4. The stability of such string static black
ellipsoids can be proven exactly as it was done in Refs. [46] for the vanishing cosmological
constant.

14.7.2 2D Finsler structures in string theory

There are some constructions which prove that two dimensional (2D) Finsler struc-
tures can be embedded into the Einstein’s theory of gravity [12]. Here we analyze the
conditions when such Finsler configurations can be generated from string theory. The
aim is to include a 2D Finsler metric (14.127) into a d–metric (13.6) being an exact
solution of the string corrected Einstein’s equations (14.59).

If

ha′b′ =
1

2

∂2F 2(xi
′

, yc
′

)

∂ya′∂yb′

for i′, j′, ... = 1, 2 and a′, b′, ... = 3, 4 and following the homogeneity conditions for Finsler
metric, we can write

F
(
xi

′

, y3, y4
)

= y3f
(
xi

′

, s
)

for s = y4/y3 with f
(
xi

′

, s
)

= F
(
xi

′

, 1, s
)
, that

h33 =
s2

2
(f 2)∗∗ − s(f 2)∗ + f 2, (14.71)

h34 = −s
2

2
(f 2)∗∗ +

1

2
(f 2)∗,

h44 =
1

2
(f 2)∗∗,

in this subsection we denote a∗ = ∂a/∂s. The condition of vanishing of the off–diagonal
term h34 gives us the trivial case, when f 2 ≃ s2...+ ...s+ ..., i. e. Riemannian 2D metrics,
so we can not include some general Finsler coefficients (14.71) directly into a diagonal
d–metric ansatz (14.60). There is also another problem related with the Cartan’s N–
connection (13.33) being computed directly from the coefficients (14.71) generated by
a function f 2 : all such values substituted into the equations (14.62) - (14.64) result in
systems of nonlinear equations containing the 6th and higher derivatives of f on s which
is very difficult to deal with.
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We can include 2D Finsler structures in the Einstein and string gravity via additional
2D anholnomic frame transforms,

hab = ea
′

a

(
xi

′

, s
)
eb

′

b

(
xi

′

, s
)
ha′b′

(
xi

′

, s
)

where ha′b′ are induced by a Finsler metric f 2 as in (14.71) and hab may be diagonal,
hab = diag[ha]. We also should consider an embedding of the Cartan’s N–connection into
a more general N–connection, Na′

b′ ⊂ Na′

i′ , via transforms Na′

i′ = êb
′

i′

(
xi

′

, s
)
Na′

b′ where

êb
′

i′

(
xi

′

, s
)

are some additional frame transforms in the off–diagonal sector of the ansatz
(14.11). Such way generated metrics,

δs2 = gi′(dx
i′)2 + ea

′

a eb
′

a ha′b′(δy
a)2,

δya = dya + êb
′

i′N
a′

b′ dx
i′

may be constrained by the condition to be an exact solution of the Einstein equations
with (or not) certain string corrections. As a matter of principle, any string black
ellipsoid configuration (of the type examined in the previous subsection) can be related
to a 2D Finsler configuration for corresponding coefficients ea

′

a and êb
′

i′ . An explicit form
of anisotropic configuration is to be stated by corresponding boundary conditions and
the type of anholonomic transforms. Finally, we note that instead of a 2D Finsler metric
(14.127) we can use a 2D Lagrange metric (13.35).

14.7.3 Moving soliton–black hole string configurations

In this subsection, we consider that the primed coordinates are 5D ones obtained
after a string compactification background for the NS–NS sector being common to both
the heterotic and type II string theories. The uα

′

= (xi
′

, ya
′

) are split into coordinates
xi, with indices i′, j′, k′... = 1, 2, 3, and coordinates ya

′

, with indices a′, b′, c′, ... = 4, 5.
Explicitly the coordinates are of the form

xi
′

= (x1 = χ, x2 = φ = ln ρ̂, x3 = θ) and ya
′

=
(
y4 = v, y5 = p

)
,

where χ is the 5th extra–dimensional coordinate and ρ̂ will be related with the 4D
Schwarzschild coordinate. We analyze a metric interval written as

ds2 = Ω2(xi
′

, v)ĝα′β′

(
xi

′

, v
)
duα

′

duβ
′

, (14.72)
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were the coefficients ĝα′β′ are parametrized by the ansatz




g1 + (w 2
1 + ζ 2

1 )h4 + n 2
1 h5 (w1w2 + ζ1ζ2)h4 + n1n2h5 (w1w3 + ζ1ζ3)h4 + n1n3h5 (w1 + ζ1)h4 n1h5

(w1w2 + ζ1ζ2)h4 + n1n2h5 g2 + (w 2
2 + ζ 2

2 )h4 + n 2
2 h5 (w2w3 + +ζ2ζ3)h4 + n2n3h5 (w2 + ζ2)h4 n2h5

(w1w3 + ζ1ζ3)h4 + n1n3h5 (w2w3 + +ζ2ζ3)h4 + n2n3h5 g3 + (w 2
3 + ζ 2

3 )h4 + n 2
3 h5 (w3 + ζ3)h4 n3h5

(w1 + ζ1)h4 (w2 + ζ2)h4 (w3 + ζ3)h4 h4 0
n1h5 n2h5 n3h5 0 h5




(14.73)

The metric coefficients are necessary class smooth functions of the form:

g1 = ±1, g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

i′ , v) = η4,5(x
i, v)h4,5[0](x

k′),

wi′ = wi′(x
k′, v), ni′ = ni′(x

k′ , v), ζi′ = ζi′(x
k′, v), Ω = Ω(xi

′

, v).(14.74)

The quadratic line element (14.72) with metric coefficients (14.73) can be diagonalized
by anholonmic transforms,

δs2 = Ω2(xi
′

, v)[g1(dx
1)2 + g2(dx

2)2 + g3(dx
3)2 + h4(δ̂v)

2 + h5(δp)
2], (14.75)

with respect to the anholonomic co–frame
(
dxi

′

, δ̂v, δp
)
, where

δ̂v = dv + (wi′ + ζi′)dx
i′ + ζ5δp and δp = dp+ ni′dx

i′ (14.76)

which is dual to the frame
(
δ̂i′, ∂4, ∂̂5

)
, where

δ̂i′ = ∂i′ − (wi′ + ζi′)∂4 + ni′∂5, ∂̂5 = ∂5 − ζ5∂4. (14.77)

The simplest way to compute the nontrivial coefficients of the Ricci tensor for the (14.75)
is to do this with respect to anholonomic bases ( 14.76) and (14.77) (see details in
[49, 53]), which reduces the 5D vacuum Einstein equations to the following system (in
this paper containing a non–trivial cosmological constant):

1

2
R1

1 = R2
2 = R3

3 = − 1

2g2g3

[g••3 −
g•2g

•
3

2g2

− (g•3)
2

2g3

+ g
′′

2 −
g

′

2g
′

3

2g3

− (g
′

2)
2

2g2

] = λ,(14.78)

R4
4 = R5

5 = − β

2h4h5
= λ,(14.79)

R4i′ = −wi′
β

2h5
− αi′

2h5
= 0,(14.80)

R5i′ = − h5

2h4
[n∗∗
i′ + γn∗

i′ ] = 0,(14.81)
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with the conditions that

Ωq1/q2 = h4 (q1 and q2 are integers), (14.82)

and ζi satisfies the equations

∂i′Ω− (wi′ + ζi′)Ω
∗ = 0, (14.83)

The coefficients of equations (14.78) - (14.81) are given by

αi′ = ∂ih
∗
5−h∗5∂i′ ln

√
|h4h5|, β = h∗∗5 −h∗5[ln

√
|h4h5|]∗, γ =

3h∗5
2h5
− h

∗
4

h4
. (14.84)

The various partial derivatives are denoted as a• = ∂a/∂x2, a
′

= ∂a/∂x3, a∗ = ∂a/∂v.
The system of equations (14.78)–(14.81), (14.82) and (14.83) can be solved by choos-

ing one of the ansatz functions (e.g. h4

(
xi

′

, v
)

or h5

(
xi

′

, v
)
) to take some arbitrary, but

physically interesting form. Then the other ansatz functions can be analytically deter-
mined up to an integration in terms of this choice. In this way one can generate many
solutions, but the requirement that the initial, arbitrary choice of the ansatz functions
be “physically interesting” means that one wants to make this original choice so that
the final solution generated in this way yield a well behaved solution. To satisfy this
requirement we start from well known solutions of Einstein’s equations and then use the
above procedure to deform this solutions in a number of ways as to include it in a string
theory. In the simplest case we derive 5D locally anisotropic string gravity solutions
connected to the the Schwarzschild solution in isotropic spherical coordinates [17] given
by the quadratic line interval

ds2 =

(
ρ̂− 1

ρ̂+ 1

)2

dt2 − ρ2
g

(
ρ̂+ 1

ρ̂

)4 (
dρ̂2 + ρ̂2dθ2 + ρ̂2 sin2 θdϕ2

)
. (14.85)

We identify the coordinate ρ̂ with the re–scaled isotropic radial coordinate, ρ̂ = ρ/ρg,
with ρg = rg/4; ρ is connected with the usual radial coordinate r by r = ρ (1 + rg/4ρ)

2;
rg = 2G[4]m0/c

2 is the 4D Schwarzschild radius of a point particle of mass m0; G[4] =
1/M2

P [4] is the 4D Newton constant expressed via the Planck mass MP [4] (in general, we
may consider that MP [4] may be an effective 4D mass scale which arises from a more
fundamental scale of the full, higher dimensional spacetime); we set c = 1.

The metric (14.85) is a vacuum static solution of 4D Einstein equations with spherical
symmetry describing the gravitational field of a point particle of mass m0. It has a
singularity for r = 0 and a spherical horizon at r = rg, or at ρ̂ = 1 in the re–scaled
isotropic coordinates. This solution is parametrized by a diagonal metric given with
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respect to holonomic coordinate frames. This spherically symmetric solution can be
deformed in various interesting ways using the anholonomic frames method.

Vacuum gravitational 2D solitons in 4D Einstein vacuum gravity were originally
investigated by Belinski and Zakharov [5]. In Refs. [52] 3D solitonic configurations
were constructed on anisotropic Taub-NUT backgrounds. Here we show that 3D soli-
tonic/black hole configurations can be embedded into the 5D locally anisotropic string
gravity.

3D solitonic deformations in string gravity

The simplest way to construct a solitonic deformation of the off–diagonal metric in
equation (14.73) is to take one of the “polarization” factors η4, η5 from (14.74) or the
ansatz function ni′ as a solitonic solution of some particular non-linear equation. The rest
of the ansatz functions can then be found by carrying out the integrations of equations
(14.78)– (14.83).

As an example of this procedure we suggest to take η5(r, θ, χ) as a soliton solution
of the Kadomtsev–Petviashvili (KdP) equation or (2+1) sine-Gordon (SG) equation
(Refs. [58] contain the original results, basic references and methods for handling such
non-linear equations with solitonic solutions). In the KdP case η5(v, θ, χ) satisfies the
following equation

η∗∗5 + ǫ (η̇5 − 6η5η
′
5 + η′′′5 )

′
= 0, ǫ = ±1, (14.86)

while in the most general SG case η5(v, χ) satisfies

±η∗∗5 ∓ η̈5 = sin(η5). (14.87)

For simplicity, we can also consider less general versions of the SG equation where η5

depends on only one (e.g. v and x1) variable. We use the notation η5 = ηKP5 or η5 = ηSG5

(h5 = hKP5 or h5 = hSG5 ) depending on if (η5 ) (h5) satisfies equation (14.86), or (14.87)
respectively.

For a stated solitonic form for h5 = hKP,SG5 , h4 can be found from

h4 = hKP,SG4 = h2
[0]

[(√
|hKP,SG5 (xi′ , v)|

)∗]2

(14.88)

where h[0] is a constant. By direct substitution it can be shown that equation (14.88)

solves equation (14.79) with β given by ( 14.84) when h∗5 6= 0 but λ = 0. If h∗5 = 0, then ĥ4

is an arbitrary function ĥ4(x
i′ , v). In either case we will denote the ansatz function deter-

mined in this way as ĥKP,SG4 although it does not necessarily share the solitonic character
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of ĥ5. Substituting the values ĥKP,SG4 and ĥKP,SG5 into γ from equation (14.65) gives,
after two v integrations of equation (14.64), the ansatz functions ni′ = nKP,SGi′ (v, θ, χ).
Solutions with λ 6= 0 can be generated similarly as in (14.68) by redefining

h4 = ĥ4

(
xi

′

, v
)
q4

(
xi

′

, v
)

and h5 = ĥ5

(
xi

′

, v
)
,

which solves (14.79) if q4 = 1 for λ = 0 and

q4 =
1

4λ

[∫
ĥ5ĥ4

ĥ∗5
dv

]−1

for λ 6= 0. (14.89)

Here, for simplicity, we may set g2 = −1 but

g3 = −Z2
[0] sin

2
(√

2λx3 + ξ[0]

)
, Z[0], ξ[0] = const, (14.90)

parametrize a class of solution of (14.78) for the signature (−,−,−,−,+) like we con-
structed the solution (14.67). In ref. [52, 53] it was shown how to generate solutions
using 2D solitonic configurations for g2 or g3.

The main conclusion to be formulated here is that the ansatz (14.73), when treated
with anholonomic frames, has a degree of freedom that allows one to pick one of the
ansatz functions (η4 , η5 , or ni′) to satisfy some 3D solitonic equation. Then in terms
of this choice all the other ansatz functions can be generated up to carrying out some
explicit integrations and differentiations. In this way it is possible to build exact solutions
of the 5D string gravity equations with a solitonic character.

Solitonically propagating string black hole backgrounds

The Schwarzschild solution is given in terms of the parameterization in (14.73) by

g1 = ±1, g2 = g3 = −1, h4 = h4[0](x
i′), h5 = h5[0](x

i′),

wi′ = 0, ni′ = 0, ζi′ = 0, Ω = Ω[0](x
i′),

with

h4[0](x
i) =

b(φ)

a(φ)
, h5[0](x

i′) = − sin2 θ, Ω2
[0](x

i′) = a(φ) (14.91)

or alternatively, for another class of solutions,

h4[0](x
i′) = − sin2 θ, h5[0](x

i′) =
b(φ)

a(φ)
, (14.92)
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were

a(φ) = ρ2
g

(
eφ + 1

)4

e2φ
and b(φ) =

(
eφ − 1

)2

(eφ + 1)2
, (14.93)

Putting this together gives

ds2 = ±dχ2 − a(φ)
(
dλ2 + dθ2 + sin2 θdϕ2

)
+ b (φ) dt2 (14.94)

which represents a trivial embedding of the 4D Schwarzschild metric (14.85) into the
5D spacetime. We now want to deform anisotropically the coefficients of (14.94) in the
following way

h4[0](x
i′) → h4(x

i′ , v) = η4

(
xi

′

, v
)
h4[0](x

i′),

h5[0](x
i′) → h5(x

i′ , v) = η5

(
xi

′

, v
)
h5[0](x

i′),

Ω2
[0](x

i′) → Ω2(xi
′

, v) = Ω2
[0](x

i′)Ω2
[1](x

i′ , v).

The factors ηi′ and Ω2
[1] can be interpreted as re-scaling or ”renormalizing” the original

ansatz functions. These gravitational “polarization” factors – η4,5 and Ω2
[1] – gener-

ate non–trivial values for wi′(x
i′ , v), ni′(x

i′ , v) and ζi′(x
i′ , v), via the vacuum equations

(14.78)– (14.83). We shall also consider more general nonlinear polarizations which
can not be expresses as h ∼ ηh[0] and show how the coefficients a(φ) and b(φ) of the
Schwarzschild metric can be polarized by choosing the original, arbitrary ansatz function
to be some 3D soliton configuration.

The horizon is defined by the vanishing of the coefficient b (φ) from equation (14.93).
This occurs when eφ = 1. In order to create a solitonically propagating black hole we
define the function τ = φ− τ0 (χ, v), and let τ0 (χ, v) be a soliton solution of either the
3D KdP equation (14.86), or the SG equation (14.87). This redefines b (φ) as

b (φ)→ B
(
xi

′

, v
)

=
eτ − 1

eφ + 1
.

A class of 5D string gravity metrics can be constructed by parametrizing h4 = η4

(
xi

′

, v
)

h4[0](x
i′) and h5 = B

(
xi

′

, v
)
/a (φ), or inversely, h4 = B

(
xi

′

, v
)
/a (φ) and h5 = η5

(
xi

′

, v
)

h5[0](x
i′). The polarization η4

(
xi

′

, v
)

(or η5

(
xi

′

, v
)
) is determined from equation (14.88)

with the factor q4 (14.89) included in h2,

|η4

(
xi

′

, v
)
h4(0)(x

i′)| = h2



(√∣∣∣∣

B (xi′ , v)

a (φ)

∣∣∣∣

)∗


2
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or ∣∣∣∣
B (xi, v)

a (φ)

∣∣∣∣ = h2h5(0)(x
i′)
[(√

|η5 (xi′ , v) |
)∗]2

.

The last step in constructing of the form for these solitonically propagating black hole
solutions is to use h4 and h5 in equation (14.64) to determine nk′

nk′ = nk′[1](x
i′) + nk′[2](x

i′)

∫
h4

(
√
|h5|)3

dv, h∗5 6= 0; (14.95)

= nk′[1](x
i′) + nk′[2](x

i′)

∫
h4dv, h∗5 = 0;

= nk′[1](x
i′) + nk′[2](x

i′)

∫
1

(
√
|h5|)3

dv, h∗4 = 0,

where nk[1,2]
(
xi

′
)

are set by boundary conditions.
The simplest version of the above class of solutions are the so–called t–solutions

(depending on t–variable), defined by a pair of ansatz functions,
[
B
(
xi

′

, t
)
, h5(0)

]
, with

h∗5 = 0 and B
(
xi

′

, t
)

being a 3D solitonic configuration. Such solutions have a spherical
horizon when h4 = 0, i.e. when τ = 0. This solution describes a propagating black hole
horizon. The propagation occurs via a 3D solitonic wave form depending on the time
coordinate, t, and on the 5th coordinate χ. The form of the ansatz functions for this
solution (both with trivial and non-trivial conformal factors) is

t–solutions : (x1 = χ, x2 = φ, x3 = θ, y4 = v = t, y5 = p = ϕ),

g1 = ±1, g2 = −1, g3 = −Z2
[0] sin

2
(√

2λx3 + ξ[0]

)
, τ = φ− τ0 (χ, t) ,

h4 = B/a(φ), h5 = h5(0)(x
i′) = − sin2 θ, ω = η5 = 1, B

(
xi

′

, t
)

=
eτ − 1

eφ + 1
,

wi′ = ζi′ = 0, nk′
(
xi

′

, t
)

= nk′[1](x
i′) + nk′[2](x

i′)

∫
B
(
xi

′

, t
)
dt,(14.96)

where q4 is chosen to preserve the condition wi′ = ζi′ = 0.
As a simple example of the above solutions we take τ0 to satisfy the SG equation

∂χχτ0 − ∂ttτ0 = sin(τ0). This has the standard propagating kink solution

τ0(χ, t) = 4 tan−1 [±γ(χ− V t)]

where γ = (1 − V 2)−1/2 and V is the velocity at which the kink moves into the extra
dimension χ. To obtain the simplest form of this solution we also take nk′[1](x

i′) =
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nk′[2](x
i′) = 0. This example can be easily extended to solutions with a non-trivial con-

formal factor Ω that gives an exponentially suppressing factor, exp[−2k|χ|], see details
in Ref. [53]. In this manner one has an effective 4D black hole which propagates from
the 3D brane into the non-compact, but exponentially suppressed extra dimension, χ.

The solution constructed in this subsection describes propagating 4D Schwarzschild
black holes in a bulk 5D spacetime obtained from string theory. The propagation arises
from requiring that certain of the ansatz functions take a 3D soliton form. In the
simplest version of these propagating solutions the parameters of the ansatz functions
are constant, and the horizons are spherical. It can be also shown that such propagating
solutions could be formed with a polarization of the parameters and/or deformation of
the horizons, see the non–string case in [53].

14.7.4 Noncommutative anisotropic wormholes and strings

Let us construct and analyze an exact 5D solution of the string gravity which can
also considered as a noncommutative structure in string theory. The d–metric ansatz is
taken in the form

δs2 = g1(dx
1)2 + g2(dx

2)2 + g3(dx
3)2 + h4(δy

4)2 + h5(δy
5)2,

δy4 = dy4 + wk′
(
xi

′

, v
)
dxk

′

, δy5 = dy5 + nk′
(
xi

′

, v
)
dxk

′

; i′, k′ = 1, 2, 3,(14.97)

where

g1 = 1, g2 = g2(r), g3 = −a(r), (14.98)

h4 = ĥ4 = η̂4 (r, θ, ϕ)h4[0](r), h5 = ĥ5 = η̂5 (r, θ, ϕ)h5[0](r, θ)

for the parametrization of coordinate of type

x1 = t, x2 = r, x3 = θ, y4 = v = ϕ, y5 = p = χ (14.99)

where t is the time coordinate, (r, θ, ϕ) are spherical coordinates, χ is the 5th coordinate;
ϕ is the anholonomic coordinate; for this ansatz there is not considered the dependence
of d–metric coefficients on the second anholonomic coordinate χ. The data

g1 = 1, ĝ2 = −1, g3 = −a(r), (14.100)

h4[0](r) = −r2
0e

2ψ(r), η4 = 1/κ2
r (r, θ, ϕ) , h5[0] = −a (r) sin2 θ, η5 = 1,

w1 = ŵ1 = ω (r) , w2 = ŵ2 = 0, w3 = ŵ3 = n cos θ/κ2
n (r, θ, ϕ) ,

n1 = n̂1 = 0, n2,3 = n̂2,3 = n2,3[1] (r, θ)

∫
ln |κ2

r (r, θ, ϕ) |dϕ
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for some constants r0 and n and arbitrary functions a(r), ψ(r) and arbitrary vacuum
gravitational polarizations κr (r, θ, ϕ) and κn (r, θ, ϕ) define an exact vacuum 5D solu-
tion of Kaluza–Klein gravity [54] describing a locally anisotropic wormhole with elliptic
gravitational vacuum polarization of charges,

q2
0

4a (0)κ2
r

+
Q2

0

4a (0)κ2
n

= 1,

where q0 = 2
√
a (0) sinα0 and Q0 = 2

√
a (0) cosα0 are respectively the electric and

magnetic charges and 2
√
a (0)κr and 2

√
a (0)κn are ellipse’s axes.

The first aim in this subsection is to prove that following the ansatz (14.97) we
can construct locally anisotropic wormhole metrics in string gravity as solutions of the
system of equations (14.78) - (14.81) with redefined coordinates as in (14.99). Having
the vacuum data (14.100) we may generalize the solution for a nontrivial cosmological
constant following the method presented in subsection 14.7.3, when the new solutions
are represented

h4 = ĥ4

(
xi

′

, v
)
q4

(
xi

′

, v
)

and h5 = ĥ5

(
xi

′

, v
)
, (14.101)

with ĥ4,5 taken as in (14.98) which solves (14.79) if q4 = 1 for λ = 0 and

q4 =
1

4λ

[∫
ĥ5 (r, θ, ϕ) ĥ4 (r, θ, ϕ)

ĥ∗5 (r, θ, ϕ)
dϕ

]−1

for λ 6= 0.

This q4 can be considered as an additional polarization to η4 induced by the cosmological
constant λ. We state g2 = −1 but

g3 = − sin2
(√

2λθ + ξ[0]

)
,

which give of solution of (14.78) with signature (+,−,−,−,−) which is different from
the solution (14.67). A non–trivial q4 results in modification of coefficients (14.84),

αi′ = α̂i′ + α
[q]
i′ , β = β̂ + β [q], γ = γ̂ + γ[q],

α̂i′ = ∂iĥ
∗
5 − ĥ∗5∂i′ ln

√
|ĥ4ĥ5|, β̂ = ĥ∗∗5 − ĥ∗5[ln

√
|ĥ4ĥ5|]∗, γ̂ =

3ĥ∗5

2ĥ5

− ĥ∗4

ĥ4

α
[q]
i′ = −h∗5∂i′ ln

√
|q4|, β [q] = −h∗5[ln

√
|q4|]∗, γ[q] = −q

∗
4

q4
,
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which following formulas (14.80) and (14.81) result in additional terms to the N–connec-
tion coefficients, i. e.

wi′ = ŵi′ + w
[q]
i′ and ni′ = n̂i′ + n

[q]
i′ , (14.102)

with w
[q]
i′ and n

[q]
i′ computed by using respectively α

[q]
i′ , β

[q] and γ[q].

The N–connection coefficients (14.102) can be transformed partially into a B–field
with {Bi′j′, Bb′j′} defined by integrating the conditions (14.20), i. e.

Bi′j′ = Bi′j′[0]

(
xk

′

)
+

∫
h4δ[i′wj′]dϕ, B4j′ = B4j′[0]

(
xk

′

)
+

∫
h4w

∗
j′dϕ, (14.103)

for some arbitrary functions Bi′j′[0]

(
xk

′
)

and B4j′[0]

(
xk

′
)
. The string background correc-

tions are presented via nontrivial w
[q]
i′ induced by λ = 1/4. The formulas (14.103) consist

the second aim of this subsection: to illustrate how a a B–field inducing noncommuta-
tivity may be related with a N–connection inducing local anisotropy. This is an explicit
example of locally anisotropic noncommutative configuration contained in string theory.
For the considered class of wormhole solutions the coefficients ni′ do not contribute into
the noncommutative configuration, but, in general, following (14.19), they can be also
related to noncommutativity.

14.8 Comments and Questions

In this paper, we have developed the method of anholonomic frames and associated
nonlinear connections from a viewpoint of application in noncommutative geometry and
string theory. We note in this retrospect that several futures connecting Finsler like gen-
eralizations of gravity and gauge theories, which in the past were considered ad hoc and
sophisticated, actually have a very natural physical and geometric interpretation in the
noncommutative and D–brane picture in string/M–theory. Such locally anisotropic and/
or noncommutative configurations are hidden even in general relativity and its various
Kaluza–Klein like and supergravity extension. To emphasize them we have to consider
off–diagonal metrics which can be diagonalized in result of certain anholonomic frame
transforms which induce also nonlinear connection structures in the curved spacetime,
in general, with noncompactified extra dimensions.

On general grounds, it could be said the the appearance of noncommutative and
Finsler like geometry when considering B–fields, off–diagonal metrics and anholonomic
frames (all parametrized, in general, by noncommutative matrices) is a natural thing.
Such implementations in the presence of D–branes and matrix approaches to M–theory
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were proven here to have explicit realizations and supported by six background construc-
tions elaborated in this paper:

First, both the local anisotropy and noncommutativity can be derived from consider-
ing string propagation in general manifolds and bundles and in various low energy string
limits. This way the anholonomic Einstein and Finsler generalized gravity models are
generated from string theory.

Second, the anholonomic constructions with associated nonlinear connection geom-
etry can be explicitly modelled on superbundles which results in superstring effective
actions with anholonomic (super) field equations which can be related to various super-
string and supergravity theories.

Third, noncommutative geometries and associated differential calculi can be distin-
guished in anholonomic geometric form which allows formulation of locally anisotropic
field theories with anholonomic symmetries.

Forth, anholonomy and noncommutativity can be related to string/M–theory fol-
lowing consequently the matrix algebra and geometry and/or associated to nonlinear
connections noncommutative covariant differential calculi.

Fifth, different models of locally anisotropic gravity with explicit limits to string and
Einstein gravity can be realized on noncommutative D–branes.

Sixth, the anholonomic frame method is a very powerful one in constructing and
investigating new classes of exact solutions in string and gravity theories; such solutions
contain generic noncommutativity and/or local anisotropy and can be parametrized as to
describe locally anisotropic black hole configurations, Finsler like structures, anisoropic
solitonic and moving string black hole metrics, or noncommutative and anisotropic worm-
hole structures which may be derived in Einstein gravity and/or its Kaluza–Klein and
(super) string generalizations.

The obtained in this paper results have a recent confirmation in Ref. [33] where the
spacetime noncommutativity is obtained in string theory with a constant off–diagonal
metric background when an appropriate form is present and one of the spatial direction
has Dirichlet boundary conditions. We note that in Refs. [49, 46, 52, 53, 54] we con-
structed exact solutions in the Einstein and extra dimension gravity with off–diagonal
metrics which were diagonalized by anholonomic transforms to effective spacetimes with
noncommutative structure induced by anholonomic frames. Those results were extended
to noncommutative geometry and gauge gravity theories, in general, containing local
anisotropy, in Refs. [48, 50]. The low energy string spacetime with noncommutativity
constructed in subsection 7.4 of this work is parametrized by an off–diagonal metric which
is a very general (non–constant) pseudo–Riemannian one defining an exact solution in
string gravity.
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Finally, our work raises a number of other interesting questions:

1. What kind of anholonomic quantum noncommutative structures are hidden in
string theory and gravity; how such constructions are to be modelled by modern
geometric methods.

2. How, in general, to relate the commutative and noncommutative gauge models of
(super) gravity with local anisotropy directly to string/M–theory.

3. What kind of quantum structure is more naturally associated to string gravity and
how to develop such anisotropic generalizations.

4. To formulate a nonlinear connection theory in quantum bundles and relate it to
various Finsler like quantum generalizations.

5. What kind of Clifford structures are more natural for developing a unified geometric
approach to anholonomic noncommutative and quantum geometry following in
various perturbative limits and non–perturbative sectors of string/M–theory and
when a such geometry is to be associated to D–brane configurations.

6. To construct new classes of exact solutions with generic anisotropy and noncom-
mutativity and analyze theirs physical meaning and possible applications.

We hope to address some of these questions in future works.
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14.9 Appendix:

Anholonomic Frames and N–Connections

We outline the basic definitions and formulas on anholonomic frames and associated
nonlinear connection (N–connection) structures on vector bundles [29] and (pseudo)
Riemannian manifolds [45, 49]. The Einstein equations are written in mixed holonom-
lic--anholonomic variables. We state the conditions when locally anisotropic structures
(Finsler like and another type ones) can be modelled in general relativity and its extra
dimension generalizations. This Abstract contains the necessary formulas in coordinate
form taken from a geometric paper under preparation together with a co-author.
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14.9.1 The N–connection geometry

The concept of N–connection came from Finsler geometry (as a set of coefficients it
is present in the works of E. Cartan [6], then it was elaborated in a more explicit fashion
by A. Kawaguchi [23]). The global definition of N–connections in commutative spaces
is due to W. Barthel [3]. The geometry of N–connections was developed in details
for vector, covector and higher order bundles [29, 28, 4], spinor bundles [40, 55] and
superspaces and superstrings [41, 47, 42] with recent applications in modern anisotropic
kinetics and theormodynamics [44] and elaboration of new methods of constructing exact
off–diagonal solutions of the Einstein equations [45, 49]. The concept of N–connection
can be extended in a similar manner from commutative to noncommutative spaces if a
differential calculus is fixed on a noncommutative vector (or covector) bundle or another
type of quantum manifolds [50].

N–connections in vector bundles and (pseudo) Riemannian spaces

Let us consider a vector bundle ξ = (E, µ,M) with typical fibre IRm and the map

µT : TE → TM

being the differential of the map µ : E → M. The map µT is a fibre–preserving morphism
of the tangent bundle (TE, τE, E) to E and of tangent bundle (TM, τ,M) to M. The
kernel of the morphism µT is a vector subbundle of the vector bundle (TE, τE, E) . This
kernel is denoted (V E, τV , E) and called the vertical subbundle over E. By

i : V E → TE

it is denoted the inclusion mapping when the local coordinates of a point u ∈ E are
written uα = (xi, ya) , where the values of indices are i, j, k, ... = 1, 2, ..., n and a, b, c, ... =
1, 2, ..., m.

A vector Xu ∈ TE, tangent in the point u ∈ E, is locally represented
(
x, y,X, X̃

)
=
(
xi, ya, X i, Xa

)
,

where (X i) ∈IRn and (Xa) ∈IRm are defined by the equality

Xu = X i∂i +Xa∂a

[∂α = (∂i, ∂a) are usual partial derivatives on respective coordinates xi and ya]. For

instance, µT
(
x, y,X, X̃

)
= (x,X) and the submanifold V E contains elements of type



572CHAPTER 14. (NON) COMMUTATIVE FINSLER GEOMETRY AND STRINGS

(
x, y, 0, X̃

)
and the local fibers of the vertical subbundle are isomorphic to IRm. Having

µT (∂a) = 0, one comes out that ∂a is a local basis of the vertical distribution u→ VuE
on E, which is an integrable distribution.

A nonlinear connection (in brief, N–connection) in the vector bundle ξ = (E, µ,M)
is the splitting on the left of the exact sequence

0→ V E → TE/V E → 0,

i. e. a morphism of vector bundles N : TE → V E such that C ◦ i is the identity on V E.
The kernel of the morphism N is a vector subbundle of (TE, τE , E) , it is called

the horizontal subbundle and denoted by (HE, τH , E) . Every vector bundle (TE, τE , E)
provided with a N–connection structure is Whitney sum of the vertical and horizontal
subbundles, i. e.

TE = HE ⊕ V E. (14.104)

It is proven that for every vector bundle ξ = (E, µ,M) over a compact manifold M there
exists a nonlinear connection [29].

Locally a N–connection N is parametrized by a set of coefficients{
Na
i (uα) = Na

i (x
j , yb)

}
which transform as

Na′

i′
∂xi

′

∂xi
= Ma′

a N
a
i −

∂Ma′

a

∂xi
ya

under coordinate transforms on the vector bundle ξ = (E, µ,M) ,

xi
′

= xi
′ (
xi
)

and ya
′

= Ma′

a (x)ya.

The well known class of linear connections consists a particular parametization of the
coefficients Na

i when
Na
i (x

j , yb) = Γabi(x
j)yb

are linear on variables yb.
If a N–connection structure is associated to local frame (basis, vielbein) on ξ, the

operators of local partial derivatives ∂α = (∂i, ∂a) and differentials dα = duα = (di = dxi,
da = dya) should be elongated as to adapt the local basis (and dual basis) structure to
the Whitney decomposition of the vector bundle into vertical and horizontal subbundles,
(14.104):

∂α = (∂i, ∂a)→ δα =
(
δi = ∂i −N b

i ∂b, ∂a
)
, (14.105)

dα =
(
di, da

)
→ δα =

(
di, δa = da +N b

i d
i
)
. (14.106)
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The transforms can be considered as some particular case of frame transforms of type

∂α → δα = eβα∂β and dα → δα = (e−1)αβδ
β,

eβα(e
−1)γβ = δγα, when the vielbein coefficients eβα are constructed by using the Kronecker

symbols δba, δ
i
j and N b

i .
The bases δα and δα satisfy, in general, some anholonomy conditions, for instance,

δαδβ − δβδα = W γ
αβδγ, (14.107)

where W γ
αβ are called the anholonomy coefficients. An explicit calculus of commutators

of operators (14.105) shows that there are the non–trivial values:

W a
ij = Ra

ij = δiN
a
j − δjNa

i , W
b
ai = −W b

ia = −∂aN b
i . (14.108)

Tensor fields on a vector bundle ξ = (E, µ,M) provided with N–connection structure
N (we subject such spaces with the index N, ξN) may be decomposed in N–adapted
form with respect to the bases δα and δα, and their tensor products. For instance, for a
tensor of rang (1,1) T = {T β

α =
(
T j
i , T

a
i , T

j
b , T

b
a

)
} we have

T = T β
α δα ⊗ δβ = T j

i d
i ⊗ δi + T a

i d
i ⊗ ∂a + T j

b δ
b ⊗ δj + T b

a δ
a ⊗ ∂b. (14.109)

Every N–connection with coefficients N b
i generates also a linear connection on ξN

as Γ
(N)γ
αβ = {Na

bi = ∂Na
i (x, y)/∂yb} which defines a covariant derivative

D(N)
α Aβ = δαA

β + Γ(N)β
αγ Aγ .

Another important characteristic of a N–connection is its curvature Ω = {Ωa
ij} with

the coefficients

Ωa
ij = δjN

a
i − δiNa

j = ∂jN
a
i − ∂iNa

j +N b
iN

a
bj −N b

jN
a
bi. (14.110)

In general, on a vector bundle we may consider arbitrary linear connections and
metric structures adapted to the N–connection decomposition into vertical and horizontal
subbundles (one says that such objects are distinguished by the N–connection, in brief,
d–objects, like the d-tensor (14.109), d–connection, d–metric:

• The coefficients of linear d–connections Γ = {Γβαγ =
(
Lijk, L

a
bk, C

i
jc, C

b
ac

)
} are defined

for an arbitrary covariant derivative D on ξ being adapted to the N–connection
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structure as Dδα(δβ) = Γγβαδγ with the coefficients being invariant under horizontal
and vertical decomposition

Dδi(δj) = Lkjiδk, Dδi(∂a) = Lbai∂b, D∂c(δj) = Ck
jcδk, D∂c(∂a) = Cb

ac∂b.

The operator of covariant differentiation D splits into the horizontal covariant
derivative D[h], stated by the coefficients

(
Lijk, L

a
bk

)
, for instance, and the opera-

tor of vertical covariant derivative D[v], stated by the coefficients
(
Ci
jc, C

b
ac

)
. For

instance, for A = Aiδi + Aa∂a = Ai∂
i + Aaδ

a one holds the d–covariant derivation
rules,

D
[h]
i A

k = δiA
k + LkijA

j, D
[h]
i A

b = δiA
b + LbicA

c,

D
[h]
i Ak = δiAk − LjikAj , D

[h]
i Ab = δiAb − LcibAc,

D[v]
a A

k = ∂aA
k + Ck

ajA
j , D[v]

a A
b = ∂aA

b + Cb
acA

c,

D[v]
a Ak = ∂aAk − Cj

akAj , D
[v]
a Ab = ∂aAb − Cc

abAc.

• The d–metric structure G = gαβδ
a ⊗ δb which has the invariant decomposition as

gαβ = (gij, gab) following from

G = gij(x, y)d
i ⊗ dj + gab(x, y)δ

a ⊗ δb. (14.111)

We may impose the condition that a d–metric gαβ and a d–connection Γβαγ are com-
patible, i. e. there are satisfied the conditions

Dγgαβ = 0. (14.112)

With respect to the anholonomic frames (14.105) and (14.106), there is a linear
connection, called the canonical distinguished linear connection, which is similar to the
metric connection introduced by the Christoffel symbols in the case of holonomic bases,
i. e. being constructed only from the metric components and satisfying the metricity
conditions (14.112). It is parametrized by the coefficients, Γαβγ =

(
Li jk, L

a
bk, C

i
jc, C

a
bc

)

where

Li jk =
1

2
gin (δkgnj + δjgnk − δngjk) , (14.113)

Labk = ∂bN
a
k +

1

2
hac
(
δkhbc − hdc∂bNd

k − hdb∂cNd
k

)
,

Ci
jc =

1

2
gik∂cgjk, C

a
bc =

1

2
had (∂chdb + ∂bhdc − ∂dhbc) .

Instead of this connection one can consider on ξ another types of linear connections
which are/or not adapted to the N–connection structure (see examples in [29]).
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D–torsions and d–curvatures:

The anholonomic coefficients W γ
αβ and N–elongated derivatives give nontrivial coef-

ficients for the torsion tensor, T (δγ, δβ) = T αβγδα, where

T αβγ = Γαβγ − Γαγβ +W α
βγ , (14.114)

and for the curvature tensor, R(δτ , δγ)δβ = R α
β γτδα, where

R α
β γτ = δτΓ

α
βγ − δγΓαβτ + ΓϕβγΓ

α
ϕτ − ΓϕβτΓ

α
ϕγ + ΓαβϕW

ϕ
γτ . (14.115)

We emphasize that the torsion tensor on (pseudo) Riemannian spacetimes is induced by
anholonomic frames, whereas its components vanish with respect to holonomic frames.
All tensors are distinguished (d) by the N–connection structure into irreducible (hori-
zontal–vertical) h–v–components, and are called d–tensors. For instance, the torsion,
d–tensor has the following irreducible, nonvanishing, h–v–components,
T αβγ = {T ijk, Ci

ja, S
a
bc, T

a
ij, T

a
bi}, where

T i.jk = T ijk = Lijk − Likj, T ija = Ci
.ja, T iaj = −Ci

ja,

T i.ja = 0, T a.bc = Sa.bc = Ca
bc − Ca

cb, (14.116)

T a.ij = −Ωa
ij , T a.bi = ∂bN

a
i − La.bi, T a.ib = −T a.bi

(the d–torsion is computed by substituting the h–v–components of the canonical d–
connection (14.113) and anholonomy coefficients (14.107) into the formula for the torsion
coefficients (14.114)).

We emphasize that with respect to anholonomic frames the torsion is not zero even
for symmetric connections with Γαβγ = Γαγβ because the anholonomy coefficients W α

βγ

are contained in the formulas for the torsion coefficients (14.114). By straightforward
computations we can prove that for nontrivial N–connection curvatures, Ωa

ij 6= 0, even the
Levi–Civita connection for the metric (14.111) contains nonvanishing torsion coefficients.
Of course, the torsion vanishes if the Levi–Civita connection is defined as the usual
Christoffel symbols with respect to the coordinate frames, (∂i, ∂a) and (di, ∂a) ; in this
case the d–metric (14.111) is redefined into, in general, off–diagonal metric containing
products of Na

i and hab.
The curvature d–tensor has the following irreducible, non-vanishing, h–v–components

R α
β γτ = {R.i

h.jk, R
.a
b.jk, P

.i
j.ka, P

.c
b.ka, S

.i
j.bc, S

.a
b.cd}, where
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R.i
h.jk = δkL

i
.hj − δjLi.hk + Lm.hjL

i
mk − Lm.hkLimj − Ci

.haΩ
a
.jk, (14.117)

R.a
b.jk = δkL

a
.bj − δjLa.bk + Lc.bjL

a
.ck − Lc.bkLa.cj − Ca

.bcΩ
c
.jk,

P .i
j.ka = ∂aL

i
.jk + Ci

.jbT
b
.ka − (δkC

i
.ja + Li.lkC

l
.ja − Ll.jkCi

.la − Lc.akCi
.jc),

P .c
b.ka = ∂aL

c
.bk + Cc

.bdT
d
.ka − (δkC

c
.ba + Lc.dkC

d
.ba − Ld.bkCc

.da − Ld.akCc
.bd),

S .ij.bc = ∂cC
i
.jb − ∂bCi

.jc + Ch
.jbC

i
.hc − Ch

.jcC
i
hb,

S .ab.cd = ∂dC
a
.bc − ∂cCa

.bd + Ce
.bcC

a
.ed − Ce

.bdC
a
.ec

(the d–curvature components are computed in a similar fashion by using the formula for
curvature coefficients (14.115)).

Einstein equations in d–variables

In this subsection we write and analyze the Einstein equations on spaces provided
with anholonomic frame structures and associated N–connections.

The Ricci tensor Rβγ = R α
β γα has the d–components

Rij = R.k
i.jk, Ria = −2Pia = −P .k

i.ka, Rai =1 Pai = P .b
a.ib, Rab = S .ca.bc. (14.118)

In general, since 1Pai 6= 2Pia, the Ricci d-tensor is non-symmetric (we emphasize that
this could be with respect to anholonomic frames of reference because the N–connection
and its curvature coefficients, Na

i and Ωa
.jk, as well the anholonomy coefficients W α

βγ

and d–torsions T αβγ are contained in the formulas for d–curvatures (14.115)). The scalar

curvature of the metric d–connection,
←−
R = gβγRβγ, is computed

←−
R = GαβRαβ = R̂ + S, (14.119)

where R̂ = gijRij and S = habSab.
By substituting (14.118) and (14.119) into the Einstein equations

Rαβ −
1

2
gαβR = κΥαβ , (14.120)

where κ and Υαβ are respectively the coupling constant and the energy–momentum
tensor we obtain the h-v-decomposition by N–connection of the Einstein equations

Rij −
1

2

(
R̂ + S

)
gij = κΥij , (14.121)

Sab −
1

2

(
R̂ + S

)
hab = κΥab,

1Pai = κΥai,
2Pia = κΥia.
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The definition of matter sources with respect to anholonomic frames is considered in
Refs. [40, 47, 29].

The vacuum locally anisotropic gravitational field equations, in invariant h– v–
components, are written

Rij = 0, Sab = 0,1 Pai = 0, 2Pia = 0. (14.122)

We emphasize that general linear connections in vector bundles and even in the
(pseudo) Riemannian spacetimes have non–trivial torsion components if off–diagonal
metrics and anholomomic frames are introduced into consideration. This is a ”pure”
anholonomic frame effect: the torsion vanishes for the Levi–Civita connection stated
with respect to a coordinate frame, but even this metric connection contains some torsion
coefficients if it is defined with respect to anholonomic frames (this follows from the
w–terms in (3.10)). For the (pseudo) Riemannian spaces we conclude that the Einstein
theory transforms into an effective Einstein–Cartan theory with anholonomically induced
torsion if the general relativity is formulated with respect to general frame bases (both
holonomic and anholonomic).

The N–connection geometry can be similarly formulated for a tangent bundle TM
of a manifold M (which is used in Finsler and Lagrange geometry [29]), on cotangent
bundle T ∗M and higher order bundles (higher order Lagrange and Hamilton geometry
[28]) as well in the geometry of locally anisotropic superspaces [41], superstrings [43],
anisotropic spinor [40] and gauge [51] theories or even on (pseudo) Riemannian spaces
provided with anholonomic frame structures [55].

14.9.2 Anholonomic Frames in Commutative Gravity

We introduce the concepts of generalized Lagrange and Finsler geometry and outline
the conditions when such structures can be modelled on a Riemannian space by using
anholnomic frames.

Different classes of commutative anisotropic spacetimes are modelled by correspond-
ing parametriztions of some compatible (or even non–compatible) N–connection, d–
connection and d–metric structures on (pseudo) Riemannian spaces, tangent (or cotan-
gent) bundles, vector (or covector) bundles and their higher order generalizations in their
usual manifold, supersymmetric, spinor, gauge like or another type approaches (see Refs.
[45, 28, 29, 4, 40, 51, 47, 55]).
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Anholonomic structures on Riemannian spaces

We note that the N–connection structure may be defined not only in vector bundles
but also on (pseudo) Riemannian spaces [45]. In this case the N–connection is an object
completely defined by anholonomic frames, when the coefficients of frame transforms,
eβα (uγ) , are parametrized explicitly via certain values

(
Na
i , δ

j
i , δ

a
b

)
, where δji and δab

are the Kronecker symbols. By straightforward calculations we can compute that the
coefficients of the Levi–Civita metric connection

Γ▽
αβγ = g (δα,▽γδβ) = gατΓ

▽τ
βγ ,

associated to a covariant derivative operator ▽, satisfying the metricity condition
▽γgαβ = 0 for gαβ = (gij , hab) and

Γ▽
αβγ =

1

2

[
δβgαγ + δγgβα − δαgγβ + gατW

τ
γβ + gβτW

τ
αγ − gγτW τ

βα

]
, (14.123)

are given with respect to the anholonomic basis (14.106) by the coefficients

Γ▽τ
βγ =

(
Li jk, L

a
bk, C

i
jc +

1

2
gikΩa

jkhca, C
a
bc

)
(14.124)

when Li jk, L
a
bk, C

i
jc, C

a
bc and Ωa

jk are respectively computed by the formulas (14.113)
and (14.110). A specific property of off–diagonal metrics is that they can define different
classes of linear connections which satisfy the metricity conditions for a given metric,
or inversely, there is a certain class of metrics which satisfy the metricity conditions for
a given linear connection. This result was originally obtained by A. Kawaguchi [23]
(Details can be found in Ref. [29], see Theorems 5.4 and 5.5 in Chapter III, formulated
for vector bundles; here we note that similar proofs hold also on manifolds enabled with
anholonomic frames associated to a N–connection structure).

With respect to anholonomic frames, we can not distinguish the Levi–Civita con-
nection as the unique one being both metric and torsionless. For instance, both linear
connections (14.113) and (14.124) contain anholonomically induced torsion coefficients,
are compatible with the same metric and transform into the usual Levi–Civita coeffi-
cients for vanishing N–connection and ”pure” holonomic coordinates. This means that
to an off–diagonal metric in general relativity one may be associated different covariant
differential calculi, all being compatible with the same metric structure (like in the non–
commutative geometry, which is not a surprising fact because the anolonomic frames
satisfy by definition some non–commutative relations (14.107)). In such cases we have to
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select a particular type of connection following some physical or geometrical arguments,
or to impose some conditions when there is a single compatible linear connection con-
structed only from the metric and N–coefficients. We note that if Ωa

jk = 0 the connections

(14.113) and (14.124) coincide, i. e. Γαβγ = Γ▽α
βγ .

If an anholonomic (equivalently, anisotropic) frame structure is defined on a (pseudo)
Riemannian space of dimension (n+m) space, the space is called to be an anholonomic
(pseudo) Riemannian one (denoted as V (n+m)). By fixing an anholonomic frame ba-
sis and co–basis with associated N–connection Na

i (x, y), respectively, as (14.105) and
(14.106), one splits the local coordinates uα = (xi, ya) into two classes: the fist class con-
sists from n holonomic coordinates, xi, and the second class consists fromm anholonomic
coordinates, ya. The d–metric (14.111) on V (n+m),

G[R] = gij(x, y)dx
i ⊗ dxj + hab(x, y)δy

a ⊗ δyb (14.125)

written with respect to a usual coordinate basis duα = (dxi, dya) ,

ds2 = g
αβ

(x, y)duαduβ

is a generic off–diagonal Riemannian metric parametrized as

g
αβ

=

[
gij +Na

i N
b
j gab habN

a
i

habN
b
j hab

]
. (14.126)

Such type of metrics were largely investigated in the Kaluza–Klein gravity [35], but also
in the Einstein gravity [45]. An off–diagonal metric (14.126) can be reduced to a block
(n× n) ⊕ (m×m) form (gij , gab) , and even effectively diagonalized in result of a su-
perposition of anholonomic N–transforms. It can be defined as an exact solution of the
Einstein equations. With respect to anholonomic frames, in general, the Levi–Civita
connection obtains a torsion component (14.123). Every class of off–diagonal metrics
can be anholonomically equivalent to another ones for which it is not possible to a se-
lect the Levi–Civita metric defied as the unique torsionless and metric compatible linear
connection. The conclusion is that if anholonomic frames of reference, which authomat-
ically induce the torsion via anholonomy coefficients, are considered on a Riemannian
space we have to postulate explicitly what type of linear connection (adapted both to
the anholonomic frame and metric structure) is chosen in order to construct a Rieman-
nian geometry and corresponding physical models. For instance, we may postulate the
connection (14.124) or the d–connection (14.113). Both these connections are metric
compatible and transform into the usual Christoffel symbols if the N–connection van-
ishes, i. e. the local frames became holonomic. But, in general, anholonomic frames and
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off–diagonal Riemannian metrics are connected with anisotropic configurations which
allow, in principle, to model even Finsler like structures in (pseudo) Riemannian spaces
[44, 45].

Finsler geometry and its almost Kahlerian model

The modern approaches to Finsler geometry are outlined in Refs. [34, 29, 28, 4, 47,
55]. Here we emphasize that a Finsler metric can be defined on a tangent bundle TM
with local coordinates uα = (xi, ya → yi) of dimension 2n, with a d–metric (14.111) for
which the Finsler metric, i. e. the quadratic form

g
[F ]
ij = hab =

1

2

∂2F 2

∂yi∂yj
(14.127)

is positive definite, is defined in this way: 1) A Finsler metric on a real manifold

M is a function F : TM → IR which on T̃M = TM\{0} is of class C∞ and F is
only continuous on the image of the null cross–sections in the tangent bundle to M. 2)

F (x, χy) = χF (x, y) for every IR∗
+. 3) The restriction of F to T̃M is a positive function.

4) rank
[
g

[F ]
ij (x, y)

]
= n.

The Finsler metric F (x, y) and the quadratic form g
[F ]
ij can be used to define the

Christoffel symbols (not those from the usual Riemannian geometry)

cιjk(x, y) =
1

2
gih
(
∂jg

[F ]
hk + ∂kg

[F ]
jh − ∂hg

[F ]
jk

)
,

where ∂j = ∂/∂xj , which allows us to define the Cartan nonlinear connection as

N
[F ]i
j (x, y) =

1

4

∂

∂yj
[
cιlk(x, y)y

lyk
]

(14.128)

where we may not distinguish the v- and h- indices taking on TM the same values.
In Finsler geometry there were investigated different classes of remarkable Finsler

linear connections introduced by Cartan, Berwald, Matsumoto and other ones (see details

in Refs. [34, 29, 4]). Here we note that we can introduce g
[F ]
ij = gab and N i

j(x, y) in
(14.111) and construct a d–connection via formulas (14.113).

A usual Finsler space F n = (M,F (x, y)) is completely defined by its fundamental

tensor g
[F ]
ij (x, y) and Cartan nonlinear connection N i

j(x, y) and its chosen d–connection
structure. But the N–connection allows us to define an almost complex structure I on
TM as follows

I (δi) = −∂/∂yi and I
(
∂/∂yi

)
= δi
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for which I2 = −1.
The pair

(
G[F ], I

)
consisting from a Riemannian metric on TM,

G[F ] = g
[F ]
ij (x, y)dxi ⊗ dxj + g

[F ]
ij (x, y)δyi ⊗ δyj (14.129)

and the almost complex structure I defines an almost Hermitian structure on T̃M asso-
ciated to a 2–form

θ = g
[F ]
ij (x, y)δyi ∧ dxj.

This model of Finsler geometry is called almost Hermitian and denoted H2n and it is
proven [29] that is almost Kahlerian, i. e. the form θ is closed. The almost Kahlerian

space K2n =
(
T̃M,G[F ], I

)
is also called the almost Kahlerian model of the Finsler

space F n.
On Finsler (and their almost Kahlerian models) spaces one distinguishes the almost

Kahler linear connection of Finsler type, D[I] on T̃M with the property that this covariant
derivation preserves by parallelism the vertical distribution and is compatible with the
almost Kahler structure

(
G[F ], I

)
, i.e.

D
[I]
XG

[F ] = 0 and D
[I]
X I = 0

for every d–vector field on T̃M. This d–connection is defined by the data

Γ =
(
Lijk, L

a
bk = 0, Ci

ja = 0, Ca
bc → Ci

jk

)

with Lijk and Ci
jk computed as in the formulas (14.113) by using g

[F ]
ij and N i

j from
(14.128).

We emphasize that a Finsler space F n with a d–metric (14.129) and Cartan’s N–
connection structure (14.128), or the corresponding almost Hermitian (Kahler) model
H2n, can be equivalently modelled on a Riemannian space of dimension 2n provided
with an off–diagonal Riemannian metric (14.126). From this viewpoint a Finsler geom-
etry is a corresponding Riemannian geometry with a respective off–diagonal metric (or,
equivalently, with an anholonomic frame structure with associated N–connection) and
a corresponding prescription for the type of linear connection chosen to be compatible
with the metric and N–connection structures.

Lagrange and generalized Lagrange geometry

Lagrange spaces were introduced in order to geometrize the fundamental concepts in
mechanics [24] and investigated in Refs. [29] (see [40, 51, 41, 43, 47, 55] for their spinor,
gauge and supersymmetric generalizations).
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A Lagrange space Ln = (M,L (x, y)) is defined as a pair which consists of a real,
smooth n–dimensional manifold M and regular Lagrangian L : TM → IR. Similarly as
for Finsler spaces one introduces the symmetric d–tensor field

g
[L]
ij = hab =

1

2

∂2L

∂yi∂yj
. (14.130)

So, the Lagrangian L(x, y) is like the square of the fundamental Finsler metric, F 2(x, y),
but not subjected to any homogeneity conditions.

In the rest me can introduce similar concepts of almost Hermitian (Kahlerian) models
of Lagrange spaces as for the Finsler spaces, by using the similar definitions and formulas
as in the previous subsection, but changing g

[F ]
ij → g

[L]
ij .

R. Miron introduced the concept of generalized Lagrange space, GL–space (see de-
tails in [29]) and a corresponding N–connection geometry on TM when the fundamental
metric function gij = gij (x, y) is a general one, not obligatory defined as a second deriva-
tive from a Lagrangian as in (14.130). The corresponding almost Hermitian (Kahlerian)
models of GL–spaces were investigated and applied in order to elaborate generalizations
of gravity and gauge theories [29, 51].

Finally, a few remarks on definition of gravity models with generic local anisotropy on
anholonomic Riemannian, Finsler or (generalized) Lagrange spaces and vector bundles.

So, by choosing a d-metric (14.111) (in particular cases (14.125), or (14.129) with g
[F ]
ij , or

g
[L]
ij ) we may compute the coefficients of, for instance, d–connection (14.113), d–torsion

(14.116) and (14.117) and even to write down the explicit form of Einstein equations
(14.121) which define such geometries. For instance, in a series of works [44, 45, 55] we
found explicit solutions when Finsler like and another type anisotropic configurations
are modelled in anisotropic kinetic theory and irreversible thermodynamics and even
in Einstein or low/extra–dimension gravity as exact solutions of the vacuum (14.121)
and nonvacuum (14.122) Einstein equations. From the viewpoint of the geometry of
anholonomic frames is not much difference between the usual Riemannian geometry and
its Finsler like generalizations. The explicit form and parametrizations of coefficients
of metric, linear connections, torsions, curvatures and Einstein equations in all types of
mentioned geometric models depends on the type of anholomic frame relations and com-
patibility metric conditions between the associated N–connection structure and linear
connections we fixed. Such structures can be correspondingly picked up from a noncom-
mutative functional model, for instance, from some almost Hermitian structures over
projective modules and/or generalized to some noncommutative configurations [50].
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Chapter 15

Nonholonomic Clifford Structures
and Noncommutative
Riemann–Finsler Geometry

Abstract 1

We survey the geometry of Lagrange and Finsler spaces and discuss the issues related
to the definition of curvature of nonholonomic manifolds enabled with nonlinear connec-
tion structure. It is proved that any commutative Riemannian geometry (in general,
any Riemann–Cartan space) defined by a generic off–diagonal metric structure (with an
additional affine connection possessing nontrivial torsion) is equivalent to a generalized
Lagrange, or Finsler, geometry modelled on nonholonomic manifolds. This results in the
problem of constructing noncommutative geometries with local anisotropy, in particular,
related to geometrization of classical and quantum mechanical and field theories, even
if we restrict our considerations only to commutative and noncommutative Riemannian
spaces. We elaborate a geometric approach to the Clifford modules adapted to nonlinear
connections, to the theory of spinors and the Dirac operators on nonholonomic spaces
and consider possible generalizations to noncommutative geometry. We argue that any
commutative Riemann–Finsler geometry and generalizations my be derived from non-
commutative geometry by applying certain methods elaborated for Riemannian spaces
but extended to nonholonomic frame transforms and manifolds provided with nonlinear
connection structure.
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15.1 Introduction

The goal of this work is to provide a better understanding of the relationship between
the theory of nonholonomic manifolds with associated nonlinear connection structure,
locally anisotropic spin configurations and Dirac operators on such manifolds and non-
commutative Riemann–Finsler and Lagrange geometry. The latter approach is based on
geometrical modelling of mechanical and classical field theories (defined, for simplicity,
by regular Lagrangians in analytic mechanics and Finsler like anisotropic structures)
and gravitational, gauge and spinor field interactions in low energy limits of string the-
ory. This allows to apply the Serre–Swan theorem and think of vector bundles as pro-
jective modules, which, for our purposes, are provided with nonlinear connection (in
brief, N–connection) structure and can be defined as a nonintegrabele (nonholonomic)
distribution into conventional horizontal and vertical submodules. We relay on the the-
ory of Clifford and spinor structures adapted to N–connections which results in locally
anisotropic (Finsler like, or more general ones defined by more general nonholonomic
frame structures) Dirac operators. In the former item, it is the machinery of noncommu-
tative geometry to derive distance formulas and to consider noncommutative extensions
of Riemann–Finsler and Lagrange geometry and related off–diagonal metrics in gravity
theories.

In [76] it was proposed that an equivalent reformulation of the general relativity
theory as a gauge model with nonlinear realizations of the affine, Poincare and/or de
Sitter groups allows a standard extension of gravity theories in the language of noncom-
mutative gauge fields. The approach was developed in [77] as an attempt to generalize
the A. Connes’ noncommutative geometry [17] to spaces with generic local anisotropy.
The nonlinear connection formalism was elaborated for projective module spaces and
the Dirac operator associated to metrics in Finsler geometry and some generalizations
[69, 72] (such as Sasaki type lifts of metrics to the tangent bundles and vector bundle
analogs) were considered as certain examples of noncommutative Finsler geometry. The
constructions were synthesized and revised in connection to ideas about appearance of
both noncommutative and Finsler geometry in string theory with nonvanishing B–field
and/or anholonomic (super) frame structures [66, 18, 2, 1, 65, 78, 70, 73] and in super-
gravity and gauge gravity [8, 30, 89, 90, 22]. In particular, one has considered hidden
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noncommutative and Finsler like structures in general relativity and extra dimension
gravity [62, 85, 79, 81, 82].

In this work, we confine ourselves to the classical aspects of Lagrange–Finsler geom-
etry (sprays, nonlinear connections, metric and linear connection structures and almost
complex structure derived from from a Lagrange or Finsler fundamental form) in order
to generalize the doctrine of the ”spectral action” and the theory of distance in noncom-
mutative geometry which is an extension of the previous results [17]. For a complete
information on modern noncommutative geometry and physics, we refer the reader to
[39, 44, 34, 29, 20, 38], see a historical sketch in Ref. [34] as well the aspects related to
quantum group theory [47, 45, 32] (here we note that the first quantum group Finsler
structure was considered in [92]). The theory of Dirac operators and related Clifford
analysis is a subject of various investigations in modern mathematics and mathematical
physics [48, 49, 59, 61, 26, 11, 12, 14, 15, 67, 9] (see also a relation to Finsler geometry [91]
and an off–diagonal ”non” Kaluza–Klein compactified ansatz, but without N–connection
counstructions [13]). 2 For an exposition spelling out all the details of proofs and impor-
tant concepts preliminary undertaken on the subjects elaborated in our works, we refer
to proofs and quotations in Refs. [56, 57, 80, 83, 82, 77, 78, 29, 63, 43, 50].

This paper consists of two heterogeneous parts:

The first (commutative) contains an overview of the Lagrange and Finsler geometry
and the off–diagonal metric and nonholonomic frame geometry in gravity theories. In
Section 2, we formulate the N–connection geometry for arbitrary manifolds with tangent
bundles admitting splitting into conventional horizontal and vertical subspaces. We il-
lustrate how regular Lagrangians induce natural semispray, N–connection, metric and
almost complex structures on tangent bundles and discuss the relation between Lagrange
and Finsler geometry and theirs generalizations. We formulate six most important Re-
sults 3.57–15.2.6 demonstrating that the geometrization of Lagrange mechanics and the
geometric models in gravity theories with generic off–diagonal metrics and nonholonomic
frame structures are rigorously described by certain generalized Finsler geometries, which
can be modelled equivalently both on Riemannian manifold and Riemann–Cartan non-
holonomic manifolds. This give rise to the Conclusion 15.2.1 stating that a rigorous
geometric study of nonholonmic frame and related metric, linear connection and spin
structures in both commutative and noncommutative Riemann geometries requests the
elaboration of noncommutative Lagrange–Finsler geometry. Then, in Section 3, we con-
sider the theory of linear connections on N–anholonomic manifolds (i. e. on manifolds
with nonholonomic structure defined by N–connections). We construct in explicit form

2The theory of N–connections should not be confused with nonlinear gauge theories and nonlinear
realizations of gauge groups.
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the curvature tensor of such spaces and define the Einstein equations for N–adapted
linear connection and metric structures.

The second (noncommutative) part starts with Section 4 where we define noncom-
mutative N–anholonomic spaces. We consider the example of noncommutative gauge
theories adapted to the N–connection structure. Section 5 is devoted to the geometry of
nonholonomic Clifford–Lagrange structures. We define the Clifford–Lagrange modules
and Clifford N–anholonomic bundles being induced by the Lagrange quadratic form and
adapted to the corresponding N–connection. Then we prove the Main Result 1, of
this work, ( Theorem 15.5.3), stating that any regular Lagrangian and/or N–connection
structure define naturally the fundamental geometric objects and structures (such as
the Clifford–Lagrange module and Clifford d–modules, the Lagrange spin structure and
d–spinors) for the corresponding Lagrange spin manifold and/or N–anholonomic spinor
(d–spinor) manifold. We conclude that the Lagrange mechanics and off–diagonal gravi-
tational interactions (in general, with nontrivial torsion and nonholonomic constraints)
can be adequately geometrized as certain Lagrange spin (N–anholonomic) manifolds.

In Section 6, we link up the theory of Dirac operators to nonholonomic structures
and spectral triples. We prove that there is a canonical spin d–connection on the N–
anholonomic manifolds generalizing that induced by the Levi–Civita to the naturally
ones induced by regular Lagrangians and off–diagonal metrics. We define the Dirac d–
operator and the Dirac–Lagrange operator and formulate the Main Result 2 (Theorem
15.6.4) arguing that such N–adapted operators can be induced canonically by almost
Hermitian spin operators. The concept of distinguished spin triple is introduced in order
to adapt the constructions to the N–connection structure. Finally, the Main Result
3, Theorem 15.6.4, is devoted to the definition, main properties and computation of
distance in noncommutative spaces defined by N–anholonomic spin varieties. In these
lecture notes, we only sketch in brief the ideas of proofs of the Main Results: the details
will be published in our further works.

15.2 Lagrange–Finsler Geometry

and Nonholonomic Manifolds

This section presents some basic facts from the geometry of nonholonomic manifolds
provided with nonlinear connection structure [69, 53, 54, 19, 55, 93]. The constructions
and methods are inspired from the Lagrange–Finsler geometry and generalizations [27,
10, 64, 56, 3, 52, 6, 57, 71, 73, 4, 58, 94] and gravity models on metric–affine spaces
provided with generic off–diagonal metric, nonholonomic frame and affine connection
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structures [74, 87, 85, 81, 80, 83] (such spaces, in general, possess nontrivial torsion and
nonmetricity).

15.2.1 Preliminaries: Lagrange–Finsler metrics

Let us consider a nondegenerate bilinear symmetric form q(u, v) on a n–dimensional
real vector space V n. With respect to a basis {ei}ni=1 for V n, we express

q(u, v)
.
= qiju

ivj

for any vectors u = uiei, v = viei ∈ V n and qij being a nodegenerate symmetric matrix
(the Einstein’s convention on summing on repeating indices is adopted). This gives rise
to the Euclidean inner product

u⌋v .
= qE(u, v),

if qij is positive definite, and to the Euclidean norm

| · | .=
√
qE(u, u)

defining an Euclidean space (V n, | · |). Every Euclidean space is linearly isometric to the
standard Euclidean space IRn = (Rn, | · |) if qij = diag[1, 1, ..., 1] with standard Euclidean
norm, | y | .=

√∑n
i=1 |yi|2, for any y = (yi) ∈ Rn, where Rn denotes the n–dimensional

canonical real vector space.
There are also different types of quadratic forms/norms then the Euclidean one:

Definition 15.2.1. A Lagrange fundamental form qL(u, v) on vector space V n is defined
by a Lagrange functional L : V n → IR, with

qL(y)(u, v)
.
=

1

2

∂2

∂s∂t
[L(y + su+ tu)]|s=t=0 (15.1)

which is a C∞–function on V n\{0} and nondegenerate for any nonzero vector y ∈ V n

and real parameters s and t.

Having taken a basis {ei}ni=1 for V n, we transform L = L(yiei) in a function of
(yi) ∈ Rn.

The Lagrange norm is | · |L
.
=
√
qL(u, u).

Definition 15.2.2. A Minkowski space is a pair (V n, F ) where the Minkowski functional
F is a positively homogeneous of degree two Lagrange functional with the fundamental
form (15.1) defined for L = F 2 satisfying F (λy) = λF (y) for any λ > 0 and y ∈ V n.
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The Minkowski norm is defined by | · |F
.
=
√
qF (u, u).

Definition 15.2.3. The Lagrange (or Minkowski) metric fundamental function is defined

gij =
1

2

∂2L

∂yi∂yj
(y) (15.2)

(or

gij =
1

2

∂2F 2

∂yi∂yj
(y) ). (15.3)

Remark 15.2.1. If L is a Lagrange functional on Rn (it could be also any functional
of class C∞) with local coordinates (y2, y3, ..., yn), it also defines a singular Minkowski
functional

F (y) = [y1L(
y2

y1
, ...,

yn

y1
)]2 (15.4)

which is of class C∞) on Rn\{y1 = 0}.

The Remark 15.2.1 states that the Lagrange functionals are not essentially more
general than the Minkowski functionals [94]. Nevertheless, we must introduce more
general functionals if we extend our considerations in relativistic optics, string models
of gravity and the theory of locally anisotropic stochastic and/or kinetic processes [57,
74, 87, 85, 81, 75].

Let us consider a base manifold M, dimM = n, and its tangent bundle (TM, π,M)
with natural surjective projection π : TM → M. From now on, all manifolds and ge-
ometric objects are supposed to be of class C∞. We write T̃M = TM\{0} where {0}
means the null section of the map π.

A differentiable Lagrangian L(x, y) is defined by a map L : (x, y) ∈ TM → L(x, y) ∈
IR of class C∞ on T̃M and continuous on the null section 0 : M → TM of π. For any
point x ∈M, the restriction Lx

.
= L|TxM is a Lagrange functional on TxM (see Definition

15.2.1). For simplicity, in this work we shall consider only regular Lagrangians with
nondegenerated Hessians,

(L)gij(x, y) =
1

2

∂2L(x, y)

∂yi∂yj
(15.5)

when rank |gij| = n on T̃M, which is a Lagrange fundamental quadratic form (15.2)
on TxM. In our further considerations, we shall write M(L) if would be necessary to
emphasize that the manifold M is provided in any its points with a quadratic form
(15.5).
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Definition 15.2.4. A Lagrange space is a pair Ln = [M,L(x, y)] with the metric form
(L)gij(x, y) being of constant signature over T̃M.

Definition 15.2.5. A Finsler space is a pair F n = [M,F (x, y)] where F|x(y) defines a
Minkowski space with metric fundamental function of type (15.3).

The notion of Lagrange space was introduced by J. Kern [37] and elaborated in
details by the R. Miron’s school on Finsler and Lagrange geometry, see Refs. [56, 57],
as a natural extension of Finsler geometry [27, 10, 64, 3, 52, 6, 4, 94] (see also Refs.[71,
73], on Lagrange–Finsler supergeometry, and Refs. [76, 77, 78], on some examples of
noncommutative locally anisotropic gravity and string theory).

15.2.2 Nonlinear connection geometry

We consider two important examples when the nonlinear connection (in brief, N–
connection) is naturally defined in Lagrange mechanics and in gravity theories with
generic off–diagonal metrics and nonholonomic frames.

Geometrization of mechanics: some important results

The Lagrange mechanics was geometrized by using methods of Finsler geometry
[56, 57] on tangent bundles enabled with a corresponding nonholonomic structure (non-
integrable distribution) defining a canonical N–connection.3 By straightforward calcula-
tions, one proved the results:

Result 15.2.1. The Euler–Lagrange equations

d

dτ

(
∂L

∂yi

)
− ∂L

∂xi
= 0 (15.6)

where yi = dxi

dτ
for xi(τ) depending on parameter τ, are equivalent to the ”nonlinear”

geodesic equations
d2xi

dτ 2
+ 2Gi(xk,

dxj

dτ
) = 0 (15.7)

3We cite a recent review [41] on alternative approaches to geometric mechanics and geometry of
classical fields related to investigation of the geometric properties of Euler–Lagrange equations for
various type of nonholonomic, singular or higher order systems. In the approach developed by R.
Miron’s school [56, 57, 58], the nonlinear connection and fundamental geometric structures are derived
in general form from the Lagrangian and/or Hamiltonian: the basic geometric constructions are not
related to the particular properties of certain systems of partial differential equations, symmetries and
constraints of mechanical and field models.
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where

2Gi(x, y) =
1

2
(L)gij

(
∂2L

∂yi∂xk
yk − ∂L

∂xi

)
(15.8)

with (L)gij being inverse to (15.5).

Result 15.2.2. The coefficients Gi(x, y) from (15.8) define the solutions of both type of
equations (15.6) and (15.7) as paths of the canonical semispray

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi

and a canonical N–connection structure on T̃M,

(L)N i
j =

∂Gi(x, y)

∂yi
, (15.9)

induced by the fundamental Lagrange function L(x, y) (see Section 15.2.3 on exact defi-
nitions and main properties).

Result 15.2.3. The coefficients (L)N i
j defined by a Lagrange (Finsler) fundamental

function induce a global splitting on TTM, a Whitney sum,

TTM = hTM ⊕ vTM

as a nonintegrable distribution (nonholonomic, or equivalently, anholonomic structure)
into horizontal (h) and vertical (v) subspaces parametrized locally by frames (vielbeins)
eν = (ei, ea), where

ei =
∂

∂xi
−Na

i (u)
∂

∂ya
and ea =

∂

∂ya
, (15.10)

and the dual frames (coframes) ϑµ = (ϑi, ϑa), where

ϑi = dxi and ϑa = dya +Na
i (u)dx

i. (15.11)

The vielbeins (15.10) and (15.11) are called N–adapted (co) frames. We omitted the
label (L) and used vertical indices a, b, c, ... for the N–connection coefficients in order to
be able to use the formulas for arbitrary N–connections). We also note that we shall
use ’boldfaced’ symbols for the geometric objects and spaces adapted/ enabled to N–
connection structure. For instance, we shall write in brief e = (e, ⋆e) and ϑ = (ϑ, ⋆ϑ),
respectively, for

eν = (ei,
⋆ek) = (ei, ea) and ϑµ = (ϑi, ⋆ϑk) = (ϑi, ϑa).
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The vielbeins (15.10) satisfy the nonholonomy relations

[eα, eβ] = eαeβ − eβeα = W γ
αβeγ (15.12)

with (antisymmetric) nontrivial anholonomy coefficients W b
ia = ∂aN

b
i and W a

ji = Ωa
ij

where

Ωa
ij = δ[jN

a
i] =

∂Na
i

∂xj
− ∂Na

j

∂xi
+N b

i

∂Na
j

∂yb
−N b

j

∂Na
i

∂yb
. (15.13)

In order to preserve a relation with our previous denotations [74, 69, 73], we note
that eν = (ei, ea) and ϑµ = (ϑi, ϑa) are, respectively, the former δν = δ/∂uν = (δi, ∂a)
and δµ = δuµ = (dxi, δya) which emphasize that the operators (15.10) and (15.11)
define, correspondingly, certain ’N–elongated’ partial derivatives and differentials which
are more convenient for calculations on spaces provided with nonholonomic structure.

Result 15.2.4. On T̃M, there is a canonical metric structure (L)g = [g, ⋆g],

(L)g = (L)gij(x, y) ϑ
i ⊗ ϑj + (L)gij(x, y)

⋆ϑi ⊗ ⋆ϑj (15.14)

constructed as a Sasaki type lift from M.4

We note that a complete geometrical model of Lagrange mechanics or a well defined
Finsler geometry can be elaborated only by additional assumptions about a linear con-
nection structure, which can be adapted, or not, to a defined N–connection (see Section
15.3.1).

Result 15.2.5. The canonical N–connection (15.9) induces naturally an almost complex

structure F : χ(T̃M)→ χ(T̃M), where χ denotes the module of vector fields on T̃M,

F(ei) = ⋆ei and F( ⋆ei) = −ei,

when
F = ⋆ei ⊗ ϑi − ei ⊗ ⋆ϑi (15.15)

satisfies the condition F⌋ F = −I, i. e. F α
βF

β
γ = −δαγ , where δαγ is the Kronecker

symbol and ”⌋” denotes the interior product.

4In Refs. [94, 58], it was suggested to use lifts with h- and v–components of type (L)g = (gij , gija/ ‖
y ‖) where a = const and ‖ y ‖= gijy

iyj in order to elaborate more physical extensions of the general
relativity to the tangent bundles of manifolds. In another turn, such modifications are not necessary if
we model Lagrange–Finsler structures by exact solutions with generic off–diagonal metrics in Einstein
and/or gravity [74, 87, 85, 81, 83, 82, 75]. For simplicity, in this work, we consider only lifts of metrics
of type (15.14).
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The last result is important for elaborating an approach to geometric quantization
of mechanical systems modelled on nonholonomic manifolds [25] as well for definition
of almost complex structures derived from the real N–connection geometry related to
nonholonomic (anisotropic) Clifford structures and spinors in commutative [69, 72, 86,
88, 84] and noncommutative spaces [76, 77, 78].

N–connections in gravity theories

For nonholonomic geometric models of gravity and string theories, one does not
consider the bundle T̃M but a general manifold V, dimV = n+m, which is a (pseudo)
Riemannian space or a certain generalization with possible torsion and nonmetricity
fields. A metric structure is defined on V, with the coefficients stated with respect to a
local coordinate basis duα = (dxi, dya) , 5

g = g
αβ

(u)duα ⊗ duβ

where

g
αβ

=

[
gij +Na

i N
b
jhab N e

j hae
N e
i hbe hab

]
. (15.16)

A metric, for instance, parametrized in the form (15.16), is generic off–diagonal if it
can not be diagonalized by any coordinate transforms. Performing a frame transform
with the coefficients

e α
α (u) =

[
e i
i (u) N b

i (u)e
a
b (u)

0 e a
a (u)

]
, (15.17)

eββ(u) =

[
ei i(u) −N b

k(u)e
k
i (u)

0 eaa(u)

]
, (15.18)

we write equivalently the metric in the form

g = gαβ (u)ϑα ⊗ ϑβ = gij (u)ϑi ⊗ ϑj + hab (u)
⋆ϑa ⊗ ⋆ϑb, (15.19)

where gij + g (ei, ej) and hab + g (ea, eb) and

eα = e α
α ∂α and ϑβ = eββdu

β.

are vielbeins of type (15.10) and (15.11) defined for arbitrary N b
i (u). We can consider

a special class of manifolds provided with a global splitting into conventional ”horizon-
tal” and ”vertical” subspaces (15.20) induced by the ”off–diagonal” terms N b

i (u) and
prescribed type of nonholonomic frame structure.

5the indices run correspondingly the values i, j, k, ... = 1, 2, ..., n and a, b, c, ... = n+1, n+2, ..., n+m.
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If the manifold V is (pseudo) Riemannian, there is a unique linear connection (the
Levi–Civita connection) ▽, which is metric, ▽g = 0, and torsionless, ▽T = 0. Nev-
ertheless, the connection ▽ is not adapted to the nonintegrable distribution induced
by N b

i (u). In this case, for instance, in order to construct exact solutions parametrized
by generic off–diagonal metrics, or for investigating nonholonomic frame structures in
gravity models with nontrivial torsion, it is more convenient to work with more gen-
eral classes of linear connections which are N–adapted but contain nontrivial torsion
coefficients because of nontrivial nonholonomy coefficients W γ

αβ (15.12).
For a splitting of a (pseudo) Riemannian–Cartan space of dimension (n+m) (under

certain constraints, we can consider (pseudo) Riemannian configurations), the Lagrange
and Finsler type geometries were modelled by N–anholonomic structures as exact so-
lutions of gravitational field equations [74, 87, 85, 81], see also Refs. [83, 82] for exact
solutions with nonmetricity. One holds [80] the

Result 15.2.6. The geometry of any Riemannian space of dimension n + m where
n,m ≥ 2 (we can consider n,m = 1 as special degenerated cases), provided with off–
diagonal metric structure of type (15.16) can be equivalently modelled, by vielbein trans-
forms of type (15.17) and (15.18) as a geometry of nonholonomic manifold enabled with
N–connection structure N b

i (u) and ’more diagonalized’ metric (15.19).

For particular cases, we present the

Remark 15.2.2. For certain special conditions when n = m, N b
i = (L)N b

i (15.9) and the
metric (15.19) is of type (15.14), a such Riemann space of even dimension is ’nonholo-
nomically’ equivalent to a Lagrange space (for the corresponding homogeneity conditions,
see Definition 15.2.2, one obtains the equivalence to a Finsler space).

Roughly speaking, by prescribing corresponding nonholonomic frame structures, we
can model a Lagrange, or Finsler, geometry on a Riemannian manifold and, inversely,
a Riemannian geometry is ’not only a Riemannian one’ but also could be a generalized
Finsler one. It is possible to define similar constructions for the (pseudo) Riemannian
spaces. This is a quite surprising result if to compare it with the ”superficial” interpreta-
tion of the Finsler geometry as a nonlinear extension, ’more sophisticate’ on the tangent
bundle, of the Riemannian geometry.

It is known the fact that the first example of Finsler geometry was considered in 1854
in the famous B. Riemann’s hability thesis (see historical details and discussion in Refs.
[94, 4, 57, 80]) who, for simplicity, restricted his considerations only to the curvatures
defined by quadratic forms on hypersurfaces. Sure, for B. Riemann, it was unknown
the fact that if we consider general (nonholonomic) frames with associated nonlinear
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connections (the E. Cartan’s geometry, see Refs. in [10]) and off–diagonal metrics,
the Finsler geometry may be derived naturally even from quadratic metric forms being
adapted to the N–connection structure.

More rigorous geometric constructions involving the Cartan–Miron metric connec-
tions and, respectively, the Berwald and Chern–Rund nonmetric connections in Finsler
geometry and generalizations, see more details in subsection 15.3.1, result in equivalence
theorems to certain types of Riemann–Cartan nonholonomic manifolds (with nontirvial
N–connection and torsion) and metric–affine nonholonomic manifolds (with additional
nontrivial nonmetricity structures) [80].

This Result 15.2.6 give rise to an important:

Conclusion 15.2.1. To study generalized Finsler spinor and noncommutative geome-
tries is necessary even if we restrict our considerations only to (non) commutative Rie-
mannian geometries.

For simplicity, in this work we restrict our considerations only to certain Riemannian
commutative and noncommutative geometries when the N–connection and torsion are
defined by corresponding nonholonomic frames.

15.2.3 N–anholonomic manifolds

Now we shall demonstrate how general N–connection structures define a certain class
of nonholonomic geometries. In this case, it is convenient to work on a general manifold
V, dimV =n + m, with global splitting, instead of the tangent bundle T̃M. The con-
structions will contain those from geometric mechanics and gravity theories, as certain
particular cases.

Let V be a (n + m)–dimensional manifold. It is supposed that in any point u ∈ V
there is a local distribution (splitting) Vu = Mu ⊕ Vu, where M is a n−dimensional
subspace and V is a m–dimensional subspace. The local coordinates (in general, abstract
ones both for holonomic and nonholonomic variables) may be written in the form u =
(x, y), or uα = (xi, ya) . We denote by π⊤ : TV → TM the differential of a map π :
V n+m → V n defined by fiber preserving morphisms of the tangent bundles TV and
TM. The kernel of π⊤ is just the vertical subspace vV with a related inclusion mapping
i : vV→ TV.

Definition 15.2.6. A nonlinear connection (N–connection) N on a manifold V is de-
fined by the splitting on the left of an exact sequence

0→ vV
i→ TV→ TV/vV→ 0,

i. e. by a morphism of submanifolds N : TV→ vV such that N ◦ i is the unity in vV.
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In an equivalent form, we can say that a N–connection is defined by a splitting
to subspaces with a Whitney sum of conventional h–subspace, (hV) , and v–subspace,
(vV) ,

TV = hV ⊕ vV (15.20)

where hV is isomorphic to M. This generalizes the splitting considered in Result 15.2.3.
Locally, a N–connection is defined by its coefficients Na

i (u),

N = Na
i (u)dx

i ⊗ ∂

∂ya
. (15.21)

The well known class of linear connections consists a particular subclass with the coeffi-
cients being linear on ya, i. e. Na

i (u) = Γabj(x)y
b.

Any N–connection also defines a N–connection curvature

Ω =
1

2
Ωa
ijd

i ∧ dj ⊗ ∂a,

with N–connection curvature coefficients given by formula (15.12).

Definition 15.2.7. A manifold V is called N–anholonomic if on the tangent space TV
it is defined a local (nonintegrable) distribution (15.20), i. e. TV is enabled with a
N–connection (15.21) inducing a vielbein structure (15.10) satisfying the nonholonomy
relations (15.12) (such N–connections and associated vielbeins may be general ones or
any derived from a Lagrange/ Finsler fundamental function).

We note that the boldfaced symbols are used for the spaces and geometric objects
provided/adapted to a N–connection structure. For instance, a vector field X ∈ TV is
expressed X = (X ≡ −X, ⋆X), or X = Xαeα = X iei + Xaea, where X = −X =
X iei and ⋆X = Xaea state, respectively, the irreducible (adapted to the N–connection
structure) h– and v–components of the vector (which following Refs. [56, 57] is called
a distinguished vectors, in brief, d–vector). In a similar fashion, the geometric objects
on V like tensors, spinors, connections, ... are respectively defined and called d–tensors,
d–spinors, d–connections if they are adapted to the N–connection splitting.6

Definition 15.2.8. A d–metric structure on N–anholonomic manifold V is defined by
a symmetric d–tensor field of type g = [g, ⋆h] (15.19).

6In order to emphasize h– and v–splitting of any d–objects Y,g, ... we shall write the irreducible
components as Y = ( −Y, ⋆Y ), g = ( −g, ⋆g) but we shall omit ”−” or ”⋆” if the simplified denotations
will not result in ambiguities.
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For any fixed values of coordinates u = (x, y) ∈ V a d–metric it defines a symmetric
quadratic d–metric form,

q(x,y)
.
= gijx

ixj + haby
ayb, (15.22)

where the n + m–splitting is defined by the N–connection structure and x = xiei +
xaea, y = yiei + yaea ∈ V n+m.

Any d–metric is parametrized by a generic off–diagonal matrix (15.16) if the coeffi-
cients are redefined with respect to a local coordinate basis (for corresponding parametri-
zations of the the data [g, h,N ] such ansatz model a geometry of mechanics, or a Finsler
like structure, in a Riemann–Cartan–Weyl space provided with N–connection structure
[80, 83]; for certain constraints, there are possible models derived as exact solutions in
Einsten gravity and noncommutative generalizations [74, 81, 82]).

Remark 15.2.3. There is a special case when dimV =n+ n, hab → gij and Na
i → N j

i

in (15.19), which models locally, on V, a tangent bundle structure. We denote a such

space by Ṽ(n,n). If the N–connection and d–metric coefficients are just the canonical
ones for the Lagrange (Finsler) geometry (see, respectively, formulas (15.9) and (15.14)
), we model such locally anisotropic structures not on a tangent bundle TM but on a
N–anholonomic manifold of dimension 2n.

We present some historical remarks on N–connections and related subjects: The ge-
ometrical aspects of the N–connection formalism has been studied since the first papers
of E. Cartan [10] and A. Kawaguchi [35, 36] (who used it in component form for Finsler
geometry). Then one should be mentioned the so called Ehressman connection [23])
and the work of W. Barthel [5] where the global definition of N–connection was given.
In monographs [56, 57, 58], the N–connection formalism was elaborated in details and
applied to the geometry of generalized Finsler–Lagrange and Cartan–Hamilton spaces,
see also the approaches [42, 40, 24].It should be noted that the works related to non-
holonomic geometry and N–connections have appeared many times in a rather dispersive
way when different schools of authors from geometry, mechanics and physics have worked
many times not having relation with another. We cite only some our recent results with
explicit applications in modern mathematical physics and particle and string theories:
N–connection structures were modelled on Clifford and spinor bundles [69, 72, 88, 86],
on superbundles and in some directions of (super) string theory [71, 73], as well in non-
commutative geometry and gravity [76, 77, 78]. The idea to apply the N–connections
formalism as a new geometric method of constructing exact solutions in gravity theories
was suggested in Refs. [74, 75] and developed in a number of works, see for instance,
Ref. [87, 85, 81]).
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15.3 Curvature of N–anholonomic Manifolds

The geometry of nonholonomic manifolds has a long time history of yet unfinished
elaboration: For instance, in the review [93] it is stated that it is probably impossible to
construct an analog of the Riemannian tensor for the general nonholonomic manifold.
In a more recent review [55], it is emphasized that in the past there were proposed
well defined Riemannian tensors for a number of spaces provided with nonholonomic
distributions, like Finsler and Lagrange spaces and various type of theirs higher order
generalizations, i. e. for nonholonomic manifolds possessing corresponding N–connection
structures. As some examples of first such investigations, we cite the works [54, 53,
19]. In this section we shall construct in explicit form the curvature tensor for the
N–anholonomic manifolds.

15.3.1 Distinguished connections

On N–anholonomic manifolds, the geometric constructions can be adapted to the
N–connection structure:

Definition 15.3.9. A distinguished connection (d–connection) D on a manifold V is
a linear connection conserving under parallelism the Whitney sum (15.20) defining a
general N–connection.

The N–adapted components Γα
βγ of a d-connection Dα = (δα⌋D) are defined by the

equations Dαδβ = Γγ
αβδγ , or

Γγ
αβ (u) = (Dαδβ)⌋δγ . (15.23)

In its turn, this defines a N–adapted splitting into h– and v–covariant derivatives, D =
D + ⋆D, where Dk =

(
Lijk, L

a
bk

)
and ⋆Dc =

(
Ci
jk, C

a
bc

)
are introduced as corresponding

h- and v–parametrizations of (15.23),

Lijk = (Dkej)⌋ϑi, Labk = (Dkeb)⌋ϑa, Ci
jc = (Dcej)⌋ϑi, Ca

bc = (Dceb)⌋ϑa.

The components Γγ
αβ =

(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
completely define a d–connection D on a

N–anholonomic manifold V.
The simplest way to perform computations with d–connections is to use N–adapted

differential forms like Γα
β = Γα

βγϑ
γ with the coefficients defined with respect to N–elongate

bases (15.11) and (15.10).
The torsion of d–connection D is defined by the usual formula

T(X,Y) + DXDY −DYDX − [X,Y].
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Theorem 15.3.1. The torsion Tα + Dϑα = dϑα + Γαβ ∧ ϑβ of a d–connection has the
irreducible h- v– components (d–torsions)with N–adapted coefficients

T ijk = Li [jk], T
i
ja = −T iaj = Ci

ja, T
a
ji = Ωa

ji,

T abi = T aib =
∂Na

i

∂yb
− Labi, T abc = Ca

[bc]. (15.24)

Proof. By a straightforward calculation we can verify the formulas.

The Levi–Civita linear connection ▽ = {▽Γα
βγ}, with vanishing both torsion and

nonmetricity, is not adapted to the global splitting (15.20). One holds:

Proposition 15.3.1. There is a preferred, canonical d–connection structure, D̂, on N–
anholonomic manifold V constructed only from the metric and N–connection coefficients
[gij , hab, N

a
i ] and satisfying the metricity conditions D̂g = 0 and T̂ ijk = 0 and T̂ abc = 0.

Proof. By straightforward calculations with respect to the N–adapted bases (15.11) and
(15.10), we can verify that the connection

Γ̂α
βγ = ▽Γα

βγ + P̂α
βγ (15.25)

with the deformation d–tensor

P̂α
βγ = (P i

jk = 0, P a
bk =

∂Na
k

∂yb
, P i

jc = −1

2
gikΩa

kjhca, P
a
bc = 0)

satisfies the conditions of this Proposition. It should be noted that, in general, the com-
ponents T̂ ija, T̂

a
ji and T̂ abi are not zero. This is an anholonomic frame (or, equivalently,

off–diagonal metric) effect.

With respect to the N–adapted frames, the coefficients

Γ̂γ
αβ =

(
L̂ijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
are computed:

L̂ijk =
1

2
gir
(
δgjr
∂xk

+
δgkr
∂xj
− δgjk
∂xr

)
, (15.26)

L̂abk =
∂Na

k

∂yb
+

1

2
hac
(
δhbc
∂xk
− ∂Nd

k

∂yb
hdc −

∂Nd
k

∂yc
hdb

)
,

Ĉi
jc =

1

2
gik

∂gjk
∂yc

,

Ĉa
bc =

1

2
had
(
∂hbd
∂yc

+
∂hcd
∂yb
− ∂hbc
∂yd

)
.
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The d–connection (15.26) defines the ’most minimal’ N–adapted extension of the Levi–
Civita connection in order to preserve the metricity condition and to have zero torsions
on the h– and v–subspaces (the rest of nonzero torsion coefficients are defined by the
condition of compatibility with the N–connection splitting).

Remark 15.3.4. The canonical d–connection D̂ (15.26) for a local modelling of a T̃M

space on Ṽ(n,n) is defined by the coefficients Γ̂γ
αβ = (L̂ijk, Ĉ

i
jk) with

L̂ijk =
1

2
gir
(
δgjr
∂xk

+
δgkr
∂xj
− δgjk
∂xr

)
, Ĉi

jk =
1

2
gir
(
∂gjr
∂yk

+
∂gkr
∂yj
− ∂gjk
∂yr

)
(15.27)

computed with respect to N–adapted bases (15.10) and (15.11) when L̂ijk and Ĉi
jk define

respectively the canonical h– and v–covariant derivations.

Various models of Finsler geometry and generalizations were elaborated by using
different types of d–connections which satisfy, or not, the compatibility conditions with
a fixed d–metric structure (for instance, with a Sasaki type one). Let us consider the
main examples:

Example 15.3.1. The Cartan’s d–connection [10] with the coefficients (15.27) was de-
fined by some generalized Christoffel symbols with the aim to have a ’minimal’ torsion
and to preserve the metricity condition. This approach was developed for generalized
Lagrange spaces and on vector bundles provided with N–connection structure [56, 57] by
introducing the canonical d–connection (15.26). The direction emphasized metric com-
patible and N–adapted geometric constructions.

An alternative class of Finsler geometries is concluded in monographs [4, 94]:

Example 15.3.2. It was the idea of C. C. Chern [16] (latter also proposed by H. Rund

[64]) to consider a d–connection [Chern]Γγ
αβ = (L̂ijk, C

i
jk = 0) and to work not on a

tangent bundle TM but to try to ’keep maximally’ the constructions on the base manifold
M. The Chern d–connection, as well the Berwald d–connection [Berwald]Γγ

αβ = (Lijk =
∂N i

k

∂yj , C
i
jk = 0) [7], are not subjected to the metricity conditions.

We note that the constructions mentioned in the last example define certain ’non-
metric geometries’ (a Finsler modification of the Riemann–Cartan–Weyl spaces). For the
Chern’s connection, the torsion vanishes but there is a nontrivial nonmetricity. A detailed
study and classification of Finsler–affine spaces with general nontrivial N–connection,
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torsion and nonmetricity was recently performed in Refs. [80, 83, 82]. Here we also note
that we may consider any linear connection can be generated by deformations of type

Γα
βγ = Γ̂α

βγ + Pα
βγ. (15.28)

This splits all geometric objects into canonical and post-canonical pieces which results
in N–adapted geometric constructions.

In order to define spinors on generalized Lagrange and Finsler spaces [69, 72, 86, 88]
the canonical d–connection and Cartan’s d–connection were used because the metric
compatibility allows the simplest definition of Clifford structures locally adapted to the
N–connection. This is also the simplest way to define the Dirac operator for generalized
Finsler spaces and to extend the constructions to noncommutative Finsler geometry [76,
77, 78]. The geometric constructions with general metric compatible affine connection
(with torsion) are preferred in modern gravity and string theories. Nevertheless, the
geometrical and physical models with generic nonmetricity also present certain interest
[28, 80, 83, 82] (see also [46] where nonmetricity is considered to be important in quantum
group co gravity). In such cases, we can use deformations of connection (15.28) in order
to ’deform’, for instance, the spinorial geometric constructions defined by the canonical
d–connection and to transform them into certain ’nonmetric’ configurations.

15.3.2 Curvature of d–connections

The curvature of a d–connection D on an N–anholonomic manifold is defined by the
usual formula

R(X,Y)Z + DXDYZ−DYDXZ−D[X,X]Z.

By straightforward calculations we prove:

Theorem 15.3.2. The curvature Rα
β + DΓα

β = dΓα
β − Γγ

β ∧ Γα
γ of a d–connection

D .
= Γα

γ has the irreducible h- v– components (d–curvatures) of Rα
βγδ,

Ri
hjk = ekL

i
hj − ejLi hk + LmhjL

i
mk − LmhkLimj − Ci

haΩ
a
kj,

Ra
bjk = ekL

a
bj − ejLabk + LcbjL

a
ck − LcbkLacj − Ca

bcΩ
c
kj,

Ri
jka = eaL

i
jk −DkC

i
ja + Ci

jbT
b
ka, (15.29)

Rc
bka = eaL

c
bk −DkC

c
ba + Cc

bdT
c
ka,

Ri
jbc = ecC

i
jb − ebCi

jc + Ch
jbC

i
hc − Ch

jcC
i
hb,

Ra
bcd = edC

a
bc − ecCa

bd + Ce
bcC

a
ed − Ce

bdC
a
ec.
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Remark 15.3.5. For an N–anholonomic manifold Ṽ(n,n) provided with N–sympletic

canonical d–connection Γ̂τ
αβ, see (15.27), the d–curvatures (15.29) reduces to three irre-

ducible components

Ri
hjk = ekL

i
hj − ejLi hk + LmhjL

i
mk − LmhkLimj − Ci

haΩ
a
kj,

Ri
jka = eaL

i
jk −DkC

i
ja + Ci

jbT
b
ka, (15.30)

Ra
bcd = edC

a
bc − ecCa

bd + Ce
bcC

a
ed − Ce

bdC
a
ec

where all indices i, j, k... and a, b, .. run the same values but label the components with
respect to different h– or v–frames.

Contracting respectively the components of (15.29) and (15.30) we prove:

Corollary 15.3.1. The Ricci d–tensor Rαβ + Rτ
αβτ has the irreducible h- v–components

Rij + Rk
ijk, Ria + −Rk

ika, Rai + Rb
aib, Rab + Rc

abc, (15.31)

for a general N–holonomic manifold V, and

Rij + Rk
ijk, Ria + −Rk

ika, Rab + Rc
abc, (15.32)

for an N–anholonomic manifold Ṽ(n,n).

Corollary 15.3.2. The scalar curvature of a d–connection is

←−
R + gαβRαβ = gijRij + habRab, (15.33)

defined by the ”pure” h– and v–components of (15.32).

Corollary 15.3.3. The Einstein d–tensor is computed Gαβ = Rαβ − 1
2
gαβ
←−
R .

For physical applications, the Riemann, Ricci and Einstein d–tensors can be com-
puted for the canonical d–connection. We can redefine the constructions for arbitrary
d–connections by using the corresponding deformation tensors like in (15.28), for in-
stance,

Rα
β = R̂α

β + DPαβ + Pαγ ∧ Pγβ (15.34)

for Pαβ = Pα
βγϑ

γ . A set of examples of such deformations are analyzed in Refs. [80, 83, 82].
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15.4 Noncommutative N–Anholonomic Spaces

In this section, we outline how the analogs of basic objects in commutative geometry
of N–anholonomic manifolds, such as vector/tangent bundles, N– and d–connections can
be defined in noncommutative geometry [77, 78]. We note that the A. Connes’ functional
analytic approach [17] to the noncommutative topology and geometry is based on the
theory of noncommutative C∗–algebras. Any commutative C∗–algebra can be realized
as the C∗–algebra of complex valued functions over locally compact Hausdorff space. A
noncommutative C∗–algebra can be thought of as the algebra of continuous functions on
some ’noncommutative space’ (see main definitions and results in Refs. [17, 29, 39, 44]).

The starting idea of noncommutative geometry is to derive the geometric properties
of “commutative” spaces from their algebras of functions characterized by involutive
algebras of operators by dropping the condition of commutativity (see the Gelfand and
Naimark theorem [31]). A space topology is defined by the algebra of commutative
continuous functions, but the geometric constructions request a differentiable structure.
Usually, one considers a differentiable and compact manifold M, dimN = n (there is an
open problem how to include in noncommutative geometry spaces with indefinite metric
signature like pseudo–Euclidean and pseudo–Riemannian ones). In order to construct
models of commutative and noncommutative differential geometries it is more or less
obvious that the class of algebras of smooth functions, C .

= C∞(M) is more appropriate.
If M is a smooth manifold, it is possible to reconstruct this manifold with its smooth
structure and the attached objects (differential forms, etc...) by starting from C con-
sidered as an abstract (commutative) unity ∗–algebra with involution. As a set M can
be identified with the set of characters of C, but its differential structure is connected
with the abundance of derivations of C which identify with the smooth vector fields on
M. There are two standard constructions: 1) when the vector fields are considered to be
the derivations of C (into itself) or 2) one considers a generalization of the calculus of
differential forms which is the Kahler differential calculus (see, details in Lectures [21]).
The noncommutative versions of differential geometry may be elaborated if the algebra
of smooth complex functions on a smooth manifold is replaced by a noncommutative
associative unity complex ∗–algebra A.

The geometry of commutative gauge and gravity theories is derived from the notions
of connections (linear and nonlinear ones), metrics and frames of references on manifolds
and vector bundle spaces. The possibility of extending such theories to some noncommu-
tative models is based on the Serre–Swan theorem [68] stating that there is a complete
equivalence between the category of (smooth) vector bundles over a smooth compact
space (with bundle maps) and the category of porjective modules of finite type over
commutative algebras and module morphisms. So, the space Γ (E) of smooth sections
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of a vector bundle E over a compact space is a projective module of finite type over the
algebra C (M) of smooth functions over M and any finite projective C (M)–module can
be realized as the module of sections of some vector bundle over M. This construction
may be extended if a noncommutative algebra A is taken as the starting ingredient: the
noncommutative analogue of vector bundles are projective modules of finite type over A.
This way one developed a theory of linear connections which culminates in the definition
of Yang–Mills type actions or, by some much more general settings, one reproduced La-
grangians for the Standard model with its Higgs sector or different type of gravity and
Kaluza–Klein models (see, for instance, Refs [17, 44]).

15.4.1 Modules as bundles

A vector space E over the complex number field IC can be defined also as a right
module of an algebra A over IC which carries a right representation of A, when for
every map of elements E ×A ∋ (η, a)→ ηa ∈ E one hold the properties

λ(ab) = (λa)b, λ(a + b) = λa + λb, (λ+ µ)a = λa+ µa

for every λ, µ ∈ E and a, b ∈ A.
Having two A–modules E and F , a morphism of E into F is any linear map ρ : E

→ F which is also A–linear, i. e. ρ(ηa) = ρ(η)a for every η ∈ E and a ∈ A.
We can define in a similar (dual) manner the left modules and theirs morphisms

which are distinct from the right ones for noncommutative algebras A. A bimodule over
an algebra A is a vector space E which carries both a left and right module struc-
tures. The bimodule structure is important for modelling of real geometries starting
from complex structures. We may define the opposite algebra Ao with elements ao being
in bijective correspondence with the elements a ∈ A while the multiplication is given by
aobo = (ba)o .A right (respectively, left) A–module E is connected to a left (respectively
right) Ao–module via relations aoη = ηao (respectively, aη = ηa). One introduces the
enveloping algebra Aε = A⊗IC Ao; any A–bimodule E can be regarded as a right [left]
Aε–module by setting η (a⊗ bo) = bηa [(a⊗ bo) η = aηb] .

For a (for instance, right) module E , we may introduce a family of elements (et)t∈T
parametrized by any (finite or infinite) directed set T for which any element η ∈ E is
expressed as a combination (in general, in more than one manner) η =

∑
t∈T etat with

at ∈ A and only a finite number of non vanishing terms in the sum. A family (et)t∈T is
free if it consists from linearly independent elements and defines a basis if any element
η ∈ E can be written as a unique combination (sum). One says a module to be free if it
admits a basis. The module E is said to be of finite type if it is finitely generated, i. e.
it admits a generating family of finite cardinality.
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Let us consider the module AK + ICK ⊗IC A. The elements of this module can be
thought as K–dimensional vectors with entries in A and written uniquely as a linear
combination η =

∑K
t=1 etat were the basis et identified with the canonical basis of ICK .

This is a free and finite type module. In general, we can have bases of different cardinality.
However, if a module E is of finite type there is always an integer K and a module
surjection ρ : AK → E with a base being a image of a free basis, ǫj = ρ(ej); j = 1, 2, ..., K.

We say that a right A–module E is projective if for every surjective module morphism
ρ :M→N splits, i. e. there exists a module morphism s : E →M such that ρ◦s = idE .
There are different definitions of porjective modules (see Ref. [39] on properties of such
modules). Here we note the property that if a A–module E is projective, there exists a
free module F and a module E ′ (being a priory projective) such that F = E ⊕ E ′.

For the rightA–module E being projective and of finite type with surjection ρ : AK →
E and following the projective property we can find a lift λ̃ : E →AK such that ρ◦λ̃ = idE .
There is a proof of the property that the module E is projective of finite type over A if and
only if there exists an idempotent p ∈ EndAAK = MK(A), p2 = p, the MK(A) denoting
the algebra ofK×K matrices with entry in A, such that E = pAK . We may associate the
elements of E to K–dimensional column vectors whose elements are in A, the collection
of which are invariant under the map p, E = {ξ = (ξ1, ..., ξK); ξj ∈ A, pξ = ξ}. For
simplicity, we shall use the term finite projective to mean projective of finite type.

15.4.2 Nonlinear connections in projective modules

The nonlinear connection (N–connection) for noncommutative spaces can be defined
similarly to commutative spaces by considering instead of usual vector bundles theirs
noncommutative analogs defined as finite projective modules over noncommutative al-
gebras [77]. The explicit constructions depend on the type of differential calculus we
use for definition of tangent structures and theirs maps. In this subsection, we shall
consider such projective modules provided with N–connection which define noncommu-
tative analogous both of vector bundles and of N–anholonomic manifolds (see Definition
15.2.7).

In general, one can be defined several differential calculi over a given algebra A (for
a more detailed discussion within the context of noncommutative geometry, see Refs.
[17, 44]). For simplicity, in this work we consider that a differential calculus on A is fixed,
which means that we choose a (graded) algebra Ω∗(A) = ∪pΩp(A) giving a differential
structure to A. The elements of Ωp(A) are called p–forms. There is a linear map d which
takes p–forms into (p + 1)–forms and which satisfies a graded Leibniz rule as well the
condition d2 = 0. By definition Ω0(A) = A.
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The differential df of a real or complex variable on a N–anholonomic manifold V

df = δif dx
i + ∂af δy

a,

δif = ∂if −Na
i ∂af , δy

a = dya +Na
i dx

i,

where the N–elongated derivatives and differentials are defined respectively by formulas
(15.10) and (15.11), in the noncommutative case is replaced by a distinguished commu-
tator (d–commutator)

df = [F, f ] =
[
F [h], f

]
+
[
F [v], f

]

where the operator F [h] (F [v]) acts on the horizontal (vertical) projective submodule and
this operator is defined by a fixed differential calculus Ω∗(A[h]) (Ω∗(A[v])) on the so–called
horizontal (vertical) A[h] (A[v]) algebras. We conclude that in order to elaborated non-
commutative versions of N–anholonomic manifolds we need couples of ’horizontal’ and
’vertical’ operators which reflects the nonholonomic splitting given by the N–connection
structure.

Let us consider instead of a N–anholonomic manifold V an A–module E being pro-
jective and of finite type. For a fixed differential calculus on E we define the tangent
structures TE .

Definition 15.4.10. A nonlinear connection (N–connection) N on an A–module E is
defined by the splitting on the left of an exact sequence of finite projective A–moduli

0→ vE i→ TE → TE/vE → 0,

i. e. by a morphism of submanifolds N : TE → vE such that N ◦ i is the unity in vE .

In an equivalent form, we can say that a N–connection is defined by a splitting to
projective submodules with a Whitney sum of conventional h–submodule, (hE) , and
v–submodule, (vE) ,

TE = hE ⊕ vE . (15.35)

We note that locally hE is isomorphic to TM where M is a differential compact manifold
of dimension n.

The Definition 15.4.10 reconsiders for noncommutative spaces the Definition 15.2.6.
In result, we may generalize the concept of ’commutative’ N–anholonomic space:

Definition 15.4.11. A N–anholonomic noncommutative space EN is an A–module E
possessing a tangent structure TE defined by a Whitney sum of projective submodules
(15.35).



614 CHAPTER 15. NONCOMMUTATIVE CLIFFORD–FINSLER GRAVITY

Such geometric constructions depend on the type of fixed differential calculus, i. e.
on the procedure how the tangent spaces are defined.

Remark 15.4.6. Locally always N–connections exist, but it is not obvious if they could
be glued together. In the classical case of vector bundles over paracompact manifolds
this is possible [56]. If there is an appropriate partition of unity, a similar result can be
proved for finite projective modules. For certain applications, it is more convenient to
use the Dirac operator already defined on N–anholonomic manifolds, see Section 15.6.

In order to understand how the N–connection structure may be taken into account
on noncommutative spaces but distinguished from the class of linear gauge fields, we
analyze an example:

15.4.3 Commutative and noncommutative gauge d–fields

Let us consider a N–anholonomic manifold V and a vector bundle β = (B, π,V)
with π : B → V with a typical k-dimensional vector fiber. In local coordinates a linear
connection (a gauge field) in β is given by a collection of differential operators

▽α = Dα +Bα(u),

acting on TξN where

Dα = δα ± Γ·
·α with Di = δi ± Γ·

·i and Da = ∂a ± Γ·
·a

is a d–connection in V (α = 1, 2, ..., n+m), with the operator δα, being N–elongated as
in (15.10), u = (x, y) ∈ ξN and Bα are k × k–matrix valued functions. For every vector
field

X = Xα(u)δα = X i(u)δi +Xa(u)∂a ∈ TV

we can consider the operator

Xα(u)▽α (f · s) = f · ▽Xs+ δXf · s (15.36)

for any section s ∈ B and function f ∈ C∞(V), where

δXf = Xαδα and ▽fX = f ▽X .

In the simplest definition we assume that there is a Lie algebra GLB that acts on
associative algebra B by means of infinitesimal automorphisms (derivations). This means
that we have linear operators δX : B → B which linearly depend on X and satisfy

δX(a · b) = (δXa) · b+ a · (δXb)
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for any a, b ∈ B. The mapping X → δX is a Lie algebra homomorphism, i. e. δ[X,Y ] =
[δX , δY ].

Now we consider respectively instead of commutative spaces V and β the finite
projective A–module EN , provided with N–connection structure, and the finite projective
B–module Eβ.

A d–connection ▽X on Eβ is by definition a set of linear d–operators, adapted to the
N–connection structure, depending linearly on X and satisfying the Leibniz rule

▽X(b · e) = b · ▽X(e) + δXb · e (15.37)

for any e ∈ Eβ and b ∈ B. The rule (15.37) is a noncommutative generalization of (15.36).
We emphasize that both operators ▽X and δX are distinguished by the N–connection
structure and that the difference of two such linear d–operators, ▽X − ▽′

X commutes
with action of B on Eβ, which is an endomorphism of Eβ. Hence, if we fix some fiducial
connection ▽′

X (for instance, ▽′
X = DX) on Eβ an arbitrary connection has the form

▽X = DX +BX ,

where BX ∈ EndBEβ depend linearly on X.
The curvature of connection ▽X is a two–form FXY which values linear operator in B

and measures a deviation of mapping X → ▽X from being a Lie algebra homomorphism,

FXY = [▽X ,▽Y ]−▽[X,Y ].

The usual curvature d–tensor is defined as

Fαβ = [▽α,▽β]−▽[α,β].

The simplest connection on a finite projective B–module Eβ is to be specified by a
projector P : Bk⊗Bk when the d–operator δX acts naturally on the free module Bk. The
operator ▽LC

X = P · δX · P is called the Levi–Civita operator and satisfy the condition
Tr[▽LC

X , φ] = 0 for any endomorphism φ ∈ EndBEβ. From this identity, and from the
fact that any two connections differ by an endomorphism that Tr[▽X , φ] = 0 for an
arbitrary connection ▽X and an arbitrary endomorphism φ, that instead of ▽LC

X we
may consider equivalently the canonical d–connection, constructed only from d-metric
and N–connection coefficients.

15.5 Nonholonomic Clifford–Lagrange Structures

The geometry of spinors on generalized Lagrange and Finsler spaces was elaborated
in Refs. [69, 72, 86, 88]. It was applied for definition of noncommutative extensions
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of the Finsler geometry related to certain models of Einstein, gauge and string gravity
[71, 77, 78, 74, 87, 84]. Recently, it is was proposed an extended Clifford approach to
relativity, strings and noncommutativity based on the concept of ”C–space” [11, 12, 14,
15].

The aim of this section is to formulate the geometry of nonholonomic Clifford–
Lagrange structures in a form adapted to generalizations for noncommutative spaces.

15.5.1 Clifford d–module

Let V be a compact N–anholonomic manifold. We denote, respectively, by TxV and
T ∗
xV the tangent and cotangent spaces in a point x ∈ V. We consider a complex vector

bundle τ : E → V where, in general, both the base V and the total space E may be
provided with N–connection structure, and denote by Γ∞(E) (respectively, Γ(E)) the
set of differentiable (continuous) sections of E. The symbols χ(M) = Γ∞(TM) and
Ω1(M)

.
= Γ∞(T∗M) are used respectively for the set of d–vectors and one d–forms on

TM.

Clifford–Lagrange functionals

In the simplest case, a generic nonholonomic Clifford structure can be associated to
a Lagrange metric on a n–dimensional real vector space V n provided with a Lagrange
quadratic form L(y) = qL(y, y), see subsection 15.2.1. We consider the exterior algebra
∧V n defined by the identity element II and antisymmetric products v[1] ∧ ... ∧ v[k] with
v[1], ..., v[k] ∈ V n for k ≤ dimV n where II ∧ v = v, v[1] ∧ v[2] = −v[2] ∧ v[1], ...

Definition 15.5.12. The Clifford–Lagrange (or Clifford–Minkowski) algebra is a ∧V n

algebra provided with a product

uv + vu = 2(L)g(u, v) II (15.38)

(or uv + vu = 2(F )g(u, v) II ) (15.39)

for any u, v ∈ V n and (L)g(u, v) (or (F )g(u, v)) defined by formulas (15.2) (or(15.3)).

For simplicity, hereafter we shall prefer to write down the formulas for the Lagrange
configurations instead of dubbing of similar formulas for the Finsler configurations.

We can introduce the complex Clifford–Lagrange algebra ICl(L)(V
n) structure by

using the complex unity “i”, VIC
.
= V n + iV n, enabled with complex metric

(L)gIC(u, v + iw)
.
= (L)g(u, v) + i (L)g(u, w),
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which results in certain isomorphisms of matrix algebras (see, for instance, [29]),

ICl(IR2m) ≃ M2m(IC),

ICl(IR2m+1) ≃ M2m(IC)⊕M2m(IC).

We omitted the label (L) because such isomorphisms hold true for any quadratic forms.
The Clifford–Lagrange algebra possesses usual properties:

1. On ICl(L)(V
n), it is linearly defined the involution ”*”,

(λv[1]...v[k])
∗ = λv[1]...v[k], ∀λ ∈ IC.

2. There is a IZ2 graduation,

ICl(L)(V
n) = ICl+(L)(V

n)⊕ ICl−(L)(V
n)

with χ(L)(a) = ±1 for a ∈ ICl±(L)(V
n), where ICl+(L)(V

n), or ICl−(L)(V
n), are defined

by products of an odd, or even, number of vectors.

3. For positive definite forms qL(u, v), one defines the chirality of
ICl(L)(V

n),
γ(L) = (−i)ne1e2...en, γ2 = γ∗γ = II

where {ei}ni=1 is an orthonormal basis of V n and n = 2n′, or = 2n′ + 1.

In a more general case, a nonholonomic Clifford structure is defined by quadratic
d–metric form q(x,y) (15.22) on a n + m–dimensional real d–vector space V n+m with
the (n+m)–splitting defined by the N–connection structure.

Definition 15.5.13. The Clifford d–algebra is a ∧V n+m algebra provided with a product

uv + vu = 2g(u,v) II (15.40)

or, equivalently, distinguished into h– and v–products

uv + vu = 2g(u, v) II

and
⋆u ⋆v + ⋆v ⋆u = 2 ⋆h( ⋆u, ⋆v) II

for any u = (u, ⋆u), v = (v, ⋆v) ∈ V n+m.

Such Clifford d–algebras have similar properties on the h– and v–components as the
Clifford–Lagrange algebras. We may define a standard complexification but it should
be emphasized that for n = m the N–connection (in particular, the canonical Lagrange
N–connection) induces naturally an almost complex structure (15.15) which gives the
possibility to define almost complex Clifford d–algebras (see details in [69, 88]).
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Clifford–Lagrange and Clifford N–anholonomic structures

A metric on a manifold M is defined by sections of the tangent bundle TM provided
with a bilinear symmetric form on continuous sections Γ(TM). In Lagrange geometry, the
metric structure is of type (L)gij(x, y) (15.2) which allows us to define Clifford–Lagrange
algebras ICl(L)(TxM), in any point x ∈ TM,

γiγj + γjγi = 2 (L)gij II.

For any point x ∈M and fixed y = y0, one exists a standard complexification, TxM
IC .

=
TxM + iTxM, which can be used for definition of the ’involution’ operator on sections of

TxM
IC,

σ1σ2(x)
.
= σ2(x)σ1(x), σ

∗(x)
.
= σ(x)∗, ∀x ∈M,

where ”*” denotes the involution on every ICl(L)(TxM). The norm is defined by using
the Lagrange norm, see Definition 15.2.1,

‖ σ ‖L .= supx∈M {| σ(x) |L},

which defines a C∗
L–algebra instead of the usual C∗–algebra of ICl(TxM). Such construc-

tions can be also performed on the cotangent space TxM, or for any vector bundle E on
M enabled with a symmetric bilinear form of class C∞ on Γ∞(E)× Γ∞(E).

For Lagrange spaces modelled on T̃M, there is a natural almost complex structure F
(15.15) induced by the canonical N–connection (L)N, see the Results 15.2.2, 15.2.4 and
15.2.5, which allows also to construct an almost Kahler model of Lagrange geometry, see
details in Refs. [56, 57], and to define an Clifford–Kahler d–algebra ICl(KL)(TxM) [69],
for y = y0, being provided with the norm

‖ σ ‖KL .= supx∈M {| σ(x) |KL},

which on TxM is defined by projecting on x the d–metric (L)g (15.14).

In order to model Clifford–Lagrange structures on T̃M and T̃ ∗M it is necessary to
consider d–metrics induced by Lagrangians:

Definition 15.5.14. A Clifford–Lagrange space on a manifold M enabled with a fun-
damental metric (L)gij(x, y) (15.5) and canonical N–connection (L)N i

j (15.9) induc-

ing a Sasaki type d–metric (L)g (15.14) is defined as a Clifford bundle ICl(L)(M)
.
=

ICl(L)(T
∗M).
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For a general N–anholonomic manifold V of dimension n+m provided with a general
d–metric structure g (15.19) (for instance, in a gravitational model, or constructed by
conformal transforms and imbedding into higher dimensions of a Lagrange (or Finsler)
d–metrics), we introduce

Definition 15.5.15. A Clifford N–anholonomic bundle on V is defined as
ICl(N)(V)

.
= ICl(N)(T

∗V).

Let us consider a complex vector bundle π : E → M provided with N–connection
structure which can be defined by a corresponding exact chain of subbundles, or non-
integrable distributions, like for real vector bundles, see [56, 57] and subsection 15.2.3.
Denoting by V m

IC the typical fiber (a complex vector space), we can define the usual
Clifford map

c : ICl(T ∗M)→ End(V m

IC)

via (by convention, left) action on sections c(σ)σ1(x)
.
= c(σ(x))σ1(x).

Definition 15.5.16. The Clifford d–module (distinguished by a N–connection) of a N–
anholonomic vector bundle E is defined by the C(M)–module Γ(E) of continuous sections
in E,

c : Γ(ICl(M))→ End(Γ(E)).

In an alternative case, one considers a complex vector bundle π : E → V on an N–
anholonomic space V when the N–connection structure is given for the base manifold.

Definition 15.5.17. The Clifford d–module of a vector bundle E is defined by the C(V)–
module Γ(E) of continuous sections in E,

c : Γ(ICl(N)(V))→ End(Γ(E)).

A Clifford d–module with both N–anholonomic total space E and base space V with
corresponding N–connections (in general, two independent ones, but the N–connection
in the distinguished complex vector bundle must be adapted to the N–connection on the
base) has to be defined by an ”interference” of Definitions 15.5.16 and 15.5.17.

15.5.2 N–anholonomic spin structures

Usually, the spinor bundle on a manifoldM, dimM = n, is constructed on the tangent
bundle by substituting the group SO(n) by its universal covering Spin(n). If a Lagrange
fundamental quadratic form (L)gij(x, y) (15.5) is defined on Tx,M we can consider
Lagrange–spinor spaces in every point x ∈ M. The constructions can be completed
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on T̃M by using the Sasaki type metric (L)g (15.14) being similar for any type of
N–connection and d–metric structure on TM. On general N–anholonomic manifolds
V, dimV = n + m, the distinguished spinor space (in brief, d–spinor space) is to be
derived from the d–metric (15.19) and adapted to the N–connection structure. In this
case, the group SO(n+m) is not only substituted by Spin(n+m) but with respect to N–
adapted frames (15.10) and (15.11) one defines irreducible decompositions to Spin(n)⊕
Spin(m).

Lagrange spin groups

Let us consider a vector space V n provided with Clifford–Lagrange structures as in
subsection 15.5.1. We denote a such space as V n

(L) in order to emphasize that its tangent

space is provided with a Lagrange type quadratic form (L)g. In a similar form, we shall
write ICl(L)(V

n) ≡ ICl(V n
(L)) if this will be more convenient. A vector u ∈ V n

(L) has a unity

length on the Lagrange quadratic form if (L)g(u, u) = 1, or u2 = II, as an element of
corresponding Clifford algebra, which follows from (15.38). We define an endomorphism
of V n :

φu(L)
.
= χ(L)(u)vu

−1 = −uvu =
(
uv − 2 (L)g(u, v)

)
u = u− 2 (L)g(u, v)u

where χ(L) is the IZ2 graduation defined by (L)g. By multiplication,

φu1u2

(L) (v)
.
= u−1

2 u−1
1 vu1u2 = φu2

(L) ◦ φu1

(L)(v),

which defines the subgroup SO(V n
(L)) ⊂ O(V n

(L)). Now we can define [69, 88]

Definition 15.5.18. The space of complex Lagrange spins is defined by the subgroup
Spinc(L)(n) ≡ Spinc(V n

(L)) ⊂ ICl(V n
(L)), determined by the products of pairs of vectors

w ∈ V IC
(L) when w

.
= λu where λ is a complex number of module 1 and u is of unity length

in V n
(L).

We note that kerφ(L)
∼= U(1). We can define a homomorphism ν(L) with values in

U(1),
ν(L)(w) = w2k...w1w1...w2k = λ1...λ2k,

where w = w1...w2k ∈ Spinc(V n
(L)) and λi = w2

i ∈ U(1).

Definition 15.5.19. The group of real Lagrange spins Spinc(L)(n) ≡ Spin(V n
(L)) is defined

by ker ν(L).
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The complex conjugation on ICl(V n
(L)) is usually defined as λv

.
= λv for λ ∈ IC, v ∈

V n
(L). So, any element w ∈ Spin(V n

(L)) satisfies the conditions w∗w = w∗w = II and

w = w. If we take V n
(L) = IRn provided with a (pseudo) Euclidean quadratic form instead

of the Lagrange norm, we obtain the usual spin–group constructions from the (pseudo)
Euclidean geometry.

Lagrange spinors and d–spinors: Main Result 1

A usual spinor is a section of a vector bundle S on a manifold M when an irreducible
representation of the group Spin(M)

.
= Spin(T ∗

xM) is defined on the typical fiber. The
set of sections Γ(S) is a irreducible Clifford module. If the base manifold of type M(L),
or is a general N–anholonomic manifold V, we have to define the spinors on such spaces
as to be adapted to the respective N–connection structure.

In the case when the base space is of even dimension (the geometric constructions in
in this subsection will be considered for even dimensions both for the base and typical
fiber spaces), one should consider the so–called Morita equivalence (see details in [29, 50]
for a such equivalence between C(M) and Γ(ICl(M))). One says that two algebras A
and B are Morita–equivalent if

E ⊗A F ≃ B and F ⊗B F ≃ A,

respectively, for B– and A–bimodules and B −A–bimodule E and A− B–bimodule F .
If we study algebras through theirs representations, we also have to consider various
algebras related by the Morita equivalence.

Definition 15.5.20. A Lagrange spinor bundle S(L) on a manifold M, dimM = n, is
a complex vector bundle with both defined action of the spin group Spin(V n

(L)) on the

typical fiber and an irreducible reprezentation of the group Spin(L)(M) ≡ Spin(M(L))
.
=

Spin(T ∗
xM(L)). The set of sections Γ(S(L)) defines an irreducible Clifford–Lagrange mod-

ule.

The so–called ”d–spinors” have been introduced for the spaces provided with N–
connection structure [69, 72, 73]:

Definition 15.5.21. A distinguished spinor (d–spinor) bundle S
.
= (S, ⋆S) on an N–

anholonomic manifold V, dimV = n + m, is a complex vector bundle with a defined
action of the spin d–group Spin V

.
= Spin(V n) ⊕ Spin(V m) with the splitting adapted

to the N–connection structure which results in an irreducible representation Spin(V)
.
=

Spin(T ∗V). The set of sections Γ(S) = Γ (S)⊕Γ( ⋆S) is an irreducible Clifford d–module.



622 CHAPTER 15. NONCOMMUTATIVE CLIFFORD–FINSLER GRAVITY

The fact that C(V) and Γ(ICl(V)) are Morita equivalent can be analyzed by ap-
plying in N–adapted form, both on the base and fiber spaces, the consequences of the
Plymen’s theorem (see Theorem 9.3 in Ref. [29]). This is connected with the possibility
to distinguish the Spin(n) (or, correspondingly Spin(M(L)), Spin(V n) ⊕ Spin(V m)) an
antilinear bijection J : S → S (or J : S(L) → S(L) and J : S → S) with the
properties:

J(ψf) = (Jψ)f for f ∈ C(M)( or C(M(L)), C(V));

J(aψ) = χ(a)Jψ, for a ∈ Γ∞(ICl(M))( or Γ∞(ICl(M(L))), Γ∞(ICl(V));

(Jφ|Jψ) = (ψ|φ) for φ, ψ ∈ S( or S(L),S). (15.41)

Definition 15.5.22. The spin structure on a manifold M (respectively, on M(L), or on
N–anholonomic manifold V) with even dimensions for the corresponding base and typical
fiber spaces is defined by a bimodule S (respectively, M(L), or V) obeying the Morita equiv-
alence C(M)− Γ(ICl(M)) (respectively, C(M(L))− Γ(ICl(M(L))), or C(V)− Γ(ICl(V)))
by a corresponding bijections (15.41) and a fixed orientation on M (respectively, on M(L)

or V).

In brief, we may call M (M(L), or V) as a spin manifold (Lagrange spin manifold,
or N–anholonomic spin manifold). If any of the base or typical fiber spaces is of odd
dimension, we may perform similar constructions by considering ICl+ instead of ICl.

The considerations presented in this Section consists the proof of the first main Result
of this paper (let us conventionally say that it is the 7th one after the Results 15.2.1–
15.2.6:

Theorem 15.5.3. (Main Result 1) Any regular Lagrangian and/or N–connection
structure define naturally the fundamental geometric objects and structures (such as the
Clifford–Lagrange module and Clifford d–modules, the Lagrange spin structure and d–
spinors) for the corresponding Lagrange spin manifold and/or N–anholonomic spinor
(d–spinor) manifold.

We note that similar results were obtained in Refs. [69, 72, 86, 88] for the standard
Finsler and Lagrange geometries and theirs higher order generalizations. In a more
restricted form, the idea of Theorem 15.5.3 can be found in Ref. [77], where the first
models of noncommutative Finsler geometry and related gravity were considered (in a
more rough form, for instance, with constructions not reflecting the Morita equivalence).

Finally, in this Section, we can make the

Conclusion 15.5.2. Any regular Lagrange and/or N–connection structure (the second
one being any admissible N–connection in Lagrange–Finsler geometry and their general-
izations, or induced by any generic off–diagonal and/ or nonholonomic frame structure)
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define certain, corresponding, Clifford–Lagrange module and/or Clifford d–module and
related Lagrange spinor and/or d–spinor structures.

It is a bit surprizing that a Lagrangian may define not only the fundamental geo-
metric objects of a nonholonomic Lagrange space but also the structure of a naturally
associated Lagrange spin manifold. The Lagrange mechanics and off–diagonal gravita-
tional interactions (in general, with nontrivial torsion and nonholonomic constraints)
can be completely geometrized on Lagrange spin (N–anholonomic) manifolds.

15.6 The Dirac Operator, Nonholonomy, and

Spectral Triples

The Dirac operator for a certain class of (non) commutative Finsler spaces provided
with compatible metric structure was introduced in Ref. [77] following previous construc-
tions for the Dirac equations on locally anisotropic spaces [69, 72, 73, 86, 88]. The aim
of this Section is to elucidate the possibility of definition of Dirac operators for general
N–anholonomic manifolds and Lagrange–Finsler spaces. It should be noted that such
geometric constructions depend on the type of linear connections which are used for the
complete definition of the Dirac operator. They are metric compatible and N–adapted
if the canonical d–connection is used, see Proposition 15.3.1 (we can also use any its
deformation which results in a metric compatible d–connection). The constructions can
be more sophisticate and nonmetric (with some geometric objects not completely de-
fined on the tangent spaces) if the Chern, or the Berwald d–connection, is considered,
see Example 15.3.2.

15.6.1 N–anholonomic Dirac operators

We introduce the basic definitions and formulas with respect to N–adapted frames
of type (15.10) and (15.11). Then we shall present the main results in a global form.

Noholonomic vielbeins and spin d–connections

Let us consider a Hilbert space of finite dimension. For a local dual coordinate basis
ei
.
= dxi on a manifold M, dimM = n, we may respectively introduce certain classes of



624 CHAPTER 15. NONCOMMUTATIVE CLIFFORD–FINSLER GRAVITY

orthonormalized vielbeins and the N–adapted vielbeins, 7

eî
.
= eî i(x, y) e

i and ei
.
= ei i(x, y) e

i, (15.42)

where

gij(x, y) eî i(x, y)e
ĵ
j(x, y) = δ îĵ and gij(x, y) ei i(x, y)e

j
j(x, y) = gij(x, y).

We define the the algebra of Dirac’s gamma matrices (in brief, h–gamma matrices defined
by self–adjoints matrices Mk(IC) where k = 2n/2 is the dimension of the irreducible
representation of ICl(M) for even dimensions, or of ICl(M)+ for odd dimensions) from
the relation

γ îγ ĵ + γ ĵγ î = 2δ îĵ II. (15.43)

We can consider the action of dxi ∈ ICl(M) on a spinor ψ ∈ S via representations

−c(dxî)
.
= γ î and −c(dxi)ψ

.
= γiψ ≡ ei

î
γ îψ. (15.44)

For any type of spaces TxM,TM,V possessing a local (in any point) or global fibered
structure and, in general, enabled with a N–connection structure, we can introduce simi-
lar definitions of the gamma matrices following algebraic relations and metric structures
on fiber subspaces,

eâ
.
= eâa(x, y) e

a and ea
.
= eaa(x, y) e

a, (15.45)

where

gab(x, y) eâa(x, y)e
b̂
b(x, y) = δâb̂ and gab(x, y) eaa(x, y)e

b
b(x, y) = hab(x, y).

Similarly, we define the algebra of Dirac’s matrices related to typical fibers (in brief,
v–gamma matrices defined by self–adjoints matrices M ′

k(IC) where k′ = 2m/2 is the
dimension of the irreducible representation of ICl(F ) for even dimensions, or of ICl(F )+

for odd dimensions, of the typical fiber) from the relation

γâγ b̂ + γ b̂γâ = 2δâb̂ II. (15.46)

The action of dya ∈ ICl(F ) on a spinor ⋆ψ ∈ ⋆S is considered via representations

⋆c(dyâ)
.
= γâ and ⋆c(dya) ⋆ψ

.
= γa ⋆ψ ≡ eaâ γ

â ⋆ψ. (15.47)

7(depending both on the base coordinates x
.
= xi and some ”fiber” coordinates y

.
= ya, the status

of ya depends on what kind of models we shall consider: elongated on TM, for a Lagrange space, for a
vector bundle, or on a N–anholonomic manifold)
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We note that additionally to formulas (15.44) and (15.47) we may write respectively

c(dxi)ψ
.
= γiψ ≡ e

i

î
γ îψ and c(dya) ⋆ψ

.
= γa ⋆ψ ≡ e

a
â γ

â ⋆ψ

but such operators are not adapted to the N–connection structure.
A more general gamma matrix calculus with distinguished gamma matrices (in brief,

d–gamma matrices8) can be elaborated for N–anholonomic manifolds V provided with
d–metric structure g = [g,⋆ g] and for d–spinors ψ̆

.
= (ψ, ⋆ψ) ∈ S

.
= (S, ⋆S), see the

corresponding Definitions 15.2.7, 15.2.8 and 15.5.21. Firstly, we should write in a unified
form, related to a d–metric (15.19), the formulas (15.42) and (15.45),

eα̂
.
= eα̂a(u) e

α and eα
.
= eαα(u) e

α, (15.48)

where
gαβ(u) eα̂α(u)e

β̂
β(u) = δα̂β̂ and gαβ(u) eαα(u)e

β
β(u) = gαβ(u).

The second step, is to consider d–gamma matrix relations (unifying (15.43) and (15.46))

γα̂γβ̂ + γβ̂γα̂ = 2δα̂β̂ II, (15.49)

with the action of duα ∈ ICl(V) on a d–spinor ψ̆ ∈ S resulting in distinguished irreducible
representations (unifying (15.44) and (15.47))

c(duα̂)
.
= γα̂ and c = (duα) ψ̆

.
= γα ψ̆ ≡ eαα̂ γ

α̂ ψ̆ (15.50)

which allows to write

γα(u)γβ(u) + γβ(u)γα(u) = 2gαβ(u) II. (15.51)

In the canonical representation we can write in irreducible form γ̆
.
= γ ⊕ ⋆γ and ψ̆

.
=

ψ⊕ ⋆ψ, for instance, by using block type of h– and v–matrices, or, writing alternatively
as couples of gamma and/or h– and v–spinor objects written in N–adapted form,

γα
.
= (γi, γa) and ψ̆

.
= (ψ, ⋆ψ). (15.52)

The decomposition (15.51) holds with respect to a N–adapted vielbein (15.10). We
also note that for a spinor calculus, the indices of spinor objects should be treated as
abstract spinorial ones possessing certain reducible, or irreducible, properties depending
on the space dimension (see details in Refs. [69, 72, 73, 86, 88]). For simplicity, we

8in our previous works [69, 72, 73, 86, 88] we wrote σ instead of γ
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shall consider that spinors like ψ̆, ψ, ⋆ψ and all type of gamma objects can be enabled
with corresponding spinor indices running certain values which are different from the
usual coordinate space indices. In a ”rough” but brief form we can use the same indices
i, j, ..., a, b..., α, β, ... both for d–spinor and d–tensor objects.

The spin connection ▽S for the Riemannian manifolds is induced by the Levi–Civita
connection ▽Γ,

▽S .
= d− 1

4
▽Γi jkγiγ

j dxk. (15.53)

On N–anholonomic spaces, it is possible to define spin connections which are N–adapted
by replacing the Levi–Civita connection by any d–connection (see Definition 15.3.9).

Definition 15.6.23. The canonical spin d–connection is defined by the canonical d–
connection (15.25) as

▽̂S .
= δ − 1

4
Γ̂α

βµγαγ
βδuµ, (15.54)

where the absolute differential δ acts in N–adapted form resulting in 1–forms decomposed
with respect to N–elongated differentials like δuµ = (dxi, δya) (15.11).

We note that the canonical spin d–connection ▽̂S
is metric compatible and contains

nontrivial d–torsion coefficients induced by the N–anholonomy relations (see the formulas
(15.24) proved for arbitrary d–connection). It is possible to introduce more general spin
d–connections DS by using the same formula (15.54) but for arbitrary metric compatible
d–connection Γα

βµ.
In a particular case, we can define, for instance, the canonical spin d–connections

for a local modelling of a T̃M space on Ṽ(n,n) with the canonical d–connection Γ̂γ
αβ =

(L̂ijk, Ĉ
i
jk), see formulas (15.27). This allows us to prove (by considering d–connection

and d–metric structure defined by the fundamental Lagrange, or Finsler, functions, we
put formulas (15.9) and (15.14) into (15.27)):

Proposition 15.6.2. On Lagrange spaces, there is a canonical spin d–connection (the
canonical spin–Lagrange connection),

▽̂(SL) .
= δ − 1

4
(L)Γα

βµγαγ
βδuµ, (15.55)

where δuµ = (dxi, δyk = dyk + (L)Nk
i dx

i).

We emphasize that even regular Lagrangians of classical mechanics without spin par-
ticles induce in a canonical (but nonholonomic) form certain classes of spin d–connections
like (15.55).
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For the spaces provided with generic off–diagonal metric structure (15.16) (in partic-
ular, for such Riemannian manifolds) resulting in equivalent N–anholonomic manifolds,
it is possible to prove a result being similar to Proposition 15.6.2:

Remark 15.6.7. There is a canonical spin d–connection (15.54) induced by the off–
diagonal metric coefficients with nontrivial Na

i and associated nonholonomic frames in
gravity theories.

The N–connection structure also states a global h– and v–splitting of spin d–connecti-
on operators, for instance,

▽̂(SL) .
= δ − 1

4
(L)L̂i jkγiγ

jdxk − 1

4
(L)Ĉa

bcγaγ
bδyc. (15.56)

So, any spin d–connection is a d–operator with conventional splitting of action like

▽(S) ≡ ( −▽(S)
, ⋆▽(S)), or ▽(SL) ≡ ( −▽(SL)

, ⋆▽(SL)). For instance, for ▽̂(SL) ≡
( −▽̂(SL)

, ⋆▽̂(SL)
), the operators −▽̂(SL)

and ⋆▽̂(SL)
act respectively on a h–spinor

ψ as
−▽̂(SL)

ψ
.
= dxi

δψ

dxi
− dxk 1

4
(L)L̂i jkγiγ

j ψ (15.57)

and
⋆▽̂(SL)

ψ
.
= δya

∂ψ

dya
− δyc 1

4
(L)Ĉa

bcγaγ
b ψ

being defined by the canonical d–connection (15.27).

Remark 15.6.8. We can consider that the h–operator (15.57) defines a spin generaliza-

tion of the Chern’s d–connection [Chern]Γγ
αβ = (L̂ijk, C

i
jk = 0), see Example 15.3.2, which

may be introduced as a minimal extension, with Finsler structure, of the spin connection
defined by the Levi–Civita connection (15.53) preserving the torsionless condition. This
is an example of nonmetric spin connection operator because [Chern]Γγ

αβ does not satisfy
the condition of metric compatibility.

We can define spin Chern–Finsler structures, considered in the Remark 15.6.8, for any
point of an N–anholonomic manifold. There are necessary some additional assumptions
in order to completely define such structures (for instance, on the tangent bundle). We
can say that this is a deformed nonholonomic spin structure derived from a d–spinor one
provided with the canonical spin d–connection by deforming the canonical d–connection
in a manner that the horizontal torsion vanishes transforming into a nonmetricity d–
tensor. The ”nonspinor” aspects of such generalizations of the Riemann–Finsler spaces
and gravity models with nontrivial nonmetricity are analyzed in Refs. [83].
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Dirac d–operators: Main Result 2

We consider a vector bundle E on an N–anholonomic manifold M (with two com-
patible N–connections defined as h– and v–splitting of TE and TM)). A d–connection

D : Γ∞(E)→ Γ∞(E)⊗ Ω1(M)

preserves by parallelism splitting of the tangent total and base spaces and satisfy the
Leibniz condition

D(fσ) = f(Dσ) + δf ⊗ σ
for any f ∈ C∞(M), and σ ∈ Γ∞(E) and δ defining an N–adapted exterior calculus
by using N–elongated operators (15.10) and (15.11) which emphasize d–forms instead of
usual forms on M, with the coefficients taking values in E.

The metricity and Leibniz conditions for D are written respectively

g(DX,Y) + g(X,DY) = δ[g(X,Y)], (15.58)

for any X, Y ∈ χ(M), and

D(σβ)
.
= D(σ)β + σD(β), (15.59)

for any σ, β ∈ Γ∞(E).
For local computations, we may define the corresponding coefficients of the geometric

d–objects and write

Dσβ́
.
= Γά

β́µ
σά ⊗ δuµ = Γά

β́i
σά ⊗ dxi + Γά

β́a
σά ⊗ δya,

where fiber ”acute” indices, in their turn, may split ά
.
= (́i, á) if any N–connection

structure is defined on TE. For some particular constructions of particular interest, we
can take E = T ∗V,= T ∗V(L) and/or any Clifford d–algebra E = ICl(V), ICl(V(L)), ...
with a corresponding treating of ”acute” indices to of d–tensor and/or d–spinor type
as well when the d–operator D transforms into respective d–connection D and spin

d–connections ▽̂S
(15.54), ▽̂(SL)

(15.55).... All such, adapted to the N–connections,
computations are similar for both N–anholonomic (co) vector and spinor bundles.

The respective actions of the Clifford d–algebra and Clifford–Lagrange algebra (see
Definitions 15.5.13 and 15.5.13) can be transformed into maps Γ∞(S) ⊗ Γ(ICl(V)) and
Γ∞(S(L))⊗Γ(ICl(V(L))) to Γ∞(S) and, respectively, Γ∞(S(L)) by considering maps of type
(15.44) and (15.50)

ĉ(ψ̆ ⊗ a)
.
= c(a)ψ̆ and ĉ(ψ ⊗ a) .

= c(a)ψ.
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Definition 15.6.24. The Dirac d–operator (Dirac–Lagrange operator) on a spin N–
anholonomic manifold (V,S, J) (on a Lagrange spin manifold
(M(L), S(L), J)) is defined

ID
.
= −i (ĉ ◦ ▽S) (15.60)

=
( −ID = −i ( −ĉ ◦ −▽S), ⋆ID = −i ( ⋆ĉ ◦ ⋆▽S)

)

( (L)ID
.
= −i (ĉ ◦ ▽(SL)) ) (15.61)

=
(

(L)
−ID = −i( −ĉ ◦ −▽(SL)), (L)

⋆ID = −i( ⋆ĉ ◦ ⋆▽(SL))
)

).

Such N–adapted Dirac d–operators are called canonical and denoted ÎD = ( −ÎD, ⋆ÎD ) (

(L)ÎD = ( (L)
−ÎD, (L)

⋆ÎD ) ) if they are defined for the canonical d–connection (15.26) (
(15.27)) and respective spin d–connection (15.54) ( (15.55)).

Now we can formulate the

Theorem 15.6.4. (Main Result 2) Let (V,S, J) ( (M(L), S(L), J) be a spin N–anholo-
nomic manifold ( spin Lagrange space). There is the canonical Dirac d–operator (Dirac–
Lagrange operator) defined by the almost Hermitian spin d–operator

▽̂S
: Γ∞(S)→ Γ∞(S)⊗ Ω1(V)

(spin Lagrange operator

▽̂(SL)
: Γ∞(S(L))→ Γ∞(S(L))⊗ Ω1(M(L)) )

commuting with J (15.41) and satisfying the conditions

(▽̂S
ψ̆ | φ̆) + (ψ̆ | ▽̂S

φ̆) = δ(ψ̆ | φ̆) (15.62)

and
▽̂S

(c(a)ψ̆) = c(D̂a)ψ̆ + c(a)▽̂S
ψ̆

for a ∈ ICl(V) and ψ̆ ∈ Γ∞(S)

( (▽̂(SL)
ψ̆ | φ̆) + (ψ̆ | ▽̂(SL)

φ̆) = δ(ψ̆ | φ̆) (15.63)

and

▽̂(SL)
(c(a)ψ̆) = c(D̂a)ψ̆ + c(a)▽̂(SL)

ψ̆

for a ∈ ICl(M(L)) and ψ̆ ∈ Γ∞(S(L) ) determined by the metricity (15.58) and Leibnitz
(15.59) conditions.
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Proof. We sketch the main ideas of such Proofs. There two ways:

The first one is similar to that given in Ref. [29], Theorem 9.8, for the Levi–Civita
connection, see similar considerations in [67]. In our case, we have to extend the con-
structions for d–metrics and canonical d–connections by applying N–elongated operators
for differentials and partial derivatives. The formulas have to be distinguished into h–
and v–irreducible components. We are going to present the related technical details in
our further publications.

In other turn, the second way, is to argue a such proof is a straightforward consequence
of the Result 15.2.6 stating that any Riemannian manifold can be modelled as a N–
anholonomic manifold induced by the generic off–diagonal metric structure. If the results
from [29] hold true for any Riemannian space, the formulas may be rewritten with respect
to any local frame system, as well with respect to (15.10) and (15.11). Nevertheless,
on N–anholonomic manifolds the canonical d–connection is not just the Levi–Civita
connection but a deformation of type (15.25): we must verify that such deformations
results in N–adapted constructions satisfying the metricity and Leibnitz conditions. The
existence of such configurations was proven from the properties of the canonical d–
connection completely defined from the d–metric and N–connection coefficients. The
main difference from the case of the Levi–Civita configuration is that we have a nontrivial
torsion induced by the frame nonholonomy. But it is not a problem to define the Dirac
operator with nontrivial torsion if the metricity conditions are satisfied. ✷

The canonical Dirac d–operator has very similar properties for spin N–anholonomic
manifolds and spin Lagrange spaces. Nevertheless, theirs geometric and physical meaning
may be completely different and that why we have written the corresponding formulas
with different labels and emphasized the existing differences. With respect to the Main
Result 2, one holds three important remarks:

Remark 15.6.9. The first type of canonical Dirac d–operators may be associated to
Riemannian–Cartan (in particular, Riemann) off–diagonal metric and nonholonomic
frame structures and the second type of canonical Dirac–Lagrange operators are com-
pletely induced by a regular Lagrange mechanics. In both cases, such d–operators are
completely determined by the coefficients of the corresponding Sasaki type d–metric and
the N–connection structure.

Remark 15.6.10. The conditions of the Theorem 15.6.4 may be revised for any d–
connection and induced spin d–connection satisfying the metricity condition. But, for
such cases, the corresponding Dirac d–operators are not completely defined by the d–
metric and N–connection structures. We can prescribe certain type of torsions of d–
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connections and, via such ’noncanonical’ Dirac operators, we are able to define noncom-
mutative geometries with prescribed d–torsions.

Remark 15.6.11. The properties (15.62) and (15.63) hold if and only if the metricity
conditions are satisfied (15.58). So, for the Chern or Berwald type d–connections which
are nonmetric (see Example 15.3.2 and Remark 15.6.8 ), the conditions of Theorem
15.6.4 do not hold.

It is a more sophisticate problem to find applications in physics for such nonmetric
constructions 9 but they define positively some examples of nonmetric d–spinor and non-
commutative structures minimally deformed from the Riemannian (non) commutative
geometry to certain Finsler type (non) commutative geometries.

15.6.2 Distinguished spectral triples

The geometric information of a spin manifold (in particular, the metric) is contained
in the Dirac operator. For nonholonomic manifolds, the canonical Dirac d–operator has
h– and v–irreducible parts related to off–diagonal metric terms and nonholonomic frames
with associated structure. In a more special case, the canonical Dirac–Lagrange operator
is defined by a regular Lagrangian. So, such Driac d–operators contain more information
than the usual, holonomic, ones.

For simplicity, hereafter, we shall formulate the results for the general N–anholonomic
spaces, by omitting the explicit formulas and proofs for Lagrange and Finsler spaces,
which can be derived by imposing certain conditions that the N–connection, d–connection
and d–metric are just those defined canonically by a Lagrangian. We shall only present
the Main Result and some important Remarks concerning Lagrange mechanics and/or
Finsler structures.

Proposition 15.6.3. If ÎD = ( −ÎD, ⋆ÎD ) is the canonical Dirac d–operator then

[
ÎD, f

]
= ic(δf), equivalently,

[
−ÎD, f

]
+
[
⋆ÎD, f

]
= i −c(dxi

δf

∂xi
) + i ⋆c(δya

∂f

∂ya
),

for all f ∈ C∞(V).

Proof. It is a straightforward computation following from Definition 15.6.24.

9See Refs. [28] and [80, 83, 82] for details on elaborated geometrical and physical models being,
respectively, locally isotropic and locally anisotropic.
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The canonical Dirac d–operator and its irreversible h– and v–components have all
the properties of the usual Dirac operators (for instance, they are self–adjoint but un-
bounded). It is possible to define a scalar product on Γ∞(S),

< ψ̆, φ̆ >
.
=

∫

V

(ψ̆|φ̆)|νg| (15.64)

where
νg =

√
detg

√
deth dx1...dxn dyn+1...dyn+m

is the volume d–form on the N–anholonomic manifold V.
We denote by

HN
.
= L2(V,S) =

[ −H = L2(V,
−S), ⋆H = L2(V,

⋆S)
]

(15.65)

the Hilbert d–space obtained by completing Γ∞(S) with the norm defined by the scalar
product (15.64).

Similarly to the holonomic spaces, by using formulas (15.60) and (15.54), one may
prove that there is a self–adjoint unitary endomorphism Γ[cr] of HN , called ”chirality”,
being a IZ2 graduation of HN ,

10 which satisfies the condition

ÎD Γ[cr] = −Γ[cr] ÎD. (15.66)

We note that the condition (15.66) may be written also for the irreducible components
−ÎD and ⋆ÎD.

Definition 15.6.25. A distinguished canonical spectral triple (canonical spectral d–

triple) (A,HN , ÎD) for an algebra A is defined by a Hilbert d–space HN , a representation
of A in the algebra B(H) of d–operators bounded on HN , and by a self–adjoint d–operator

ÎD, of compact resolution,11 such that [ÎD, a] ∈ B(H) for any a ∈ A.

Roughly speaking, every canonical spectral d–triple is defined by two usual spectral
triples which in our case corresponds to certain h– and v–irreducible components induced
by the corresponding h– and v–components of the Dirac d–operator. For such spectral
h(v)–triples we can define the notion of KRn–cycle (KRm–cycle) and consider respective
Hochschild complexes. We note that in order to define a noncommutative geometry the
h– and v– components of a canonical spectral d–triples must satisfy some well defined

10We use the label [cr] in order to avoid misunderstanding with the symbol Γ used for the connections.
11An operator D is of compact resolution if for any λ ∈ sp(D) the operator (D − λII)−1 is compact,

see details in [50, 29].
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Conditions [17, 29] (Conditions 1 - 7, enumerated in [50], section II.4) which states: 1)
the spectral dimension, being of order 1/(n + m) for a Dirac d–operator, and of order
1/n (or 1/m) for its h– (or v)–components; 2) regularity; 3) finiteness; 4) reality; 5)
representation of 1st order; 6) orientability; 7) Poincaré duality. Such conditions can be
satisfied by any Dirac operators and canonical Dirac d–operators (in the second case we
have to work with d–objects). 12

Definition 15.6.26. A spectral d–triple satisfying the mentioned seven Conditions for
his h– and v–irreversible components is a real one which defines a (d–spinor) N–anholono-

mic noncommutative geometry defined by the data (A,HN , ÎD, J, Γ[cr] ) and derived for
the Dirac d–operator (15.60).

For a particular case, when the N–distinguished structures are of Lagrange (Finsler)
type, we can consider:

Definition 15.6.27. A spectral d–triple satisfying the mentioned seven Conditions for
his h– and v–irreversible components is a real one which defines a Lagrange, or Finsler,
(spinor) noncommutative geometry defined by the data (A,H(SL), (L)ÎD, J, Γ[cr] ) and
derived for the Dirac d–operator (15.61).

In Ref. [77], we used the concept of d–algebra AN .
= ( −A, ⋆A) which we introduced

as a ”couple” of algebras for respective h– and v–irreducible decomposition of construc-
tions defined by the N–connection. This is possible if AN .

= −A ⊕ ⋆A), but we can
consider arbitrary noncommutative associative algebras A if the splitting is defined by
the Dirac d–operator.

15.6.3 Distance in d–spinor spaces: Main Result 3

We can select N–anholonomic and Lagrange commutative geometries from the cor-
responding Definitions 15.6.26 and 15.6.27 if we put respectively A .

= C∞(V) and
A .

= C∞(V(L)) and consider real spectral d–triples. One holds:

Theorem 15.6.5. (Main Result 3) Let (A,HN , ÎD, J, Γ[cr] )

(or (A,H(SL), (L)ÎD, J, Γ[cr] )) defines a noncommutative geometry being irreducible for

12We omit in this paper the details on axiomatics and related proofs for such considerations: we shall
present details and proofs in our further works. Roughly speaking, we are in right to do this because
the canonical d–connection and the Sasaki type d–metric for N–anholonomic spaces satisfy the bulk
of properties of the metric and connection on the Riemannian space but ”slightly” nonholonomically
modified).
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A .
= C∞(V) (or A .

= C∞(V(L))), where V (or V(L)) is a compact, connected and oriented
manifold without boundaries, of spectral dimension dim V = n+m (or dim V(L) = n+n
). In this case, there are satisfied the conditions:

1. There is a unique d–metric g(ÎD) = (g, ⋆g) of type ((15.19)) on V (or of type
(15.14) on V(L)) with the ”nonlinear” geodesic distance defined by

d(u1, u2) = sup
f∈C(V)

{f(u1, u2)/ ‖ [ID, f ] ‖≤ 1} (15.67)

(we have to consider f ∈ C(V(L)) and (L)ÎD if we compute d(u1, u2) for Lagrange
configurations).

2. The N–anholonomic manifold V (or Lagrange space V(L)) is a spin N–anholonmic
space (or a spin Lagrange manifold) for which the operators ID′ satisfying g(ID′) =

g(ÎD) define an union of affine spaces identified by the d–spinor structures on V

(we should consider the operators (L)ID
′ satisfying (L)g( (L)ID

′) = (L)g( (L)ÎD)
for the space V(L))).

3. The functional S(ID)
.
=
∫
|ID|−n−m+2 defines a quadratic d–form with (n + m)–

splitting for every affine spaces which is minimal for ÎD =
←−
ID as the Dirac d–

operator corresponding to the d–spin structure with the minimum proportional to
the Einstein–Hilbert action constructed for the canonical d–connection with the d–

scalar curvature
←−
R (15.33), 13

S(
←−
ID) = −n +m− 2

24

∫

V

←−
R
√
g
√
h dx1...dxn δyn+1...δyn+k.

Proof. In this work, we sketch only the idea and the key points of a such Proof. The
Theorem is a generalization for N–anholonomic spaces of a similar one, formulated in
Ref. [17], with a detailed proof presented in [29], which seems to be a final almost
generally accepted result. There are also alternative considerations, with useful details,
in Refs. [63, 43]. For the Dirac d–operators, we have to start with the Proposition
15.6.3 and then to repeat all constructions from [17, 29], both on h– and v–subspaces,
in N–adapted form.

13The integral for the usual Dirac operator related to the Levi–Civita connection D is computed:∫
|D|−n+2 .

= 1
2[n/2]Ωn

Wres|D|−n+2, where Ωn is the integral of the volume on the sphere Sn and Wres

is the Wodzicki residu, see details in Theorem 7.5 [29]. On N–anholonomic manifolds, we may consider
similar definitions and computations but applying N–elongated partial derivatives and differentials.
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The existence of a canonical d–connection structure which is metric compatible and
constructed from the coefficients of the d–metric and N–connection structure is a crucial
result allowing the formulation and proof of the Main Results 1-3 of this work. Roughly
speaking, if the commutative Riemannian geometry can be extracted from a noncom-
mutative geometry, we can also generate (in a similar, but technically more sophisticate
form) Finsler like geometries and generalizations. To do this, we have to consider the
corresponding parametrizations of the nonholonomic frame structure, off–diagonal met-
rics and deformations of the linear connection structure, all constructions being adapted
to the N–connection splitting. If a fixed d–connection satisfies the metricity conditions,
the resulting Lagrange–Finsler geometry belongs to a class of nonholonomic Riemann–
Cartan geometries, which (in their turns) are equivalents, related by nonholonomic maps,
of Riemannian spaces, see [80, 82]. However, it is not yet clear how to perform a such
general proof for nonmetric d–connections (of Berwald or Chern type). We shall present
the technical details of such considerations in our further works.

Finally, we emphasize that for the Main Result 3 there is the possibility to elaborate
an alternative proof (like for the Main Result 2) by verifying that the basic formulas
proved for the Riemannian geometry hold true on N–anholonomic manifolds by a cor-
responding substitution of the N–elongated differential and partial derivatives operators
acting on canonical d–connections and d–metrics. All such constructions are elaborated
in N–adapted form by preserving the respective h- and v–irreducible decompositions.
✷

Finally, we can formulate three important conclusions:

Conclusion 15.6.3. The formula (15.67) defines the distance in a manner as to be
satisfied all necessary properties (finitenes, positivity conditions, ...) discussed in de-
tails in Ref. [29]. It allows to generalize the constructions for discrete spaces with
anisotropies and to consider anisotropic fluctuations of noncommutative geometries [50,
51] (of Finsler type, and more general ones, we omit such constructions in this work).
For the nonholonomic configurations we have to work with canonical d–connection and
d–metric structures.

Following the N–connection formalism originally elaborated in the framework of
Finsler geometry, we may state:

Conclusion 15.6.4. In the particular case of the canonical N–connection, d–connecti-
on and d–metrics defined by a regular Lagrangian, it is possible a noncommutative ge-
ometrization of Lagrange mechanics related to corresponding classes of noncommutative
Lagrange–Finsler geometry.
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Such geometric methods have a number of applications in modern gravity:

Conclusion 15.6.5. By anholonomic frame transforms, we can generate noncommu-
tative Riemann–Cartan and Lagrange–Finsler spaces, in particular exact solutions of
the Einstein equations with noncommutative variables 14, by considering N–anholonomic
deformations of the Dirac operator.
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